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Abstract. Heat stress in cities is projected to strongly increase due to climate change. The associated health risks will be 8 

exacerbated by the high population density in cities and the urban heat island effect. However, impacts are still uncertain, 9 

which is among other factors due to the existence of multiple metrics for quantifying ambient heat and the typically rather 10 

coarse spatial resolution of climate models. Here we investigate projections of ambient heat for 36 major European cities based 11 

on a recently produced ensemble of regional climate model simulations for Europe (EURO-CORDEX) at 0.11° spatial 12 

resolution (~12.5 km). The 0.11° EURO-CORDEX ensemble provides the best spatial resolution currently available from an 13 

ensemble of climate model projections for the whole of Europe and makes it possible to analyse the risk of temperature 14 

extremes and heatwaves at the city-level. We focus on three temperature-based heat metrics – yearly maximum temperature, 15 

number of days with temperatures exceeding 30 °C, and Heat Wave Magnitude Index daily (HWMId) – to analyse projections 16 

of ambient heat at 3 °C warming in Europe compared to 1981-2010 based on climate data from the EURO-CORDEX ensemble. 17 

The results show that southern European cities will be particularly affected by high levels of ambient heat, but depending on 18 

the considered metric, cities in central, eastern, and northern Europe may also experience substantial increases in ambient heat. 19 

In several cities, projections of ambient heat vary considerably across the three heat metrics, indicating that estimates based 20 

on a single metric might underestimate the potential for adverse health effects due to heat stress. Nighttime ambient heat, 21 

quantified based on daily minimum temperatures, shows similar spatial patterns as daytime conditions, albeit with substantially 22 

higher HWMId values. The identified spatial patterns of ambient heat are generally consistent with results from global Earth 23 

system models, though with substantial differences for individual cities. Our results emphasise the value of high-resolution 24 

climate model simulations for analysing climate extremes at the city-level. At the same time, they highlight that improving the 25 

predominantly rather simple representations of urban areas in climate models would make their simulations even more valuable 26 

for planning adaptation measures in cities. Further, our results stress that using complementary metrics for projections of 27 

ambient heat gives important insights into the risk of future heat stress that might otherwise be missed. 28 
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1 Introduction 29 

Global heat stress is projected to strongly increase in the future due to climate change (Gasparrini et al., 2017; Vargas 30 

Zeppetello et al., 2022; Zheng et al., 2021; Schwingshackl et al., 2021; Freychet et al., 2022), and already nowadays record-31 

breaking high temperatures are observed more and more often around the world, such as in Canada in summer 2021 (White et 32 

al., 2023) or in China and Europe in summer 2023 (Zachariah et al., 2023). Heat stress can have severe implications for human 33 

health, the economy, and the society as a whole (e.g., McMichael et al., 2006; Gasparrini et al., 2015; Yang et al., 2021; 34 

Alizadeh et al., 2022; Orlov et al., 2021), as it can lead to decreased levels of comfort and reduced labour productivity (Orlov 35 

et al., 2021; García-León et al., 2021), enhanced socioeconomic inequalities (Alizadeh et al., 2022), and increased morbidity 36 

and mortality (Gasparrini et al., 2015). Moreover, as the health risk associated with heat stress is not uniform within the 37 

population, heatwaves and extreme temperatures pose a larger threat to those who are most vulnerable to elevated temperatures, 38 

particularly to children, older adults, and persons with pre-existing conditions (Lundgren et al., 2013). 39 

Various metrics have been developed with the aim to capture the characteristics of heat extremes, including heatwaves, and 40 

their potential evolution in the future (e.g., Perkins and Alexander, 2013; Perkins, 2015; de Freitas and Grigorieva, 2017). 41 

Several of these indicators are based solely on temperature, while others consider additional factors, such as humidity, solar 42 

radiation, or wind speed to estimate heat exposure (de Freitas and Grigorieva, 2017). In the following, we focus on temperature-43 

based metrics, given that many epidemiological studies found temperature to be the dominant factor for adverse health effects 44 

(Armstrong et al., 2019; Kent et al., 2014; Vaneckova et al., 2011). Future changes in heat and heat extremes are frequently 45 

quantified by the change in temperature (e.g., mean or maximum near-surface air temperature) between a historical reference 46 

period and future periods (Sillmann et al., 2013; IPCC, 2021; Coppola et al., 2021). Other studies used the number of days per 47 

year during which certain thresholds are exceeded (e.g., Casanueva et al., 2020; Schwingshackl et al., 2021; Zhao et al., 2015). 48 

Likewise, different metrics have been introduced to quantify heatwaves, often based on percentile-based thresholds (e.g., 49 

Fischer and Schär, 2010; Suarez-Gutierrez et al., 2020; Perkins-Kirkpatrick and Lewis, 2020). The Heat Wave Magnitude 50 

Index daily (HWMId, Russo et al., 2015) integrates both the magnitude and the length of a heatwave into a single metric to 51 

quantify the heatwave severity. HWMId was applied by several studies to analyse the future risk of heatwaves (e.g., Dosio et 52 

al., 2018; Russo et al., 2017; Forzieri et al., 2016; Zittis et al., 2021). Depending on the considered metric, the projected spatial 53 

patterns of ambient heat projections may vary considerably, highlighting that assessing the future risk from heat stress requires 54 

considering a portfolio of metrics. 55 

The health risk from heat stress is not spatially homogeneous – neither globally nor within a country or a region – owing to 56 

several factors, including variations in local climate conditions, local climate feedbacks (e.g., due to albedo, soil moisture), or 57 

differences in the social environment (e.g., population density, socioeconomic conditions). Temperatures are often amplified 58 

in cities due to the predominance of impervious surfaces and the multitude of anthropogenic heat sources. The resulting urban 59 

heat island (UHI) effect leads to higher levels of ambient heat in cities compared to surrounding areas (e.g., Heaviside et al., 60 

2017). In Europe, our region of study, about 75% of the population lives in urban areas (UN-Habitat, 2011) and the urban 61 
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population is projected to grow even further in the future along with an ageing trend (Smid et al., 2019). Larger metropolitan 62 

areas in Europe will become more vulnerable to extreme heat in the coming decades (Smid et al., 2019) and heat mortality in 63 

European cities is projected to significantly increase (Karwat and Franzke, 2021). Cities in Europe or elsewhere are thus 64 

becoming climate hotspots in terms of climate change (Zheng et al., 2021) but also for adaptation and innovation (IPCC, 2022) 65 

due to the need for adequate strategies to address climate change adaptation. Preventing adverse health outcomes from heat 66 

stress and designing appropriate and effective adaptation measures requires accurate projections and estimates of heatwaves 67 

and temperature extremes. Recently, climate model simulations have reached a spatial resolution high enough to provide such 68 

projections at the city-level. 69 

Analyses of climate and climate change in cities face the challenge of delivering results on spatial resolutions that are high 70 

enough to be relevant for cities while robustly estimating the risk of extreme events. Urban canopy layer models, which can 71 

resolve cities at scales of ~100 m or even higher, can deliver great spatial details of cities (e.g., Masson et al., 2020), with the 72 

trade-off that often only a limited number of cities are examined (e.g., Goret et al., 2019; Krayenhoff et al., 2020). Analyses 73 

with urban canopy layer models coupled to climate models often rely on data from a single or a few climate models and are 74 

thus not able to adequately incorporate climate variability to robustly quantify the probability of extreme events. On the other 75 

hand, climate model simulations can be used to quantify climate variability and the risk of extreme events in multiple cities. 76 

Guerreiro et al. (2018) used simulations by general circulation models (GCMs) from the Climate Model Intercomparison 77 

Project phase 5 (CMIP5) to investigate heatwave projections in European cities. However, GCMs cannot fully depict local 78 

urban climate conditions as the spatial resolution of GCMs (~100 km) is much coarser than that of urban canopy layer models. 79 

To provide higher spatial resolution and to overcome some of the limitations of GCMs, dynamical downscaling by regional 80 

climate models is frequently applied. This approach has been used multiple times to investigate individual cities with a single 81 

model (e.g., Argueso et al., 2015; Chapman et al., 2019; Keat et al., 2021; Kusaka et al., 2012; Li and Bou-Zeid, 2013; 82 

Ramamurthy and Bou-Zeid, 2017; Wouters et al., 2017) but rarely for analysing climate conditions in a large number of cities 83 

and/or with an ensemble of models (e.g., Sharma et al., 2019; Smid et al., 2019; Junk et al., 2019). For Europe, an ensemble 84 

based on regional climate models (RCMs) from the European branch of the Coordinated Regional Downscaling Experiment 85 

(EURO-CORDEX; Jacob et al., 2013; Vautard et al., 2021) is available, providing simulations at a resolution of 0.11° (EUR-86 

11, ~12.5 km), which is fine enough to analyse climate conditions in major European cities at the city-level as typically at least 87 

one model grid cell falls within the extent of each major European city. The EUR-11 simulations were evaluated by Coppola 88 

et al. (2021) and Vautard et al. (2021) who showed that the simulations reproduce well the observed spatial temperature 89 

distribution in Europe, despite a general cold bias of summer temperatures of around 1 °C to 2 °C compared to observation-90 

based data from E-OBS (Cornes et al., 2018) in large parts of Europe. Hot biases of extreme temperatures (i.e., hottest five 91 

consecutive days) in mountainous regions are reduced in EURO-CORDEX compared to CMIP5, while a cold bias remains in 92 

central and northern Europe and a warm bias in southern Europe (Iles et al., 2020). Lin et al. (2022) evaluated the representation 93 

of HWMId in a subset of the EURO-CORDEX ensemble against reanalysis data, finding overall good agreement between both 94 

datasets and highlighting the added value of RCMs compared to the driving GCMs for representing small-scale features. 95 



4 

 

EURO-CORDEX simulations have been used to examine how temperatures and ambient heat are projected to increase in the 96 

future throughout Europe (Vautard et al., 2013; Molina et al., 2020; Coppola et al., 2021) and for a small group of European 97 

cities (Junk et al., 2019; Langendijk et al., 2019; Burgstall et al., 2021), showing that urban areas will be strongly affected by 98 

rising temperatures. The different studies used varying sets of metrics, different model ensembles, and different selections of 99 

cities. Smid et al. (2019) analysed HWMId projections for European capitals based on eight EURO-CORDEX models at 0.11° 100 

resolution, focusing on the metropolitan areas around the capitals. They found highest HWMId increases in southern European 101 

cities and, additionally, they highlight that exposure to heatwaves also strongly depends on population density. Junk et al. 102 

(2019) analysed projections of several heatwave metrics defined by the Expert Team on Climate Change Detection and Indices 103 

(ETCCDI) for London, Luxembourg, and Rome based on 11 EURO-CORDEX models at 0.11° resolution. The considered 104 

heatwave metrics project strongest increases for Rome, except for the number of heatwaves per year, which the authors explain 105 

by the increasing length of heatwaves, reducing their number. Using wet-bulb globe temperature (WBGT) as a heat metric, 106 

Casanueva et al. (2020) analysed exceedances of WBGT thresholds above 26 °C and 28 °C in Europe based on an ensemble 107 

of 39 EURO-CORDEX models (using simulations at both 0.11° and 0.44° resolution). Future exceedances of WBGT>28 °C 108 

are projected to be highest in southern Europe, followed by central Europe, while exceedance rates are negligible in northern 109 

Europe. Based on CMIP5 GCMs, Guerreiro et al. (2018) found that strongest increases in heatwave days are projected for 110 

southern European cities along with substantial increases in coastal cities in northern Europe, while maximum temperatures 111 

of heatwaves are projected to rise most strongly in central Europe. 112 

Here we build on these studies and use simulations by 72 GCM-RCM model combinations of the 0.11° EURO-CORDEX 113 

ensemble to assess projections of ambient heat for 36 major European cities. We focus on temperature and compare three 114 

metrics: changes in yearly maximum near-surface air temperature, the number of days per year on which daily maximum near-115 

surface air temperature exceeds 30 °C, and HWMId. To evaluate potential differences in projections for daytime and nighttime 116 

conditions, we additionally consider daily minimum near-surface air temperature. We first analyse how well the EURO-117 

CORDEX ensemble reproduces the measured temperature distributions in the selected cities compared to reanalysis and 118 

observation-based data. Further, we quantify how ambient heat is projected to evolve in these cities under global warming 119 

according to the three considered heat metrics. Finally, we evaluate how the choice of metrics affects projections of ambient 120 

heat, which can give relevant insights for designing appropriate adaptation measures to counteract health risks from ambient 121 

heat. A holistic analysis of the health risk from heat stress comprises the factors heat-related hazards, heat exposure, and 122 

vulnerability to heat. We focus on the hazard from extreme heat by employing the three heat metrics, acknowledging that 123 

exposure and vulnerability can also vary strongly across cities (Smid et al., 2019; Sera et al., 2019; Gasparrini et al., 2015). 124 
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2 Data and Methods 125 

2.1 Data 126 

2.1.1 Cities 127 

We include 36 major European cities in our analysis. These comprise all European cities with a population of more than 1.2 128 

million, and all European capitals with more than 500,000 inhabitants. We register the coordinates and elevation of each city, 129 

and whether it is located close to the sea (see Supplementary Table S1). A city is considered to be located close to the sea if it 130 

is directly adjacent to the sea. The complete list of cities and their geographic locations are indicated in Figure 1a. 131 

2.1.2 Climate model data 132 

The analysis is based on 72 GCM–RCM model chains from the EURO-CORDEX ensemble, which covers the European 133 

domain (Jacob et al., 2013, see Supplementary Table S2 for a detailed list of models). EURO-CORDEX simulations use two 134 

different spatial resolutions, 0.11° (EUR-11, ~12.5 km) and 0.44° (EUR-44, ~50 km). We only use data from the higher-135 

resolution EUR-11 simulations, for which typically at least one grid cell falls within the extent of each major European city 136 

(Figure 1b). For our analysis, we use daily maximum near-surface air temperature (tasmax), daily minimum near-surface air 137 

temperature (tasmin), and monthly mean near-surface air temperature (tas), employing data from historical and RCP8.5 138 

simulations for the period 1981-2100 (note that some model simulations only run until 2099 and one only until 2098). Near-139 

surface air temperature refers to the temperature at 2 m height. For each city, we use data from the grid cell that is located 140 

closest to the centre of each city. The large ensemble of 72 GCM–RCM model combinations allows for a robust estimation of 141 

future ambient heat including the model structural uncertainty, which has been shown to be relevant for quantifying the risk 142 

of urban heatwaves (Zheng et al., 2021). To test the spatial robustness of our results, we additionally consider data from a box 143 

of 3x3 grid cells around the city centres. The representation of urban areas varies considerably across RCMs (Table 1). Some 144 

RCMs represent urban areas as rock surfaces, others assume reduced vegetation and adjusted surface parameters (such as 145 

albedo and roughness) for urban areas, and one RCM even includes a sophisticated urban model. 146 

We further use simulations from the CMIP5 (24 models) and CMIP6 (24 models) ensembles (using one ensemble member per 147 

model) for comparison with the EURO-CORDEX simulations (see Supplementary Tables S3 and S4 for a detailed list of the 148 

considered CMIP5 and CMIP6 models and ensemble members). We employ data from historical and RCP8.5 simulations 149 

(SSP5-8.5 in case of CMIP6), analysing daily maximum near-surface air temperature (tasmax) and monthly mean near-surface 150 

air temperature (tas) for the same period (1981-2100) as for EURO-CORDEX. Analogous to EURO-CORDEX, we use the 151 

grid cell closest to the city centre for our analysis. To evaluate how the downscaling of GCMs by RCMs affects the results, we 152 

further consider the CMIP5 model set that is used to drive the 72 EURO-CORDEX RCMs. For this purpose, we create a GCM 153 

ensemble, which we denote as “EURO-CORDEX GCM ensemble”, for which we consider each GCM member as many times 154 

as it is used as a driving GCM in the EURO-CORDEX ensemble. The EC-EARTH ensemble member r3i1p1 (used to drive 155 
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several EURO-CORDEX RCMs, see Supplementary Table S2) is not available via the Earth System Grid Federation (ESGF) 156 

data portals and we thus substitute it by the EC-EARTH member r1i1p1 to create the EURO-CORDEX GCM ensemble. 157 

The GCMs and RCMs used in this study differ in several aspects. Most importantly, the RCMs have a much higher spatial 158 

resolution (~12.5 km) than the GCMs (~100 km), and orography and coastlines are thus represented much more accurately in 159 

RCMs. GCMs and RCMs also differ in their projections of atmospheric aerosols over the European domain, with GCMs using 160 

future scenarios with decreasing atmospheric aerosol concentrations while RCMs assume a constant atmospheric aerosol load 161 

(Boé et al., 2020; Gutiérrez et al., 2020; Nabat et al., 2020). Additionally, unlike GCMs, several RCMs do not consider plant 162 

physiological CO2 effects, which might cause an underestimation of temperature extremes (Schwingshackl et al., 2019). 163 

  164 
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 165 

 166 

 167 

Figure 1: Overview of the cities investigated in this study and examples of the spatial resolution of EURO-CORDEX models. 168 

Top: Location of the cities with the background map showing the EURO-CORDEX multi-model median change of annual 169 

maximum near-surface air temperature (ΔTXx) at 3 °C European warming relative to 1981-2010 (see Section 2.2). 170 

Abbreviations in the list of cities indicate the abbreviated city names used in Figure 7. Bottom: Example of grid spacing used 171 

by the majority of EURO-CORDEX models compared to the extent of three cities with different sizes (black polygons). 172 
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Table 1: Representation of urban areas in the regional climate models of the 0.11° EURO-CORDEX ensemble (EUR-11). 173 

Institute Model  Data source Representation of urban areas References 

CLMcom CCLM4-8-

17 

Land-surface model TERRA natural surfaces with an increased surface 

roughness length and a reduced vegetation cover 

(Garbero et al., 2021; Doms et 

al., 2011) 

CLMcom-

ETH 

COSMO-

crCLIM-v1-

1 

Land-surface model TERRA natural surfaces with an increased surface 

roughness length and a reduced vegetation cover 

(Garbero et al., 2021; Doms et 

al., 2011) 

CNRM ALADIN53 ECOCLIMAP-II database same as for rocks; no vegetation (Daniel et al., 2018), pers. 

communication Samuel Somot 

(CNRM, 13/10/2023) 

CNRM ALADIN63 ECOCLIMAP-II database same as for rocks; no vegetation (Daniel et al., 2018; Decharme 

et al., 2019) 

DMI HIRHAM5 ECHAM5 adjusted constant surface parameters; vegetation 

not mentioned 

(Langendijk et al., 2019; 

Roeckner et al., 1996, 2003) 

MPI-CSC REMO2009 Land Surface Parameter 

dataset of Hagemann (2002) 

adjusted albedo and roughness length; no 

vegetation 

(Jacob et al., 2012; Langendijk 

et al., 2019; Hagemann, 2002) 

GERICS REMO2015 Land Surface Parameter 

dataset of Hagemann (2002) 

adjusted albedo and roughness length; no 

vegetation 

(Jacob et al., 2012; Remedio et 

al., 2019) 

ICTP RegCM4-6 Land-surface model CLM4.5, 

which integrates the 

Community Land Model 

Urban (CLMU) 

CLMU considers canyon geometry, pervious and 

impervious surfaces, roofs, and walls and 

distinguishes between four levels of urbanization; 

vegetation is considered as part of pervious 

surfaces 

(Oleson and Feddema, 2020; 

Oleson et al., 2010, 2013) 

IPSL WRF381P Standard canopy model from 

Unified Noah land-surface 

model (the urban canopy 

model implemented in WRF 

was not used for the EURO-

CORDEX simulations) 

bulk urban parameterization, increased surface 

roughness length; reduced vegetation cover 

(Niu et al., 2011; Shen et al., 

2022; Chen et al., 2011), pers. 

communication Linh Luu 

(University of Lincoln, 

10/10/2023) 

KNMI RACMO22E ECOCLIMAP version 1 no specific urban parameterization but adjusted 

roughness length; vegetation not mentioned 

(van Meijgaard et al., 2008), 

pers. communication Erik van 

Meijgaard (KNMI, 8/11/2023) 

MOHC HadREM3-

GA7-05 

JULES Global Land 7.0 urban canopy with thermal properties of concrete; 

adjusted roughness length and albedo; no 

vegetation 

(Best et al., 2011; Walters et al., 

2019) 

SMHI RCA4 ECOCLIMAP version 1 same as for rocks (urban areas not explicitly 

mentioned in documentation); no vegetation 

(Samuelsson et al., 2015), pers. 

communication Patrick 

Samuelsson (SMHI, 27/10/23) 

174 
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2.1.3 Reference datasets 175 

We evaluate the EURO-CORDEX simulations by comparing them against two gridded reference datasets (see Section 3.1): 176 

1) the E-OBS gridded meteorological dataset, which provides gridded meteorological fields interpolated from weather station 177 

data at 0.1° resolution for Europe (Cornes et al., 2018) and 2) the global reanalysis ERA5-Land, which provides land variables 178 

including 2 m air temperature at a spatial resolution of about 9 km (Muñoz-Sabater et al., 2021). Additionally, we use data 179 

from single weather stations that lie within or close to the considered cities, using data from the Global Surface Summary of 180 

the Day (GSOD; Smith et al., 2011) and from the European Climate Assessment & Development (ECA&D; Klein Tank et al., 181 

2002; Klok and Klein Tank, 2009). We only include data from weather stations with a data record length of at least 20 years. 182 

For all datasets, the evaluation is performed using daily maximum near-surface air temperature and daily minimum near-183 

surface air temperature in the period 1981-2010. For ERA5-Land, daily maximum and daily minimum near-surface air 184 

temperatures are calculated as maximum and minimum of the hourly 2 m air temperature data. The land scheme of ERA5-185 

Land does not specifically consider urban areas (ECMWF, 2018) and thus, specific climatic conditions in cities (such as the 186 

urban heat island effect, UHI) may not be fully represented. For cities, in which temperature data from weather stations within 187 

the city limits are assimilated in ERA5-Land or considered in E-OBS, UHI might, however, be partly included. 188 

2.2 European mean warming 189 

Regional temperatures and temperature extremes scale linearly with global mean surface air temperature (GSAT; Seneviratne 190 

et al., 2016; Wartenburger et al., 2017; Seneviratne and Hauser, 2020). Uncertainties connected to the underlying climate 191 

scenarios can thus be reduced if expressing future evolutions of regional temperatures as a function of changes in GSAT, 192 

usually calculated relative to pre-industrial (1850-1900) conditions. This approach of expressing climate change in terms of 193 

global warming levels instead of emission-driven or concentration-driven scenarios has been used by several recent studies 194 

(e.g., Schwingshackl et al., 2021; Freychet et al., 2022; Li et al., 2021) and was widely applied in the 6th Assessment Report 195 

of the Intergovernmental Panel on Climate Change (IPCC, 2021). While this approach works well on global scales, it cannot 196 

be applied directly to the regional climate model simulations of EURO-CORDEX, mainly due to two reasons. First, EURO-197 

CORDEX simulations only start in 1950 (some models in 1970) and pre-industrial reference temperatures are therefore not 198 

available. We thus derive changes in mean temperatures relative to the period 1981-2010. Second, the EURO-CORDEX 199 

ensemble projects a lower rate of warming in Europe than the CMIP5 ensemble (Coppola et al., 2021). This discrepancy has 200 

been attributed to several reasons, such as differences in aerosol forcing (Boé et al., 2020; Gutiérrez et al., 2020; Nabat et al., 201 

2020) or diverging trends in cloudiness (Bartók et al., 2017). To account for this discrepancy, we implement the scaling 202 

approach using European mean surface air temperature (ESAT) instead of GSAT based on temperature data from the EURO-203 

CORDEX simulations. We calculate GSAT and ESAT from monthly mean temperature (tas), where ESAT is defined as the 204 

average temperature of a box spanning over Europe from 10° W to 35° E and from 30° N to 70° N. 205 

  206 
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 207 

Figure 2: Warming in Europe in the RCP8.5 scenario (EURO-CORDEX, CMIP5) and SSP5-8.5 scenario (CMIP6) relative to 208 

1981-2010. (a) Change in European mean surface air temperature (ESAT) as a function of time. The dashed purple line 209 

indicates the EURO-CORDEX GCM ensemble (see Section 2.1.2 for more details). (b) Change in ESAT as a function of 210 

change in global mean surface air temperature (GSAT) relative to the reference period 1981-2010. Solid lines in (a) and (b) 211 

indicate the multi-model median and shading the range from 10th to 90th percentile across models. Data in (a) are smoothed 212 

with a 10-year window and data in (b) are interpolated in 0.1 °C steps. The dashed grey line in (b) represents the identity line.213 
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Comparing the warming projections in the CMIP5, CMIP6, and EURO-CORDEX ensembles (Figure 2a) confirms that the 214 

CMIP5 and CMIP6 ensembles project a faster warming in Europe than the EURO-CORDEX ensemble. However, if 215 

considering the EURO-CORDEX GCM ensemble (see Section 2.1.2), the resulting warming projections are very similar to 216 

the projections of the EURO-CORDEX ensemble. This indicates a general agreement between the warming projections of 217 

CMIP5 and EURO-CORDEX averaged over Europe and suggests that the difference in ESAT is mainly connected to the GCM 218 

subset used to drive the EURO-CORDEX RCMs. As ESAT scales well with GSAT (Figure 2b), the warming can also be 219 

directly related to changes in GSAT. 220 

For consistency, we choose to stay within the EURO-CORDEX framework and express our results as a function of ESAT 221 

instead of GSAT, based on temperature data from the EURO-CORDEX simulations. The results are shown for a European 222 

warming of 3 °C relative to 1981-2010. This corresponds to a global warming of 2.5 °C in CMIP5 (2.4 °C to 2.7 °C; 223 

interquartile range across models) and of 2.4 °C in CMIP6 (2.3 °C to 2.6 °C) relative to 1981-2010 and to a global warming 224 

of around 3.1 °C in CMIP5 (3.0 °C in CMIP6) since pre-industrial conditions (1850-1900), which lies within the range of 225 

global warming projections under current policies and actions (2.1 °C to 3.5 °C by 2100 based on the assessment by Climate 226 

Action Tracker, https://climateactiontracker.org, last access 09 November 2023). For each GCM–RCM model chain of EURO-227 

CORDEX, we estimate the model-specific time when ESAT increases by 3 °C relative to 1981-2010 using a 20-year window 228 

around the first year in which the 20-year average temperature exceeds 3 °C warming. The same approach is applied to CMIP5 229 

and CMIP6 model data. 230 

2.3 Metrics for quantifying ambient heat 231 

Three heat metrics are used in this study to quantify how ambient heat will change in European cities under global warming. 232 

The selected metrics were applied in various studies to investigate projections of ambient heat in Europe and globally (e.g., 233 

Casanueva et al., 2020; Lin et al., 2022; Coppola et al., 2021; Russo et al., 2015; Dosio et al., 2018). The first metric is the 234 

change in yearly maximum temperature (TXx; based on daily maximum near-surface air temperature data) between the 235 

reference period 1981-2010 and the (model-specific) time when European warming reaches 3 °C relative to 1981-2010. The 236 

change in TXx indicates how strongly extreme temperatures increase due to climate change. 237 

As a second metric we calculate the number of days per year on which daily maximum near-surface air temperature (TX) 238 

exceeds 30 °C at the time when European warming reaches 3 °C. The threshold of 30 °C is a compromise of being high enough 239 

to be relevant for southern European countries and low enough for northern European countries. While absolute thresholds 240 

have been used in several scientific studies (e.g., Zhao et al., 2015; Schwingshackl et al., 2021; Casanueva et al., 2020), it 241 

should be kept in mind that exceedances of absolute thresholds strongly depend on local climate conditions. To test the 242 

sensitivity to the selected threshold level, we investigate how varying the threshold between 25 °C and 33 °C affects the 243 

identified geographic patterns. Calculating exceedances of fixed thresholds based on climate model data usually requires bias 244 

adjustment to correct for potential model biases (Maraun, 2016). However, we do not apply bias adjustment here due to the 245 

lack of reliable reference data, given that urban areas are not specifically represented in the reference datasets ERA5-Land, 246 

https://climateactiontracker.org/
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and E-OBS only implicitly includes information about urban areas to the extent weather stations are present within the city 247 

limits (which does not apply to all analysed cities, see Figure 3). Consequently, the urban heat island effect might be 248 

underrepresented in these datasets. Instead, we test the effect of a simple adjustment method that 1) adjusts the mean of the 249 

climate model data to ERA5-Land, and 2) adjusts the mean and variability to ERA5-Land (i.e., by applying a transformation 250 

to standard score). For this purpose, the mean and standard deviation of daily maximum and daily minimum near-surface air 251 

temperatures in summer (June, July, August) are calculated for each grid cell in a box of 5x5 grid cells around the centre of 252 

each city in the reference period 1981-2010. The resulting values are averaged over the 5x5 box and used for the simple 253 

adjustment method. The 5x5 box is used to represent the larger-scale climatological conditions within and around each city. 254 

The rationale is to reduce the statistical uncertainty by basing the adjustment on 25 grid cells instead of just one. The ERA5-255 

Land data is bilinearly interpolated to the grid of each EURO-CORDEX model before calculating the mean and standard 256 

deviation. We use a Kolmogorov-Smirnow test to check whether the bias-adjusted heat metrics are statistically significantly 257 

different from the heat metrics calculated from the original data. 258 

The third metric that we apply is the Heat Wave Magnitude Index daily (HWMId, Russo et al., 2015), which integrates both 259 

the length and the magnitude of a heatwave to calculate its overall strength. In the context of HWMId, heatwaves are defined 260 

as at least three consecutive days with daily maximum near-surface air temperatures above the 90th percentile of the daily 261 

maximum near-surface air temperature distribution of all days within a 31-day window in a pre-defined reference period 262 

(Russo et al., 2015). For each day in a heatwave, the HW magnitude (HWM) is calculated by subtracting the 25th percentile of 263 

TXx (TXx25p) in the reference period 1981-2010 from daily maximum near-surface air temperature (TX), normalised by the 264 

interquartile range of TXx in the reference period: 265 

 266 

HWM = {

TX − TXx25p

TXx75p − TXx25p 
, if TX > TXx25p 

0,      otherwise
  (1) 267 

 268 

The sum over all daily HW magnitudes of a heatwave yields HWMId. By definition, HWMId takes into account the interannual 269 

temperature variability of each location. We calculate HWMId using daily maximum near-surface air temperature (denoted as 270 

HWMId-TX) for the time when European warming reaches 3 °C with 1981-2010 as the reference period. In each year, we 271 

identify the heatwave with the highest HWMId-TX and use it to calculate the 20-year average HWMId-TX. 272 

To represent nighttime conditions, we further calculate the three different heat metrics based on daily minimum near-surface 273 

air temperature (TN), i.e., the yearly maximum of daily minimum near-surface air temperatures (TNx), the number of tropical 274 

nights (TN>20 °C), and HWMId based on daily minimum near-surface air temperature (HWMId-TN). 275 
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2.4 Statistical analysis 276 

2.4.1 Spatial patterns of ambient heat 277 

To analyse how a city’s geographic location and local climate affect projections of ambient heat according to the three metrics, 278 

we estimate the contribution of different factors for explaining the spatial pattern of ambient heat across European cities. We 279 

separately analyse the spatial correlation of each heat metric with four climatological factors (summer mean daily maximum 280 

near-surface air temperature TX̅̅̅̅
ref and its standard deviation σTX,ref in the reference period 1981-2010; change in summer 281 

mean daily maximum near-surface air temperature ΔTX̅̅̅̅  and change in its standard deviation ΔσTX between 1981-2010 and the 282 

model-specific time of 3 °C European warming) and four location factors (latitude, longitude, elevation, flag indicating 283 

whether a city is located close to the sea). Summer is defined as the months June, July, and August. 284 

The explanatory variables (i.e., the climatological factors or the location factors) may be correlated, and their contributions 285 

cannot be strictly disentangled. We therefore use an approach based on semipartial correlation to quantify the average 286 

contribution of each variable to the total explained variance R2 (Schwingshackl et al., 2018). The squared semipartial 287 

correlation measures how much of the remaining unexplained variance is explained by an explanatory variable that is 288 

introduced after several others have already been considered. If explanatory variables are independent, the sum of the squared 289 

semipartial correlation coefficients yields R2. For correlated explanatory variables, the additional contribution of an 290 

explanatory variable can be estimated by the average R2 increase of adding the variable to all regression models that contain a 291 

subset of the other explanatory variables (Azen and Budescu, 2003; Schwingshackl et al., 2018). If using the averaging method 292 

proposed by Azen and Budescu (2003), the sum of all squared semipartial correlations is equal to R2. The variability of the 293 

squared semipartial correlation estimates is a measure for collinearities between the explanatory variables and can be used as 294 

an uncertainty estimate for the contribution of each explanatory variable. The estimated contribution of each explanatory 295 

variable to the spatial variability of each heat metric does not permit statements about causality, as it is purely based on 296 

correlation analysis. Instead, the contributions should be interpreted as a measure of the extent to which the explained variables 297 

may be influenced by the location of each city or by the climatic conditions and climate change at the location of each city. 298 

2.4.2 Relative importance of RCMs and GCMs 299 

We further quantify how much of the variability in ambient heat across the EURO-CORDEX ensemble is due to the choice of 300 

GCMs or RCM, respectively. We follow the variance decomposition method of Sunyer et al. (2015) to calculate the variance 301 

due to RCMs, due to GCMs, and due to the interaction between RCMs and GCMs. As the interaction term cannot be attributed 302 

to either GCMs or RCMs, we interpret it as uncertainty and indicate the contribution of RCMs and GCMs as a range that once 303 

includes and once excludes the contribution of the interaction term. For each heat metric, we calculate the percentage 304 

contribution of RCMs and GCMs to the total variance across all 72 RCM-GCM model chains. 305 
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3 Results 306 

3.1 Evaluation of the EURO-CORDEX ensemble 307 

To evaluate how well the EURO-CORDEX models reproduce observed temperatures in the 36 major European cities, we 308 

compare their temperature distribution to data from E-OBS, ERA5-Land, and weather stations. Figure 3 shows the distributions 309 

of summer mean daily maximum near-surface air temperatures in 1981-2010 for all cities as a function of distance from the 310 

city centre. Detailed bias distributions for all cities can be found in Supplementary Figure S1, and a map of the multi-model 311 

median biases is shown in Supplementary Figure S2. The distribution of the EURO-CORDEX models generally matches the 312 

reference data well but is often wider than the distributions of the reference datasets (Figure 3). The EURO-CORDEX 313 

simulations reveal a cold bias in many cities lying in the northern and eastern parts of Europe (Dublin, Helsinki, Kazan, Nizhny 314 

Novgorod, Oslo, Saint Petersburg, Stockholm), ranging from -1.3 °C to -2.7 °C relative to E-OBS and from -0.3 °C to -1.2 °C 315 

relative to ERA5-Land. A warm bias – particularly relative to ERA5-Land – is found for several cities in south-eastern Europe 316 

(Belgrade, Bucharest, Kharkiv, Kyiv), ranging from +0.2 °C to +1.0 °C relative to E-OBS and from +1.7 °C to +3.2 °C relative 317 

to ERA5-Land. In general, a negative-to-positive tendency from North to South can be identified for the EURO-CORDEX 318 

biases (Supplementary Figure S2). ERA5-Land and E-OBS also show systematic differences, with daily maximum 319 

temperatures in ERA5-Land being mostly colder than E-OBS and the weather station data. Consequently, the magnitude and 320 

sign of the EURO-CORDEX biases strongly depend on the reference dataset. The multi-model median of the EURO-CORDEX 321 

ensemble has a warm bias relative to ERA5-Land (+0.5 °C on average across cities) and a cold bias relative to E-OBS (-0.8 322 

°C on average), which is consistent with the findings of Vautard et al. (2021). 323 

The distributions of daily minimum near-surface air temperatures in the EURO-CORDEX models also generally match the 324 

reference datasets (Supplementary Figure S3), although the spatial patterns differ from the bias patterns of maximum 325 

temperatures (Supplementary Figure S2). Biases are highest in northern, eastern, and southern European cities, while they are 326 

lowest in central European cities. The EURO-CORDEX ensemble has a cold bias relative to E-OBS (-0.6 °C on average; most 327 

pronounced in Saint Petersburg, Nizhny Novgorod, Copenhagen, Lisbon, Madrid) and to ERA5-Land (-0.8 °C on average; 328 

most pronounced in Kazan, Helsinki, Istanbul, Riga, Stockholm). In contrast to the lower daily maximum temperature values 329 

in ERA5-Land, daily minimum temperatures in ERA5-Land are warmer than E-OBS in several of the investigated cities. 330 

In some cities, temperatures vary as a function of the distance from the city centre (Figure 3, Supplementary Figure S3). E-331 

OBS shows higher temperatures close to the city centre in Budapest, Prague, and Vienna, while for EURO-CORDEX this is 332 

the case in Athens, Brussels, Dublin, Minsk, Munich, Paris, Rome, and Vienna. Yet, these temperature gradients are not 333 

necessarily due to UHI but could also be caused by other factors, such as gradients in elevation. For E-OBS and the weather 334 

station data, the scarce station density close to the city centres as well as the standard conditions for meteorological 335 

measurements (i.e., measurements are taken over grasslands) might be reasons for the lack of pronounced UHI effects. For the 336 

other datasets, this might be due to the missing representation of urban areas in the land surface schemes of ERA5-Land and 337 

the predominantly rather simple representation of urban areas in the EURO-CORDEX models (Table 1).  338 
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 339 

Figure 3: Distribution of daily maximum near-surface air temperature (TX) in summer for the investigated European cities as 340 

function of distance to the city centre. The plot shows summer (June, July, August) average TX over the period 1981-2010 for 341 

EURO-CORDEX (black line and grey shading), ERA5-Land (red-edged grey dots), E-OBS (blue-edged grey dots), and station 342 

data (filled blue dots). The black line for EURO-CORDEX denotes the multi-model median, dark grey shading the interquartile 343 

range across models, and light (very light) grey shading the range from 10th (1st) to 90th (99th) percentile. Only temperatures 344 

on land are included (sea areas are masked).  345 
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3.2 Projections of ambient heat for major European cities 346 

The EURO-CORDEX projections for major European cities show increasing ambient heat under 3 °C European warming with 347 

distinct geographical patterns for the three different metrics (Figure 4). Increases in TXx are largest in southern Europe, 348 

followed by western and eastern Europe, and lowest in northern Europe. The top five cities in terms of TXx increase (Milan, 349 

Madrid, Sofia, Zagreb, Belgrade; numbered from 1 to 5 in Figure 4) are all located in southern Europe but none of them is 350 

located close to the sea. Cities in southern Europe located at or close to the sea (e.g., Lisbon, Barcelona, Rome, Athens, 351 

Istanbul) also show substantial TXx increase, yet weaker than the cities situated more inland. 352 

The yearly number of days on which TX exceeds 30 °C shows a clear south-to-north gradient, with values being highest in 353 

Athens, Madrid, Rome, Bucharest, and Milan (numbered 1 to 5). These cities exceed 30 °C on more than 80 d/y, while the 354 

five cities with lowest exceedance rates (all lying in northern Europe; numbered 32 to 36) experience on average less than 2 355 

d/y above 30 °C. Additionally, local climate conditions can play an important role as well, for example in the case of Barcelona, 356 

Istanbul, and Sofia, which have lower exceedance rates than the surrounding cities. Varying the threshold level between 25 °C 357 

and 33 °C considerably changes the number of yearly exceedance days, but the geographical distribution is not altered much 358 

(Supplementary Figure S4). 359 

HWMId-TX is largest in southern European cities, followed by eastern European cities, with values being highest in Barcelona, 360 

Madrid, Milan, Sofia, and Rome (numbered 1 to 5). In contrast to the other two metrics, cities located in northern Europe also 361 

show high HWMId-TX values (e.g., Oslo, Copenhagen, Stockholm, Helsinki), while lowest HWMId-TX values are projected 362 

in an arc spanning from the Netherlands over northern Germany towards the Baltic states. 363 

In several cities, all considered heat metrics show high levels of ambient heat under 3 °C European warming (e.g., Athens, 364 

Belgrade, Bucharest, Madrid, Milan, Sofia, Zagreb). For other cities, however, the ambient heat levels differ substantially 365 

depending on the metric under consideration. Barcelona, for example, ranks number one in terms of HWMId-TX, but exceeds 366 

30 °C only rarely. Lisbon has substantial increases in TXx and temperatures often exceed 30 °C, but HWMId-TX is rather 367 

low. Kazan has substantial increases in TXx and high HWMId-TX values, but TX exceedances above 30 °C are relatively low. 368 

Oslo ranks among the cities with weakest changes in TXx and with lowest TX exceedances above 30 °C, but with high 369 

HWMId-TX values. These discrepancies may be due to several reasons. For instance, cities with comparatively cooler climate 370 

may see large increases in TXx and high HWMId-TX values without having substantial exceedances above 30 °C. Cities with 371 

high climatological variability in TXx may have comparatively low HWMId-TX values despite large increases in TXx and, 372 

vice versa, relatively low increases in TXx might result in high HWMId-TX values in case of low climatological variability in 373 

TXx. Considering only one heat metric might thus lead to unbalanced conclusions about projections of ambient heat for urban 374 

areas, potentially underestimating future risks from heat stress. 375 

  376 
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 377 

Figure 4: Projections of ambient heat at 3 °C European warming according to three different heat metrics for 36 major 378 

European cities as simulated by the EURO-CORDEX ensemble. a) Change in yearly maximum near-surface air temperature 379 

(TXx) between 1981-2010 and 3 °C European warming, b) TX exceedances above 30 °C at 3 °C European warming, and c) 380 

Heat Wave Magnitude Index daily based on TX (HWMId-TX) at 3 °C European warming. The values indicate the multi-381 

model median of the EURO-CORDEX ensemble. Numbers in the circles from 1 to 5 (32 to 36) indicate the five cities with 382 

highest (lowest) ambient heat according to each metric.  383 
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3.3 Identifying factors influencing the spatial patterns of ambient heat across cities 384 

To better understand the spatial patterns of ambient heat projected by the different heat metrics, we estimate how much of the 385 

spatial variance is explained 1) by different climate factors, representing each city’s temperature climatology as well as its 386 

projected changes, and 2) by different location factors (Figure 5; see Section 2.4.1 for methodological details). Generally, the 387 

considered climate factors (TX̅̅̅̅
ref, σTX,ref, ΔTX̅̅̅̅ , and ΔσTX; see Section 2.4.1 for their definition) explain more of the spatial 388 

patterns than the location factors (latitude, longitude, elevation, location close to sea). Regarding climate factors (Figure 5a), 389 

the spatial pattern of TXx change is mostly influenced by the climate factors ΔTX̅̅̅̅  and ΔσTX, while climate conditions in the 390 

reference period do not contribute significantly. For TX exceedances above 30 °C, the maximum temperature in the reference 391 

period contributes by far the most, followed by ΔTX̅̅̅̅ . For HWMId-TX, the strongest contributions stem from ΔTX̅̅̅̅  and σTX,ref. 392 

Regarding location factors (Figure 5b), latitude, longitude, and whether a city is located close to the sea partly explain the 393 

spatial pattern of TXx change, albeit with rather low model agreement. For the TX exceedances above 30 °C, latitude plays 394 

the dominant role, while the contributions of all other factors remain negligible. For HWMId-TX, the explanatory power of 395 

all location factors remains low, with latitude being the only factor that explains some of the signal. 396 

Across the three metrics, most of the spatial variability can be explained for the TX exceedances above 30 °C (R2=0.78 for 397 

climate and R2=0.59 for location factors; considering only variables with significant contribution in at least 50% of the EURO-398 

CORDEX models), followed by TXx change (R2=0.58 for climate and R2=0.50 for location factors), while the explained 399 

variance of the spatial patterns of HMWId remains rather low (R2=0.42 for climate and R2=0.19 for location factors). The 400 

contribution of the single climate factors depends strongly on the selected metric, whereas for location factors only latitude 401 

plays a major role. All other location factors – despite being statistically significant in some cases – only contribute little to 402 

the total variance explained. The high uncertainty for the contribution of some explanatory variables (e.g., ΔTX̅̅̅̅  and ΔσTX for 403 

TXx change, TX̅̅̅̅
ref and ΔTX̅̅̅̅  for TX exceedances above 30 °C) points to collinearities between these explanatory variables, 404 

which can, however, not be disentangled based on correlation analysis. 405 

  406 
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 407 

Figure 5: Contribution of different explanatory variables to the explained variance (R2) of the spatial patterns of ambient heat 408 

across European cities in the EURO-CORDEX ensemble. Explanatory variables are divided into a) climate factors (summer 409 

mean daily maximum near-surface air temperature TX̅̅̅̅
ref and its standard deviation σTX,ref in the reference period; change in 410 

summer mean daily maximum near-surface air temperature ΔTX̅̅̅̅  and its standard deviation ΔσTX between the reference period 411 

1981-2010 and 3 °C European warming) and b) location factors. Coloured bars denote the median estimate for each factor, 412 

black whiskers denote the uncertainty indicated as interquartile range (calculated from the pooled data of all 72 EURO-413 

CORDEX models and eight regression models). Hatching with lines (crosses) indicates whether at least 50% (90%) of the 414 

EURO-CODEX models indicate statistically significant contribution of the respective explanatory variable (Student’s t-test, 415 

p<0.05). Background bars coloured in light grey indicate total R2 considering all explanatory variables, background bars in 416 

dark grey indicate total R2 if considering only explanatory variables that are statistically significant in at least 50% of the 417 

EURO-CORDEX models (Student’s t-test, p<0.05). The contribution of each climate/location factor is estimated by 418 

semipartial correlation (see Section 2.4.1).  419 
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3.4 Comparing projections of ambient heat during daytime and nighttime 420 

The results presented so far are based on daily maximum temperature and are thus mostly indicative for daytime conditions. 421 

We additionally consider daily minimum temperature (TN) to investigate projections of ambient heat during nighttime, which 422 

play an important role for human health as well, since elevated nighttime temperatures can reduce people’s capacity to recover 423 

and thus weaken their physical conditions (Royé et al., 2021; Thompson et al., 2022). The geographical patterns of the TN-424 

based heat metrics are generally similar to the TX-based patterns (Figure 6) with highest levels of ambient heat in southern 425 

European cities. Yet, several distinct differences are evident. The TNx increase is generally smaller than the TXx increase, 426 

except for cities located at the Baltic Sea, which exhibit a stronger increase in TNx than TXx. Days with TN>20 °C (“tropical 427 

nights”) are rarer than days with TX>30 °C, except for Barcelona and Istanbul, both of which having substantially more days 428 

with TN>20 °C than TX>30 °C (note that no bias adjustment was applied neither for TN>20 °C nor for TX>30 °C; bias-429 

adjusting the mean of the TN distribution based on ERA5-land data even increases the days with TN>20 °C in Barcelona and 430 

Istanbul; not shown). In northern Europe, days with TN>20 °C or TX>30 °C both occur very rarely, and differences are thus 431 

negligible. Varying the TN threshold level between 15 °C and 23 °C considerably changes the number of yearly exceedance 432 

days, but the geographical distribution is not altered much (not shown). HWMId-TN shows much higher values than HWMId-433 

TX, particularly in southern European cities but also in central European cities and in several cities located at the Baltic Sea. 434 

Differences between HWMId-TN and HWMId-TX are particularly large in Istanbul, Barcelona, and Rome. The higher 435 

HWMId-TN values suggest that nighttime heatwaves will become more severe than daytime heatwaves in the investigated 436 

cities as compared to the typical nighttime and daytime climate conditions of the recent past (1981-2010). 437 

  438 
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 439 

Figure 6: As in Figure 4 but for daily minimum near-surface air temperature (TN) in panels (a) - (c). Panels (d) - (f) show the 440 

difference between ambient heat estimates based on TN and based on daily maximum near-surface air temperature (TX). Note 441 

that the scale for HWMId-TN differs from the HWMId-TX scale in Figure 4.  442 
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3.5 EURO-CORDEX projections of ambient heat in comparison to CMIP5 and CMIP6 projections 443 

We further compare the projections of ambient heat by the EURO-CORDEX, CMIP5, and CMIP6 ensembles for the 36 444 

European cities (Figure 7). The general patterns of CMIP5 and CMIP6 reflect the results of Figure 4, showing a strong TXx 445 

increase in south-eastern and eastern European cities, high TX exceedance rates of 30 °C in southern and some eastern 446 

European cities, and high HWMId-TX values in southern and some northern European cities (note the logarithmic axis for the 447 

latter). In terms of TXx change, the CMIP5 and CMIP6 ensembles generally project a stronger increase in ambient heat than 448 

the EURO-CORDEX models, particularly in south-eastern, eastern, and north-eastern European cities, while, for Lisbon, 449 

Athens, and Istanbul, the EURO-CORDEX ensemble projects stronger TXx increases. Regarding TX exceedances above 30 450 

°C, the EURO-CORDEX ensemble projects much higher exceedance rates than the CMIP5 and CMIP6 ensembles in southern 451 

European cities (e.g., Lisbon, Milan, Athens, Istanbul), whereas the CMIP5 and CMIP6 ensembles show larger exceedance 452 

rates in north-eastern European cities and in Barcelona. The CMIP5 and CMIP6 ensembles project higher HWMId-TX values 453 

in almost all cities except Madrid, Nizhny Novgorod, and Kazan. Differences in HWMId-TX between the CMIP5 and CMIP6 454 

and EURO-CORDEX ensembles are particularly pronounced in Stockholm, Rome, Athens, and Istanbul. The projected 455 

geographical patterns of ambient heat from the CMIP5 and CMIP6 ensembles are generally similar; notable differences are 456 

only found for TX exceedances above 30 °C, where CMIP6 has substantially higher values in southern European cities whereas 457 

CMIP5 shows more exceedances in northern European cities. 458 

To investigate the effect of dynamical downscaling by RCMs, we additionally consider the projections of ambient heat by the 459 

EURO-CORDEX GCM ensemble (dashed purple line in Figure 7; see Section 2.1.2 for its definition). The EURO-CORDEX 460 

GCM ensemble resembles more closely the results of the CMIP5 ensemble than of the EURO-CORDEX ensemble, except for 461 

some cities (e.g., Amsterdam, Copenhagen, Stockholm, Saint Petersburg, Nizhny Novgorod for TXx changes; Rome for TX 462 

exceedances above 30 °C; Lisbon for HWMId-TX). In combination with the fact that the EURO-CORDEX GCM ensemble 463 

shows very similar ESAT trends to the EURO-CORDEX RCM ensemble (Figure 2a), this indicates that differences in 464 

projections of ambient heat between the EURO-CORDEX and CMIP5 ensembles are mostly connected to the dynamical 465 

downscaling by RCMs. For cities located close to mountains (e.g., Athens) or close to the sea (e.g., Lisbon, Barcelona, 466 

Stockholm), the higher spatial resolution of RCMs should thus deliver more accurate estimates than the more coarsely resolved 467 

GCMs. This is reflected in the large differences between CMIP5 and EURO-CORDEX estimates for several cities, particularly 468 

for TX exceedances above 30 °C and for HWMId-TX. 469 

  470 
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 471 

Figure 7: Projections of ambient heat in European cities for EURO-CORDEX, CMIP5, CMIP6, and the EURO-CORDEX 472 

GCM ensemble. Cities are arranged according to their geographical location, i.e., northern European cities at the top, eastern 473 

European cities on the right, southern European cities at the bottom, and western European cities on the left. a) Change in 474 

yearly maximum near-surface air temperature (TXx) between 1981-2010 and 3 °C European warming, b) TX exceedances 475 

above 30 °C at 3 °C European warming, c) Heat Wave Magnitude Index daily based on TX (HWMId-TX) at 3 °C European 476 

warming. Note the logarithmic axis for the HWMId-TX panel. Lines indicate the multi-model median and shading the 477 

interquartile range across models.  478 
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3.6 Uncertainty of ambient heat projections 479 

To evaluate the robustness of our results, we estimate how strongly the estimates of ambient heat vary across the EURO-480 

CORDEX models and how much they change in space, that is, within a box of 3x3 grid cells around the grid box located 481 

closest to the city centres. The large ensemble of 72 GCM-RCM combinations enables a thorough assessment of the model 482 

uncertainty, which we quantify here as the interquartile range (IQR) across models (Figure 7). Uncertainties of TXx change 483 

lie between 1 °C and 2 °C in almost all cities, with uncertainties being lowest in southern European cities (where uncertainties 484 

are ~1 °C). For TX exceedances above 30 °C, we calculate relative uncertainties (IQR divided by multi-model median; not 485 

shown) to reflect the large variability of exceedance rates across cities. The relative uncertainties of TX exceedances above 30 486 

°C are lowest in southern European cities (between 20% and 60%) except for Barcelona, where the relative uncertainty is 487 

larger than 300% (and the distribution is skewed towards higher values). In contrast to the other metrics, the uncertainties of 488 

HWMId-TX are higher in southern European cities (uncertainties lying between 4 and 8) than in northern European cities 489 

(uncertainties lying between 2 and 6), with uncertainties being highest in Barcelona (IQR = 32) followed by Madrid (IQR = 490 

13). 491 

To quantify the spatial variability of ambient heat, we calculate the heat metrics individually for each grid cell in a box of 3x3 492 

grid cells around the city centres. The spatial variability is quantified by how much ambient heat varies within the 3x3 grid 493 

cells (Supplementary Figure S5). In the large majority of cities, the TXx change estimates remain very similar if using the 3x3 494 

box, indicating that the estimated trends in TXx do not change much within the grid cells surrounding the city centres. Lisbon, 495 

Barcelona, Athens, Helsinki, and Istanbul are the cities with the largest spatial variability in TXx changes. Regarding TX 496 

exceedances above 30 °C, the largest variabilities are found in Lisbon, Barcelona, Athens, Istanbul, Rome, and Sofia. HWMId-497 

TX values show very large spatial variability in Barcelona and Helsinki, and pronounced variability in Istanbul, Copenhagen, 498 

Athens, and Dublin. If only considering grid cells with land fractions larger than 25%, 50%, or 75%, the variability decreases 499 

substantially in almost all cities with large spatial variability in heat metrics. This suggests that ambient heat strongly differs 500 

between land and sea areas, particularly for HWMId-TX and for TX exceedances above 30 °C. For HWMId-TX this might be 501 

due to the higher TXx variability over land areas than over the sea in the reference period 1981-2010 (Supplementary Figure 502 

S6), resulting in much larger HWMId-TX values over sea than over land. Consequently, cities located close to the sea might 503 

be affected by this stark land-sea contrast, particularly if their climate is strongly influenced by the sea. 504 

We further test how TX exceedances above 30 °C in the grid cell closest to the centre of each city change if applying a simple 505 

adjustment method that 1) adjusts the mean of each EURO-CORDEX model to the mean of the ERA5-Land data and 2) adjusts 506 

both the mean and the standard deviation (Supplementary Figure S7, see also Section 2.3 for methodological details). The 507 

most striking effect of adjusting the data is a reduced uncertainty of the projected TX exceedances above 30 °C. Moreover, the 508 

adjusted exceedance rates are statistically significantly lower in 13 cities and higher in 2 cities if only the mean is adjusted 509 

(Kolmogorov-Smirnow test, p<0.05); and lower in 15 cities and higher in 6 cities if both mean and standard deviation are 510 

adjusted. In the remaining cities, the differences are not statistically significant. The effects of the simple adjustment method 511 
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are largest in Lisbon, Rome, Sofia, and Bucharest with substantially lower exceedance rates in case of adjustment. Adjusting 512 

only the mean or adjusting both mean and standard deviation generally yields similar results (differences are largest in Istanbul 513 

and Lisbon) with the latter method tending to yield lower exceedance rates. 514 

The rather complete matrix of RCM-GCM combinations enables us to quantify how much of the variability in ambient heat 515 

across the EURO-CORDEX models is due to the choice of GCMs or RCMs (Figure 8, see section 2.4.2 for methodological 516 

details). The variability across all RCM-GCM combinations is mostly due to RCMs (60% to 75% for TXx change, 60% to 517 

70% for TX exceedances above 30 °C, and 50% to 65% for HWMId-TX), highlighting that the downscaling by RCMs plays 518 

a crucial role for the ambient heat estimates in urban areas. Additionally, several patterns can be identified for certain RCMs 519 

and GCMs, which indicates that the choice of RCMs and GCMs is also important. Among RCMs, projections of ambient heat 520 

in terms of TXx change and HWMId-TX are highest for HadREM3-GA7-05, and in terms of TX exceedances above 30 °C 521 

values are highest for WRF381P, HadREM3-GA7-05, and ALADIN63. Comparatively low increases in ambient heat are 522 

projected by the RCMs HIRHAM5, RACMO22E, and COSMO-crCLIM-v1-1. Differences between GCMs are less 523 

pronounced. Projections of ambient heat are highest for NorESM1-M and CanESM2 in terms of TXx change, for CanESM2, 524 

HadGEM2-ES, and MIROC5 in terms of TX exceedances above 30 °C, and for NorESM1-M, CanESM2, and MIROC5 in 525 

terms of HWMId-TX. It should be noted though that the results for CanESM2 and MIROC5 might be less robust as each of 526 

them is only used twice as driving GCM. Comparatively low increases in ambient heat are projected by CNRM-CM5 and 527 

IPSL-CM5A-MR for TXx change, by EC-EARTH and CNRM-CM5 for TX exceedances above 30 °C, and by CNRM-CM5 528 

and MPI-ESM-LR for HWMId-TX. 529 

  530 
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 531 

 532 

Figure 8: GCM-RCM matrix of EURO-CORDEX models for the change in yearly maximum near-surface air temperature 533 

(TXx) between 1981-2010 and 3 °C European warming, b) TX exceedances above 30 °C at 3 °C European warming, and c) 534 

Heat Wave Magnitude Index daily based on TX (HWMId-TX) at 3 °C European warming. Each circle indicates the average 535 

value across all investigated cities for each individual EURO-CORDEX model. Numbers in the circle indicate the ranking of 536 

models from 1 (highest ambient heat) to 72 (lowest ambient heat). Multiple ensemble members for a GCM-RCM combination 537 

are indicated as smaller circles.  538 
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4 Discussion 539 

4.1 Interpretation and implications of results 540 

All three analysed heat metrics show strong increases in ambient heat in southern European cities at 3 °C European warming. 541 

Substantial increases in ambient heat are also evident in other European regions; yet, the spatial patterns strongly depend on 542 

the metric under consideration. TXx increases considerably in western and eastern Europe, TX exceedances above 30 °C show 543 

a clear south-to-north gradient with almost no exceedances in northern European cities, and HWMId-TX yields comparatively 544 

high values in eastern and northern European cities. This has implications for the estimation of future heat stress, as the 545 

projected outcomes can vary strongly depending on the considered metric. For instance, regions in northern Europe that are 546 

usually not considered as very prone to heat stress show relatively high values of HWMId-TX. Since health impacts do not 547 

only depend on universal physiological limits but also on the climate conditions people are used to (Petkova et al., 2014; 548 

Åström et al., 2013), metrics considering the climatology of a region (such as HWMId-TX) can give important insights into 549 

the risk of future heat stress that might otherwise be missed. This also concerns nighttime conditions, as HWMId-TN is even 550 

higher than HWMId-TX (Figure 6). 551 

The identified spatial patterns broadly agree with results of other studies, showing an increase in heatwave risk in southern 552 

Europe along with substantial increases in coastal regions in northern Europe (Guerreiro et al., 2018; Smid et al., 2019; Lin et 553 

al., 2022) – as we find for HWMId-TX – and a clear south-to-north gradient in exceedances of WBGT>28 °C (Casanueva et 554 

al., 2020) – consistent with the patterns of TX exceedances above 30 °C. Guerreiro et al. (2018) found that temperatures during 555 

heatwaves increase strongest in central Europe, while the TXx increases estimated in our study are highest in southern 556 

European cities. This discrepancy between the findings of Guerreiro et al. (2018) and our results could, on the one hand, be 557 

related to the fact that TXx does not directly reflect temperatures during heatwaves. On the other hand, it could also be due to 558 

the more pronounced increase of extreme temperatures in central Europe in CMIP5 compared to EURO-CORDEX 559 

(Supplementary Figure S8). Supplementary Figure S8 also shows that the EURO-CORDEX models project an amplified 560 

warming of the Baltic Sea compared to the surrounding land areas, which is likely the reason for the high values of HWMId-561 

TX in northern European coastal cities. 562 

In many of the investigated cities, CMIP5 and CMIP6 project higher increases in TXx and larger HWMId-TX values than 563 

EURO-CORDEX. This is likely caused by discrepancies in external forcing data and differences in process implementation 564 

(see Section 2.1.2). Specifically, the CMIP5 and CMIP6 simulations are based on future scenarios with decreasing atmospheric 565 

aerosol concentrations over the European domain, while the EURO-CORDEX simulations assume a constant atmospheric 566 

aerosol load (Boé et al., 2020). The RCMs of EURO-CORDEX may thus underestimate future warming in Europe as they do 567 

not consider the amplified warming from the additional solar radiation reaching and heating the Earth’s surface in Europe 568 

because of the decreasing aerosol concentrations. In addition, unlike CMIP5 and CMIP6 GCMs, several RCMs do not consider 569 

plant physiological effects (Schwingshackl et al., 2019). The closing of plant stomata due to higher CO2 concentrations and 570 

the associated decrease in latent and increase in sensible heat fluxes, which lead to enhanced extreme temperatures, are thus 571 
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not fully captured by RCMs. These differences between GCMs and RCMs suggest that RCMs likely underestimate future 572 

levels of ambient heat in European cities. Yet, for several southern European cities the EURO-CORDEX models project 573 

considerably more days exceeding 30 °C than CMIP5 and CMIP6. In coastal cities, such as Istanbul, Athens, and Lisbon, these 574 

differences are likely due to the higher spatial resolution of EURO-CORDEX, which enables a better distinction of land and 575 

ocean grid cells. In other cities, like Madrid or Rome, better resolved orography might be the reason for the more frequent 576 

exceedances in EURO-CORDEX. Yet the causes for some discrepancies remain unclear, for instance for the more frequent 577 

exceedances above 30 °C projected by EURO-CORDEX for Milan, which lies in the rather flat Po Valley, or for the coastal 578 

city Barcelona, where EURO-CORDEX shows much fewer exceedances above 30 °C than CMIP5 and CMIP6. 579 

In some cities, the ranking varies considerably depending on the considered heat metric (particularly in Barcelona, Oslo, 580 

Lisbon, Warsaw, and Berlin; Figure 4), indicating that the choice of metrics may strongly influence projections of ambient 581 

heat in these cities. These discrepancies in the ambient heat estimates from different heat metrics depend, for instance, on the 582 

local climate conditions, as the number of days exceeding 30 °C is strongly connected to the average summer temperatures in 583 

a city (see Figure 5a) and HWMId values are influenced by the local temperature variability (see Eq. (1)). Additionally, in 584 

some cities the projections vary considerably within a box of 3x3 grid cells around the city centre (Supplementary Figure S5), 585 

especially for TX exceedances above 30 °C and HWMId-TX. The variability is generally largest for cities located close to the 586 

sea, particularly for HWMId-TX. This is related to the fact that HWMId-TX values are generally much higher over the sea 587 

than on land, which is mostly due to the low climatological variability of TXx over the sea (Supplementary Figure S6). If cities 588 

are located close to the sea, the estimated HWMId-TX values may thus strongly depend on how much of the grid cell located 589 

closest to the city centre is covered by land and on how much this land fraction varies across EURO-CORDEX models. In 590 

such cases, an accurate representation of local interactions between land and sea (e.g., higher spatial resolution, accurate 591 

representation of advection, consideration of humidity) is necessary to generate more robust projections of ambient heat. 592 

The spatial patterns of the heat metrics can largely be explained by the local temperature climatology and its projected changes 593 

(see importance of climate factors in Figure 5), with varying importance of the single explanatory factors depending on the 594 

considered metric. The explanatory factors explain most of the spatial variability in TXx change and in TX exceedances above 595 

30 °C but they only partly explain the spatial variability in HWMId-TX. The remaining unexplained variance of the heat 596 

metrics might be connected to the amplified increase of extreme temperatures (Seneviratne et al., 2016; Vogel et al., 2017) 597 

(we use summer mean TX as explanatory factor) or asymmetric changes in the temperature distributions (we use the symmetric 598 

standard deviation of TX as explanatory factor). For HWMId-TX, the relatively large unexplained variance might be 599 

specifically connected to the definition of HWMId, i.e., to the usage of a cut-off temperature to define heatwaves and to the 600 

standardisation based on the climatology of TXx. The same is the case for TX exceedances above 30 °C, which are generally 601 

non-linear due to the usage of the absolute threshold of 30 °C. Among the location factors, the latitude of a city is the most 602 

important factor for explaining the spatial variance, particularly for TX exceedances above 30 °C. Generally, the explained 603 

variance is lower for location factors than for climate factors, indicating that local climate does certainly not only depend on 604 

the coordinates and elevation of a location but also on other local factors, such as the predominant atmospheric circulation or 605 



29 

 

local feedbacks (e.g., vegetation, soil moisture). As the contribution of the explanatory variables to the explained variance is 606 

quantified based on correlation analysis, definitive cause-effect chains cannot be deduced. Particularly for the climate factors, 607 

the results should thus rather be interpreted as an indication of the extent to which the calculated heat metrics are influenced 608 

by the underlying temperature distribution and its projected future change. 609 

4.2 Limitations and potential improvements 610 

The ~12.5 km spatial resolution of the EUR-11 simulations enables a much more detailed assessment of climate variability 611 

and climate change at the city-level compared to GCMs, which have a much coarser spatial resolution (~100 km). Yet, most 612 

land surface modules of models in the 0.11° EURO-CORDEX ensemble only employ a simplified representation of urban 613 

areas (Table 1), which prevents the full exploitation of their high spatial resolution for studies focusing on urban areas. A few 614 

models represent urban areas as rock surfaces, thus neglecting the influence of urban vegetation on the surface energy balance 615 

and the influence of urban buildings on turbulence, radiation, and hydrology. Other models apply adjusted parameters (e.g., 616 

for albedo and roughness length) and a reduced vegetation cover in urban areas, and thus consider the characteristics of cities 617 

to some extent. One of the models uses a sophisticated urban land model, which includes various aspects of urban areas, such 618 

as urban canyons, different levels of urbanisation, and radiation and hydrology schemes specifically adapted for urban areas. 619 

Despite these substantial differences in how urban areas are represented, no direct link can be found between the general 620 

behaviour of the different models in the projection of ambient heat (e.g., comparatively high levels of ambient heat in 621 

HadREM3-GA7-05 and WRF381P, and comparatively low levels in HIRHAM5, RACMO22E, and COSMO-crCLIM-v1-1, 622 

with all of these models using the adjusted-parameter approach to represent urban areas) and their representation of urban 623 

areas (Figure 8, Table 1). The CORDEX Flagship Pilot Study on URBan environments and Regional Climate Change (URB-624 

RCC) is tackling the question of urban parameterizations and may provide important advancements for urban-resolving climate 625 

modelling in the medium term. Investing in the development of urban parameterisations might have further benefits, as their 626 

implementation in climate models may also affect regional climate outside the urban areas (Katzfey et al., 2020). Furthermore, 627 

urban temperatures usually exhibit large variability within a city, i.e., at scales that currently cannot be resolved by the 0.11° 628 

EURO-CORDEX ensemble. Urban-resolving climate modelling may provide a way forward to better quantify climate effects 629 

at scales resolving single neighbourhoods (Sharma et al., 2021; Hamdi et al., 2020), which would add valuable information 630 

for assessing the risk of heat stress due to climate change at scales relevant for local health authorities and city planners. 631 

The reanalysis ERA5-Land does not have a dedicated urban tile either, which reduces its suitability for analysing climate at 632 

city-level despite its high resolution of about 9 km. Moreover, the missing urban representation currently prevents the usage 633 

of ERA5-Land as a reference dataset for the application of bias adjustment to investigate urban climate. Climate data from E-634 

OBS might reflect urban conditions to the extent weather stations are present in cities. However, weather stations are located 635 

on grassland, and E-OBS might thus underestimate ambient heat in heavily sealed parts of cities, such as city centres, inner-636 

city residential areas, or industrial zones. In case data from paired weather stations inside a city and in its rural surroundings 637 
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are available, a bias adjustment procedure for urban areas developed by Burgstall et al. (2021) can be applied to adjust climate 638 

model data to urban conditions. 639 

In our analysis, we do not find pronounced UHI effects (Figure 3, Supplementary Figure S3), which is likely related to the 640 

simplified representation of urban areas in RCMs. UHI may additionally increase in the future due to global warming (Koomen 641 

and Diogo, 2017; Tewari et al., 2019) and urban expansion (Huang et al., 2019; Koomen and Diogo, 2017), and UHI can 642 

further be elevated during heatwaves (Ward et al., 2016). More sophisticated representations of urban areas in RCMs would 643 

make it possible to assess how the EURO-CORDEX models project future UHI developments, and could facilitate sensitivity 644 

studies to identify the contributions of climate change, local climate feedbacks, and urbanisation to the projected increase of 645 

ambient heat in cities. 646 

Differences in climate forcing or process implementation between the CMIP5, CMIP6, and EURO-CORDEX ensembles, such 647 

as differences in aerosol forcing (Boé et al., 2020; Gutiérrez et al., 2020; Nabat et al., 2020) or diverging trends in cloudiness 648 

(Bartók et al., 2017), might further explain discrepancies in climate projections (Taranu et al., 2022). Additionally, several 649 

EURO-CORDEX models do not consider plant physiological CO2 effects and thus likely underestimate extreme temperatures 650 

(Schwingshackl et al., 2019). Although the latter effect is confined to vegetated surfaces and should thus be less relevant in 651 

heavily sealed urban areas, it might still influence urban temperatures in RCMs that consider vegetation in their representation 652 

of urban areas. This might partly explain the lower ambient heat projections of the EURO-CORDEX ensemble compared to 653 

the CMIP5 and CMIP6 ensembles, particularly in eastern and northern Europe. 654 

The usage of absolute thresholds for estimating the number of exceedance days (i.e., 30 °C for daily maximum temperature 655 

and 20 °C for daily minimum temperature) does not reflect that temperatures vary considerably across European cities. 656 

Consequently, the number of exceedance days differs substantially across cities, showing a strong gradient from southern to 657 

northern European cities. While absolute temperature thresholds are a common metric used for projections of ambient heat 658 

(e.g., Schwingshackl et al., 2021; Zhao et al., 2015; Kjellstrom et al., 2009; Casanueva et al., 2020), epidemiological studies 659 

show continuous increases in health impacts above the locally optimal temperature (i.e., the temperature where minimal effects 660 

of health outcomes are observed, Gasparrini et al., 2015). Moreover, epidemiological studies increasingly use temperature 661 

percentiles as exposure metric instead of absolute temperatures to better reflect local conditions (Masselot et al., 2023). 662 

5 Conclusions 663 

EURO-CORDEX simulations at 0.11° resolution (EUR-11, ~12.5 km) deliver climate data for Europe at a resolution that is 664 

high enough to analyse projections of ambient heat at the city-level (Figure 1). The temperature distributions of the EURO-665 

CORDEX models generally agree with data from ERA5-Land and E-OBS in the 36 major European cities investigated, despite 666 

a slight TX warm bias compared to ERA5-Land, a slight TX cold bias compared to E-OBS, and a TN cold bias relative to both 667 

ERA5-Land and E-OBS (Figure 3, Supplementary Figure S3). 668 
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Using three different metrics to quantify ambient heat at 3 °C warming in Europe relative to 1981-2010 (i.e., changes in TXx, 669 

number of days with temperatures exceeding 30 °C, and HWMId), we find that ambient heat is projected to increase throughout 670 

the 36 major European cities investigated. Southern European cities will be particularly affected by high levels of ambient 671 

heat, but depending on the considered metric, cities in central, eastern, and northern Europe may also experience substantial 672 

increases in ambient heat (Figure 4). Nighttime HWMId increases even more strongly than daytime HWMId (Figure 6), with 673 

potentially severe implications for health (He et al., 2022). In several cities, the projected levels of ambient heat strongly 674 

depend on the considered metric, such as in Barcelona, Oslo, Lisbon, and Warsaw. This indicates that estimates based on a 675 

single metric might not appropriately reflect the risks of adverse health effects due to ambient heat in a warmer climate. 676 

We further analyse the spatial patterns of the ambient heat projections in light of the underlying temperature climatology and 677 

its projected changes and the location of the different cities (Figure 5). Changes in TXx are mostly connected to projected 678 

changes in the mean and variability of TX, TX exceedances above 30 °C depend mostly on the average TX value in the 679 

reference period and its projected change, and the spatial patterns of HWMId are partly explained by changes in TX and the 680 

variability in the reference period. Regarding the location of cities, latitude plays the predominant role for explaining the spatial 681 

patterns, while the other factors (longitude, elevation, location close to sea) only have limited explanatory power. 682 

The EURO-CORDEX ensemble estimates lower increases in TXx and lower HWMId values than the CMIP5 and CMIP6 683 

ensembles in the majority of the analysed cities (Figure 7). Yet, the EURO-CORDEX ensemble has higher TX exceedance 684 

rates of 30 °C in several cities, particularly in southern Europe. This discrepancy can be due to several factors, such as 685 

differences in forcing (Boé et al., 2020; Gutiérrez et al., 2020; Nabat et al., 2020), differences in process implementation (e.g., 686 

Bartók et al., 2017; Schwingshackl et al., 2019; Taranu et al., 2022), or the higher spatial resolution of EURO-CORDEX 687 

models being able to better represent local climate conditions. Yet, several EURO-CORDEX models employ a rather simple 688 

representation of urban areas (Table 1), and the specific climate conditions in urban areas are thus not fully captured. 689 

The large ensemble of 72 EURO-CORDEX simulations enables a thorough uncertainty assessment, quantified by the spread 690 

across models. The uncertainties of TXx change are generally relatively low (around 1 °C to 2 °C in all cities). For TX 691 

exceedances above 30 °C, relative uncertainties range from 20% to 60% in most southern European cities but are higher in 692 

northern European cities due to their lower TX exceedance rates of 30 °C. Applying a simple adjustment (see Section 2.3) 693 

reduces the uncertainties of the projected TX exceedances above 30 °C in all cities and yields lower exceedance rates in about 694 

40% of the cities. The estimates of ambient heat show high spatial variability around the city centre in cities located close to 695 

the shore. Particularly for HWMId, the estimates differ substantially depending on the presence of water or land in the 696 

respective grid cell (Supplementary Figure S5). Accurate representations of land and sea and of their interplay are thus essential 697 

for quantifying ambient heat in coastal cities. 698 

Our analysis provides an important contribution to estimate ambient heat in 36 major European cities by considering three 699 

different metrics and using data from high-resolution RCM simulations. Future studies would benefit from a more 700 

comprehensive representation of urban areas in models, which might be developed by the CORDEX Flagship Pilot Study on 701 

URBan environments and Regional Climate Change (URB-RCC) for RCMs. Improving the representation of urban areas in 702 
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the land surface modules of the EURO-CORDEX RCMs and including an urban representation in ERA5-Land would allow 703 

for an even more accurate estimation of ambient heat at the city-level. Further, the coupling of urban canopy layer models with 704 

regional climate models might pave the way for detailed analyses of heat stress in cities by combining the high spatial 705 

resolution of urban canopy layer models with the climate variability estimates from RCMs. Such analyses could provide an 706 

important step forward towards a comprehensive analysis of ambient heat in European cities and worldwide, and it could be 707 

combined with estimates of exposure and vulnerability to comprehensively quantify future risk of heat extremes. 708 

Cities are expected to increasingly become climate hotspots due to their high population density and the local climate 709 

conditions that are partly influenced by how cities are structured. At the same time, their large innovation potential also gives 710 

cities the opportunity to lead the way in implementing climate adaptation strategies. Providing detailed and accurate data about 711 

ambient heat projections at the city-level is essential to enable cities to plan specific and effective adaptation measures against 712 

future heat extremes. 713 
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