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Abstract
The Central Asia region is prone to multiple hazards (e.g. floods, earthquakes, landslides) which can affect different parts of 
the region, including transboundary areas. Critical infrastructure has a paramount role in socio-economic development, and 
its  disruption can  have dramatic consequences  for  human communities,  including cascading impacts.  Assessing critical 
infrastructure exposure to multiple hazard is therefore of utmost importance for disaster risk reduction purposes.  However, 
past efforts in exposure assessment have predominantly concentrated on residential buildings, often overlooking the unique 
characteristics of critical infrastructure Knowing the location, type and characteristics of exposed assetscritical infrastructure 
is particularly challenging due to the overall scarcity of data and difficulty of interacting with local stakeholders. paramount 
in order to develop disaster risk reduction strategies. However,  past exposure assessment efforts were mostly focused on 
residential  buildings  and  rarely  grasp  the characteristics  of  critical  infrastructure. despite  its  importance for  the  socio-
economic development of the region. Here,  We propose a method to assess exposure of selected critical infrastructure and 
demonstrate it for Central Asia, a region prone to multiple hazards (e.g. floods, earthquakes, landslides). Wwe develop the 
first  regionally-consistent  exposure  database  for  selected  critical  infrastructure  and asset  types  (namely,  non-residential  
buildings,  transportation  and  croplands) in  Central  Asia.  We   assembleding the  available  global  and  regional  datasets 
together with country-based information provided by local authorities and research groups, including reconstruction costs.  
The method addresses the main known challenges related to exposure assessment of critical infrastructure (i.e. data scarcity, 
difficulties in interacting with local stakeholders)  by collecting national-scale data with the help of local research groups. 
The analysis also includes country-based reconstruction costs, supporting regional-scale disaster risk reduction strategies that 
include the financial aspect.

Short summary 
Central Asia is prone to multiple hazards such as floods, landslides and earthquakes, which can affect a wide range of assets 
at risk. We develop the first regionally-consistent database of assets at risk for critical infrastructure such as non-residential 
buildings, transportation and croplands in Central Asia. It  combines global and regional data sources and country-based 
information and supports the development of regional-scale disaster risk reduction strategies for the Central Asia region. 

1. Introduction
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Exposure assessment is the process of collecting information on the type, characteristics and spatial distribution of assets  
potentially  damageable  by  natural  or  man-made  hazards.  Exposure  layers  are  therefore  paramount  for  Disaster  Risk 
Reduction (DRR) as they allow developing strategies to cope with disasters (Nirandjan et al., 2022). Critical infrastructure 
plays a paramount role in the risk management cycle, as its failures can exacerbate the impact of disasters (Forzieri et al.,  
2018, 2022; Koks, 2022). 
Assessing  exposure  of  critical  infrastructure  is  particularly  challenging  because  of  their  inherent  complexity  and  the 
difficulty of modeling their mutual interactions (Pant et al., 2018).  Many existing global and regional disaster risk models 
focus  on  residential  buildings  or  populations,  with  lesser  examples  for  critical  infrastructures, mainly  focused  on 
transportation and supply networks (Koks et al., 2019; Argyroudis et al., 2020, Karatzetzou et al., 2022; Mukherjee et al., 
2023). Very few works (e.g. Crowley et al., 2020; Yepes-Estrada et al., 2023) include commercial and industrial buildings,  
despite  their  socio-economic relevance for  national  and global economies and their  role  in the generation of  cascading 
impacts (e.g. Krausmann and Cruz, 2021). This is partially justified by the incompleteness and inconsistency of existing 
geospatial information related to critical infrastructure with respect to residential buildings and population data (Batista e  
Silva  et  al.,  2019).  This  is  one  of  the  reason  why  critical  infrastructure  is  often  modeled  through  assumptions  on 
infrastructure density rather than by detailed asset mapping (Koks et al., 2019). Also, once collected, spatial and non-spatial  
data must be combined to assess exposure of critical infrastructures to single hazards, e.g. for floods (e.g. Fekete et al., 2017, 
Pant et al.,  2018).  Such studies often happen at local scale but, in order to be combined into regional and global-scale  
assessments, there is a strong need for harmonization (Batista e Silva et al., 2019). 
The lack of data is not always fulfilled by remote sensing due to the difficulty of identifying some infrastructures (e.g. buried 
supply networks), as discussed by Taubenbock and GeiB (2014). To tackle this, it is paramount to access data from national 
authorities and research institutes who have access to more detailed and reliable information. According to Rathnayaka et al.  
(2022), establishing a dialogue between stakeholders and the scientific community is a challenge in the development of 
critical infrastructure exposure databases, and is strongly connected with the difficulty of gathering data, in particular in 
data-scarce  regions.  They  also  highlight  the  need  for  establishing  a  standardized  exposure  data  collection,  which  is  
particularly relevant when assessing exposure to multiple hazards. Multi-hazard exposure taxonomies have been proposed to  
classify critical  infrastructure based on its characteristics  (Murnane et al.,  2019; Silva et  al.,  2022) and are particularly 
relevant in the case of critical infrastructure which is often exposed to multiple hazards that can potentially overlap and 
interact in space and time (Tilloy et al., 2019). Another limitation of exposure datasets is that they often not include country-
based reconstruction costs which are difficult to retrieve in particular for critical infrastructure, limiting the reliability of 
financial  risk assessment associated to disasters.  This is particularly relevant for croplands exposure assessment,  whose 
exposure to floods (Zhang et  al.,  2023) and drought (Venkatappa et  al.,  2021) is  increasing together  with the  potential 
financial losses. 
In  this  study,  we  present  a  novel  approach  to  assess  exposure  of  critical  infrastructure  and support  multi-hazard  risk 
assessment.  Our method tackles two interrelated challenge identified by the current  literature: the difficulty of gathering 
country-based data and the lack of dialogue between scientific community and local stakeholders.  we assembled the first 
regionally consistent exposure database of critical infrastructure for Central Asia addressing the aforementioned challenges. 
The proposed methodology relies  on regional-scale datasets  and spatial  and non-spatial  country-based data for  selected 
critical  infrastructure exposed  to  floods,  landslides  and  earthquakes. WeExposure  data  collection  was  achieved  by 
establisheding a  dialogue  between  stakeholders  at  the  regional  scale  by  collecting  data  in  collaboration  with  local 
representatives in the 5 countries of Central Asia, also through dedicated workshops (Peresan et al., 2023). In particular, we  
included commercial and industrial buildings for which no information was priory available and  gathered country-based 
reconstruction costs  which are commonly difficult to estimate but are paramount to  support the  assessment of financial 
consequences of disasters and increase financial resilience.  The method is demonstrated by assembling the first regionally 
consistent exposure database of critical infrastructure for Central Asia based on regional-scale datasets and spatial and non-
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spatial  country-based  data  for  selected  critical  infrastructure.  The  exposure  dataset developed  here  is  inherently  multi-
hazards as it includes the characteristics that are deemed relevant for floods, earthquakes and landslides, and potentially  
useful  to  assess  impact  of  other  phenomena  and/or  cascading  effects.  It also  includes  assets  such  as  commercial  and 
industrial buildings for which no information was available at the time. Data are structured according to the GED4All multi-
hazard taxonomy (Silva et al., 2022), which is here used for the first time in Central Asia to encompass multiple building and  
infrastructure typologies in a multi-hazard context. 
The manuscript describes the study area and all the steps of the exposure assessment methodology including data collection, 
development of exposure layers and estimation of reconstruction costs of each considered asset type. Finally, we discuss the  
limitations of the method, its suggested usage and potential improvements, 

2. Study area

The Central Asia region (Fig. 1) includes 5 countries (Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan, Uzbekistan) 
which are diverse in terms of language, currency and socio-economic conditions. Central Asia encompasses a wide variety 
of climatic areas and geological settings. It is therefore prone to multiple hazards which can affect different parts of the  
region,  including  trans-boundary areas  (e.g.  the Ferghana Valley,  where  many residential  and agricultural  activities are 
located).  In  particular,  floods  are  increasingly  frequent  and,  in  the  past,  their  impacts  were  often  exacerbated  by  the 
difficulties  related  to  trans-boundary  cooperation,  for  example  in  water  management  (UNECE,  2011;  Libert  and 
Trombitcaia, 2015; ). Central Asia is also prone to earthquakes as demonstrated by several regional-scale studies carried out  
in the last decades (Ulomov et al., 1999; Bindi et al., 2012; Ullah et al., 2015). Landslides, together with earthquakes and 
floods, are very frequent in Central Asia and, in the past, were often triggered by natural events such as earthquakes, floods, 
rainfall and snowmelt (Saponaro et al., 2014; Strom and Abdrakhmatov, 2017). The type and spatial distribution of floods 
and  landslides is also expected to vary due to climate change, which is strongly affecting the region. Another emerging 
hazard in Central Asia is drought (Zhang et al., 2019) which might affect the region by disrupting productive activities and 
exacerbating water management conflicts.

Fig. 1. Map of the 5 Central Asia countries: Kazakhstan, Kyrgyzstan, Tajikitsan, Uzbekistan and Turkmenistan and the  
corresponding capitals (Astana, Bishkek, Dushanbe, Tashkent and Ashgabat, respectively).

 Past exposure assessments in the region were mostly focused on residential buildings (Pittore et al., 2020). However, critical 
infrastructure  is  also  relevant  in  the  context  of  Central  Asia,  and  should  not  be  overlooked  when  performing  a 
comprehensive damage/risk assessment for the region. An effort  is therefore required in order to assemble national and 
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regional-scale exposure layers and integrate the available data sources and knowledge, which are currently scattered across  
different  sources  including global databases  (e.g.  OpenStreetMap)  and national-scale aggregated  statistics (e.g.  national 
census).
The exposure dataset developed here includes three types of critical infrastructure:  non-residential buildings of different 
types  (e.g.  commercial,  industrial),  transportation  and  croplands. Non-residential  buildings  comprise  workplaces  (e.g. 
industrial sites, commercial buildings), services (e.g. public offices, schools) and other facilities that are extremely relevant 
in case of emergencies (e.g. hospitals) and can suffer both physical consequences (e.g. buildings structural damage)  and 
damages, such as the production disruption due to power blackouts and its related financial consequences. The transportation 
system is  a paramount asset as it enables both the people movement and the transportation of goods across the Central Asia  
region. Due to its strategic regional and global importance, and has undergone strong changes in the last decades, also in the  
context of  the Silk Road initiative (Shaikova et al., 2023). Croplands are extremely relevant for the Central Asia economies 
as  they guarantee  both food security and economic development. The primary sector  (agriculture,  forestry and fishing) 
accounts for the 26 and 24% of Uzbekistan and Tajikistan GDP, respectively (World  Bank, 2020). The share  of national 
GDP in Kyrgyz Republic and Turkmenistan is 14 and 11%, while the lowest value is associated with Kazakhstan (5%).  
Cotton and cereals (in particular, wheat) are the dominating cropping system in all Central Asia countries (Kienzler et al., 
2012). Cotton and wheat, in particular, account for a fraction of cropland area that varies between 30% in Turkmenistan) and  
80% in Kyrgyz Republic (FAO, 2019).  However,  they are threatened by a number of hazardous phenomena,  including 
floods and drought, often exacerbated by climate change and water management issues (Punkari et al., 2014; Li, 2020). 
The Central Asia region is therefore characterized by the presence of critical infrastructure exposed to multiple hazards.,  
which can cause multiple impacts yet to be assessed. Despite the relevance of critical infrastructure for the region socio-
economic system, and their importance for disaster risk reduction, at the time of the analysis regional-scale exposure datasets 
were not available in Central Asia for non-residential buildings, transportation and croplands, and information was scattered  
across  multiple sources.  Developing a regional-scale  exposure model  was therefore  required  as  a  first  step towards an 
assessment of potential consequences of floods, earthquakes and landslides that go beyond national boundaries. 

3. Data collection 
The available  information on non-residential  buildings,  transportation system and croplands was collected  across  the 5 
Central Asia countries.
The data collection phase was carried out in collaboration with representatives of each country. Data were collected at two  
different  spatial  scales,  global/regional  and  national/sub-national,  and  comprised  both  official  sources  and  personal  
communications provided by the manuscript authors and their institutions. Most interaction happened in virtual mode, due to 
the travel restrictions during the COVID-19 pandemic.  The first interactions with participants  were carried out via emails 
and allowed identifying the type of  data that  they could  provide or gather to develop exposure  assessment.  After  that, 
dDedicated online meetings were periodically organized for each country to discuss specific issues and data requirements, 
and data were collected through shared folders and tables where each group of partners could contribute. For each country, 
local partners provided one contact person responsible for data collection, who participated to one initial meeting with all 
country representatives and one or two country-based, for a total of 7 online meetings held between February and May 2021. 
The process was also supported by country-based workshops, whose organization   involved the exposure contact person 
through 2 additional meetings per country, for a total of 10 meetings held between April and December 2021. Exposure  
workshopsthat provided participants with an overview of the exposure assessment methods to be applied (Peresan et al.,  
2023). The workshops coveringed all the steps of assembling an exposure development layers for selected study areas using 
data provided  fromby local  partners.  This facilitated both data collection and the demonstration of the approaches in a 
context familiar for participants, . More details are provided by Peresan et al. (2023). 
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Category Type Global / Regional Data

National Or Sub-National Data

Kazakhstan

(14 Oblasts)

Kyrgyzstan

(7 Oblasts)

Tajikistan

(5 Oblasts)

Turkmenistan

(5 Oblasts)

Uzbekistan

(13 Oblasts)

Non residential 
buildings

Industrial

OpenStreetMap 
(https://www.openstreetmap.org, 
2020)

Global  mines  dataset 
(https://pubs.usgs.gov/of/2010/1255/, 
Baker et al., 2010)

SERA exposure dataset 
(https://gitlab.seismo.ethz.ch/efehr/e
srm20_exposure, Crowley et al., 
2020) 

Total  employed  force  and  percentage  employed  in  industrial sector 
(https://data.worldbank.org/indicator/SL.TLF.TOTL.IN and 
https://data.worldbank.org/indicator/SL.IND.EMPL.ZS, from World bank data portal, 2021)

Commercial

Eurostat  employment  data 
(https://ec.europa.eu/eurostat/databr
owser/view/LFSQ_EISN2__custom_1
304651/default/table?lang=en,  last 
accessed 2022)

Eurocommerce  employment  data 
(2017)

SERA exposure dataset 
(https://gitlab.seismo.ethz.ch/efehr/e
srm20_exposure, Crowley et al., 
2020) 

Percentage  employed  force  in  industrial  sector 
https://data.worldbank.org/indicator/SL.SRV.EMPL.ZS, from World Bank data portal, 2021)

Education
Schools  number  and  location 
(https://projectconnect.unicef.org/ma
p/countries, 2020)

Total  number  of 
schools  in  each 
Oblast  (Bureau  of 
National  Statistics 
of  the  Republic  of 
Kazakhstan,  2018); 
Schools  location 
shapefile (2018)

School  location 
shapefile;  UNICEF 
school  database 
(2020);  Number  of 
schools  in  each 
Oblast  (2020); 
School  material 
statistics  (World 
Bank  project 
P149630, 
Measuring  eismic 
Risk  in  Kyrgyz 
Republic’, 2015))

Number  of 
schools in each 
city;  Schools 
location 
shapefile 
(https://geonod
e.wfp.org, 
2018)

Total  number of 
schools  in  each 
Oblast  (Belikov, 
V., and Karayev, 
J.,  pers.  Comm., 
2021)

Total number of 
schools  in  each 
Oblast 
(Ismailov,  V., 
pers.  Comm., 
2021)

Healthcare
Healthcare  facilities  database 
(https://www.healthsites.io/, 2019)

Total  number  of 
hospitals  in  each 
Oblast  (Bureau  of 
National  Statistics 
of  the  Republic  of 
Kazakhstan, 2018)

Number  of 
hospitals  in  each 
city;  hospitals 
Location 
(http://geonode.me
s.kg/, 2020)

Number  of 
hospitals  in 
each  city 
(Institute  of 
water 
problems, 
hydropower 
engineering 
and  ecology, 
2020). 

Total  number of 
hospitals in each 
Oblast  (Karayev, 
J.,  pers.  Comm., 
2021)

Total number of 
hospitals  in 
each  Oblast 
(Ismailov,  V., 
pers.  Comm., 
2021)

Agriculture Crops

Global  crop  dominance 
(https://catalog.data.gov/dataset/glob
al-food-security-support-analysis-
data-gfsad-crop-dominance-2010-
global-1-km-v001,  Teluguntla  et  al., 
2015);  Global  land  cover  fraction 
(https://lcviewer.vito.be/download, 
2019)

Wheat,  cotton  and 
total  cereals  area, 
yield  production 
for  each  Oblast 
(Bureau  of 
National  Statistics 
of  the  Republic  of 
Kazakhstan,  data 
for 2020)

Wheat,  cotton  and 
total  cereals  area, 
yield  and 
production for each 
Oblast  (National 
Statistical 
Committee  of  the 
Kyrgyz  Republic, 
http://www.stat.kg/, 
2020)

Agricultural 
area  for  each 
crop  type  in 
each  district 
(Institute  of 
water 
problems, 
hydropower 
engineering 
and  ecology, 
2020). 

Cotton and total 
cereals area and 
production  for 
each  Oblast 
(Belikov, V., and 
Karayev,  J., 
pers.  Comm., 
2021)

Wheat,  cotton 
and  total 
cereals  area. 
Yield  and 
production  for 
each  Oblast 
(Ismailov,  V., 
pers.  Comm., 
2021)

Transports Roads, 
railways 
and bridges

OpenStreetMap  database 
(https://www.openstreetmap.org, 
02020);  Global  Roads  Inventory 
Project  -  GRIP 
(https://www.globio.info/download-
grip-dataset, Meijer et al., 2018)

Description  of  the 
transportation 
network  and  main 
highways/railways 
(Sarzhanov,  S., 
pers. Comm., 2021)

Road  maps 
collected  from 
Caiag  geonode 
(https://geonode.cai
ag.kg/,  2020); 
Bridges 

n.a. Maps  and 
description  of 
road and railway 
network 
(Belikov, V., and 
Karayev,  J., 

Map  of  main 
railroads,  total 
length  of 
railroads  per 
type,  railway 
classified  by 
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characteristics 
(World  Bank 
project  P149630, 
Measuring  seismic 
Risk  in  Kyrgyz 
Republic’, 2015)

pers.  Comm., 
2021)

age  of 
construction 
(Tashkent  State 
Transport 
University, 
2021)

Table 1: Exposure data collected at regional scale and for each country for the considered exposed assets (non residential buildings, 
agriculture and transports). Data are collected from global/regional databases, national official sources (e.g. governmental agencies) or 

were provided directly by local partners and contributors who collected official sources and conveyed the data together with their personal 
communications. The year for which data were extracted, or up to which the dataset are updated, is also included in the table. 

3. Methodology

The general method adopted to assemble regional-scale exposure databases relies on two main procedures:
 Spatial  disaggregation.  Exposure information is  often available  in  an  aggregated  form (e.g.  total  value over  a 

region). In such cases, a common method is spatially to distribute the total value using proxies such as population or 
land  use  maps.  This  operation  is  called  spatial  disaggregation  and  is  usually  performed  using  Geographical  
Information Systems (GIS) or spatial analysis libraries (e.g. Gdal, https://gdal.org/).

 Definition of typologies for exposed assets. Exposure assessment requires the definition of asset typologies based 
on their characteristics (e.g. buildings are classified by material, age, etc.). However, this information might not be 
available for some exposed assets. In this case, broad typologies can be defined based on information available for 
parts of the study area and/or for countries  outside the study region with similar characteristics. Typologies were 
then described using the GED4ALL taxonomy (Silva et al., 2022), specifically developed for multi-hazard and risk 
assessment purposes. 

Following these two principles, we combined the information collected for each exposed asset type (Table 1) to develop 
exposure layers for non-residential buildings, transportation and croplands. A strong harmonization effort was performed in  
order to combine all collected exposure data and support regionally consistent risk assessment activities. 

3.1 Non-residential buildings
Exposure layers were developed separately for each non-residential asset types considered (schools, healthcare facilities,  
commercial and industrial) based on the data collected in Table 1. For non-residential buildings, few exposure layers were  
available and there was scarce information on buildings typologies. The definition of typologies was therefore aimed at  
identifying the main characteristics of non-residential buildings based on two main assumptions:

 The main building typologies in Central Asia defined in the EMCA project (Wieland et al., 2015; Pittore et al., 
2020)  are  considered  valid  for  non-residential  buildings.  Note that  these typologies  were  also  adopted for  the 
development of the residential exposure layer (Scaini et al., 2023).

 In absence of specific country-based information, we used data sources from post-soviet countries, assumed to be 
similar in terms of past socio-economic context and technical background with regards to construction methods. In 
particular, data from the SERA non-residential buildings' exposure layers (Crowley et al., 2020) for the available  
post-soviet countries (Estonia, Latvia, Lithuania, Moldova) were used, while for the others (Belarus, Ukraine and 
Russia) data were not available. 

Specific methods adopted for each non-residential asset type are described in the following subsections.

3.1.1 Schools
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School  typologies  were  extracted  from a  previous  UNICEF  project  in  Kyrgyz  Republic  collected  the  main  exposure 
characteristics for 1260 schools constituted by 8380 building units surveyed separately. Statistics were performed on the  
UNICEF layer assuming that each building block is a separate school sample. According to the dataset, all surveyed schools 
are constituted by load-bearing masonry or precast concrete (80 and 20%, respectively), and the vast majority is found in  
rural areas (88%). This is similar to the overall distribution of residential buildings in Kyrgyz Republic, which, according to  
Pittore et al. (2020), has more than 90% of load-bearing masonry buildings. We assumed that, in absence of specific data for  
schools in other countries, all Central Asia schools have the same characteristics surveyed in Kyrgyz Republic. Construction 
material  was therefore defined as a weighted combination of most common school materials in Kyrgyz Republic.  Two 
school typologies were defined (rural  and urban) and associated with the most frequent age, area and occupancy value 
obtained from the UNICEF database for Kyrgyz Republic:

    •  Urban schools:  material:  weighted combination of the most common school typologies in Kyrgyz Republic (59% 
EMCA1, 10% EMCA3, 31% EMCA4); year of construction: 1960-1990; area: 500-1000 m² (average: 750 m²); occupancy: 
300 students; taxonomy: UNK + YBET:1960,1990

    • Rural schools: material: weighted sum of the most common school typologies in Kyrgyz Republic (56% EMCA1, 22% 
EMCA3 and 22% EMCA4);  year  of  construction:  1960-1990;  area:  50-500 m²  (average:  275  m²);  occupancy:  50-200 
students (125); taxonomy: UNK + YBET:1960,1990

School structural costs were provided by local partners in each country. The value of 550 USD/m² was adopted in agreement 
with  most  data  provided,  but  high  discrepancies  were  found  between  the  cost  in  Turkmenistan  and  Kazakhstan  (who 
provided the highest values, ranging between 2000 and 4500 USD/m²) and Kyrgyz Republic (the lowest, 470 USD/m²). 
Digital maps of schools were available for Kyrgyz Republic, Kazakhstan and Tajikistan (Table 1). Each point in the spatial 
dataset was associated with urban or rural school typologies. Urban schools were identified by intersecting them with the 
urban polygons available from the GRUMP dataset (CIESIN, 2021), while all other schools were considered rural.  The 
location of schools in Uzbekistan and Turkmenistan was not available,  but  local  partners provided the total  number of 
schools in each Oblast, which were distributed in the GRUMP urban areas (CIESIN, 2021): rural schools were associated 
with polygons with an area smaller than 20 km². 

3.1.2  Healthcare facilities
The location of healthcare facilities by type (clinics, hospitals, polyclinic, dentists, doctors, laboratories and pharmacies), last  
updated in 2019, is available from the Healthsites database (Weiss et al., 2020). No information was available on the main 
characteristics (age, material, floor area) of hospitals in Central Asia. Based on the SERA project (Crowley et al., 2020),  
which provides non-residential buildings exposure data for European countries, we extracted the characteristics of hospitals 
in  post-soviet  countries  for  which  the  information  is  available  (Estonia,  Latvia,  Lithuania  and  Moldova).  The average 
hospital area is 10,000 m² which was assumed valid for all hospitals of Central Asia. Similarly, for clinics, the average area  
from the SERA dataset  of post-soviet  countries  was of  1,000 m².  As for the material,  we assume that  the majority of  
hospitals  are  reinforced  concrete  buildings  which  correspond  to  the  EMCA2 or  EMCA3 typologies  of  the  residential 
buildings classification introduced by Pittore et al., (2020) and refined by Scaini et al. (2023). 
Clinics  and other  healthcare  businesses  (dentists,  doctors,  pharmacies)  were  assumed to have  a material  similar  to  the  
residential buildings in each country. Their typology was defined as the weighted combination of the residential building  
typologies in each country, based on their fraction, discarding those whose presence is lower than 5%. Other healthcare 
facilities (dentists, doctors and pharmacies) were assumed to have the same building typologies and reconstruction costs of 
retail commercial buildings. Their area was estimated as the weighted sum of the areas of the most common residential  
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building typologies in each country. In particular, the floor area was considered for single-family building typologies, while 
the dwelling area was used for multi-family building typologies, following the same approach used for medium-to-small 
retail buildings.
Hospital structural reconstruction costs was estimated based on the country-based costs (USD/m2) provided by local partners  
in each country: an average value of 1.500 USD/m2 was assumed. The replacement cost of hospitals content is assumed to  
be 150% of the hospitals structural costs following the approach of HAZUS (FEMA, 2021). The other healthcare facilities 
(clinics, dentists, doctors and pharmacies) construction and content costs were assumed to be equal to the construction and  
content cost of the commercial retail building typologies most common in each country.

3.1.3 Commercial buildings
Commercial and services buildings, named here as ‘commercial’, are broadly distinguished into two categories: 

 Wholesale and services. Given the lack of specific data for commercial buildings in Central Asia, we assumed that  
wholesale and services industrial buildings in Central Asia are similar to the post-soviet ones in European countries, 
obtained from the SERA database (Crowley et al., 2020). A single wholesale and services building typology was 
defined as the combination of the most common EMCA typologies in the post-soviet countries (namely, EMCA1, 
EMCA2 and EMCA5 which represent the 26, 37 and 36% of commercial building stock). The average area and 
occupancy are calculated as the weighed combination of the area and occupancy of the typologies present in the  
SERA commercial buildings dataset. The so-defined wholesale and services building typology has an average area 
of 476 m² and the occupancy is 243 people. This is consistent with existing statistics which estimate that wholesale  
employees are between 10 and 249 employees, but large wholesale firms can employ up to 700 people (OXIRM, 
2014). 

 Retail buildings, which are assumed to be distributed along residential areas and to have characteristics similar to 
residential buildings. A single commercial retail typology was defined, in each country, as the combination of the  
most common residential building typologies in the national building stock.  The most common residential building 
typologies are EMCA1 (masonry) and EMCA4 (adobe) for Kyrgyz Republic, Tajikistan and Turkmenistan with the  
additional presence of EMCA5 (wood) and EMCA6 (steel) for Kazakhstan. These typologies are low-to-mid rise 
and encompass a wide range of construction decades, from the ‘30s until today. Typologies which account for less 
than 5% of the residential buildings were discarded. The average retail buildings area was estimated as the weighted 
combination of storey/dwelling area for each building typology. In particular, the floor area was considered for  
single-family building typologies, while the dwelling area was used for multi-family building typologies. As for the  
occupancy, in Europe the large majority of retail businesses are micro-businesses employing fewer than 10 people 
(but there are large retail companies that employ few thousand people, OXIRM, 2014). In this work, we assumed 
that  retail  companies  accommodate  on  average  5  people,  and  we  did  not  account  for  large  retail  companies.  
Structural  cost  for retail   building typologies  was computed as the average  of structural  costs of each  EMCA 
typology weighted by their relative presence in each country obtained from the residential exposure layer developed 
in  Scaini  et  al.  (2023).  The content  cost  is  assumed to be  equal  to  the  structural  cost  following the  HAZUS 
inventory technical manual (2021).

Given that no prior information was available on the number of commercial buildings in Central Asia, their number was 
estimated based on labor market data based on the following indicators:
    • Total number of employees in the commercial sector, derived as a percentage of the total labor force for each country 
(Table 1). 
    • Total employees in wholesale and retail sector calculated as a percentage over the total employees in the commercial  
sector activities. To this purpose, values for Europe were used (Eurostat, last accessed 2022).  
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    • Number of retail employees, calculated as a fraction of the total employees in the Total employees in the wholesale and 
retail sector. According to Eurocommerce (2017), the fraction of employees in the retail sector in 2015 in Europe was 72%,  
while in post-soviet countries that belong to the EU union (Estonia, Latvia, Lithuania) was 75% (Eurocommerce, 2017). The 
remaining fraction is associated with wholesale and services.
    • Average occupancy of wholesale and services buildings, obtained from the SERA dataset for post-soviet countries. For  
retail buildings the occupancy was inferred from the  European statistics (Eurocommerce, 2017). 
The number of commercial buildings was finally estimated by dividing the total employees in the two categories (services  
wholesale and retail) by the average occupancy of each category. 
Wholesale and services and retail buildings were spatially distributed in urbanized areas extracted from the GRUMP dataset  
(CIESIN,  2021).  In  absence  of  additional  information  on  their  spatial  distribution,  they  were  disaggregated  based  on 
population density, so that a higher fraction of buildings was distributed on highly-populated areas. This approach is similar 
to the one adopted in the SERA project (Crowley et al., 2020). Commercial areas identified in OSM were also inspected but  
their coverage was deemed insufficient, so the OSM polygons were not used to locate commercial buildings.

3.1.4 Industrial buildings
No prior information was available on the number of industrial buildings in Central Asia (Table 1). The number of industrial 
buildings was then estimated by dividing the employed force by the average buildings’ occupancy. The total employed force  
and the percentage employed in the industrial sector of each country was obtained from the World Bank data portal (Table 
1). In absence of country-based or regional-based information, the average occupancy in industrial buildings was inferred  
from the SERA non-residential buildings' exposure layers (Crowley et al., 2020) for Post-soviet EU countries. 
Industrial buildings can belong to more than one EMCA typology. According to the SERA dataset (Crowley et al., 2020), 
industrial buildings in post-soviet countries are constituted by 31% of load-bearing masonry (EMCA1), 25% reinforced 
concrete (EMCA2) and 33% steel (EMCA6). Other typologies are present in lower fraction (less than 10%). In absence of 
specific information, one broad typology was defined as a combination of the three EMCA typologies. Characteristics such  
as the average area and the structural cost were computed as the average value of the EMCA typologies weighted by their  
relative fraction in the building stock. An average area of 2013 m² and an occupancy of 35 was obtained. The structural cost 
for industrial buildings was computed as the weighted average of the costs retrieved for each considered EMCA typology 
(see Scaini et al,  2023). As for the content, its value is estimated as 150% of the construction cost, following the HAZUS  
inventory technical manual (FEMA, 2021).
The location of industrial buildings was associated with industrial areas extracted from the OSM database. Areas devoted to  
mining and other primary sector activities, available from the global mines dataset (Baker, 2010), were removed from the 
industrial areas.  In order to account for the industrial  built-up area only,  we assumed that  half of the industrial  area is 
accommodating  buildings.  The  estimated  number  of  buildings  in  each  country  was  distributed  on  the  industrial  areas  
identified by OSM, in a number proportional to the polygons’ area. The distribution was made so that there is at least one 
industrial building for each industrial area.

3.2 Transportation assets
For each country, roads and railways were extracted from OSM which was found more reliable for the identification of the  
primary road network with respect to the GRIP database (Global Roads Inventory Project - GRIP, Meijer et al., 2018). Total  
length of transportation networks (roads and railway) obtained from OSM was compared with data available at national scale 
for Uzbekistan and Turkmenistan, showing some discrepancies. However, the spatial location of main transportation lines  
was also compared with non-digital maps of railway lines provided by local partners (e.g., for Turkmenistan) showing an  
overall  good  agreement.  Roads  and  railways  were  then  extracted  from  OSM and  classified  based  on  the  GED4ALL 
taxonomy (Silva et al.,  2022) which is in its turn based on the OSM classification. Roads were classified into 4 classes:  
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motorway and trunk, primary, secondary and tertiary. Railways were distinguished between high speed and conventional.  
Roads classified as ‘residential’, ‘service’ and ‘unclassified’ as well as railways tagged as ‘subway’, ‘tram’ and ‘unknown’  
were not included in the analysis. 
Bridges were extracted from the OSM layer and additional ones were identified by intersecting the primary road layer with  
other potential obstacle (rivers, motorways and trunks, primary and secondary roads and railways). The bridge typologies  
were defined based on the data provided by past projects in the region (e.g., ‘Measuring Seismic Risk in Kyrgyz Republic’,  
implemented by the World Bank) and those provided by one of the Uzbekistan local partners (Tashkent State Transport 
University), which has a deep expertise in the construction of railways and bridges in the region. Since GED4ALL does not  
provide a taxonomy for bridges but uses OSM taxonomy for roads, we classified bridges based on a custom taxonomy. Two 
types of bridges were identified:
    • Road bridges: In Uzbekistan, 86% of bridges were constructed between 1960 and 1990. Information on bridge material 
is not available from local partners,  but the project  ‘Measuring Seismic Risk in Kyrgyz Republic’ (World Bank project  
P149630) identified 1500 bridges in Kyrgyz Republic, most of them made of reinforced concrete and steel. We therefore 
assume that most road bridges (>80%) are constructed between 1960 and 1990 in reinforced concrete or steel. 
    • Railway bridges are mostly made of reinforced concrete (95% of the total) and they are multi-span; the average length of 
span ranges between 12 and 24 m but most bridges are less than 25m long. We assume that these characteristics are common  
to all railway bridges in Central Asia. 
As for costs, no prior official information on transportation assets’ reconstruction costs was available. We defined the costs 
based on country-based information provided by local  partners.  Given the variability of costs collected, also due to the  
different soil and construction conditions, we provide both ranges and average values (Table 3 in the results section).

3.3 Croplands
The cotton area and yield in each Central Asia country and each sub-national administrative unit (Oblast) was provided by 
local partners. Such values were used as a starting point for the definition of the exposure layers. The spatial distribution of 
different croplands was inferred in two steps:

 First,  the  areas  where  cotton  and  wheat  are  cultivated  were  inferred  from the  global  crop  dominance  dataset  
(Teluguntla et al,. 2015), available at 1-Km resolution. Cotton is associated with class 3 (“Irrigated Mixed Crops”),  
together with wheat,  rice and orchards.  Wheat is also found in other classes (1,2,4,5,7),  while class 8 was not 
considered since the wheat fractions is considered negligible with respect to the other crop dominance classes. 

 Second, the land cover cropland fraction (Table 1), which has higher resolution (100m), allows discarding cells 
with low fraction of cropland coverage. 

Having identified the areas  where cotton and wheat  crops are present,  the country-based information obtained for each 
country and Oblast was distributed spatially. The total cultivated area of cotton and wheat in each Oblast was disaggregated 
in each 100-m cells, proportionally to the cropland fraction. The taxonomy for croplands corresponds to the one proposed by 
GED4ALL taxonomy (Silva et al., 2022). In order to assess the expected exposed value, country-based values of yield and 
price were used (Table 4 in the results section). Based on the collected information on production and cost, we calculated the  
exposed value of cotton and wheat croplands in each 100-m cell and the total values per Oblast and country.

4. Results

4.1 Non residential buildings
Results of the exposure assessment provide the total number of buildings and exposed value for each country and for the 
considered non-residential building types (Table 2).
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Table 2.  Number of healthcare (hospitals and clinics), schools, commercial and industrial buildings and their corresponding total 
reconstruction cost in each Central Asia country and for the entire region (in million USD). 

Non residential building types Total reconstruction costs (million USD)

Country Hospitals and clinics Schools Commercial Industrial
Hospitals 
and clinics Schools

Commerci
al Industrial

Kazakhstan 768 7462 848015 65838 2045 2103 137700 39760

Kyrgyz Republic 316 1260 207866 21793 823 355 15000 11845

Tajikistan 180 858 138868 13309 503 242 9400 7502

Uzbekistan 804 10287 1105651 118704 2274 2900 204100 64517

Turkmenistan 176 1868 139425 33727 268 527 8100 12220

Central Asia 2244 21735 2439825 253371 5913 6127 368900 135844

Higher  total  non-residential  buildings  reconstruction  costs  and  are  found  in  Kazakhstan  and  Uzbekistan.  The  larger 
reconstruction costs are associated with commercial buildings, followed by industrial buildings. Both are present in larger 
number with respect to healthcare and school facilities, but have a lower reconstruction cost per building unit.  On average, 
non-residential buildings account for the 40% of total buildings reconstruction costs estimated in Central Asia, with larger 
values (up to 50%) in Turkmenistan and values lower than 30% in Tajikistan.
Non-residential building assets were collected in a geospatial database. Figure 2 shows the distribution of education and 
healthcare facilities in Central Asia. Similar maps can be produced based on the geospatial database developed for other non-
residential building types considered during the project. 
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Figure 2. Map of healthcare facilities in Central Asia classified into hospitals and clinics and other facilities (top). Map of education 
facilities classified into rural and urban (bottom). Map data from OpenStreetMap available from https://www.openstreetmap.org (© 
OpenStreetMap contributors, 2023, distributed under the Open Data Commons Open Database License – OdbL v1.0).

4.2 Transportation
Results of the analysis is a geospatial database of the main transportation assets (roads, railways and bridges) in central Asia 
and the estimation of the associated reconstruction costs. Figure 3 shows the map of transportation assets in Central Asia. 
Table 3 provides the total length of each type of roads in each country of Central Asia and for the entire region, together with 
the total estimated reconstruction costs. Average unit costs for each road type are also provided in the table. The larger 
reconstruction costs are associated with Kazakhstan, followed by Uzbekistan, and are mostly associated with motorways and 
highways which have the larger unit cost and a wide coverage in the two aforementioned countries, in particular in 
Kazakhstan (Fig. 3 and Table 3). 
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Figure 3: Map of the road and railway network in Central Asia included in the exposure database, classified into different types 
(motorway, trunk, primary, secondary and tertiary). Map data from OpenStreetMap available from https://www.openstreetmap.org (© 
OpenStreetMap contributors, 2023, distributed under the Open Data Commons Open Database License – OdbL v1.0).

Table 3: Total length of road network types and total reconstruction costs estimated for each Central Asia country and for the entire 
region. Average unit costs for each road type are also provided (third row).

Road network Total reconstruction cost (Billion USD)

Country
km  motorway, 
highway, trunk

km 
1ary

km 2ary
km 
3ary

Cost motorway, 
highway, trunk Cost 

1ary
Cost  (all 
road types)

Average unit cost (USD/km) 2000 850 500 240

Kazakhstan 17,430 8,506 19,845 46,414 34.9 7.2 63.2

Kyrgyz Republic 2,787 1,996 1,878 6,578 5.6 1.7 9.8

Tajikistan 2,645 1,014 2,856 5,539 5.3 0.9 8.9

Uzbekistan 6,297 4,414 6,539 16,743 12.6 3.8 23.6

Turkmenistan 6,402 1,240 1,862 7,762 12.8 1.1 16.7

Central Asia 35,561 17,170 32,980 83,036 71.2 14.7 122.2

4.3 Croplands

Figure 4 shows the exposure maps produced at regional scale for cotton and wheat croplands at 100-m resolution. Table 4 
provides the total wheat and cotton production in each Central Asia Country and Oblast, together with country-based average 
yield and price. The total exposed value of cotton and wheat croplands for the entire Central Asia region is of approximately 
3.000 Million USD. Largest productions of cotton are found in Uzbekistan and Turkmenistan. The greatest production of 
wheat is found in Kazakhstan, followed by Uzbekistan. 
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Figure 4. Exposure maps produced for cotton (top) and wheat (bottom) croplands at 100m resolution. Map data from OpenStreetMap 
available from https://www.openstreetmap.org (© Openstreetmap contributors, 2023, distributed under the Open Data Commons Open 
Database License – OdbL v1.0).

Table 4: Total area, production and exposed value of cotton and wheat production in each Country and for the entire Central Asia region. 
Average price and yield are also provided for each country.

Country

Cotton Wheat

Area 
(KHa)

Production(
Thousand 
T)

 Averag
e  price 
(USD/T
)

Average 
Yield(To
ns/Ha)

Total 
exposed 
value 
(Million 
USD)

Area 
(KHa)

Productio
n(Thousa
nd T)

Average 
price 
(USD/T)

Average 
Yield(Ton
s/Ha)

Total 
exposed 
value 
(Million 
USD)

Kazakhsta
n

126 328 304 2.6 99 12142 13874 91 1.4 1166

Kyrgyz 
Republic

25 73 600 3.3 48 253 629 150 2.4 98

Tajikistan 146 272 421 0.7 43 234 1416 141 5.9 204

Uzbekista
n

855 3094 300 3 757 2240 7453 93 6.2 1098
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Turkmenis
tan

467 1841 482 2 449 802 1843 229 2.3 422

Central 
Asia

1619 5608 421.4 2.32 1396 15671 25215 141 3.6 2988

5. Discussion
The work presented here develops the first regional-scale exposure layers for selected critical infrastructure assets (namely, 
non  residential  building,  transportation  and  croplands).  The  process  of  collecting the  available  information,  which  is 
scattered across sources, is particularly challenging for critical infrastructure exposure layers, as also pointed out by Batista e 
Silva, et al. (2019). Here, we tackled this problem by integrating country-based data into the global and regional datasets 
used to develop critical infrastructure exposure layers (e.g. OSM, Nirandjan et al., 2022), We collected country-based data 
for  each of the 5 Central  Asia countries,  thanks to a  strong interaction with national  research groups and stakeholders  
(Peresan et al., 2023).  The developed approach shows how relevant  is  the contribution of local partners  is  in developing 
exposure datasets. It also highlights the importance and difficulties of the data integration process and shows how country-
based data can provide an added value to regional-scale exposure datasets of this kind. Country-based data were aggregated 
and harmonized at the regional scale using an existing multi-hazard taxonomy (Ged4ALL). The method developed here, and 
exemplified  for  Central  Asia, and demonstrates its applicabilitythat   the Ged4ALL taxonomy is  suitable  for  the  to  th 
development of regional-scale exposure datasets for critical infrastructureis case-study. A similar approach can be applied to 
other regions, but needs to be adapted to the specific conditions (e.g. degree of involvement of national institutions, presence  
of mobility limitations). 
The work is based on several assumptions which are required in order to assemble the first regional-scale layers of their  
kind. In particular, we assumed that the socio-economic data (e.g. percentage of employees in different sectors) to infer the 
number of commercial and industrial buildings, as also done by Crowley et al. (2020) for commercial buildings. In our case, 
due to the absence of specific data on the commercial, industrial and healthcare typologies, we used data from Europe or 
post-soviet countries assuming that they apply to Central Asia. However, the relative importance of retail and wholesale 
varies across EU Member States and might vary as well across Central Asia. Hence, further analysis might be required in the  
future in order to achieve a higher accuracy. Also, we defined broad typologies that comprise multiple building types (e.g.  
EMCA typologies), as previously done by other authors for buildings (e.g. Wieland et al., 2015 and Pittore et al., 2020 for  
Central Asia; Calderon et al., 2021 for Central America; Yepes-Estrada et al., 2017 for South America; Yepes-Estrada et al., 
2023 at the global scale). These typologies can be associated with multiple vulnerability or fragility curves, combined under  
general assumptions. For example, retail commercial buildings in Central Asia were assumed to be similar to residential  
buildings,  as also confirmed by local  partners during the interaction. Hence, the characteristics of retail buildings were 
defined based on each country’s residential building stock. Different assumptions were performed by Crowley et al., (2020) 
who developed the first exposure dataset of non-residential buildings for Europe using multiple categories (e.g. classifying 
commercial buildings into wholesale, retail, offices, hotels and restaurants). The different approaches are mostly due to the 
larger amount of information available in Europe (e.g. details on building typologies and employment statistics by line of  
business). Finally, while some non-residential buildings have been mapped by global projects (e.g. schools), information on 
the spatial distribution of commercial and industrial buildings is usually scarce, as underlined by Batista e Silva et al., 2019 
for the European context. Here, they were mapped using a simplified approach based on proxies (e.g. population or land-
use), as commonly done in data-scarce regions (De Bono and Mora, 2014; Gomez-Zapata et al., 2023). 
Thanks to the high resolution of the population layer adopted in the analysis (Scaini et al., 2023), the exposure dataset for 
non-residential buildings and croplands was developed on a considerably high resolution (500 and 100m, respectively). This 
supports the assessment of risk related to floods and potentially landslides, for which a much higher resolution in order to  
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provide reliable results with respect to earthquakes.  Nonetheless, regional-scale datasets such as the one presented here can  
only support simplified damage/risk assessment that should be calibrated and validated carefully based on past events, when 
possible, and more specific information on the performance of building typologies considered. This is relevant not only for 
floods and landslides but also for earthquakes (Wald et al., 2023) to prevent over- or under-estimation of potential risks.  For 
this  reason,  the  suggested  usage  of  the  exposure  layers  provided  here  (non-residential buildings,  transportation and 
croplands) is limited to the regional or national-scale. However, depending on the type, coverage and quality of data used as  
input we can associate them with different reliability levels. In particular, the transportation database was developed based 
on OSM, which is considered a reliable source both in terms of location and classification of  roads and railways, and is 
consistent with the available country-based data. Similarly, the croplands dataset is developed based on recognized products  
which undergo specific validation processes and national-scale official data (e.g. wheat/cotton production for each oblast).  
Both datasets are therefore considered reliable for regional-scale damage and risk assessment purposes.  Non residential  
buildings were developed under stronger assumptions and are therefore deemed less reliable.  The  schools and hospitals 
layers, despite the availability of location and type for some countries (e.g. from the healthsites database, Table 1), rely on 
scarce information on their  characteristics. For this reason, they are considered of medium reliability.  Exposure layers for 
commercial and industrial buildings are developed based on strong assumptions both on the type and distribution of assets,  
and data integration is required in order to validate the layer. For the time being, their use is suggested as a starting point for  
further exposure development efforts rather than proper damage/risk assessment.  Finally, the dataset of bridges extracted 
from OSM and identified based on spatial analysis is likely to be incomplete and should not be used to perform a specific 
risk assessment, but can act as a starting point for the collection of additional information based on complementary surveys  
and analysis of remote sensing images.
Future  work  might  be  required  in  order  to  resolve  these  critical  aspects  using  country-based  specific  information.  In  
particular, a strong effort should be devoted to validating the dataset based on additional data, which might be available to  
local public and private stakeholders. This is particularly valid in areas with low data coverage and/or undergoing land use 
changes. The layers provided here are nonetheless a first step towards Disaster Risk Reduction (DRR) as they provide risk-
related information to a broad community of researchers, stakeholders and practitioners, allowing the first-level assessment 
of expected damages and risks in the region. However, the selection of assets at stake is not limited to the ones considered 
here, and others might be potentially relevant (e.g. energy production sites and infrastructure). Also, classifications such as 
GED4ALL (Silva  et  al.,  2022),  adopted  here,  and  the  one proposed  by  Murnane  et  al.  (2019)  allow for  cross-hazard 
comparisons of risk but do not account for dynamics and feedback loops between the different components of risk (Ward et  
al.,  2022). Future work in this direction might include the estimation of expected risk in the region for one or multiple  
hazardous phenomena and accounting for potential cascading effects (e.g. flood and drought impacts on croplands and food  
industry disruption). The time coverage of critical infrastructure exposure data is also dishomogeneous and often incomplete: 
further efforts should be done in order to update the database in the future, for example using data provided by citizens, not  
only for buildings (Schorlemmer, et al., 2020; Scaini et al., 2022) but also for other assets such as croplands. 

6. Conclusions
This work describes  thean exposure assessment   methodology  to develop exposure layers for critical infrastructure. This 
method circumvents the challenges related to the lack of exposure data by collecting country-based information provided by 
local authorities and research groups, succesfully engaged into a fruitful interaction through meetings and workshops. The  
method is employed to develop the first high-resolution, regional-scale exposure layers for critical infrastructure in Central 
Asia for non-residential buildings classes (healthcare, educational, commercial and industrial), transportation and croplands. 
WeThe working team collected the characteristics deemed relevant for multiple hazards (earthquakes, floods, landslides)  by 
assembling the available global and regional datasets made available to the scientific community. Reconstruction costs, 
which are particularly difficult to retrieve, were derived from country-based information for the considered asset types. The 

16

465

470

475

480

485

490

495

500

505



method relies on country-based information provided by local authorities and research groups, succesfully engaged into a 
fruitful interaction. Results are geospatial layers containing the exposed assets classified using a standardized multi-hazard 
exposure taxonomy that supports future multi-hazard and multi-risk assessment. Reconstruction costs were derived from 
country-based information for the considered asset types, showing that The total exposed value for the different asset types 
shows that  the  contributionpotential  losses associated with of non-residential buildings, croplands and transportation  areis 
not negligible for financial risk assessment. TheE exposure database of this kind provided here supports further analysis to 
integrate data from national and sub-national projects into critical infrastructure datasets and enrich risk-related knowledge 
towards regional-scale disaster risk reduction strategies.

Data Availability 
The data used to develop the input layer are available at the links provided in Table 1. In particular, the road and railway  
network  was  extracted  from  OpenStreetMap  database  (https://www.openstreetmap.org)  and  from  the  Global  Roads 
Inventory  Project  -  GRIP  (https://www.globio.info/download-grip-dataset)  and,  for  Kyrgyz  Republic,  from 
https://geonode.caiag.kg/. The global mines dataset is available at: https://pubs.usgs.gov/of/2010/1255/. Employee statistics  
were  retrieved  from  the  World  Bank  data  portal  (https://data.worldbank.org/i)  and  the  Eurostat  database  
(https://ec.europa.eu/eurostat/databrowser) (see Table 1 for details). Healthcare facilities dataset can be downloaded from the 
Healthsites  website  (https://www.healthsites.io/),  while  national  data  for  Kyrgyz  Republic  can  be  retrieved  at 
http://geonode.mes.kg/.  The  global  school  dataset  was  retrieved  from  the  Unicef  website 
(https://projectconnect.unicef.org/map/countries),  while  national  maps  are  available  for  Tajikistan 
((https://geonode.wfp.org)).  Global  crop  dominance  layers  can  be  retrieved  at  the  following  link: 
https://catalog.data.gov/dataset/global-food-security-support-analysis-data-gfsad-crop-dominance-2010-global-1-km-v001, 
while global land cover fraction was downloaded from https://lcviewer.vito.be/download. National statistics for educational 
and healthcare facilities, croplands and transportation were provided by local partners for the purpose of the Strengthening 
Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) project, but are not publicly available. The 
spatial layers of exposure for non residential buildings, transportation and croplands developed in this work will be made 
available at the World Bank data portal (https://datacatalog.worldbank.org/search/dataset/0064117/Central-Asia-Exposure-
Data) together with the technical reports developed during the SFRARR project under the Creative Commons Attributions 
4.0 license. Data are associated with metadata following the Ged4ALL system (http://riskdatalibrary.org/resources). 
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