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Abstract. Real-time monitoring of volcano-seismic signals is complex. Typically, automatic systems are built by learning

from large seismic catalogs, where each instance has a label indicating its source mechanism. However, building complete

catalogs is difficult owing to the high cost of data-labelling. Current machine learning techniques have achieved great success

in constructing predictive monitoring tools; however, catalog-based learning can introduce bias into the system. Here, we

show that while monitoring systems trained on annotated data from seismic catalogs achieve performance of up to 90% in5

event recognition, other information describing volcanic behavior is not considered or either discarded. We found that weakly

supervised learning approaches have the remarkable capability of simultaneously identifying unannotated seismic traces in

the catalog and correcting misannotated seismic traces. When a system trained with a master dataset and catalog is used

as a pseudo-labeller within the framework of weakly supervised learning, information related to volcanic dynamics can be

revealed and updated. Our results offer the potential for developing more sophisticated semi-supervised models to increase the10

reliability of monitoring tools. For example, the use of more sophisticated pseudo-labelling techniques involving data from

several catalogs could be tested. Ultimately, there is potential to develop universal monitoring tools able to consider unforeseen

temporal changes in monitored signals at any volcano.
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1 Introduction15

Understanding the dynamics of active volcanoes and, even more so, carrying out Early Warning protocols for volcanic erup-

tions require multiparametric observations focused on accomplishing accurate and effective monitoring (Sparks, 2003). The

objective of identifying precursors that warn of a possible volcanic eruption involves the analysis of long temporal series of

data, characterizing and relating them with source models associated with the internal dynamics of the volcano (Witze, 2019;

Palmer, 2020). Currently, the availability of multiparametric long-time data series, such as seismology, deformation, measure-20
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ments of volcanic gases and fluids, space imaging, and other processes, is limited to a few volcanoes around the world. For

this reason, volcanic seismology continues being the backbone of the analysis, both in real time and using data from previous

eruptive episodes (Chouet, 2003; McNutt, 2015). This is because the installation and acquisition of seismic data continues to be

the most efficient procedure of volcanic monitoring, and because the existence of numerous open access repositories allows the

scientific community reviewing consolidated databases to understand what occurred in the past for modelling future eruptions.25

In volcanic seismology, the presence of various seismic signals—such as volcano-tectonic earthquakes (VT), long-period

events (LP), ultra-long-period (ULP) events, hybrid (HY) events, explosions (EXP), and volcanic tremors (TR)—indicates the

existence of multiple seismic sources, which can sometimes operate simultaneously and must be considered. Thus, models

of brittle rock fracturing, conduit resonance, pressure transients in fluids, bubbles, cracking in viscoelastic mediums, elastic

energy transfer by fluid flow, debris flows, and many others are used (Ibáñez et al., 2000; McNutt and Roman, 2015; Minakami,30

1974)) (Table 1 summarizes the source models and classifications for different authors). The complexity of seismic sources

leads to varying interpretations of volcanic dynamics, influenced by the predominant signal type and its spatio-temporal evo-

lution. Comprehending the underlying physics behind the eruptions, and thus understanding why they occur, cannot be solely

explained through such signal processing. It requires knowledge of the frequency and types of seismic events that take place.

This understanding is primarily gained by constructing seismic catalogs, which are then analyzed to infer volcanic dynamics in35

future crises. However, building complete catalogs presents significant challenges due to factors such as noisy signals, human

error, intense seismic activity, and overlapping signals, all of which complicate the identification and classification of seismic

events.

Historically, seismic catalogs have been manually created by experts, with the classification of seismic signals based on

time-frequency characteristics and wave-field properties. The process relies heavily on expert knowledge, which, while essen-40

tial, can introduces potential biases. These biases may arise from various factors, such as the prevailing scientific understanding

at the time of labeling, or the occurrence of intense seismic activity where, due to time constraints, only the most energetic

events are highlighted, or even when the energies are not high enough, overlapping signals are classified as a single event,

leading to the combination of different types of signals under a single label. This issue was notably observed during the 2011

eruption on the island of El Hierro, where continuous VT events resulted in a high-frequency signal resembling volcanic tremor45

due to the overlap of hundreds of VTs per hour (Ibáñez et al., 2012; Díaz-Moreno et al., 2015). Despite the efforts made, such

challenges remain widespread across seismic databases worldwide, highlighting the need for improved methods of signal clas-

sification and event labeling.

The introduction of automatic recognition procedures for earthquake-volcanic signals almost two decades ago (e.g. Ohrn-

berger 2001, Scarpetta et al., 2005; Alasonati et al., 2006; Benítez et al., 2006; Ibáñez et al., 2009, Curilem et al., 2009, Bhatti50

et al. 2016; Canario et al., 2020 ; Cortés et al., 2021; Bueno et al. (2021, 2022); Martínez et al. 2021; Titos et al. (2017,

2018, 2019), Bicego et al., 2022, etc) has made the process of identifying and characterizing signals more efficient, faster and

comprehensive, allowing progress in both building robust catalogs and real-time monitoring of active volcanoes. However, the

results obtained have begun to reveal potential problems: monitoring systems loss effectiveness when recognizing events over

time, which biases the construction of seismic catalogs and, in turn, affects experts’ ability to analyze and understand volcanic55
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Ibáñez, J.M et al. (2000) McNutt, S. and Roman, D. (2015) Minakami, T. (1974) Frequency [Hz] Example source models

Volcano Tectonic Earthquakes

Tectonic

Short Period Earthq.

High Frequency (HF) A-Type >5

Shear failure or slip

along faults, usually

as swarms within the

volcanic edifice

Long Period Event

Volcanic Long Coda Event

Tornillo

Low Frequency (LF) B-Type 1-5

Fluid driven cracks,

pressurization processes

(bubbles), and attenuated

waves

Hybrid Event

Medium Frequency
Mixed Frequency (MX) - 1-12

Mixture of processes

(e.g., cracks and fluids,

frictional melting)

Explosion

Volcanic Explosion
Explosion Quake (EXP) Explosion Quake >10

Accelerated emissions

of gas and debris to the

atmosphere

Volcanic Tremor

Harmonic Tremor
Volcanic Tremor (TRE) Volcanic Tremor 1-12

Pressure disturbance,

gas emissions, debris

processes, and pyroclastic

flows
Table 1. Representative volcano-seismic scientific labels and associated source models proposed by Ibáñez, J.M. et al. (2000). Other labels

and associated source models proposed by different authors have been included for comparison.

dynamics.

These outcomes raise open questions that should be efficiently addressed to adequately comprehend and solve such problems:

a) Why do monitoring systems lose effectiveness? Could it be because volcanoes do not behave uniformly over time, displaying

different unrest patterns from eruption to eruption and from one volcano to another? (b) Could it be that automatic monitoring

systems show weakness due to seismic catalog-induced bias in their development? That is, is the database used during the60

development process properly labeled? Are the signal names or labels accurately identified? (c) Finally, how do seismic atten-

uation processes or source radiation patterns influence changes in the appearance of a signal, thus confounding the associated

source models? How could background seismic noise affect the identification of seismic events?

For the last open question, it is well-know that seismic waves carry information not only on volcanic activity but also on the

intricate internal structure of the volcanic edifice, which influences the seismic wave-field and complicates its interpretation65

(Titos et al. (2018)). At many volcanoes, rugged and pronounced topography introduces additional complexities, such as wave

interference, high attenuation, and path alterations for direct seismic waves. Consequently, even for the same volcano and the

same originating seismic source, recordings vary in shape and wave-field characteristics depending on seismometer placement.

Furthermore, even at the same seismic station, similar sources may produce different signal patterns due to variations in the
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source’s energy radiation. These effects are broadly categorized into path-related (attenuation) and source-related (energy and70

radiation pattern) influences (Titos et al. (2018)). As a potential solution, experts propose using a network of multiple seismic

stations for signal recognition and defining rules or conditions to identify signals simultaneously.

The first and second open questions may potentially be more difficult to resolve. Volcanic behavior is highly variable, exhibit-

ing different signs of unrest between eruptions and between volcanoes. Environmental and geological factors, such as geology,

magma composition, and the volcanic edifice, influence how seismic signals propagate and are recognized. This variability75

poses a challenge for automatic recognition systems, which are typically built by learning from large seismic catalogs, where

each instance has a label indicating its source mechanism. The more diverse the data, the better the system’s adaptability.

However, as stated before, constructing complete catalogs is challenging because of the high cost of data labeling, which often

leads to inaccuracies or mislabeling in seismic catalogs. Such inaccurate or mislabeled seismic catalogs could bias the effec-

tiveness of the systems, meaning that their performance may be influenced not only by changes in volcanic dynamics, but also80

by inadequate modeling of those dynamics.

In this work, we propose a comprehensive analysis of seismic catalog-induced bias when developing automatic recognition

systems. We evaluated the ability of several monitoring systems trained using a master seismic catalog from Deceptio Island

volcano (referred to as the ’Master database’) to adapt to new different volcanic environments from Popocatépetl (Mexico)

and Tajogaite (Canary Island, Spain) volcanoes. We hypothesize that, often, automatic recognition systems are not capable of85

modeling the spatial-temporal evolution of seismic events. Instead, they learn to recognize the probabilistic pattern-matching

observed in their training data. In other words, rather than simply learning to characterize volcanic dynamics by describing

the latent physical model, catalog-induced learning biases the system’s performance as it learns the description of the data an-

notated in the catalog, potentially discarding useful data that describes volcanic dynamics. Therefore, we conclude that using

systems trained with a master database (complete and large) as pseudo-labeler, could help create less biased catalogs from90

which the systems can be retrained and adapted to different volcanic environments.

To test our hypothesis, we conduct three independent experiments with three different automatic monitoring systems. In the

first experiment, aimed at demonstrating that any state-of-the-art machine learning model can effectively learn the information

contained in a seismic catalog, we will build monitoring systems within the Transfer Learning framework. In this approach,

systems that have previously been trained on Deception Island volcano, will be re-trained using a seismic catalog from the95

Popocatépetl volcano. Once trained, the models will be evaluated in terms of performance and analyzed in detail. The out-

comes reveal a key issue: when the catalog is not meticulously constructed, and events are not accurately annotated—where

multiple events are combined as a single label—the systems fail to recognize each individual event, leading to the loss of

valuable data that describes volcanic dynamics. In the second experiment, instead of re-training the pre-trained systems us-

ing a given catalog, we use the pre-trained systems as a foundational seed (pseudo-labeler) for labeling the new database100

and construct a new catalogs. Using these new catalogs as training knowledge, we will re-train the systems. Afterwards, we

will compare and analyze the results obtained from both approaches. The outcomes reveal that a significantly higher number of

events, compared to those annotated in the original catalog, are recognized. This finding could offer a new potential perspective

on the volcanic dynamics. Finally, to prove the robustness of our hypothesis, we will conduct a new experiment with data from
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the eruption of Tajogaite volcano in 2021, for which only an earthquake catalog is available, demonstrating that the application105

of automatic seismo-volcanic monitoring systems based on weakly supervised techniques can offer an effective alternative for

both building and revising seismic catalogs.

The rest of this paper is organized as follows. Section II describes the seismic dataset and signals used in this study. . Section

III provides the experimental framework, and describes how weakly supervised techniques can be used for developing auto-

matic volano-seismic recognition systems. Section IV and V presents the results and discussions. Section VI concludes this110

paper.

2 Seismic data and catalogs

As previously stated, in this study, we will use three datasets from three volcanoes of different nature: Deception Island (Antarc-

tica), Popocatépetl (Mexico) and Tajogaite (Canary Island, Spain). Due to the extensive expertise and in-depth knowledge that

our research group has on Deception Island volcano, providing a comprehensive understanding of its structure and dynamics115

through numerous campaigns conducted since 1994 (Ibáñez et al., 2000; Martínez-Arévalo et al., 2003; Zandomeneghi et al.,

2009; Carmona et al., 2012; Ibáñez et al., 2017), we will consider the dataset associated with this volcano as the reference or

"master" dataset, thus granting it a high level of reliability and robustness. Therefore, to corroborate our hypotheses, we will

use the Popocatépetl and Tajogaite databases as benchmarks.

Deception Island (62°59’S, 60°41’W) is a horseshoe-shaped volcanic island that emerged during the Quaternary period. It is120

located within a marginal basin-spreading center of the Bransfield Strait, where the South Shetland Islands and the Antarctic

Peninsula are separating (Smellie, 1988; Martí et al., 2011; Carmona et al., 2012). The Deception Island dataset (hereafter

referred to as MASTER-DEC) was created using seismic data collected during the 1994-1995 campaign organized by the

Andalusian Institute of Geophysics (IAG) with a short-period array of 8 channels. The array consisted of a three-component

Mark L4C seismometer with a lower frequency band of 1 Hz and 5 Mark L25 sensors with a vertical component frequency of125

4.5 Hz, electronically extended to 1 Hz. After analyzing the 8 channels, the one with the highest Signal-to-Noise Ratio (SNR)

was selected (Ibáñez et al., 2000). The data were sampled at a frequency of 100 Hz. Since this sampling frequency allows for

the analysis of frequencies up to 50 Hz and our parameterization workflow primarily operates within the 1-20 Hz range, the

data were filtered within this range. This filtering minimizes the influence of the sensorization used for signal recording and

ensuring the comparability of the data recorded by different sensors over various time periods or at different volcanoes. By130

integrating our understanding of the structural, source, and dynamic models of Deception Island volcano with advancements in

signal processing and Machine Learning (ML), MASTER-DEC has played a crucial role in the development of seismo-volcanic

signal segmentation and classification. It has also served as the foundation for studies involving hidden Markov models, ar-

tificial neural networks, parameter reduction algorithms, and more (e.g., Bueno et al., 2021; López-Pérez et al., 2020; Titos

et al., 2018, 2019, 2023; Cortés et al., 2021). Therefore, we can confidently assert that this database is both highly reliable135

and ideally suited for our intended purpose: serving as a reference seed (pseudo-label) for constructing other seismic catalogs

or improving existing ones, particularly those designed for early warning systems for volcanic eruptions. While it is true that
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not all types of signals are represented in MASTER-DEC—especially those associated with ongoing eruptive processes—its

primary objective aligns with our ML application, which focuses on understanding pre-eruptive processes.

For the current study, we extracted a subset of reliable data, consisting of 2,193 seismic events. These data are categorized140

into five classes, which align with the volcano-seismic scientific labels and the accompanying source models proposed by

Ibáñez et al. (2000) (Table 1 summarizes the source models and classifications). Table 2 presents a detailed summary of the

seismic events and their distribution. Figure 1 depicts an example of each type of event corresponding to the prototypes in the

database. Figure 2 illustrates the UMAP (Uniform Manifold Approximation and Projection) projection, showing the distribu-

tion of the five MASTER-DEC event types within the feature representation space. This visualization highlights how different145

seismic events occupy unique but sometimes overlapping regions, revealing potential challenges in distinguishing between

event categories. The projection provides an intuitive view of the clustering tendencies and the proximity of events with shared

characteristics, underscoring the inherent variability and possible misclassification risk in automatic seismic event recognition

systems even in thoroughly analyzed and refined datasets.

Class nEvents min(sec) mean(sec) max(sec) total(sec) std(sec)

BGN 1222 0.3 15.4 128.2 18835.2 11.8

TRE 77 10.4 93.3 150.0 7184.2 43.63

HYB 54 7.8 29.4 136.8 1587.1 18.9

VTE 75 5.4 19.1 89.9 1434.5 12.88

LPE 765 2.4 9.8 30.7 7469.8 3.81
Table 2. MASTER-DEC summary. The table reflects statistics on the duration of the signals and the number of events for each class. Seismic

categories: Background Seismic Noise (BGN), Volcanic Tremor (TRE), Long Period Events (LPE), Volcano-Tectonic Earthquakes (VTE),

and Hybrid Events (HYB). Duration) is in seconds (sec).

Popocatépetl Volcano (19°1‘N, 98°37‘W) is placed within a different geodynamic framework and exhibits a different erup-150

tive style compared to Deception Island; a subduction region in confront to a rift area. Popocatepetl is a large dacitic–andesitic

stratovolcano covering > 500 km2 of the eastern Trans-Mexican volcanic belt (Alaniz-Álvarez et al., 2007; Siebe et al., 2017).

It is surrounded by a densely populated area with around 25 million inhabitants (Arango-Galván et al., 2020). The volcano is

highly active, with the current active period beginning in December 1994 (Arango-Galván et al., 2020). The dataset used in this

study (hereinafter called POPO2002) was collected during a seismic experiment conducted between November and December155

2002, using short-period seismic stations. There is no detailed information regarding the type or specifications of the sensors

used to record the seismic signals. Data labelling was manually performed by a group of geophysicists with extensive knowl-

edge and experience of the volcano’s dynamics. It consists of 4,883 events, divided into similar classes as the MASTER-DEC

catalog (again aligning with the volcano-seismic scientific labels and accompanying source models proposed by Ibañez et al.

2000). Additionally, the catalog includes noisy events (labelled as GAR)-2739 events, and due to Popocatepetl’s activity, there160

is a category for explosions (EXP). Along with the event catalog, we have continuous seismograms from this period that will

be used for segmentation and identification processes. Table 3 summarizes the POPO2002 catalog. With the aim of minimizing
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(a) Long Period Event (LP)
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(b) Volcano-Tectonic Earthquake (VT)
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(c) Tremor (TRE)
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(d) Hybrid Event (HYB)

Figure 1. Amplitude and spectrograms of the main four prototypes of volcano-seismic events recorded at Deception Island volcano, during

three seismic surveys: 1994-1995, 1995-1996, and 2001-2002.

the influence of the sensors used for signal recording and ensure data comparability, the signals were first filtered to match the

frequency range of MASTER-DEC, followed by a subsampling process to adjust the sampling frequency accordingly.

165

Tajogaite volcano (28º40’N, 17º52’E) is located on the island of La Palma in the Canary Islands, Spain. The eruptive activity

started in September 19, 2021, following a period of seismic activity, marked by several VT swarms and then carried by contin-

uous volcanic tremor, becoming the first eruption on La Palma since 1971. The eruption started with the opening of a fracture in

the southwest part of the island, and the emission of material persisted for nearly three months, generated extensive lava flows

and pyroclastic deposits (D’Auria et al. (2022)). This event significantly affected the surrounding environment, infrastructure,170

and regional air traffic. The volcanic process yielded comprehensive seismic and geochemical data, providing valuable insights

into volcanic behavior in the Canary Islands and serving as a key reference for improvements in volcanic monitoring and

hazard assessment. The seismic catalog for this volcano (from this point forward referred to as LAPALMA2021) differs from
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Figure 2. UMAP (Uniform Manifold Approximation and Projection) projection obtained for the input vector forming the original data of

MASTER-DEC dataset. Different seismic categories may have elements located in overlapping areas of the representation space, where they

share similar projected features.

previous seismic catalogs since it only includes annotations of the occurrence of VT-type events. That is, the catalog consists

solely of a series of entries describing the date of the event’s occurrence, along with its magnitude and depth. There is no175

detailed information regarding the type or specifications of the sensors used to record the seismic signals. Given the nature of

this catalog and database, we believe that the inclusion of this use case could be of interest for evaluating the capability of the

proposed approach to improve a catalog from scratch. Once again, to further minimize the impact of sensor differences and

ensure data comparability, the signals were first filtered to match MASTER-DEC’s frequency range, then adjusted to the same

sampling frequency.180
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Class nEvents min(sec) max(sec) total(sec) mean(sec) std(sec)

BGN 340 0.63 5048.09 311359.63 915.76 995.18

TRE 273 10.14 357.17 8798.0 97506.93 880.23

HYB 1 32.63 32.63 32.63 32.63 0.0

VTE 371 6.33 1202.7 25363.44 66.82 94.40

LPE 1155 8.95 1227.99 72866.73 63.09 43.88

EXP 4 76.82 240.59 551.86 137.97 61.52

GAR 2739 0.78 14228.95 2747967.0 1003.27 1705.2
Table 3. POPO2002 summary. The table reflects statistics on the duration of the signals and the number of events for each class. The table

reflects statistics on the duration of the signals and the number of events for each class. Seismic categories: Explosions (EXP), Garbaje

(GAR), Hybrids (HYB), Long Periods (LP), Volcano-Tectonic Earthquakes (VT), Background Seismic Noise (BGN), Volcanic Tremor

(TRE). Duration is in seconds (sec).

3 Methodology and experimental framework

This section details the methodolgy and experiments conducted to test our hypothesis that, beyond the changing dynamics

of volcanoes between eruptive periods, and intrinsic factors like attenuation effects and source characteristics that alter the

shape and spectrum of seismic signals, the effectiveness of automatic seismic monitoring systems is further compromised by185

the incompleteness of the seismic catalogs on which they rely. To accomplish this task, the proposed algorithm will first be

described, and then, once its functioning is understood, the three experiments conducted will be detailed. The results of each

of these experiments will be detailed in the results section.

3.1 Methodology190

Building on the architectural strengths and integrating the advanced temporal modeling capabilities of machine learning tech-

niques, this work proposes using a weakly supervised transfer learning algorithm to create new seismic catalogs from which the

systems can be retrained with minimal initial human supervision. In other words, instead of retraining the pre-trained systems

with a given catalog, this approach proposes using the pre-trained systems as a foundational seed (pseudo-labeler) to weakly

label the new database and construct new catalogs. These new catalogs will then serve as the training knowledge for retraining195

the systems to the new volcanic environment.

Weakly supervised learning is a branch of machine learning covering the construction of predictive models with minimal

or indirect supervision (Zhou, 2018). Such techniques focus on learning with incomplete, inexact, and/or inaccurate informa-

tion derived from noisy, limited, or imprecise supervision processes. The objective is to automatically provide supervision for

labeling large amounts of data using labeling functions derived from domain knowledge. This approach replaces the costly200

and impractical hand-labeled process with inexpensive weak labels, understanding that although imperfect, they can be used to
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create a strong predictive model. In this framework, the source domain (denoted as Ds) is the MASTER-DEC dataset (based

on refined physical models and a strong revision process). The target domain (denoted as Dt) is a new given dataset (whose

available seismic catalog will not be considered). The goal is to address a domain adaptation task (Kouw and Loog, 2019;

Farahani et al., 2021) to reduce the cost of developing a reliable seismic catalog and database for a new given dataset with205

minimal initial human supervision. That is, automatically provide supervision for labelling large amounts of data from Dt

using labelling functions derived from domain knowledge Ds.

In a domain adaptation framework, typically Ds and Dt have the same feature space but different distributions. However, in

this study, for the pseudo-labeling task we assumed that:

– The marginal distributions of Ds and Dt are the same: Ps(Xs) = Pt(Xt), where Xs and Xt are the input feature vectors210

associated with different seismic windows or frames in both domains. As such, the pseudo-labeled samples do not need

to contain any domain information, and the occurrence of different seismic events is equally likely in both domains.

– The conditional distributions of Ds and Dt are the same: Qs(Ys|Xs) =Qt(Yt|Xt). As such, the pseudo-labeled samples

are valid in both domains.

Such assumptions have important implications since in the target domain, while the marginal distributions of Ds and Dt215

are the same [Ps(Xs) = Pt(Xt)], the conditional distributions could be different [Qs(Ys|Xs) ̸=Qt(Yt|Xt)]. This shows how

similar feature vectors taken as the input could output different probabilistic event detection matrices. That is, the description

or characterization of seismic categories could change between domains, or Dt could contain seismic categories unforeseen in

Ds.

Therefore, leveraging the probabilistic detection matrices output by the system trained in Ds, we can apply a weakly supervised220

learning technique as a pseudo-labeller in Dt to construct a new catalog from which to train a new system in a supervised way.

Those subset of the unlabelled dataset with high per-class probability, and then high confidence, are added to the new catalog.

Although imperfect, this method guarantees that, at least, events showing characteristics similar to those annotated in the

master catalog will be included in the new training dataset. As a result, after the re-training phase, the target catalog could be

enlarged and updated. It is important to note that this experiment does not aim to correct the catalog created by our colleagues225

with utmost dedication and effort; it simply seeks to highlight that a pseudo-labeler can be a valuable tool in constructing and

reviewing it with success and low time-consuming effort.

Taking these factors into account, our proposed approach is outlined as follows and depicted in Figure 3:

1. Recognition: According to Figure 3 a, the recognition block analyzes a subset of data from the new dataset using a

pre-trained system (RNN-LSTM, Dilated-RNN, TCN) and gets a probabilistic event detection matrix with per-class230

membership outputs. The data stream illustrates continuous or streaming analysis (allowing near real-time processing).

To carry out the recognition step using the network seed (trained with the MASTER-DEC dataset), streaming or contin-

uous signals are filtered between 1 and 20 Hz and split into frames or windows; the same algorithm of feature extraction

used the MASTER-DEC is applied. For each window, a feature engineering pipeline based on a logarithmic scale fil-

ter bank is applied. This pipeline reduces the dimensionality of the input vector associated with each analysis window235
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(compared to raw signals), which facilitates the training and convergence of the systems, as it increases the separability

of the data based on well-studied features in the literature (review Titos et al. 2024 for a detailed understanding of the

parameterization pipeline).

2. Event Detection and Confidence Analysis (Concept drift detection): Ignoring the information contained within the

available seismic catalog, the concept drift detection block analyzes the confidence of each detected event using the pre-240

viously obtained probabilistic event detection matrix with per-class membership output. This step allows us to quantify

the severity of drift between datasets (usually knows as “concept drift”) (Lu et al. 2018). High or extremely high per-

class recognition probabilities for each event type indicate that the systems are well-fitted to the master database. Low

per-class probabilities indicate a change in the description of the analyzed information. Accurate and robust dissimilarity

measurement and statistical hypothesis evaluation are not strictly necessary given the well-known dissimilarity between245

volcanic environments.

3. Concept Drift Adaptation: An adaptive threshold mechanism where a probability threshold is defined to select the

events that will be included in the new database is employed. Events with an average per-class probability exceeding this

threshold are selected and incorporated as training instances in the training set.

4. Re-training process: Finally, the ML systems trained with the MASTER-DEC used in step 1 are re-trained using the250

selected instances and labels obtained in step 3.

5. Iterative Refinement: Repeat steps 2 to 4 iteratively until the desired result is achieved.

3.2 Experimental framework

While the literature offers a variety of accurate machine learning architectures used to uncover descriptive patterns in seismic

signals (Malfante et al., 2018; Lara et al., 2021; Hibert et al., 2017; Titos et al., 2018; Bueno et al., 2021; Titos et al., 2019;255

Canario et al., 2020; Bicego et al., 2022; Alasonati et al., 2006; Benítez et al., 2006; Köhler et al., 2010; Bhatti et al., 2016;

Titos et al., 2018; Bueno et al., 2021; Titos et al., 2022), some of these methods may not be as effective for the specific chal-

lenges posed by continuous or streaming data (such as POPO2002 and LAPALMA2021). Given the inherent variability and

complexity of these data (consisting of seismic signal sequences containing multiple events, where the goal is to detect and

classify each individual event), specialized approaches capable of adapting to these conditions are required. More specifically,260

we will base our experimental framework on the pre-trained systems previously published in Titos et al. (2018, 2022 and

2024). These systems correspond to the Recurrent and Dilated Recurrent Neural Networks (Hochreiter, S., Schmidhuber, J.,

1997; (Schmidhuber, J., 2015); (Chang et al. 2017)), both with LSTM cells, along with Temporal Convolutional Networks (Lea

et al., 2017) (henceforth referred to as RNN-LSTM, Dilated-LSTM, and TCN, respectively).

265

11



stream data  

Recognition
Concept drift

detection
Concept drift

understanding
Concept drift
adapatation

per-class probabilities

Frame 1

Frame 2

.......

Frame N
BGN TRE HYB VTE LPE

(softmax output)

0.55 0.1 0.05 0.15 0.15

0.65 0.02 0.08 0.15 0.10

0.05 0.1 0.05 0.65 0.15

0.1 0.1 0.05 0.70 0.05

0.65 0.1 0.05 0.1 0.1

0.55 0.1 0.05 0.15 0.15

0.12 0.08 0.1 0.55 0.15

.......

.......

.......

.......

.......

  Grammar delimitation

     (argmax softmax)

BGN TRE HYB VTE LPE

0.55 0.1 0.05 0.15 0.15

0.65 0.02 0.08 0.15 0.10

0.05 0.1 0.05 0.65 0.15

0.1 0.1 0.050.70 0.05

0.65 0.1 0.05 0.1 0.1

0.55 0.1 0.05 0.15 0.15

0.12 0.08 0.1 0.55 0.15

.......

.......

.......

.......

.......

Compute average per-class

probabilities by event detected

.......

0.55

0.65

0.65

0.55

0.65

0.55

if all averages 

> threshold

Yes

dataset  

new pseudo-labeled  

(Popo dataset)  

      Raw 

waveforms

Frame 1

Frame 2

Frame N

Automatic recognition

system

Dilated-LSTM TCN RNN-LSTM

* Feature engineering pipeline 

is applied for each frame

Feature Engineering pipeline

(trained with Deception

Island dataset)

Figure B Figure C Figure D

* Each signal is arranged into 4 

second overlapping frames

* 0.5 second frame shift, using  

Hamming windows

A)

B)

C) D)

Figure 3. a) Overview of the weakly supervised event selection algorithm developed. A subset of the dataset (in our case 40% of the total)

is used as a training set by the reference pre-trained systems. The rest of the data is used as a test set. Only high per-class probability

recognized events are selected as new training instances. b) Workflow structure and the specific preprocessing steps employed, which relies

on frequency analysis within the logarithmic filter bank domain (Titos et al. 2022). This processed information serves as the input for the

different volcano-seismic recognition systems. c) For each detected event, the confidence of the detection is analysed using a probabilistic

event detection matrix with per-class probabilities output by the systems. d) Drift adaptation mechanism based on an adaptive threshold is

then adopted. Those events whose average number of per-class probability is greater than a given threshold are selected and included as new

training instances.

3.2.1 Developing automatic recognition systems from available catalogs

The standard procedure for developing an automatic volcano-seismic monitoring system from scratch using supervised ma-

chine learning techniques involves having a sufficiently representative seismic catalog (selecting and segmenting a large, reli-

able set of well-labeled seismic events that cover the maximum possible range of events occurring in the studied volcanic area).

These events serve as the initial seed for the training procedure. This training can be carried out using different approaches,270

ranging from training the system from scratch to using transfer learning techniques (Weiss et al. (2016)). Transfer Learning

offers significant advantages, especially when the available data for a particular volcano is limited. This technique allows for

reusing a model pre-trained on data from another volcanic region (for example, a previously studied volcano) and adapting it
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to new data with considerably less computational and labeling effort. By transferring knowledge acquired from one volcano

to another, the system’s ability to recognize seismic patterns and adapt to different volcanic characteristics could be enhanced,275

leading to improved accuracy and generalization.

Thus, in the first experiment, to demonstrate that state-of-the-art machine learning model can effectively learn the informa-

tion contained in a seismic catalog (assuming catalog-induced learning biases), a recognition system based on transfer learning

approaches will be developed from scratch utilizing three different architectures. To achieve this, three systems pre-trained on

MASTER-DEC will serve as the foundation for adapting recognition systems to the Popocatépetl volcano. Specifically, these280

systems will be re-trained with the available data and catalog from POPO2002 dataset. Given that the POPO2002 catalog con-

tains 7 seismic categories, a recognition system based on transfer learning can be constructed in different ways. One approach

is to consider only the categories present in MASTER-DEC, while another includes all the categories (i.e., incorporating Ex-

plosions and Garbage events in the training set, thus expanding the number of seismic categories by two). From a machine

learning perspective, these two approaches have no major implications. In the first case, where only 5 seismic categories are285

used, the systems would undergo retraining with the new catalog. In the second case, when using 7 categories, systems are

adjusted to accommodate 2 additional categories, leveraging the pre-existing parameters while updating only the output layer.

After that, the models are trained as usual.

3.2.2 Developing automatic recognition systems with weakly supervised pseudo-labeling290

To test our initial hypothesis and following the workflow outlined in Figure 3, this second experiment highlights the use of

weakly supervised approaches to enhance seismic-volcanic catalogs. By leveraging an existing unbiased master catalog, we

can incorporate prior knowledge into the new dataset under review. This process involves using each of the three reference

systems (RNN-LSTM, Dilated-LSTM, TCN), considered well-trained, to reassess and label the seismic categories in the new

dataset, then retraining themselves based on these pseudo-labels. Therefore, Each system will analyze a subset of the total295

POPO2002 database to create a training set for the retraining process. Once retrained, the systems will generate a new seismic

catalog, which will then be compared and analyzed against the original POPO2002 catalog to assess the results.

Since MASTER-DEC is composed of five seismic categories, and the weakly supervised approach relies on pre-trained

models, the experiments presented here are based solely on these five categories. This limitation is a consequence of the

methodology and must be properly understood in order to ensure a correct interpretation and discussion of the results, as it300

directly influences the way the data is analyzed and compared with the original catalog. An important consideration in this

experiment is that the recognition percentage obtained by the systems before and after retraining, using the original catalog

annotations as a reference, can provide valuable insights into the algorithm’s behavior. Therefore, both results will be taken

into account in this experiment, with the aim of analyzing in detail how the retraining process with the new pseudo-catalog

affects the system’s performance.305
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3.3 Building a new catalog during an eruptive crisis: The Tajogaite volcano use case, 2021

The third and final experiment aims to analyze the robustness of the proposed methodology by building a seismic catalog from

scratch in a highly demanding use case, such as during an eruptive crisis. Since we have not had the opportunity to test it in an

actual eruptive scenario, we propose using data from the Tajogaite volcano during the 2021 eruptive episode. We also suggest

abstracting this offline test to simulate a real-time episode, as if data were being analyzed in real-time, since the functionality310

would be exactly the same. As previously mentioned, the selected pre-trained systems are capable of operate in near real-time,

with particularly short latency times, analyzing (not re-training) 24 hours of data in few seconds.

Therefore, for this experiment, a pair of 24-hour seismic records from the PPMA and PLPI seismic stations, corresponding

to September 12, 2021, just a few days before the eruption began when an increase in activity was detected, have been used. To

conduct an analysis and comparison of the results, we have a seismic catalog created by geophysical experts from that volcano315

during the eruption crisis itself. Given the large number of recorded events, the significance, and the urgency of the moment,

we believe that this catalog meets the human requirements of the time. Again, just as we argued in the case of the POPO2002

catalog, this experiment does not aim to correct the catalog created by our colleagues with utmost dedication and effort; it

simply seeks to highlight that a pseudo-labeler can be a valuable tool in constructing and reviewing it.

4 Results320

This section presents the results supporting the experiments outlined in the previous section. For each experiment, tables de-

scribing the system performances in terms of accuracy, along with detailed confusion matrices are presented. For Experiments

1 and 2, accuracy (%) metric evaluates the capability of the developed systems to accurately recognize (detect and classify) the

events annotated in the POPO2002 seismic catalog. The normalised confusion matrices provide a breakdown of true positives,

false positives, false negatives, and true negatives, allowing a thorough analysis of each system’s robustness in recognizing325

each event type. All results were obtained using a Leave-One-Out cross-validation process with 4 random partitions. Each

time, we select T% of the entire database as training set, and the remaining (100-T) % as test set to check the performance of

the systems. This analysis helps to identify specific areas where the model may struggle, such as mis-classification between

event types with similar features. Finally, in experiment 3, where only partial knowledge of the earthquakes recorded during

the crisis is available, results evaluate the model’s ability to generate a more comprehensive and reliable catalog. This catalog330

will serve as a basis for inferring potential volcanic dynamics, with confusion matrices helping to assess how well the model

distinguishes between known and newly identified event patterns, which is critical in real-world eruptive crisis scenarios.

The optimal RNN-LSTM configuration consists of a single hidden layer with 210 units and no dilations. For the Dilated-

LSTM model, the configuration that yielded the best performance included three hidden layers, each with 50 units and 2–4

dilated recurrent skip connections per layer. The TCN model, achieved optimal performance with 50 filters, a kernel size of335

2, and dilation values of 8, 16, and 32. Only one residual block was used, as additional blocks are more suitable for longer

sequences, such as waveforms with extensive time samples. Data normalization was performed using standard deviation nor-

malization, where each feature was normalized by subtracting its mean and dividing by its standard deviation, calculated from
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the training set. The model was optimized using Stochastic Gradient Descent (SGD) with a fixed learning rate, ranging from

0.004 to 0.01, with the optimal learning rate found to be 0.001. To prevent overfitting, early stopping and L2 regularization340

were applied during training.

4.1 Developing automatic recognition systems from available catalogs

Table 4 presents the recognition results obtained by the pre-trained systems after being trained on POPO2002 catalog. Since

using a transfer learning approach allows for more efficient use of computational resources, and the fine-tuning phase typically345

requires fewer resources than training a system from scratch, two experiments were conducted. These experiments considered

5 and 7 seismic categories, each using 20% and 40% of the total data for the training set (T = 20 and T = 40). This means that

the results were obtained using 80% and 60% of the data in the test partition, respectively. Table 5 summarizes the averaged

normalised confusion matrices belonging to the test using 5 seismic categories and 40% of the total data for the training set.

350

5 seismic categories 7 seismic categories

Training percentage Training percentage

20% 40% 20% 40%

RNN-LSTM 77.38 88.99 84.01 84.39

Dilated-LSTM 82.88 84.70 84.05 85.21

TCN 82.46 88.30 85.77 83.27
Table 4. Self-consistency results using 5 and 7 seismic categories, with 20% and 40% of the data for training and 80% and 60% for testing,

respectively. The results correspond to the average accuracy over the four partitions.

RNN-LSTM Dilated-LSTM TCN

BGN TRE HYB VTE LPE BGN TRE HYB VTE LPE BGN TRE HYB VTE LPE

BGN 0.97 0.02 0 0 0.01 0.96 0.02 0 0 0.02 0.98 0.01 0 0 0.01

TRE 0.06 0.78 0 0.05 0.11 0.13 0.69 0 0 0.18 0.11 0.68 0 0.09 0.12

VTE 0.08 0.13 0 0.51 0.28 0.12 0.17 0 0.31 0.4 0.14 0.09 0 0.59 0.18

LPE 0.05 0.07 0 0.03 0.85 0.04 0.18 0 0 0.78 0.05 0.05 0 0.04 0.86
Table 5. Averaged normalized confusion matrices associated with the Leave One Out cross validation process for the Popo2002 dataset.

These results belong to the test using 5 seismic categories.
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4.2 Developing automatic recognition systems with weakly supervised pseudo-labeling

Table 6 presents the recognition accuracy achieved by the pre-trained systems, which were retrained using the proposed weakly

supervised approach with the training partition set to 40% of the total POPO2002 dataset. As previously stated, since MASTER-

DEC consists of five seismic categories and the weakly supervised approach builds on pre-trained models, the results presented

here include only these 5 seismic categories. The first column of the table represents the results obtained by directly applying355

recognition with the pre-trained models. This column shows the degree of similarity between the original POPO2002 catalog

and the pseudo-catalog constructed using the pre-trained systems as pseudo-labelers. The second column reflects recognition

results compared to the original POPO2002 catalog after the systems have been retrained using the previously constructed

pseudo-catalog. Table 7 summarizes the averaged normalized confusion matrices of the new systems based on the weakly su-

pervised approach, with the POPO2002 catalog as the reference. The results are over the whole test set using 40% of the whole360

set for training and five seismic categories. The y-axis corresponds to the real label or ground-truth and the x-axis corresponds

to predicted labels. Finally, Table 8 summarizes the comparison between the events initially annotated in the POPO2002 cata-

log and the events detected by the new automatic systems following the weakly supervised approach.

Five seismic categories blind test ‘Weakly supervised TL’ using five seismic categories TL

RNN-LSTM 55.95 64.89

Dilated-RNN 50.13 55.72

TCN 58.27 66.16
Table 6. Classification accuracy (acc. %) on the test set achieved by the pre-trained systems, which were retrained using the proposed weakly

supervised approach with the training partition set to 40% of the total POPO2002 dataset and only 5 seismic categories.

RNN-LSTM Dilated-LSTM TCN

BGN TRE HYB VTE LPE BGN TRE HYB VTE LPE BGN TRE HYB VTE LPE

BGN 0.88 0.09 0 0 0.03 0.67 0.32 0 0 0.01 0.8 0.19 0 0 0.01

TRE 0.29 0.36 0.03 0.02 0.03 0.29 0.5 0 0 0.21 0.19 0.7 0 0 0.11

VTE 0.27 0.41 0.08 0.03 0.21 0.46 0.28 0 0.03 0.23 0.36 0.46 0.03 0.06 0.09

LPE 0.36 0.19 0.06 0.06 0.33 0.47 0.18 0 0.01 0.34 0.41 0.33 0.01 0.01 0.24
Table 7. Normalized confusion matrices for the new retrained system using a weakly supervised approach, with the POPO2002 catalog as

reference. The results are over the whole test set using 40% of the whole set for training and five seismic categories. The y-axis corresponds

to the real label or ground-truth and the x-axis corresponds to predicted labels.

4.3 Building a new catalog during an eruptive crisis: The Tajogaite volcano use case, 2021365

Table 9 shows the recognition results obtained in this experiment using 24-hour seismic traces from the PLPI and PPMA sta-

tions on 9/12/2021 at Tajogaite volcano. The number of events manually annotated by experts during the volcanic crisis for
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Popo2002 catalog RNN-LSTM Dilated-LSTM TCN

BGN 340 >20,000 >20,000 17,206

TRE 273 3,291 2,538 3,204

VTE 371 1,741 1,032 94

LPE 1,155 2,230 2,250 2,159
Table 8. Comparison between the events initially annotated in the catalog and the events detected by the new automatic systems following

the implementation of a weakly supervised approach.

the analyzed day, serving as a guide for the subsequent analysis is 247 earthquakes, both tectonic and volcanic in origin. As

mentioned earlier, it is important to highlight that these results correspond to an experiment where only a tentative earthquake

catalog (constructed during the eruptive crisis under the urgency and challenges that such situations entail) is available. For370

this reason, to conduct a rigorous comparative analysis, we have included the recognition results from a widely-used tool like

PhaseNet (Zhu and Beroza (2019)). PhaseNet is a neural network-based system designed for automatic phase picking of seis-

mic events. It detects and labels seismic phases and estimates the probability of each phase type (P and S) across the trace.

After analyzing the two seismic stations, PLPI and PPMA, for September 12, 2021, 1173 P-phases and 1518 S-phases were

obtained for PLPI, and 390 P-phases and 522 S-phases for PPMA.375

RNN-LSTM Dilated-LSTM TCN

PLPI PPMA PLPI PPMA PLPI PPMA

BGN 4344 4641 1800 3005 6409 8642

TRE 109 64 229 241 152 139

HYB 12 14 5 8 - -

VTE 187 131 194 161 333 403

LPE 1008 1032 564 711 516 761
Table 9. Recognition results obtained by the pre-trained reference models on the seismic traces recorded on 12/9/2021 at the PLPI and PPMA

stations. Results are without considering re-training process.

5 Discussion

5.1 Developing automatic recognition systems from available catalogs

The classical way to assess the robustness of an automatic recognition system is by evaluating its recognition accuracy across

all events included in the catalog. Typically, a system with an average performance below 75% is considered unreliable. How-380

ever, this lack of reliability is often not due to the system’s ability to learn to distinguish between different events, but rather

results from how the catalog is constructed. Specifically, if the seismic categories are not homogeneous and events of different

natures are assigned to the same type, the system’s performance will drop. If events classified as part of the same category are
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not consistent, the system will struggle to make accurate predictions, as the inherent variability within each type undermines

the learning process. In such cases, the recognition accuracy typically falls below 70%. Therefore, Tables 4 and 5 not only385

provide information about the reliability of the developed systems but also about the consistency of the catalog itself.

According to such results, the three proposed systems are shown to achieve a high degree of recognition in both experiments

(including 5 and 7 seismic categories), allowing us to conclude that the systems effectively learn to recognize the events anno-

tated in the catalog. It is worth noting, however, that in the second experiment, when the number of seismic categories increases

from 5 to 7, the recognition rate of the 3 systems is slightly affected. This result is clearly influenced by the imbalance in the390

dataset. The seismic category Explosion (EXP), with only 4 events, has no impact on the outcome. In contrast, the inclusion

of the Garbage (GAR), with 2,739 events of varying durations, significantly changes system performance. Firstly, because it is

the predominant category in terms of both number and duration, performing an analysis by windows results in a considerable

increase in labels of this type, biasing system learning. Secondly, the spectral characteristics describing GAR events are very

similar to those of BGN events. The former represents a set of events without a clear definition, while the latter represents395

seismic noise. Therefore, including both in the training process leads the systems to confuse the two, with GAR emerging as

the more dominant qualitative category due to its imbalance.

Regarding the confusion matrices across the 3 systems, the analysis suggests that, the POPO2002 catalog is consistent,

within each seismic category, there is coherence among the elements classified within the same category. However, propa-

gation and source effects can influence seismic event characterization. For instance, VTE events are not well-identified, with400

confusion rates exceeding 60% in some cases, meaning only 40% of VT events are accurately classified. The highest confusion

levels are observed between the VTE and LPE categories, possibly due to shared characteristics, as LPE events may resemble

highly attenuated VTs, causing potential biases in event categorization. This overlap suggests that some seismic categories

have elements positioned in overlapping areas of the representation space (mathematical space where data points are mapped

according to learned features), where they share similar projected features, and events, despite being assigned to a specific405

cluster, could transition between categories (similar to MASTER-DEC and described in Figure 3). Thus, although system per-

formances range between 85% and 90%, this does not always reflect a complete or unbiased seismic catalog. Rather than solely

learning to characterize volcano dynamics based on an underlying physical model, the systems may be learning the informa-

tion contained within the catalog itself. Consequently, catalog-induced learning could limit a system’s ability to generalize,

potentially obscuring information relevant to advancing our understanding of volcanic behavior.410

5.2 Developing automatic recognition systems with weakly supervised pseudo-labeling

Once the construction of catalogs through transfer learning has been discussed, we are now ready to discuss the use of weakly

supervised pseudo-labeling approaches. Results demonstrate that, when applied effectively, these methods can significantly

improve the detection and identification of diverse earthquake-volcanic signals. According to Table 6, using pre-trained systems

as pseudo-labelers results in a substantial decrease in overall performance compared to building automatic monitoring systems415

from available catalogs (Table 4). However, a closer inspection of the Table 8 shows other aspects of the performance being

very encouraging.

18



First, the new systems recognized events that were originally not annotated in the preliminary catalog during data-labeling.

The vast majority of such recognized events, were discovered within long segments labeled as GAR or TRE. An example of

this behavior can be seen in Fig. 4, which shows LP events (red boxes) that were not initially annotated during labeling within420

a trace labeled as TRE, along with the correction of an event originally labeled as LP, now relabeled by the system as VT. This

scenario occurs many times throughout the dataset, and these additional labels reduce overall recognition accuracy relative to

the original labeling, although they do not necessarily represent errors.

Second, among the seismological community, there is a marked interest in associating different types of seismo-volcanic
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Figure 4. Insertion-based errors when retraining systems using a weakly supervised approach. Detection of LP events (red boxes) that

were initially overlooked during the labeling process within a trace labeled as TRE–LPE–TRE. Correction of an event originally labeled

as LP, which the system now re-labels as VT. This scenario occurs frequently throughout the dataset, and these additions reduce per-frame

recognition accuracy compared to the original labeling; however, they do not always indicate errors.

signals with models of seismic sources in order to better understand the physics of the underlying processes. At present, there425

are two main complementary lines of research within volcano seismology: a) the detection and identification of different types

of volcanic events and b) the investigation of physical source models that explain the origin of these signals. As scientific

knowledge has advanced, a paradoxical situation has developed: there is a lack of uniformity in the naming of observed

seismic signals. Therefore, the subjectivity of human operators during the labeling process can lead to discrepancies in catalog

construction. As a result, catalogs and automatic recognition outcomes often vary across different volcanoes and researchers,430
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which ultimately reduces the system’s ability to be universally applied and impacts its performance. A clear example of this

discrepancy can be seen in Table 7. According to such table, on average, only 5% of the analysis windows labeled as VTE in

the original catalog were recognized by the retrained systems. On initial inspection, these results might suggest poor systems

recognition for this seismic category, but interestingly, it is one of the most distinctive events due to its high-frequency content

and exponential energy decay. So, what accounts for the low recognition rate? A detailed analysis shows that it is mainly due to435

labeling discrepancies between the MASTER-DEC event prototypes and POPO2002 catalog annotations. On the one hand, the

start and end points of some events are often marked in positions that differ significantly from those annotated by the automatic

systems. Instead of recognizing entire seismic traces such as volcano-tectonic earthquakes (VTE) as annotated in the original

catalog, the systems detect background noise (BGN) segments before and after the earthquakes. While segments with high

spectral content were detected and classified as VTE, those with low spectral content were classified as BGN or TRE. These440

additional detections reduce per-frame recognition accuracy. This can be clearly seen in Fig. 5 during earthquakes recognition.

On the other hand, the VTE prototype events used in MASTER-DEC have very specific characteristics. However, some of
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Figure 5. Insertion-based errors when retraining systems using a weakly supervised approach. Event delimitation: examples of the labeling

process for the systems. Instead of recognizing entire seismic traces such as volcano-tectonic earthquakes (VTE) as annotated in the original

catalog, the systems detect background noise (BGN) segments before and after the earthquakes. These additional detections reduce per-frame

recognition accuracy; however, after a posterior revision, they should not be considered errors. The current colormap in the spectrogram

represents the energy levels. The blue color corresponds to the minimum energy, while the red color corresponds to the maximum energy.

the VTE events labeled in POPO2002 do not reliably share these characteristics. This may be due to the fact that catalogs are

often constructed using data from multiple seismic stations, with strong attenuation and source effects, while imposing rules

or conditions for identifying signals. Therefore, the original labeling of an event does not always align with the waveform and445

spectral content of the analyzed signal, as it may vary depending on the station being analyzed. As a result, if the signal being

analyzed does not align with the characteristics of the prototype event used to construct the system, such signal will be labeled

or associated with the event prototype that most probabilistically resembles it. This behavior reduces the recognition rate for

this seismic category. Figure 6 illustrates this behavior, showing two examples of events annotated as VTE in the POPO2002
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Figure 6. Two examples of event annotated as VTE in the POPO2002 catalogue being recognized as TRE for the systems. The current

colormap in the spectrogram represents the energy levels. The blue color corresponds to the minimum energy, while the red color corresponds

to the maximum energy. The PSD reflects the distribution of a signal’s energy among the frequencies.

catalog that are recognized as TRE by the systems. The Power Spectral Density (PSD) of both events shows a clear content450

in low and intermediate frequencies (1-12 Hz), perfectly aligning with the source model proposed by Ibañez et al. (2000) in

Table 1, which is also followed by the MASTER-DEC. Similar to the previous analysis, this behavior is repeated throughout

the database, not only with TRE but also with LPE events, which explains the high degree of confusion addressed. A potential

solution to this situation would be to apply the algorithm to different stations.

Third, intra-category variability can also affect the overall recognition of the systems. The new dataset contains high vari-455

ability in some categories (categories composed of distinct events with shared characteristics are grouped into a single category,

such as various LPs, TRE events, or regional and volcano-tectonic earthquakes all labeled collectively as earthquakes). Again,

the nature of the seismic data played an essential role. Within the feature space, the representation of events belonging to a

given subcategory in the new domain (POPO2002) was closely related to the representation of events belonging to a different
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category in the source domain (MASTER-DEC). For example, similar to what occurs with some events in Fig. 3, the repre-460

sentations of some LPEs in POPO2002 are very close to the representation of TRE in MASTER-DEC (Fig. 7)a). As such, the

algorithm assigns the TRE label during the training phase. This decreased the overall systems performance since many frames

(33%, 19%, and 18% for TCN, RNN–LSTM, and Dilated–LSTM, respectively) were detected as TRE. The same issue arose

for some attenuated earthquakes, which were labelled as LPE in the original seismic catalog but classified as VTE or TRE

since, even when attenuated, they align with the feature space representation of an earthquake event in MASTER-DEC (Fig.465

7b). Finally, low-energy TRE events were clearly mis-classified as BGN because the peak-to-peak amplitude degradation of

the signals was related to attenuation effects. This complex scenario was widely discussed by Titos et al. (2018); therefore, to

correctly deal with these errors, further information from several seismic stations is needed. The results suggest that overall

recognition can be strongly biased by the intrinsic limitations addressed when developing the seismic catalog and from which

the comparative metrics were obtained. Therefore, if labelling criteria between datasets differ, per-frame recognition results will470

vary widely. Hitherto, the development of new monitoring systems has focused primarily on improving existing recognition

rates. However, our findings confirm that by leveraging an existing unbiased master catalog, we can incorporate prior knowl-

edge into the new dataset under review. Using automatic pseudo-labelers have the remarkable capability of simultaneously

identifying unannotated seismic traces in the catalog and help to correct the labels of mis-annotated seismic traces. Although

the general performance of the system seems to decrease relative to the original catalog, previously hidden information that475

can improve knowledge of the volcanic dynamic background can be obtained.

5.3 Building a new catalog during an eruptive crisis: The Tajogaite volcano use case, 2021

To conduct a detailed analysis of the results obtained in this experiment, it is essential to know the reference data. As mentioned

earlier, this experiment considered the seismic traces from two stations, PLPI and PPMA, for September 12, 2021, a few days

before the eruption of Tajogaite volcano began. On this day, given the volcanic activity and monitoring conditions only 247480

earthquakes, both tectonic and volcanic, were annotated in the catalog.

Considering this information, we now proceed to discuss the results. For the sake of the comparison, we will start analyzing

the outcomes obtained by PhaseNet. PhaseNet detected several hundreds of P and S phases, with the number of S phases being

higher at both stations. It is due to the greater energy associated with these waves. However, as it can be seen in Figure 8a, when

fixing a phase score threshold highlighting the reliability of the detections, the number of detections decreases rapidly with high485

values. For example, for values close to 80%, only approximately 722 P-phases–503 S-phases at PLPI and 282 P-phases–216

S-phases at PPMA are detected. This significantly reduces the number of potential events that could be included in the catalog.

Fig. 8b shows the match between detections and the cataloged events. Of these 247 annotated events, Phasenet detects 206 P-

phases and 199 S-phases at PLPI; and 157 P-phases and 28 S-phases at PPMA, all without applying any probability threshold.

Again, when setting the phase score threshold greater than or equal to 80%, the detections decrease to 163 P-phases and 164490

S-phases at PLPI, and 116 P-phases and 21 S-phases at PPMA. This behavior underscores the complexity of constructing

seismic catalogs, as even when focusing solely on seismic phase detections, there is no consistent criterion between a human
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Figure 7. Detailed analysis of intra-class variability and attenuation-based errors when applying a weakly supervised approach. (a) Intra-class

variability-based errors: some long period event (LPE) subcategories in POPO2002 are very close to the representation of tremor (TRE) in

MASTER-DEC. (b) Two attenuated earthquakes labelled as LPE in the seismic catalog, but classified as volcano-tectonic earthquake (VTE)

or TRE. The current colormap in the spectrogram represents the energy levels. The blue color corresponds to the minimum energy, while the

red color corresponds to the maximum energy.

operator and advanced automatic systems for choosing events. More importantly, even when considering the inclusion of these

potential events, extensive human supervision would be required to validate and categorize them.

Looking at the recognition results obtained by the pre-trained reference systems (see Table 9), it can be observed that a495

big amount of events are being detected. However, similar to Phasenet, some of such events should be discarded because the

reliability of the recognitions. Figure 9 depicts such reliability based on the belonging probabilities outputted by the systems.

To dive into these results: 1) we will analyze how the number of detections changes as the reliability changes (we focus on

23



0.0 0.2 0.4 0.6 0.8 1.0
phase score threshold

0

200

400

600

800

1000

1200

1400
nu

m
be

r o
f p

ha
se
s d

et
ec
te
d

Phase Score vs total phases detected by station
P-phase PLPI
S-phase PLPI
P-phase PPMA
S-phase PPMA

(a)

0.0 0.2 0.4 0.6 0.8 1.0
phase score threshold

0

50

100

150

200

nu
m

be
r o

f d
et

ec
te

d 
ph

as
es

 m
at

ch
in

g 
ca

ta
lo

g 
ev

en
ts

Phase score vs phases detected matching catalog events
P-phase PLPI
S-phase PLPI
P-phase PPMA
S-phase PPMA

(b)

Figure 8. Evolution of the number of detected phases at the seismic stations as the phase score threshold varies. A) Total number of phases

detected at both stations. B) Number of phases matching the 247 events recorded in the catalog on 12/9/2021.

more specific or sensitive systems); 2) we will examine how the systems perform using as reference the 247-events annotated

in the catalog; and 3) we will assess the reliability of the remaining detected events in order to evaluate the reliability of the500

new pseudo-catalogs.

Across all systems and at both stations, the number of detected events decreases significantly as the probability threshold

increases, particularly for values above 80%. At higher thresholds, the detections are predominantly limited to events closely

correlated to the prototype events on which the systems were trained. Figure 9c shows that for thresholds above 80%, the num-

ber of detected earthquakes by both RNN-LSTM and Dilated-LSTM averages between 120 and 150 events at both stations.505

For TCN, the number of detected earthquakes is significantly higher, highlighting that its specificity could be set at slightly

higher thresholds, around 85-90%. The main reason for the non-detection of certain catalog-annotated events was their dif-

fering spectral content compared to the average spectral content of the earthquakes annotated in the catalog. Specifically, by

comparing the spectral content of the undetected events with the average spectral content of all the annotated events, a clear

attenuation of energy is observed at higher frequencies (>15 Hz). This characteristic is crucial, as the systems were trained510

with prototype events that had a clear energy component at high frequencies. Figure 11 illustrates a couple of examples of this

behavior. The first row corresponds to the seismogram of the event being analyzed (annotated in the catalog but not detected

by any of the systems). The second row corresponds to their spectrograms. The third and fourth rows show the average power

spectral density (PSD) of all events annotated in the catalog for that day and the PSD of the event under analysis. The fourth

row of both Figure 10a and 10b show a clear attenuation of energy at high frequencies and a higher level of energy at lower515

and intermediate frequencies, respectively. In general, these events reflect belonging probabilities ranging between 50% and

80%. It highlights the importance of adjusting the specificity or sensitivity threshold when creating new pseudo-catalogs.
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Figure 9. Evolution of the number of detected event at the seismic stations as the belonging probabilities threshold varies. A) Total number

of LPEs detected at both stations. B) Total number of TREs detected at both stations. C) Total number of VTEss detected at both stations.

Regarding the detection of events identified by the systems but not annotated in the catalog, on average, RNN-LSTM and

Dilated-LSTM detected approximately 60 earthquake-type events, while TCN identified over 150. Figure 11 presents a couple

of examples of such earthquakes. The PSDs reveals that they share characteristics consistent with those of earthquakes. How-520

ever, as indicated by the probabilities shown at the top of the figure, their partial similarity in spectral content prevented them

from being classified with higher confidence.

Finally, it is important to discuss the recognition of events different to earthquakes, for which there is no available information

to contrast the results. Figures 9a and 9b show the number of LPE and TRE events recognized by the systems, along with their

corresponding membership probabilities. From these figures, it can be concluded that the number of detected events is high525
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Figure 10. Example of two earthquakes annotated in the catalog that were not detected by any of the 3 reference systems. a) Spectral analysis

of an undetected earthquake, where a clear attenuation of energy at high frequencies is observed. b) Spectral analysis of an undetected

earthquake, where an energy distribution in intermediate frequencies and attenuation at high frequencies are observed.
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Figure 11. Example of two earthquakes not annotated in the catalog that were detected by the 3 reference systems with probabilities ranging

from 63% to 78%.

for both categories, and the assigned membership probabilities are also relatively high, ranging from 80% to 95%. Unlike

earthquakes, where high-frequency energy from external factors can lead to errors, TRE and LPE events are highly distinctive

and well-defined at low frequencies. Since the systems were trained using parameter vectors based on logarithmic scale filter

banks, which provide higher resolution at low frequencies than at high frequencies, the analysis of energy distribution across
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low frequencies is highly reliable. Figure 12 shows an example of the LPE and TRE detections. As shown, these events were530

recognized with very high probabilities. Analyzing their spectral content, waveform, and energy reveals a perfect correlation

with the characteristics of the prototype events on which the systems were trained, as illustrated in Figure ??. Therefore, we

can conclude that a large percentage of the detected TRE and LPE events correspond to prototype events from MASTER-DEC,

which indicate the associated source mechanism of their label. It will be the responsibility of the volcano experts to analyze

whether these detected events share the same source mechanism or whether they should be re-labeled before pre-training the535

systems to adjust to the volcanic environment under analysis.
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Figure 12. Example of a) LPE detected but not annotated and b) TRE detected but not annotated in the catalog.

5.4 Summary of Findings

The results presented in each experiment provide valuable insights into the development of automatic recognition systems with

weakly supervised pseudo-labeling, highlighting both the strengths and limitations of the proposed methods. By synthesizing

the outcomes, we aim to offer a comprehensive understanding of how leveraging an existing automatic pseudo-labeler based540

on a master catalog can incorporate prior knowledge into the new dataset under review, which can inform future research and

applications in the field.

Among the main strengths identified, the systems’s ability to recognize previously learned prototype events, even in sce-

narios quite different from those analyzed during the learning process. This feature enhances its usefulness in reducing biases

when creating or improving catalogs. The results demonstrate that if systems would be trained across diverse volcanic envi-545

ronments with varied distributions of prototype events, recognition results could improve, suggesting good adaptability and,

consequently, the construction of less biased catalogs in new scenarios and volcanic settings. However, the systems shows

certain limitations, such as the detection of events that do not match any prototype, which could impact the final performance
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of the re-trained systems. This primarily occurs because the pre-trained reference systems from which the pseudo-catalogs are

built must assign a category to each analyzed window. Therefore, the systems will always assign a seismic category, even when550

the prototype is far from the signal under analysis. Once again, this challenge can be addressed by creating more comprehen-

sive training datasets that describe different event distributions. Finally, another major challenge identified is the decision of

the membership threshold from which events are included in the new pseudo-catalogs, indicating a need for post-analysis to

assess the confidence of the detections, which would help distinguish between very sensitive or very specific pseudo-catalogs.

Adjusting low probability thresholds will allow the creation of highly sensitive catalogs, which may result in many false pos-555

itives—events that do not match the prototype. Retraining the systems with these catalogs could drop the performance and

detection skills. On the other hand, a high probability threshold might not be sufficient to adapt the systems to the new volcanic

environment.

6 Conclusions

This study provides the first comprehensive analysis of seismic catalog-induced bias when developing automatic recognition560

systems. We evaluated the ability of several monitoring systems trained using a master seismic catalog from Deception Is-

land volcano to adapt to a new seismic catalog from Popocatépetl volcano through our novel, proposed weakly supervised

framework. Our results confirm the robustness of data-driven approaches as a basis for the construction of short-term early-

warning systems. However, quantitative and qualitative analysis confirmed that the reliability of a system is strongly biased

by the undetailed coverage of the seismic catalog. While systems performance reached almost 90% per-frame recognition565

accuracy, intrinsic limitations when developing seismic catalogs led to extremely useful information describing the volcanic

behaviour being ignored. Instead of simply learning to characterise volcanic dynamics by describing the latent physical model,

catalog-induced learning can bias the system by discarding useful data describing volcanic dynamics. However, when a weakly

supervised learning approach based on a master seismic catalog is applied, an unknown amount of information related to vol-

cano dynamics is revealed.570

This study raises important questions about the relevance of catalog-induced learning when developing new monitoring sys-

tems. Our results demonstrate that systems based on iterative weakly supervised or even unsupervised learning techniques

could offer a more successful approach than supervised techniques under crude seismic catalogs. Therefore, we conclude that

ensuring appropriate seismic catalogs and support for developing monitoring tools should be a priority to the same extent as

applying new and more effective AI techniques. The use of more sophisticated pseudo-labelling techniques involving data from575

several catalogs could help to develop universal monitoring tools able to work accurately across different volcanic systems,

even when faced with unforeseen temporal changes in monitored signals.
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