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Abstract. Real-time monitoring of volcano-seismic signals is complex. Typically, automatic systems are built by learning 10 

from large seismic catalogues, where each instance has a label indicating its source mechanism. However, building complete 

catalogues is difficult owing to the high cost of data-labelling. Current machine learning techniques have achieved great 

success in constructing predictive monitoring tools; however, catalogue-based learning can introduce bias into the system. 

Here, we show that while monitoring systems recognize almost 90% of events annotated in seismic catalogues, other 

information describing volcanic behavior is not considered. We found that weakly supervised learning approaches have the 15 

remarkable capability of simultaneously identifying unannotated seismic traces in the catalogue and correcting mis-

annotated seismic traces. When a system trained with a master dataset and catalogue is used as a pseudo-labeller within the 

framework of weakly supervised learning, information related to volcanic dynamics can be revealed and updated. Our results 

offer the potential for developing more sophisticated semi-supervised models to increase the reliability of monitoring tools. 

For example, the use of more sophisticated pseudo-labelling techniques involving data from several catalogues could be 20 

tested. Ultimately, there is potential to develop universal monitoring tools able to consider unforeseen temporal changes in 

monitored signals at any volcano. 

1 Introduction 

Understanding the dynamics of active volcanoes, and even more so, carrying out Early Warning protocols for volcanic 

eruptions require multiparametric observations focused on accomplish accurate and effective monitoring (Sparks, 2003). The 25 

objective of identifying precursors that warn of a possible volcanic eruption involves the analysis of long temporal series of 

data, characterizing and relating them with source models associated with the internal dynamics of the volcano (Witze, 2019; 

Palmer, 2020). Currently, the availability of multiparametric long-time data series, such as seismology, deformation, 

measurements of volcanic gases and fluids, space imaging, and other processes, is limited to a few volcanoes around the 

world. For this reason, volcanic seismology continues being the backbone of the analysis, both in real time and using data 30 
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from previous eruptive episodes (Chouet, 2003; McNutt, 2015). This is because the installation and acquisition of seismic 

data continues to be the most efficient procedure of volcanic monitoring, and because the existence of numerous open access 

repositories allows the scientific community reviewing consolidated databases to understand what occurred in the past for 

modelling future eruptions. 

In volcanic seismology, the presence of various seismic signals—such as volcano-tectonic earthquakes (VT), long-period 35 

events (LP), ultra-long-period (VLP) events, hybrid (HY) events, explosions (EXP), and volcanic tremors (TR)—indicates 

the existence of multiple seismic sources, which can sometimes operate simultaneously and must be considered. Thus, 

models of brittle rock fracturing, conduit resonance, pressure transients in fluids, bubbles, cracking in viscoelastic mediums, 

elastic energy transfer by fluid flow, debris flows, and many others are used (Ibáñez et al., 2000; McNutt and Roman, 2015; 

Minakami, 1974)). Hence, this complex system of seismic sources results in varying interpretations of volcano dynamics 40 

based on the predominant signal type and its spatio-temporal evolution. Recently, Rey-Devesa et al. (2023, 2023) developed 

a series of algorithms based on the processing of seismic signals that allow efficient early warnings of volcanic eruptions. 

However, comprehending the underlying physics behind the eruptions, and thus understanding why eruptions occur, cannot 

be solely explained through such signal processing. It requires knowledge of the frequency and types of seismic events that 

occurred. 45 

The introduction of automatic recognition procedures for earthquake-volcanic signals almost two decades ago (Ohrnberger 

2001, Scarpetta et al., 2005; Alasonati et al., 2006; Benítez et al., 2006; Ibáñez et al., 2009, Curilem et al., 2009) has made 

the process of identifying and characterizing signals more efficient, faster, and comprehensive. The use of procedures based 

on the application of classic Machine Learning (ML) models as Support Vector Machine (SVM) or, Hidden Markov Models 

(HMM), and different types of Artificial Neural Networks  as Baeysian Neural Networks (BNN), Deep Neural Networks 50 

(DNN) and Recurrent Neural Networks (RNN) among others- (e.g. Bhatti et al. 2016; Canario et al., 2020 ; Cortés et al., 2021; 

Bueno et al. (2021, 2022); Martínez et al. 2021; Titos et al. (2017, 2018, 2019), Bicego et al., 2022)  allowed progress in a 

higher quality of reconnaissance procedures (unsupervised, semi-supervised and supervised) and their implementation in real 

time for the monitoring of active volcanoes. Although there are currently numerous and highly advanced works showcasing 

successes in this field, the results obtained have begun to reveal potential new problems. These outcomes raise open 55 

questions that should be efficiently addressed to adequately comprehend the derived source models. Some of these questions 

include: (a) Is the database used as a reference properly labelled? That is, are the signal names or labels adequately 

identified? (b) How do seismic attenuation processes or source radiation patterns influence changes in the appearance of a 

signal, thus confounding the associated source models? (c) How could background seismic noise affect the identification of 

seismic events? 60 

For the second open question, there are potential solutions. In Titos et al. (2018), it was demonstrated that a signal 

interpreted as a VT at short distances appeared as an LP at another seismic station only a few kilometres away from the 

reference station due to the high seismic attenuation in volcanic environments. As potential solution to these ambiguities, 
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Titos et al. (2023) propose using a system of multiple seismic stations for signal recognition and “establishing” rules or 

conditions for identifying signals simultaneously. Specifically, perform a second recognition procedure and assign the ‘type 65 

of signal’ based on the station with the highest high-frequency component. 

The first and third open questions may potentially be more difficult to resolve. An incomplete or mislabelled seismic 

catalogue can result from various factors, such as noisy signals, human error, intense and overlapping seismic activity, 

among others. Most available seismic catalogues were manually developed based on time-frequency characteristics as well 

as wave-field properties obtained from the seismic signals. Human factors, including bias in manual labelling or influence 70 

from the prevailing scientific understanding at the time of labelling, may also contribute to incomplete or inaccurate 

catalogues. The occurrence of intense seismic activity can significantly impact the completeness of catalogues, with only the 

most energetic events being highlighted, or even combining several types of signals in the same label when the energies are 

not high enough and time pressures require quick responses. (e.g., labelling a superposition of signals as volcanic tremor). In 

some eruptive processes, such as the eruption of the island of El Hierro in 2011, the continuous occurrence of VT events led 75 

to a signal resembling volcanic tremor, but at a high frequency, due to the overlapping of hundreds of VTs per hour (Ibáñez 

et al., 2012; Díaz-Moreno et al., 2015). The use of denoising techniques can help reduce seismic noise levels in certain 

frequency bands, but in general, they will also affect the frequencies of the signals. Therefore, in many cases, they may not 

be efficient for improving labelling task. Another potential solution is to manually relabel the databases using new expertise 

and state-of-the-art techniques, but this is a highly time-consuming process in practice. Nevertheless, this issue is prevalent 80 

in many seismic databases worldwide. Furthermore, having a database with potential biases will interfere with the 

implementation of automatic recognition methodologies based on ML. Biased labels will propagate in the generation of 

models and feature vectors used for comparison and the implementation of these technologies. 

In this work, we propose an alternative solution that avoids the need for manual relabelling and the use of denoising-based 

filtering techniques, while also addressing the correction of potential biases in databases and completeness in seismic 85 

catalogues. Based on our experience with transfer learning approaches (e.g., Bueno et al., (2021, 2021); López-Pérez et al., 

2020; Titos et al., (2018, 2019, 2023)), we suggest the utilization of a high-quality, meticulously labelled volcano database 

(referred to as the 'Master database') as a foundational seed for retraining another seismic catalogue. We suggest employing 

ML approaches to assess the completeness and accuracy of the tested database. 

In the literature, as mentioned earlier, there are several successful methodologies that could satisfactorily address this 90 

transfer learning approach. Building on the successful applications demonstrated using new-generation Artificial Neural 

Networks (ANN) in sequence modelling tasks, this work will compare the performance of three architectures in achieving 

this goal. We will utilize a Recurrent Neural Networks with Long Short-Term Memory cells (RNN-LSTM) and a Temporal 

Convolutional Networks (TCN) previously developed by Titos et al. (2018, 2022), as well as an improved version of the 

RNN-LSTM based on multi-resolution dilated recurrent skip connections known as Dilated Recurrent Neural Networks 95 

(DRNN) (Chang et al. 2017; Titos et al. 2024). We aim to demonstrate that when properly fine-tuned, any of these neural 

networks will yield successful recognition results. However, the critical point lies in selecting the Master database for 

performing this tuning.  
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Our Master catalogue was created using data from Deception Island volcano (Antarctica) and has already been successfully 

applied in different Deep Learning architectures such as BNNs, RNNs, DNNs, and TCNs, among others. The tested database 100 

belongs to Popocatépetl volcano (Mexico) and was created during a seismic experiment conducted in 2002. This database 

was selected not because there were doubts about its quality; quite the contrary, it is considered a carefully prepared database 

due to the quality of the human team that created it and the importance of the volcano. Therefore, controlling the possibility 

of improving it represents a challenge to our suggestion of how to further enhance, if possible, existing databases. 

Furthermore, the eruptive dynamics of both volcanoes are entirely different, so we also seek evidence of transferability 105 

capability – that is, if a high-quality master database is available, it is possible to export its knowledge to other volcanic 

systems. In this way, this work will not only be useful for potentially improving existing databases, but also for creating 

seismo-volcanic catalogues using ML in volcanoes where no catalogue has ever been previously made. 

Therefore, ensuring appropriate seismic catalogues and support for developing monitoring tools should be a priority, as 

significant as applying new and more effective artificial intelligence (AI) techniques. It is important to note that the tested 110 

catalogue cannot be considered the official database used by the surveillance institution working on Popocatepetl volcano; 

therefore, we are not correcting any past or future work performed in this area. Our aim is to demonstrate how any seismic 

catalogue can be improved or even created with success and low time-consuming effort. 

 

2 Seismic data and catalogues 115 

In this work, we will use a labelled database obtained from Deception Island volcano in Antarctica, which we consider to be 

reliable and homogeneous. Deception Island (62º59‘S, 60º41’W) is a horseshoe-shaped volcanic island that emerged during 

Quaternary period and placed in a marginal basin-spreading centre of the Bransfield Strait, where the South Shetland Islands 

and Antarctic Peninsula are being separated (Smellie, 1988; Martí et al., 2011; Carmona et al., 2012). Deception Island volcano 

has been extensively studied by our research group from various perspectives, providing a comprehensive understanding of 120 

its structure and dynamics (Ibáñez et al., 2000 ; Martínez-Arévalo et al., 2003 ; Zandomeneghi et al.,  2009; Carmona et al., 

2012; Ibáñez et al., 2017). Similarly, seismic data collected through numerous campaigns conducted on this volcanic island 

since 1994 have allowed us to create a highly reliable database. This database serves as the cornerstone for all our 

advancements in the field of recognizing and segmenting seismo-volcanic signals. It has served as the foundation for studies 

on the application of HMM models, various neural networks, parameter reduction algorithms, and many more.  125 

By combining our understanding of the structural, source, and dynamic models of Deception Island volcano with our 

advancements in signal processing and ML, we can confidently assert that this database is highly reliable and ideal for our 

intended purpose of serving as a reference seed for building any other seismic catalogues. Therefore, we designate this 

database, named MASTER-DEC, as the 'Master database' to be utilized as a control and testing process for the Popocatepetl 

volcano database. While it is true that not all types of signals are present in this 'Master database'—especially those 130 

associated with ongoing eruptive processes—its primary objective aligns with our ML application, which aims to understand 

pre-eruptive processes. Hence, this database is ideal for preparing new ones or improving existing ones focused on serving as 

Early Warning tools for volcanic eruptions. For the current study, we extracted a subset of data considered the most reliable, 
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consisting of 2,193 seismic events. The data is categorized into 5 classes (aligning with the volcano-seismic scientific labels 

and accompanying source models put forward by Ibañez et al. 2000, see Table 1), with the duration of the events varying: 135 

Background seismic noise (BGN)-1,222 events, Volcanic Tremor (TRE)-77 events, Long Period events (LPE)-765 elements, 

Volcano-Tectonic earthquakes (VTE)-75 elements, and Hybrid events (HYB)-54 events. It is important to note that although 

the number of selected events for some classes may seem limited for training ML procedures requiring a considerable 

number of elements, these events were chosen to be the most representative and of the highest quality from our Deception 

Island database. 140 

The selected database for testing proposes belongs to Popocatepetl volcano, Mexico (19°1‘N, 98°37‘W). This volcano is 

placed within a different geodynamic framework and exhibits a different eruptive style compared to Deception Island; a 

subduction region in confront to a rift area. Popocatepetl is a large dacitic–andesitic stratovolcano covering > 500 km2 of the 

eastern Trans-Mexican volcanic belt (Alaniz-Álvarez et al., 2007; Siebe et al., 2017). It is surrounded by a densely populated 

area with a population of around 25 million people (Arango-Galván et al., 2020). The volcano is highly active, with the 145 

current active period beginning in December 1994 (Arango-Galván et al., 2020). The dataset used in this study was collected 

during a seismic experiment conducted between November and December 2002, using short-period seismic stations. Data 

labelling was manually performed by a group of geophysicists with extensive knowledge and experience of the volcano's 

dynamics. The Popocatepetl 2002 catalogue (named Popo2002) consists of 4,883 events, divided into similar classes as the 

MASTER-DEC catalogue (again aligning with the volcano-seismic scientific labels and accompanying source models 150 

proposed by Ibañez et al. 2000), but further subdivided based on spectral content. This includes three classes for TRE (T1, 

T2, T3)-273 events, six classes for LPE (LPA1, LPA2, LPB1, LPB2, LPC1, LPC2)-1155 events, and VTE distinguished 

between local and regional earthquakes (VTE, REG)-371 events. Additionally, the catalogue includes noisy events (labelled 

as GAR)-2739 events, and due to Popocatepetl's activity, there is a class for explosions (EXP)-4 events. Along with the event 

catalogue, we have continuous seismograms from this period that will be used for segmentation and identification processes. 155 

 

 

 

Ibáñez, J.M et al. (2000)  McNutt, S. and Roman, 

D. (2015) 

Minakami, T. (1974) Frequency [Hz]  Example source models 

Volcano Tectonic 

Earthquakes  

Tectonic 

Short Period Earthq. 

 

High Frequency (HF) 

 

A-Type 

 

>5 

Shear failure or slip 

along faults, usually as 

swarms within the 

volcanic edifice 

Long Period Event 

Volcanic Long Coda 

Event 

Tornillo 

 

Low Frequency (LF) 

 

B-Type 

 

1-5 

Fluid driven cracks, 

pressurization processes 

(bubbles), and 

attenuated waves 
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Hybrid Event 

Medium Frequency 

Mixed Frequency (MX)  

- 

 

1-12 

Mixture of processes 

(e.g., cracks and fluids, 

frictional melting) 

Explosion 

Volcanic Explosion 

Explosion Quake (EXP)  

Explosion Quake 

 

>10 

Accelerated emissions 

of gas and debris to the 

atmosphere 

Volcanic Tremor 

Harmonic Tremor 

 

Volcanic Tremor (TRE) 

 

Volcanic Tremor 

 

1-12 

Pressure disturbance, 

gas emissions, debris 

processes, and 

pyroclastic flows 

Table 1. Representative volcano-seismic scientific labels and associated source models proposed by Ibáñez, J.M. et al. (2000).  
Other labels and associated source models proposed by different authors have been included for comparison.  160 

3 Methodology 

The well-established procedure for creating a volcano-seismic database from scratch using supervised ML techniques 

involves selecting and segmenting a large, reliable set of well-labelled seismic events that cover the maximum possible range 

of events occurring in the studied volcanic area. As is widely known, this initial labelling process relies on expert/human 

decisions, which can be extremely time-consuming. These events serve as the initial seed for the training procedure. Once 165 

our initial selection of high-quality, differentiated types of event classes is completed, encompassing as many events as 

possible, various techniques can be employed for the training process. Several data-driven approaches have been utilized to 

uncover descriptive patterns that characterize the diverse types of events appearing in seismic signals. Ultimately, these 

advancements have resulted in the development of automatic early warning systems (Malfante et al., 2018; Lara et al., 2021). 

In the literature, seismic event recognition (detection and classification) has been classically explored from two distinct 170 

perspectives: (i) the classification of isolated events, where the classifier receives individual events (previously isolated by 

expert geophysicists) and assigns them to one of the available seismic categories (Hibert et al., 2017; Titos et al., 2018; 

Bueno et al., 2021; Titos et al., 2019;  Canario et al., 2020; Bicego et al., 2022), and (ii) sequence modelling, where the 

model processes continuous sequences of seismic signals to detect, and classify the events present (Alasonati et al., 2006; 

Benítez et al., 2006; Köhler et al., 2010; Bhatti et al., 2016; Titos et al., 2018; Bueno et al., 2021; Titos et al., 2022). Considering 175 

real-time monitoring of seismo-volcanic signals as a sequence modelling problem, ANNs, including both recurrent and 

temporal convolutional approaches, have played an important role in recent years due to their temporal modelling 

capabilities. These approaches have yielded successful results in improving seismic catalogues and advancing in both the 

procedure of real time seismic monitoring and early warning protocols. However, as mentioned above, several databases can 

be biased by factors such as seismic attenuation, site effects, radiation patterns, and human decisions and experience. 180 

Furthermore, starting this procedure from scratch, regardless of the time it consumes, implies that creating a database in new 

scenarios could be discouraging. Moreover, in the case of new volcanic processes, old databases may not be suitable or 

adequate for seismic monitoring. 
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We will assess the efficacy of three ANNs to demonstrate the transferability of knowledge from one volcanic scenario to 

another, aiming to: a) verify the reliability of the existing database and; b) create a new database without the initial time-185 

consuming human supervision. Specifically, we will employ a RNN-LSTM, a Dilated-RNN, and a TCN.  

RNN–LSTM is a RNN with Long Short-Term Memory (LSTM) cells (Hochreiter, S., Schmidhuber, J., 1997). LSTM cells are 

a special kind of RNN units that are capable of learning long-term dependencies and mitigating the vanishing/exploding 

gradient problems, which are common in traditional RNNs (Schmidhuber, J., 2015). LSTM cells improve their performance 

through a complex architecture that includes a gates mechanism (input, forget, and output gates) which regulate the flow of 190 

information, allowing the network to maintain and update a cell state over extended periods of time (Schmidhuber, J., 2015). 

This makes LSTMs particularly effective for tasks that involve long-term sequential data, such as speech recognition, 

language translation, and time series prediction within emerging research geosciences fields such as climate change or 

remote sensing (Racic et al., 2020; Yan et al., 2020). This framework is especially useful for monitoring temporal evolution 

of volcanic systems in quasi real time. 195 

Dilated Recurrent Neural Network (Dilated-RNN) is a type of RNN designed to handle long-term dependencies more 

efficiently by using "dilations" in the sequence processing steps (Chang et al. 2017). Analogous to the dilated CNN proposed 

in (Aäron van den Oord et al. 2016, Fisher et al., 2017), this architecture modifies the standard RNN structure by skipping 

certain time steps allowing the network to introduce multi-resolution dilated recurrent skip connections between layers, 

therefore enhancing efficiency and reduced training parameters (Chang et al. 2017). The dilation technique allows for the 200 

selection and analysis of non-correlative temporal segments in each network layer during the learning process. This enables 

an advanced trainable selection of individual features based on their relevance to the recognition task. The flexibility to 

select non-correlative temporal segments offers the advantage of focusing on the search and detection of seismic events with 

a broader perspective of the previous temporal steps. Additionally, it demonstrates comparable state-of-the-art performance 

in sequence modelling tasks involving very long-term dependencies, while helping to mitigate issues of vanishing and 205 

exploding gradients. 

Regarding TCNs (Lea et al., 2017), unlike traditional RNNs which process sequences sequentially, they leverage dilated 1D 

convolutional layers and residual connections to process entire temporal sequences simultaneously. The dilated convolutions 

(similar to the multi-resolution dilated, recurrent skip connections between layers in the Dilated-RNN) introduce gaps 

between the input elements of the convolutional layers, enabling the network to cover a larger temporal context without a 210 

significant increase in computational complexity. Residual connections (Fisher et al., 2027) help mitigate the vanishing 

gradient problem and facilitate the training of deeper networks by allowing gradients to flow smoothly. This approach 

efficiently captures long-range dependencies and temporal patterns, offering several advantages over traditional RNNs, such 

as better handling of the exploding/vanishing gradient problem, improved memory retention, and enhanced parallelization 

during training (Lea et al., 2017). 215 
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Building on these architectural strengths and by integrating the ML's advanced temporal modelling capabilities, this work 

proposes a weakly supervised transfer learning (TL) algorithm to improve the reliability of existing databases and create new 

databases with minimal initial human supervision. 

 220 

3.1 Weakly supervised learning as a pseudo-labelling approach 

Weakly supervised learning is a branch of ML covering the construction of predictive models by learning with 

weak supervision (Zhou, 2018). Such techniques focus on learning with incomplete, inexact, and/or inaccurate information 

derived from noisy, limited, or imprecise supervision processes. The objective is to automatically provide supervision for 

labelling large amounts of data using labelling functions derived from domain knowledge. This approach replaces the costly 225 

and impractical hand-labelled process with inexpensive weak labels with the understanding that although imperfect, they can 

be used to create a strong predictive model.  

In this study, the source domain (denoted as Ds) is the MASTER-DEC dataset (based on refined physical models and a 

strong revision process). The target domain (denoted as Dt) is the Popo2002 dataset (whose available seismic catalogue will 

not be considered). The goal of this study is to address a domain adaptation task (Kouw and Loog, 2019; Farahani et al., 230 

2021) to reduce the cost of developing a reliable seismic catalogue and database with minimal initial human supervision. 

That is, automatically provide supervision for labelling large amounts of data from Dt using labelling functions derived from 

domain knowledge Ds. 

In a domain adaptation framework, typically Ds and Dt have the same feature space but different distributions. However, in 

this study, for the pseudo-labelling task we assumed that:   235 

• The marginal distributions of Ds and Dt are the same: Ps(Xs) = Pt(Xt), where Xs and Xt are the input feature vectors 

associated with different seismic windows or frames in both domains. As such, the pseudo-labelled samples do not 

need to contain any domain information and the occurrence of different seismic events is equally likely in both 

domains. 

•  The conditional distributions of Ds and Dt are the same: Qs(Ys|Xs) = Qt(Yt|Xt). As such, the pseudo-labelled 240 

samples are valid in both domains.  

Such assumptions have important implications since in the target domain, while the marginal distributions of Ds and Dt are 

the same [Ps(Xs) = Pt(Xt)], the conditional distributions could be different [Qs(Ys|Xs) /= Qt(Yt|Xt)]. This shows how similar 

feature vectors taken as the input could output different probabilistic event detection matrices. That is, the description or 

characterisation of seismic categories could change between domains, or Dt could contain seismic categories unforeseen in 245 

Ds. 

Therefore, by leveraging the probabilistic detection matrices output by the system trained in Ds, we can apply a weakly 

supervised learning technique as a pseudo-labeller in Dt to construct a new dataset from which to train a new system in a 

supervised way. Those parts of the unlabelled dataset with high per-class probability, and then high confidence, are added to 

the new training set. Although imperfect, this method guarantees that at least events showing characteristics similar to those 250 
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annotated in the master catalogue will be included in the new training dataset. As a result, after re-training phase, the target 

catalogue is enlarged and updated. 

Our proposed weakly supervised transfer learning (TL) algorithm is outlined as follow and depicted in Fig. 1. It is important 

to highlight that our methodology is just one possible approach; many other weakly supervised methods could also be 

applied to achieve similar results. 255 

 

1. Subset Analysis: A subset of the Popo2002 dataset (20%-40% of the total) is analyzed using a ML system (RNN-LSTM, 

Dilated-RNN, TCN) trained on MASTER-DEC. 

2. Event Detection and Confidence Analysis: Ignoring the information contained within the available Popo2002 seismic 

catalogue, we analyze the confidence of each detected event using a probabilistic event detection matrix with per-class 260 

membership output from the softmax layer. This step allows us to quantify the severity of drift between datasets (‘concept 

drift detection’) (Lu et al. 2018). High or extremely high per-class recognition probabilities for each event type indicate the 

systems are well-fitted to the master database. Low per-class probabilities indicate a change in the description of the 

analyzed information. Accurate and robust dissimilarity measurement and statistical hypothesis evaluation are not strictly 

necessary, given the well-known dissimilarity between the volcanic environments. 265 

3. Drift Adaptation Mechanism: An adaptive threshold mechanism is adopted. Detected events with an average per-class 

probability above a certain threshold are selected and included as training instances. 

4. Re-training process: Finally, the pre-trained ML systems used in the step 1 are re-trained using the selected instances and 

labels obtained in the step 3. 

5. Iterative Refinement: Repeat steps 2 to 4 iteratively until the desired result is achieved. 270 
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Figure 1 a) Weakly supervised event selection algorithm applied to Popo2002 dataset. A subset of the dataset (in our case 40% of 
the total) is used as a training set by the previously trained ML models. The rest of the data is used as a test set.  Only high per-
class probability recognized events are selected as new training instances. b) Workflow structure and the specific preprocessing 
steps employed in this article. The specific preprocessing elucidates the feature engineering process, which relies on frequency 275 
analysis within the logarithmic filter bank domain (ref). This processed information serves as the input for the different volcano-
seismic recognition systems. c) For each detected event, the confidence of the detection is analysed using a probabilistic event 
detection matrix with per-class probabilities output by the softmax layer. d) Drift adaptation mechanism based on an adaptive 
threshold was then adopted. Those events whose average number of per-class probability was greater than a given threshold were 
selected and included as training instances. 280 

4 Results 

This section presents the results supporting the objectives outlined in the previous section: a) verifying the reliability of the 

existing database and, b) creating a new database without the initial time-consuming human supervision. The reliability of 

the dataset will be verified through the self-consistency results of the Popo2002 database. Although self-consistency could 

be achieved through two different approaches, training the system from scratch or applying transfer learning, in this work we 285 

focus on transfer learning approaches since they offer significant advantages (they reduce training time and resource usage 

by leveraging pre-trained models and they enhance performance with limited data by utilizing knowledge gained from 

diverse datasets, leading to better generalization and mitigating overfitting). Therefore, the self-consistency results 

correspond to the automatic recognition performance obtained by conducting a classical supervised Transfer Learning where 

a model previously trained in one volcanic environment (MASTER-DEC) is used as a starting point to build a new system in 290 
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a different volcanic environment (Popo2002) using as training the available original catalogue. Finally, to verify the 

feasibility of creating a new database without human supervision, we present the recognition results obtained using our 

weakly supervised learning proposal. 

 

4.1 Checking the self-consistency of Popo2002 dataset: Traditional transfer of knowledge from MASTER-DEC to 295 

Popo2002 

The most efficient procedure to check the self-consistency of a given database is to tune an automatic system encompassing 

all types of available events. As mentioned before; to accelerate development and achieve high-quality results compared to 

training from scratch, we will employ a classical Transfer Learning approach. If the events classified as elements of the same 

class are not homogeneous, the model's performance will be low (usually below 70% accuracy). 300 

The self-consistency of the Popo2002 database is checked using the three proposed ML architectures (RNN-LSTM, Dilated-

RNN and TCN). We apply a Leave One Out cross-validation method with 4 random partitions. Each time, we select T% of 

the entire database as training set, and the remaining (100-T) % as test set to check the performance of the systems. Given 

that using a pre-trained model allows for more efficient utilization of computational resources and that the fine-tuning phase 

generally requires fewer resources than training a model from scratch, we conducted two experiments with T = 20 and T = 305 

40. This means that the results were obtained using 80% and 60% of the data in the test partition, respectively. 

Table 2 presents the results of the preliminary self-consistency test for the three proposed architectures. As indicated, the 

confidence matrix indices are high, suggesting good self-consistency. Table 3 shows the averaged normalised confusion 

matrices of the Leave One Out cross validation process for the Popo2002 dataset.  

The results of these tests indicate that inside of each seismic class there is a coherence of the elements selected to belong to them . 310 

However, as noted by Titos et al. (2018), propagation and source effects can influence the characterization of seismic events. 

For example, according to the Table 3 and the original Popo2002 catalogue, VTE events are not properly identified, as the 

confusion level is over 60% in some cases, meaning only 40% of the VT events are correctly classified. In all cases, the 

highest levels of confusion are observed with the LPE class. It could be explained because LPE events could share similar 

characteristics than high attenuated VTs, producing potential biases in the allocation of events in the right category. 315 

Consequently, different seismic categories may have elements located in overlapping areas of the representation space, 

where they share similar projected parameters. These events, despite being assigned to a specific cluster, could easily 

transition to another. Therefore, a high performance on the self-similarity test does not guarantee an unbiased classification. 

While this self-consistency suggest uniformity in the training procedure, it's important to acknowledge that potential biases in 

the labelling process may not be evident in this measure of goodness. 320 

 

 

 

 5 seismic categories 7 seismic categories 
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 Training percentage Training percentage 

 20% 40% 20% 40% 

RNN-LSTM 77.38 88.99 84.01 84.39 

Dilated-RNN 82.88 84.70 84.05 85.21 

TCN 82.46 88.30 85.77 83.27 

Table 2 Self-consistency results using 5 and 7 seismic categories, with 20% and 40% of the data for training and 80% and 60% for 
testing, respectively. The results correspond to the average accuracy over the four partitions. 325 

 

 RNN-LSTM Dilated-RNN TCN 

 BGN TRE HYB VTE LPE BGN TRE HYB VTE LPE BGN TRE HYB VTE LPE 

BGN 0.97 0.02 0 0 0.01 0.96 0.02 0 0 0.02 0.98 0.01 0 0 0.01 

TRE 0.06 0.78 0 0.05 0.11 0.13 0.69 0 0 0.18 0.11 0.68 0 0.09 0.12 

HYB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

VTE 0.08 0.13 0 0.51 0.28 0.12 0.17 0 0.31 0.4 0.14 0.09 0 0.59 0.18 

LPE 0.05 0.07 0 0.03 0.85 0.04 0.18 0 0 0.78 0.05 0.05 0 0.04 0.86 

Table 3 Averaged normalized confusion matrices associated with the Leave One Out cross validation process for the Popo2002 
dataset. These results belong to the test using 5 seismic categories. 

4.3 Weakly supervised Transfer Learning 

The direct application of classic TL could be considered a kind of blind test because, the automatic system acquires the pre-330 

existing knowledge in the catalogue, since they used the original labels during training, thereby propagating the existing bias. 

According to section 3.1, we propose a solution to improve the TL approach through a weakly supervised method. By 

leveraging an existing master database, we can impose prior knowledge on the database being tested. The seismic categories 

of the testing database will be re-reviewed under the supervision of the system trained with the ‘unbiased’ dataset. In this 

way, the potential bias of the tested database will not be propagated to either domain, as the Master catalogue imposes its 335 

knowledge. 

Table 4 displays the self-consistence of the Popo2002 dataset when the MASTER-DEC knowledge is imposed. We observe 

a noticeable decrease in accuracy, attributable to the aforementioned bias in event classification. The first column of Table 4 

shows the recognition results obtained when directly applying the models trained on the MASTER-DEC dataset to recognize 
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events in Popo2002 compared to the original catalogue. The second column presents the results obtained after applying our 340 

weakly supervised TL approximation, comparing the new Popo2002 catalogue with the original one. These results highlight 

how the new POPO data base has been modified in comparison with the original. 

This procedure could be applied iteratively until a reliable catalogue is achieved. In our case, after three iterations, the 

improvements only reached 2% compared to the first iteration.  However, it could change when using a different test dataset. 

In the next section, we will demonstrate how this new catalogue dramatically improves the original one, confirming that the 345 

new Popo database could be better adapted. 

 

 Five seismic categories blind test ‘Weakly supervised TL’ using five 

seismic categories TL 

RNN-LSTM 55.95 64.89 

Dilated-RNN 50.13 55.72 

TCN 58.27 66.16 

Table 4 Classification accuracy (acc. %) on the test set obtained when directly applying the models trained on the MASTER-DEC 
dataset to recognize events in Popo2002 compared to the original catalogue and after applying our weakly supervised TL 
approximation keeping only five seismic categories and using 40% of the total dataset as the training set. 350 

 

 RNN-LSTM Dilated-RNN TCN 

 BGN TRE HYB VTE LPE BGN TRE HYB VTE LPE BGN TRE HYB VTE LPE 

BGN 0.88 0.09 0 0 0.03 0.67 0.32 0 0 0.01 0.8 0.19 0 0 0.01 

TRE 0.29 0.36 0.03 0.02 0.03 0.29 0.5 0 0 0.21 0.19 0.7 0 0 0.11 

VTE 0.27 0.41 0.08 0.03 0.21 0.46 0.28 0 0.03 0.23 0.36 0.46 0.03 0.06 0.09 

LPE 0.36 0.19 0.06 0.06 0.33 0.47 0.18 0 0.01 0.34 0.41 0.33 0.01 0.01 0.24 

Table 5 Normalised confusion matrices related to the weakly supervised approach implemented for the three architectures, using 
the Popo2002 catalogue as reference. The results are over the whole test set using 40% of the whole set for training and five 
seismic categories. The y-axis corresponds to the real label or ground-truth and the x-axis corresponds to predicted labels. 

5 Discussion 355 

This work emphasizes in the use of Weakly supervised approaches to improve seismic-volcanic catalogues. We have 

verified that, when effectively use, these procedures could significantly enhance the detection and identification capabilities 
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of various earthquake-volcanic signals. Consequently, early warning protocols for volcanic eruptions could also being 

improved. 

What stands out in the Table 2 and Table 3 is that not all TL techniques are universally valid for improving seismic-volcanic 360 

catalogues. Our initial process involved directly applying self-consistency study techniques to the initial database. To 

achieve this, we utilized traditional TL approaches with various ANN architectures and analysed the confusion matrix 

obtained to determine the quality of the database. As shown in such tables, the recognition performances for Popo2002 

dataset are high, with accuracy levels up to 85%. This result is often used in many works as the sole criterion for validating 

the quality of the database. However, a closer inspection of Fig. 1 (Uniform Manifold Approximation and Projection for 365 

dimension reduction (UMAP) (McInnes et al., 2018) visualization of the MASTER-DEC) as well as the study by Bueno et 

al. (2021) for the Bezymianny volcano indicate that the identification of classes of seismic events is not free of uncertainties. 

Different seismic events share many parameters in the representation space, and as a result, the definition of the event type 

depends on the training process, which could be influenced by human factors. Therefore, while systems’ performances range 

from approximately 85% to 90%, it does not always reflect that the seismic catalogue is complete or unbiased, but rather that 370 

the training process has been self-consistent. More than learning to characterise the volcano dynamics describing the latent 

physical model, the systems are learning the information contained in the catalogue. For instance, in a tableware 

classification process, if a trained class includes both spoons and forks, the result of the accuracy matrix will be optimal,  

although the bias is evident. That is, catalogue-induced learning could bias the generalisation capability of a system, with 

information or dynamics relevant to improving background knowledge about the volcano remaining hidden. 375 

 

Figure 2 Uniform Manifold Approximation and Projection (UMAP) obtained for the input vector forming the original data of 

MASTER-DEC dataset. Different seismic categories may have elements located in overlapping areas of the representation space, 

where they share similar projected parameters. 
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Our proposal to address this trend and potentially improve the system's generalization capabilities as well as the 380 

completeness of the seismic dataset is based on weakly supervised procedures. By leveraging an existing unbiased database, 

we can impose prior knowledge on the database being tested. This involves using an automatic system, which we consider 

well-trained, to review the seismic categories of the new dataset and retrain itself using such pseudo-labels. 

According to Table 4, when using this approach, the performance decreased substantially compared with the classical TL 

approaches (Table 2). However, closer inspection of the results shows other aspects of the performance being very 385 

encouraging. First, the models detected events that were originally not recognised by expert geophysicists during data-

labelling. Table 6 summarizes the comparison between the events initially annotated in the catalogue and the events detected 

by the three automatic systems. The vast majority of undetected events, which were not annotated in the preliminary 

catalogue, were discovered within segments labelled as GAR (Fig. 3a)). Second, the data-labelling process carried out by 

geophysical experts located the ends and beginnings of some events in positions very different from those provided by the 390 

models, which decreased per-frame recognition. This can clearly be seen during earthquake recognition (Fig. 3b)), where an 

average of just 5% of frames were correctly recognised (see Table 5 for detail): While segments with high spectral content 

were correctly detected and classified as VTE, those with low spectral content were classified as BGN or TRE. However, 

after a posterior supervision by a geophysical expert, we consider that the outputs obtained by the models were better, as the 

earthquakes were generally well recognised.  395 

Attenuation and sources effects also affected the final recognition. The new dataset contains high intra-class variability in 

some categories (those composed of different subcategories as LPE or TRE). Again, the nature of the seismic data played an 

essential role. Within the feature space, the representation of events belonging to a given subcategory in the new domain 

(Popo2002) was closely related to the representation of events belonging to a different category in the source domain 

(MASTER-DEC). For example, similar to what occurs with some events in Fig. 1, the representations of some LPE 400 

subcategories in Popo2002 were very close to the representation of TRE in MASTER-DEC (Fig. 4a)). As such, the weakly 

supervised selection and labelling algorithm assigned the TRE label during the training phase. This decreased the systems 

performance since many frames (33%, 19%, and 18% for TCN, RNN–LSTM, and Dilated–LSTM, respectively) were 

detected as TRE, resulting in an ‘error’ that was not really an error. The same issue arose for some attenuated earthquakes, 

which were labelled as LPE in the original seismic catalogue but ‘mis-classified’ as VTE or TRE in the new one. After a 405 

posterior supervision by a geophysical expert, we consider the output obtained by the models to be correct (Fig. 4b) since the 

seismic traces correspond to earthquakes with attenuated high frequencies. Finally, low-energy TRE events were clearly mis-

classified as BGN because the peak-to-peak amplitude degradation of the signals was related to attenuation effects.  

This complex scenario was widely discussed by Titos et al. (2018); therefore, to correctly deal with these errors, further 

information from several seismic stations is needed. Additional illustrative examples can be found in the Weakly Supervised 410 

Learning section of the supplementary material (refer to Fig. F1, F2, and F3).  The results suggest that per-frame recognition 

can be strongly biased by the intrinsic limitations addressed when developing the seismic catalogue and from which the 

comparative metrics were obtained. Therefore, if labelling criteria between datasets differ, per-frame recognition results will 

vary widely. Until now, the development of new monitoring systems has focused primarily on improving existing 
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recognition rates. However, our findings confirm that weakly supervised learning approaches have the remarkable capability 415 

of simultaneously identifying unannotated seismic traces in the catalogue and help to correct the labels of mis-annotated 

seismic traces. When a weakly supervised approach based on a master seismic catalogue guides the re-training phase, 

although the general performance of the system decreases, previously hidden information that can improve knowledge of the 

volcanic dynamic background can be obtained. 

 420 

 Popo2002 catalogue RNN-LSTM Dilated-LSTM TCN 

BGN 340 >20,000 >20,000 17,206 

TRE 273 3,291 2,538 3,204 

VTE 371 1,741 1,032 94 

LPE 1,155 2,230 2,250 2,159 

Table 6 Comparison between the events initially annotated in the catalogue and the events detected by the three distinct automatic 
systems following the implementation of a weakly supervised learning TL approach. 
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Figure 3 Insertion-based errors when applying a weakly supervised transfer learning (TL) approach. (a) Detection of events 
previously not labelled: long period events (LPE; red boxes) that were not originally taken into account during the labelling 425 
process have been added to the seismic trace labelled as TRE (tremor)–LPE–TRE. This scenario occurs many times throughout 
the dataset and these insertions decrease per-frame recognition with respect to the original labelling; however, they do not always 
correspond to errors. (b) Event delimitation: examples of the labelling process obtained for the models. Instead of recognising 
entire seismic traces, such as volcano-tectonic earthquakes (VTE), background noise (BGN) segments are detected before and 
after the earthquakes. Again, these insertions reduce per-frame recognition; however, after a posterior revision, they should not be 430 
considered as an error. The current colormap in the spectrogram represents the energy levels. The blue color corresponds to the 
minimum energy, while the red color corresponds to the maximum energy. 
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Figure 4 Detailed analysis of intra-class variability and attenuation-based errors when applying a weakly supervised transfer 435 
learning (TL) approach. (a) Intra-class variability-based errors: some long period event (LPE) subcategories in Popo2002 are very 
close to the representation of tremor (TRE) in MASTER-DEC. Thus, the weakly supervised selection 
and labelling approach will assign the TRE label during the training phase; this decreases per-frame recognition. (b) Two 
attenuated earthquakes labelled as LPE in the seismic catalogue, but ‘miss-classified’ as volcano-tectonic earthquake (VTE) or 
TRE. After a posterior supervision, we consider the model outputs to be correct since the seismic traces correspond to 440 
earthquakes with attenuated high frequencies. The current colormap in the spectrogram represents the energy levels. The blue 
color corresponds to the minimum energy, while the red color corresponds to the maximum energy. 

6 Conclusions 

This study provides the first comprehensive analysis of seismic catalogue-induced bias when developing automatic 

recognition systems. We evaluated the ability of several monitoring systems trained using a master seismic catalogue from 445 

Deception Island volcano to adapt to a new seismic catalogue from Popocatépetl volcano through our novel, proposed 

weakly supervised framework. 

Our results confirm the robustness of data-driven approaches as a basis for the construction of short-term early-warning 

systems. However, quantitative and qualitative analysis confirmed that the reliability of a system is strongly biased by the 

https://doi.org/10.5194/nhess-2024-102
Preprint. Discussion started: 17 June 2024
c© Author(s) 2024. CC BY 4.0 License.



   

 

19 
 

undetailed coverage of the seismic catalogue. While systems performance reached almost 90% per-frame recognition 450 

accuracy, intrinsic limitations when developing seismic catalogues led to extremely useful information describing the 

volcanic behaviour being ignored. Instead of simply learning to characterise volcanic dynamics by describing the latent 

physical model, catalogue-induced learning can bias the system by discarding useful data describing volcanic dynamics. 

However, when a weakly supervised learning approach based on a master seismic catalogue is applied, an unknown amount 

of information related to volcano dynamics is revealed. 455 

This study raises important questions about the relevance of catalogue-induced learning when developing new monitoring 

systems. Our results demonstrate that systems based on iterative weakly supervised or even unsupervised learning techniques 

could offer a more successful approach than supervised techniques under crude seismic catalogues. Therefore, we conclude 

that ensuring appropriate seismic catalogues and support for developing monitoring tools should be a priority to the same 

extent as applying new and more effective AI techniques.  The use of more sophisticated pseudo-labelling techniques 460 

involving data from several catalogues could help to develop universal monitoring tools able to work accurately across 

different volcanic systems, even when faced with unforeseen temporal changes in monitored signals. 
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