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Abstract. Flooding is an endemic global challenge with an-
nual damages totalling billions of dollars. Impacts are felt
most acutely in low- and middle-income countries, where
rapid demographic change is driving increased exposure.
These areas also tend to lack high-precision hazard mapping5

data with which to better understand or manage risk. To ad-
dress this information gap a number of global flood models
have been developed in recent years. However, there is sub-
stantial uncertainty over the performance of these data prod-
ucts. Arguably the most important component of a global10

flood model is the digital elevation model (DEM), which
must represent the terrain without surface artifacts such as
forests and buildings. Here we develop and evaluate a next
generation of global hydrodynamic flood model based on the
recently released FABDEM DEM. We evaluate the model15

and compare it to a previous version using the MERIT DEM
at three study sites in the Central Highlands of Vietnam using
two independent validation data sets based on a household
survey and remotely sensed observations of recent flooding.
The global flood model based on FABDEM consistently out-20

performed a model based on MERIT, and the agreement be-
tween the model and remote sensing was greater than the
agreement between the two validation data sets.

1 Introduction

Flooding is the most frequent and deadliest natural hazard, 25

with annual flood damages totalling billions of dollars glob-
ally (TS1Bevere, 2021). Fatalities and impacts on livelihoods
from flooding are disproportionally felt in developing coun-
tries (Jongman et al., 2012; Rentschler et al., 2022). More-
over, the impacts from flooding are expected to increase in 30

the future due to climatic changes (Arnell and Gosling, 2016;
Dottori et al., 2018) and expanding populations onto flood-
plains (Winsemius et al., 2016), resulting in more people be-
coming exposed to flooding (Hirabayashi et al., 2021; Tell-
man et al., 2021; Rentschler et al., 2022) and a greater eco- 35

nomic impact (Willner et al., 2018; Bates et al., 2023). Un-
derstanding the severity of flood hazard is crucial in inform-
ing planning decisions to protect people and assets and for
emergency response. South-East Asia is particularly at risk
from severe flooding, often driven by tropical cyclones (Chen 40

et al., 2020). Using CMIP6 climate projections, Hirabayashi
et al. (2021) observe an increase in flood frequency in South-
East Asia and an increase in population exposed to flooding,
with the region seeing one of the highest increases in popu-
lation exposure globally. 45

Vietnam is one of the most flood-prone countries in the
world, with a long coastline, concentrated populations and
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assets in deltas and floodplains, and a susceptibility to heavy
precipitation primarily driven by tropical cyclones (Nguyen
et al., 2021). In the past 2 decades, Vietnam has had the sev-
enth highest number of recorded disasters, with 52 % classed
as hydrological events (UNDRR, 2020). With the population5

exposed to flooding already high in Vietnam (38 % for 50-
year return period with no flood protection) and set to in-
crease to 46 % (increase of 13 %–27 % above current expo-
sure) (Bangalore et al., 2019), there is a pertinent need to
understand flood risk in Vietnam. In addition, there is a ne-10

cessity to understand the socio-economic nuances that could
exasperate or negate the risk, with Bui et al. (2014) find-
ing from the Vietnam National Living Standard Survey of
2008 that natural disasters account for a ∼ 6.9 % reduction
in household income, with floods and storms being the most15

common source of shock.
In this work, we focus on the Central Highlands of Viet-

nam and surrounding provinces. The region consists of the
five largely mountainous inland provinces of Kon Tum, Gia
Lai, Dak Lak, Dak Nong, and Lam Dong. To the east there20

are six coastal provinces named Quang Nam, Quang Ngai,
Binh Dinh, Phu Yen, Khanh Hoa, and Ninh Thuan. These
11 provinces are frequently hit by tropical cyclones, caus-
ing coastal, fluvial (river), and pluvial (surface) flooding.
Examples of such events include Ketsana (2009), Mirinae25

(2009), Podul (2013), Damrey (2017), and Molave (2020),
with Mirinae causing an estimated 122 fatalities (DiGregario,
2013). Compared to other regions in Vietnam, especially the
Mekong Delta (Dung et al., 2011; Apel et al., 2016; Triet et
al., 2017, 2020), there have been a dearth of studies on flood30

risk in the Central Highlands, both from a physical and socio-
economic perspective. A recent review of flood literature by
Nguyen et al. (2021) found no studies in the Central High-
land region (five inland provinces). The Central Highlands
also has some of the highest levels of poverty in the coun-35

try and extensive reliance on agriculture (Le et al., 2021),
making this under-researched area suitable for further inves-
tigation.

Flood hazard is typically mapped by running computa-
tional calculations using a hydrodynamic model. These mod-40

els use information about discharge, topography, and river
geometry to produce hazard estimates (typically water depth
and extent), usually given in terms of an annual exceedance
probability (AEP) (Sampson et al., 2015; Dottori et al., 2016;
Trigg et al., 2016) or sometimes by simulating a past flood45

event (Neal et al., 2009; Wood et al., 2016; Wing et al., 2019,
2021; Alemu et al., 2023). Few locations have enough data
to produce high-quality flood hazard estimates, with these lo-
cations limited to the reach scale or data-rich countries (e.g.
UK or USA). Furthermore, where a good coverage of hazard50

maps does exist the quality and age of the underlying models
can vary substantially, and details regarding input data and
model structure often go unreported (Bates, 2022). Global
flood models (GFMs) can produce flood hazard information
where high-quality models do not exist and provide a spa-55

tially consistent modelling framework that allows for direct
comparisons of hazard and risk to be made between countries
and regions (e.g Rentschler et al., 2022).

However, as GFMs utilise global data sets and rely on
model structures and parameterisations that have been devel- 60

oped and tested primarily in data-rich locations (Sampson et
al., 2015; Bates, 2022), there is considerable uncertainty over
the efficacy of the model outputs in most locations. Stud-
ies comparing first-generation GFMs (here defined as those
developed 5 to 10 years ago) found substantial differences 65

in simulated hazard and exposure from different modelling
systems. For example, Aerts et al. (2020) identified a fac-
tor of 4 difference between GFMs with a range of resolu-
tions and model structures, while even similar model struc-
tures with different climate forcings had a factor of 2 dif- 70

ference. Trigg et al. (2016) compared a similar set of first-
generation GFMs across the African continent, finding that
they disagree more than they agree on the location of the 1-
in-100 year floodplain and that agreement was particularly
poor over deltas, although, on large, confined floodplains 75

model agreement could be much higher due to valley fill-
ing where the flood extent becomes insensitive to magnitude
and process representation. Validation work undertaken by
Bernhofen et al. (2018) found that agreement between his-
torical floods over three African floodplains observed by the 80

MODIS satellite and GFM hazard maps varied from 40 %
to 70 % (critical success score). The sensitivity of simulated
hazard and population exposure to return period was also sur-
prisingly low (Trigg et al., 2016), with the analysis of his-
torical satellite observations suggesting that overprediction 85

of frequent floods was particularly problematic (Hawker et
al., 2020). This bias can be expected in part due to a lack
of flood defences and other anthropogenic mitigation in the
GFMs. However, low-magnitude non-valley filling floods are
also more difficult to simulate and are highly sensitive to the 90

accuracy of elevation data and how floodplain–channel inter-
actions are simplified in the GFM (Neal et al., 2021; Devitt
et al., 2023). Furthermore, many early-generation models fo-
cused on km+ resolution grids that tend to inflate exposure
estimates, especially for smaller floods, due to the tendency 95

for people to live close to but not on hazardous floodplains
(Smith et al., 2019). When assessing the utility of global data
sets for riverine flood risk management at national scales for
five countries, Bernhofen et al. (2022) still found poor agree-
ment between the latest GFMs and between population data 100

sets.
These studies showed that fine resolution (substantially

sub-kilometre) is necessary and that more validation work
is needed to understand the performance of different GFM
frameworks across a range of locations and hazard mag- 105

nitudes. A key input data set to hydrodynamic models at
the resolution needed for hazard mapping is gridded infor-
mation on topography (Horritt and Bates, 2002), typically
in the form of a digital elevation model (DEM). Hydrody-
namic models use topographic information to route flood wa- 110
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ter through floodplains, with the accuracy of the flood extent
and depths a function of the similarity of the topographic
data to reality. In general, a finer-grid spacing in elevation
data sets results in more accurate flood predictions (Fewtrell
et al., 2011; Saksena and Merwade, 2015). However, finer-5

resolution hydrodynamic simulations can yield superfluous
detail at a high computational cost (Savage et al., 2016),
while small increases in the ratio of DEM vertical errors to
floodwater depths can substantially alter flood simulations.
Thus, finer-resolution simulations should generally be justi-10

fied by a commensurate DEM vertical accuracy. The ability
of a DEM and model to correctly represent river–floodplain
interactions is also a key factor impacting the accuracy of
flood simulations.

To validate GFMs, comparisons are either made to other15

hazard models (Trigg et al., 2016; Bernhofen et al., 2018;
Fleischmann et al., 2019; Aerts et al., 2020; Bernhofen et
al., 2022) or remotely sensed imagery from satellite missions
(e.g. MODIS, Sentinel) (Bates et al., 2004). Remotely sensed
imagery is popular due to its global coverage, adequate res-20

olution, and availability to use on many platforms. However,
remotely sensed imagery has drawbacks: the acquisition time
may not match a flood event, and even if it does artifacts in
the imagery such as clouds and emergent objects (e.g. vege-
tation and buildings) will affect the quality of the image clas-25

sification. Additional validation against terrestrial observa-
tions can therefore enhance confidence by providing an inde-
pendent alternative assessment of model performance. Com-
mon terrestrial validation data sources used at the reach scale
include wrack/water marks (Neal et al., 2009), gauging sta-30

tions, surveys, and reports of fatalities/financial losses (Zis-
chg et al., 2018). However, these have had limited use for
GFM validation outside some data-rich countries (Bates et
al., 2010). Here, we conduct a GFM validation in Vietnam, a
particularly flood-prone country classified as a lower–middle35

income by the World Bank (2024)TS2 .
As part of the FIERCE project, we conducted a household

survey of three flood-prone villages in Dak Lak Province
in the Central Highlands of Vietnam. A component of this
household survey asked participants to geolocate previous40

floods in their land parcels. Such data have not been previ-
ously used to validate GFMs, but similar data types have been
used to validate local models (Rollason et al., 2018; Peters-
son et al., 2020). Unlike other disciplines, validation sources
are rarely cross-referenced in flood model evaluation. Thus45

with the data available here we can analyse the effectiveness
of household survey data to validate GFMs and compare it to
remotely sensed imagery.

The overall aims of this research are (a) to integrate the lat-
est global DEM data into an existing GFM, (b) cross-validate50

this model with remote sensing imagery and household sur-
vey data, and (c) compare them with previous versions and
discuss the impact this has on hazard and population expo-
sure estimates.

2 Hydrodynamic modelling materials and methods 55

Hydrodynamic simulations were conducted using the Uni-
versity of Bristol/Fathom global flood model (GFM) (Samp-
son et al., 2015). Since this model has been described else-
where, only a brief description of the primary model com-
ponents is included here with references to more detailed 60

model descriptions. The model utilises a 1D approximation
of the Saint-Venant equations that neglects convective accel-
eration terms (Bates et al., 2010) to provide rapid yet accurate
simulations under gradually varied flow conditions. To help
represent floodplain dynamics across a large domain, a sub- 65

grid channel structure is used where the governing equations
are arranged on a 2D gridded floodplain with a 1D river net-
work embedded in the grid as described in the LISFLOOD-
FP model (Neal et al., 2012).

All river basins with an upstream catchment area> 50 km2
70

are simulated, with river network information taken from re-
sampling MERIT-Hydro (Yamazaki et al., 2019) to 1 arcsec,
which is the finest DEM resolution used in this study. Model
boundary conditions are generated from a regionalised flood
frequency analysis calculated at a global scale (Smith et al., 75

2015), which links river discharge and rainfall measurements
in gauged catchments to ungauged catchments based on cli-
matological and upstream catchment characteristics. This ap-
proach is necessary for our study area as the gauge record is
sparse and temporally limited. River bathymetry for the sub- 80

grid channels is estimated from the flood frequency, DEM,
and river network data as described by Neal et al. (2021). As
a result, flood hazard estimates (inundation extent and water
depth) are produced in terms of a return period (RP) or its
inverse and annual exceedance probability (AEP). 85

All catchments with an upstream area of less than 50 km2

are represented within a pluvial flood model. The pluvial
model utilises the same channel network as the fluvial model,
but it simulates rainfall directly onto the DEM using the same
LISFLOOD-FP solver (following the method introduced by 90

Sampson et al., 2013). Pluvial boundary conditions are de-
termined by the global rainfall intensity–duration–frequency
(IDF) relationships (methodology described by Sampson et
al., 2015). These relationships are calculated for a number of
locations globally, are pooled together, and are split by cli- 95

mate classification (based on the Köppen–Geiger classifica-
tions), with annual average rainfall and climate classification
used as predictors in selecting the appropriate IDF relation-
ships for the location of interest. Again, such an approach
is necessary as pre-existing IDF relationships do not exist for 100

our study locations. We simulate pluvial flooding for the 1, 6,
and 24 h extreme rainfall durations, which are combined (tak-
ing the maximum of each layer) to produce a pluvial flood
hazard estimate, in the same format as the fluvial approach.
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2.1 Evolution of GFM DEM data and treatment of
DEM data in this research

The University of Bristol/Fathom GFM has been imple-
mented with a variety of DEMs, with the FABDEM im-
plementation in this paper the most recent addition. For5

national-scale implementations, such as Bates et al. (2010)
in the USA and Bates et al. (2023) in the UK, significant im-
provements in inundation accuracy over global models have
been shown where lidar-derived elevations make up a high
proportion of the DEM. The global-scale DEM (GDEM) data10

available for GFM simulations have undergone significant
development over the last 2 decades. Below we review the
major developments in GFM-relevant global DEMs before
setting out the two DEMs that will be compared in this pa-
per.15

The Shuttle Radar Topography Mission (SRTM) DEM has
been the topographic data set of choice for the majority of
GFMs as it provides openly accessible elevation data at a
3 arcsec grid spacing (∼ 90 m at the Equator), between 56◦ S
to 60◦ N and with a mean average error of ∼ 6 m (Rodriguez20

et al., 2006). SRTM has errors from noise and striping and bi-
ases from vegetation and buildings that are not conducive to
high-quality hydrodynamic simulations that require informa-
tion on the terrain of the earth as opposed to the surface. In
other words, hydrodynamic models require a digital terrain25

model (DTM) as opposed to a digital surface model (DSM).
The MERIT DEM (Yamazaki et al., 2017) reduced most of
these aforementioned errors, except buildings, and thus be-
came an improved SRTM-derived source of 3 arcsec topo-
graphic information to use in GFMs (Hawker et al., 2020).30

In 2020, SRTM was reprocessed to create NASADEM, at
1 arcsec resolution (∼ 30 m at the Equator) (Crippen et al.,
2016). However, this data set includes vegetation and build-
ings in the terrain models, limiting its current potential for
flood hazard mapping.35

The TanDEM-X mission by the German Space Agency
(DLR) produced a global DEM passed on multiple satellite
overpasses between 2011–2015 (Rizzoli et al., 2017). A free-
to-download version at 3 arcsec grid spacing (∼ 90 m) called
TanDEM-X 90 was released in 2019 and was found to be40

more accurate in floodplain locations than other contempo-
rary global DEMs, except if the floodplain contained trees
(Hawker et al., 2019). Subsequently, a 1 arcsec (∼ 30 m) ver-
sion was released with additional processing called Coperni-
cus GLO-30 (referred to hereafter as COPDEM30) (Airbus,45

2020). Nevertheless, both TanDEM-X 90 and COPDEM30
are still DSMs. A further popular global DEM is ALOS
AW3D30 DSM (hereafter ALOS) produced by JAXA (Ta-
dono et al., 2016; Takaku et al., 2020). The ALOS DEM is at
1 arcsec grid spacing, and since version 3.2, has global cov-50

erage. ALOS differs to the global DEMs mentioned here as
it is produced using photogrammetry, rather than radar inter-
ferometry.

Numerous studies have assessed the impact of DEMs on
model quality for both GFMs and bespoke local models 55

(Archer et al., 2018; McClean et al., 2020). With the recent
evolution of global DEMs many of these studies have re-
duced relevance as they do not consider the most recent ver-
sions or exclude some DEMs entirely. Garrote (2022) found
COPDEM30 had clear improvements for flood simulations 60

over seven other global DEMs for a case study in Mozam-
bique, suggesting COPDEM30 is the benchmark GDEM for
GFMs. Recently, FABDEM (Forest And Building removed
Copernicus Digital Elevation Model) was released (Hawker
et al., 2022b). FABDEM removes buildings and forests from 65

the Copernicus 30 m DEM (COPDEM30) (Airbus, 2020) us-
ing a random-forest machine-learning method, providing a
first global terrain map at 1 arcsec grid spacing (∼ 30 m at
the Equator). Prior to the release of FABDEM, Guth and
Geoffroy (2021) noted that the Copernicus GLO-30 DEM 70

should become the “gold standard” for global DEMs, thus
superseding SRTM and other global DEMs. FABDEM has
been found to be more accurate than both Copernicus GLO-
30 and the current global DEM of choice for GFM simula-
tions – MERIT DEM (Hawker et al., 2022b). For instance, 75

in floodplains, the mean error of FABDEM was −0.03 m
for FABDEM and 0.17 and 0.66 m for Copernicus GLO-30
and MERIT DEM respectively. FABDEM is available from
https://data.bris.ac.ukTS3 . Due to the infancy of FABDEM,
there has been limited assessment of its use in hydrodynamic 80

models (Guan et al., 2023; Iqbal et al., 2023) and none us-
ing a GFM. Example GFM simulations on SRTM, MERIT,
and FABDEM are plotted in Fig. 1 for illustrative purposes.
Issues with noise in the original SRTM data can be clearly
seen in Fig. 1a as water is unable to propagate far over the 85

floodplain from the channel. Therefore, in this study we com-
pare two versions of GFMs, both based on global terrain
data. These two versions are GFM MERIT (i.e. using MERIT
DEM at 3 arcsec grid spacing) and GFM FABDEM (using
FABDEM at 1 arcsec grid spacing). We chose not to examine 90

other GDEMs as they are nominally DSMs. Note the version
of FABDEM used was FABDEM V1.0.

3 Model evaluation materials and methods

This study uses a unique mixture of two validation data
sets: (i) on-the-ground observations of flooding taken from 95

a household survey and (ii) remotely sensed imagery from
the Sentinel-1 satellite.

3.1 House survey data

In October 2019, an extensive household survey was con-
ducted by the authors in four flood-prone villages in Dak Lak 100

Province. In total, 947 households and approximately 4000
individuals were surveyed on topics covering health, edu-
cation, occupation, income, consumption, transfers, credit,

https://data.bris.ac.uk
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Figure 1. Flood hazard map of Kon Tum, Vietnam, for the 1-in-20 year flood event. Three versions of a global flood model (GFM), each with
a different underlying elevation data set, are compared. Panel (a) uses the SRTM elevation data set, panel (b) uses MERIT DEM, and panel
(c) uses FABDEM. Note the improved delineation of floodplain features in panel (c) and lack of flood propagation in panel (a). Basemap
ESRI World Imagery.

Figure 2. Location of the three villages that were the focus of our household survey (Buon Triet, Thon 3 Khue Ngoc Dien, and Thon 6
Vu Bon) in Dak Lak Province. The river gauge record is displayed with a red diamond. Basemap © OpenStreetMap contributors 2023.
Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

assets, and risk/shocks. In the risks/shocks section, respon-
dents were asked to identify their land parcels from a cadas-
tral map and whether the land parcel(s) had flooded in the last
10 years. Respondents subsequently gave the month and year
of the flood of their parcel. This data set provides a unique5

opportunity to corroborate flood observations with remotely
sensed flood observations, as well as to test the accuracy of
the flood simulations from the hydrodynamic model. Addi-
tionally, the corroboration of data sets will allow us to assess
the quality of the household responses, especially in terms of10

recall where the quality of response decreases the more time
that passes from an event (i.e. a respondent is more likely to
more accurately recall a flood event from 1 year ago as op-
posed to one from 9 years ago) (Bell et al., 2019). For this
analysis, we focussed on three villages: Buon Triet, Thon 315

Khue Ngoc Dien, and Thon 6 Vu Bon. These three villages
are located along the Krong Ana River in southern Dak Lak
Province and experienced flooding in 2016 according to the
remotely sensed record (see Fig. 2). We excluded Ea Sup vil-
lage in northern Dak Lak as this village did not experience 20

flooding in the period of the remotely sensed record.

3.2 Remote sensing data

Sentinel-1 synthetic aperture radar imagery was processed
with Google Earth Engine using a change detection approach
(UNOOSA, 2021). An image taken before the flood (base- 25

line) is compared to an image taken during/immediately af-
ter the flood (target), and a different threshold was applied to
classify areas in the flooded image where radar backscatter is
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Figure 3. Hydrograph for Giang Son Gauge. Annual flow maximum (AMAX) depicted with black dots, with the AMAX for 2016 highlighted
with a red diamond.

lowered – and thus indicating the presence of surface water.
Discharge records from Giang Son (see Fig. 2. for location)
suggested peak discharge occurred on 6 November 2016. A
search of the catalogue of Sentinel scenes yielded no images
for 6 November 2016, with this search limited to images with5

“VH” polarisation. However, scenes were present on 7, 10,
and 16 November and were used as target images. Scenes
from 4 and 12 December were also included to capture the
second flood peak of 2016 that occurred in early December.
Scenes from September 2016 were selected as a dry “base-10

line”. Through trial and error, a difference threshold of 1.30
was used.

3.3 Gauge data

Daily discharge data for Giang Son gauge were obtained
from two sources. A record from 1978 to 1992 was sourced15

from the Global Runoff Data Centre (GRDC), and a record
from 2000 to 2020 was sourced from Economy and Envi-
ronment Partnership for Southeast Asia. This gave a com-
paratively short record of 36 years (Fig. 3). Annual max-
ima discharge (AMAX) was calculated for the record. The20

older data (1978–1992) only had three AMAX readings over
600 m3 s−1 (∼ 21 % of years) with an average AMAX of
396 m3 s−1, whereas the later record (2000–2020) had eight
AMAX readings (40 % of years) above 600 m3 s−1 and an
average of 538 m3 s−1.25

Flood frequency analysis was performed by selecting the
most suitable probability distribution for the flood frequency
curve. The choice of the model was assessed using three
model selection criteria, namely Akaike information crite-

rion (AIC), Bayesian information criterion (BIC), and the 30

Anderson–Darling goodness-of-fit test (ADC). The ADC test
has been reported to perform well for small sample sizes and
heavy tail distributions and performs marginally better for
a sample size used in this study (36) (Di Baldassarre et al.,
2009). No model selection criterion is consistently the best; 35

thus there is utility using multiple model selection criteria
(Laio et al., 2009).

Using the nsRFA package in R (Viglione et al., 2023) we
find the best distribution based on the AIC and BIC crite-
ria is Pearson Type III (P3). However, the ADC test results 40

suggest the generalised extreme value (GEV) distribution is
the best model, with a minimum A2 score of 0.52. As there
is no clear best distribution, we follow the advice of Laio et
al. (2009) and use both models for the next stage of our anal-
ysis – deriving the design flood using the Bayesian Markov 45

chain Monte Carlo (MCMC) method.
The Bayesian approach has the advantage over other com-

mon methods (moments, maximum likelihood) to estimate
the parameters of at-site flood frequency curves in that it
can provide credibility intervals (Gaume, 2018). This is im- 50

portant in our analysis where we are trying to match the
return period calculated from a short record to inundation
maps. The Bayesian MCMC approach is comprehensively
described in Reis and Stedinger (2005). We describe the
Bayesian MCMC interface approach here briefly. First, ini- 55

tial parameter estimates are made through the posterior dis-
tribution, calculated using Bayes’ theorem (Eq. 1). For flood
frequency, we determine the probability that a frequency
function (P ) has parameters θ given the observed realisa-
tions D (i.e. our data). We use this to describe the way in 60
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Figure 4. Design flood estimation at Giang Son using the Bayesian MCMC interface and the Pearson type III (P3) distribution.

which one’s beliefs about observing parameters θ for a given
P are updated having observed D.

P(θ |D)= P (D |θ) x
P (θ)

P (D)
(1)

P(θ |D) is the conditional probability of θ given the observed
realisations (D). In other words, P(θ |D) is the posterior5

probability and ultimately what we would like to infer. The
prior probability not taking into account any realisations (D)
is P(θ). The probability of D given θ is given by P(D|θ).
The final term is P(D), which is the prior probability of D
and acts as a normalising constant. Due to the extreme diffi-10

culty in computing the normalisation constant, a simulation
Monte Carlo technique is used (Haddad and Rahman, 2011).

Markov chain Monte Carlo simulations (MCMC) sam-
ple probability distributions based on constructing a Markov
Chain with the desired distribution as its equilibrium distri-15

bution (Haddad and Rahman, 2011). The algorithm used here
is the Metropolis–Hastings algorithm. The Markov chain is
started from a random initial value and run for many itera-
tions using a Gaussian proposal density. More details of the
Metropolis–Hastings algorithm can be found in Metropolis et20

al. (1953), Hastings (1970), and Chib and Greenberg (1995).
Using the Bayesian MCMC interface, we find the return

period of the 2016 flood to be ∼ 10 years. However, when
considering the 90 % confidence interval the return period
ranges between 6 to 44 years for the P3 distribution (Fig. 4)25

and 5 to 25 years for the GEV distribution (Fig. 5) for the
2016 event, thus showing the sensitivity of flood return pe-
riod estimation based on the distribution used.

3.4 Population data

To calculate the population exposed to flooding, we require 30

gridded estimates of population counts. For this analysis,
we chose the building-constrained population estimates at
3 arcsec (∼ 90 m) from WorldPop (Stevens et al., 2015; Bon-
darenko et al., 2020). This version of WorldPop distributes
census information from administrative units to building lo- 35

cations using a random forest approach with various spatial
covariates. Population estimates are for 2020. The census
data used to create this version of WorldPop are from the
2009 Vietnamese census but have been projected to the year
2020 and adjusted to match United Nations (UN) population 40

estimates. An alternative method to disaggregate population
is called “unconstrained”, where the population is distributed
to all habitable land pixels. We avoided using such an uncon-
strained gridded population data set as the unconstrained ver-
sions tend to distribute population to uninhabited land (i.e. a 45

frequently flooded floodplain) (Stevens et al., 2019; Niveves
et al., 2021), which typically leads to overestimation of flood
risk (Smith et al., 2019).

3.5 Land type data

To investigate flood exposure by land use type, we used 50

the Global Human Settlement Layer Settlement Model Grid
(GHS-SMOD) (Pesaresi et al., 2019) to classify three land
types: rural, peri-urban, and urban. After reprojecting the
data, we resampled by nearest neighbour to the resolution
of each GFM. We then classified the seven settlement ty- 55

pologies in GHS-SMOD into three classes. For our urban
class, we used grid cells from the “Urban Centre”, “Dense
Urban Cluster”, and “semi-dense urban cluster” classes in
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Figure 5. Design flood estimation at Giang Son using the Bayesian MCMC interface and the generalised extreme value (GEV) distribution.

GHS-SMOD. For peri-urban, we used the “suburban or peri-
urban” class in GHS-SMOD, while our rural class was made
up from the remaining classes in GHS-SMOD.

4 GFM evaluation

Here we evaluate the MERIT- and FABDEM-based GFM5

fluvial hazard outputs against remotely sensed flood extents
and village level flood data. An analysis is also undertaken
of pluvial hazard maps due to the potential for flooding on
streams smaller than the minimum catchment size repre-
sented by the fluvial model. However, we first compare the10

remotely sensed flood extents with the household survey data
and discuss the utility of these observation data.

The principal metric for this evaluation is the well-known
contingency-table-based critical success index (CSI) that
uses binary flooded or not flooded information to measure15

the agreement between two data sets as shown in Eq. (2):

CSI=
a

a+ b+ c
. (2)

In this case the spatial unit of the comparison is the land
parcels reported in the household survey data, with land
parcels considered flooded in the GFM simulation or remote20

sensing if any part of the land parcel intersects with the flood
extent from these data sets. Thus a is the number land parcels
flooded in both data sets, and b and c are the number flooded
land parcels uniquely flooded in one data set but not the other.
Therefore, value a is the number of land parcels where the25

data sets agree and b+ c equals the number of land parcels
where they do not agree. The critical success index will be
1 when all land parcels are correctly simulated and 0 when

none are. Note that the critical success index generally im-
proves for rivers with larger floodplains because a greater 30

number of land parcels can be far from the flood edge, mean-
ing direct inter-site comparison should be treated with cau-
tion.

4.1 Comparison of remote sensing and household
survey data 35

Summary statistics in Table 1 indicate that Thon 3 Khue
Ngoc Dien (KND) has the greatest agreement between the
remotely sensed flood extent from 2016 and the household
survey data at 62 % CSI when including land parcels reported
flooded in 2016 and those reported flooded between 2009 and 40

2019. Land parcels only flooded in the remote sensing were
twice as prevalent (101 land parcels) as land parcels only
flooded in the household data (48 land parcels). The spatial
arrangement of the land parcels that are dry in the household
data but wet in the remote sensing is plotted in Figs. 6–8 (a 45

and b). The distribution of these suggests that the vast major-
ity were likely flooded because they sit between land parcels
identified as flooded in both data sets, meaning that there is
likely to be a recall bias towards non-reporting amongst the
households. Furthermore, despite widespread remotely ob- 50

served flooding in 2016, households commonly report flood-
ing in other years that were typically observed dry in the
available remote sensing data (not shown here), suggesting
recall of historical flood year was also unreliable. Most of
the land parcels flooded only in the household data sit close 55

to the edge of the remotely sensed flood extent, potentially
indicating that shallow flood depths are under-reported in the
remotely sensed data (which would be expected in locations
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Figure 6. Flood maps for Thon 3 Khue Ngoc Dien. Panel (a) shows flood extent from 2016 acquired from Sentinel-1 data. Panel (c) shows
annual exceedance probability (AEP) for GFM V2, and panel (e) shows AEP for GFM V3. Panels (b), (d), and (f) show zoomed-in versions
of the remote sensing and GFM outputs.

of low flood depth due to emergent vegetation or other sur-
face objects).

Agreement between the remotely sensed and household
data at Thon 6 Vu Bon (VB) and Buon Triet was substan-
tially lower in Table 1. In the case of Thon 6 VB a CSI score5

of 37 % was made up of 114 land parcels where the data sets
agree, but 132 land parcels were only flooded in the house-
hold data and 61 land parcels only flooded in the remotely
sensed data. As with Thon 3 KND, most of the land parcels
flooded only in the remote sensing data sit in flat locations 10
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Figure 7. Flood maps for Thon 6 Vu Bon. Panel (a) shows flood extent from 2016 acquired from Sentinel-1 data. Panel (c) shows annual
exceedance probability (AEP) for GFM V2, and panel (e) shows AEP for GFM V3. Panels (b), (d), and (f) show zoomed-in versions of the
remote sensing and GFM outputs.

between land parcels flooded in both data sets, suggesting
a recall bias towards omission of flooding in the household
data (see Fig. 7a and b). The potential omission rates are sim-
ilar between Thon 3 KND and Thon 6 VB, and in both cases

the recall accuracy regarding the year flooded also appears to 5

be low.
Land parcels flooded only in the household survey data are

more prevalent at Thon 6 VB than the other sites. In some
cases these are topographically too high to be part of the flu-
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Figure 8. Flood maps for Buon Triet. Panel (a) shows flood extent from 2016 acquired from Sentinel-1 data. Panel (c) shows annual
exceedance probability (AEP) for GFM V2, and panel (e) shows AEP for GFM V3. Panels (b), (d), and (f) show zoomed-in versions of the
remote sensing and GFM outputs.

vial floodplain. It is possible that some of these land parcels
are flooded by pluvial events not associated with the fluvial
floodplain, with 11 land parcels in the north-east quarter of
the village identified as flooded by households sitting within
the GFM simulated pluvial floodplain but not the fluvial5

floodplain (pluvial flooding is discussed in more detail later
in Sect. 4.3). However, households in the villages surveyed
typically own a number of land plots distributed around the
village, meaning it is also possible that some household land
plots have been geolocated incorrectly. The remotely sensed 10
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Table 1. Comparison of flooded land parcel data from remotely sensed imagery and household survey responses.

Flooded in Flooded in only Flooded only CSI (without
both data household in remote penalising for only

sets data sensing data flooded in remote sensing)

Thon 3 252 48 101 0.62 (0.84)
Thon 6 114 132 61 0.37 (0.46)
Buon Triet 184 62 225 0.39 (0.74)

flood extents are more fragmented at this site than the other
two villages, and numerous patches of flooding lack connec-
tivity to the channel, suggesting some flooding is misclassi-
fied or unresolved at this site in the remotely sensed data or
that pluvial flooding from local sources might have played a5

greater role here than at the other sites.
Buon Triet had the highest number of land parcels flooded

only in the remotely sensed data (Table 1). As with the other
villages the spatial arrangement of the land parcels (Fig. 8)
suggests a substantial recall bias, although field observations10

indicate the presence of flood defences on the north side of
the Krong Ana River potentially complicating the data at this
site. If CSI is recalculated in Table 1 without penalising for
flooded only in the remote sensing data (i.e. ignoring the re-
call bias), the metrics increase to 0.84 (Thon 3 KND), 0.4615

(Thon 6 VB), and 0.74 (Buon Triet), which are scores more
typical of accuracy statistics commonly reported in the litera-
ture for SAR (synthetic aperture radar) flood extent mapping.

In summary, both data sets appear to be useful for assess-
ing the performance of the GFM at the three villages. How-20

ever, the household survey almost certainly underreports flu-
vial flooding, especially when the data are thinned to specify
flooding in 2016. Therefore, subsequent analysis will only
consider the flooded parcel count from the household sur-
vey for the combined years between 2009–2019. Consistency25

between the data sets in terms of hits and flooded only in
the household data is consistent with typical performance
metrics for SAR-derived flood extent mapping at Thon 3
and Buon Triet, with some evidence that the remote sens-
ing under reports around the flood edge. At Thon 6 VB the30

remotely sensed imagery is fragmented with the household
data, suggesting a significant under-identification of flooded
areas possibly due to resolution or shallow flooding under
vegetation, but this cannot be proven with the data available.
In a subsequent analysis we have disaggregated the analysis35

of hits, misses, and false alarms when comparing the GFM
return periods to observed data such that the observation data
error characteristics can be discussed.

4.2 Evaluation of GFM fluvial hazard simulations
based on MERIT and FABDEM DEMs40

Gauging station data at Giang Son (see Figs. 3–5) indicate
that the 2016 flooding observed in the remote sensing data
was most likely a 0.1 AEP (1-in-10 year) event, with a con-

fidence interval from 0.2 to 0.02 AEP due to the short record
length. The flood return period will also change in space 45

adding additional unknown uncertainty at the villages which
sit up to 20 km away from the gauge. Nevertheless, informal
discussions with households and the fact that none reported
flooding of their dwellings suggest that the best-estimate
AEP was plausible and that this was not a once in a lifetime 50

magnitude flood.
Extreme discharge return periods in the GFM are based on

regionalisation of gauging station data (Smith et al., 2015)
that will include significant errors at individual river reaches
despite aiming to be unbiased at large scale (Devitt et al., 55

2021). Uncertainties in channel conveyance and friction pa-
rameters were not assessed here and would also modulate the
discharge to flood extent relationship. We therefore compare
observations to simulated hazard across all AEPs for both the
MERIT- and FABDEM-based GFM and plot CSI scores in 60

Fig. 9 under the assumption that a better DEM will allow for
more accurate simulation of the observed data at some event
magnitude. As with the intercomparison of household and
remotely sensed data, the unit of space used is the land par-
cel rather than the individual remotely sensed or GFM pixels. 65

These locations and the GFM-simulated hazard are plotted in
Figs. 6–8 subplots c and d for the MERIT GFM and subplots
e and f for the FABDEM GFM.

In addition to the CSI, the proportion of observed wet and
observed dry land parcels simulated as wet at each return 70

period is plotted in Fig. 10 as normalised cumulative distri-
butions (normalisation is needed due to differing numbers of
observed wet and dry cells). This visual metric avoids assess-
ing the accuracy of a given AEP and allows the hit rate to be
disaggregated from false alarms, which we believe to be nec- 75

essary when interpreting the household data due to the bias
outlined above. A GFM that is inherently better able to sim-
ulate the flood hazard will see a growth in the proportion of
observed wet land parcels prior to a growth in the proportion
of observed dry land parcels inundated by the model (note 80

that the metric is limited by the number of return periods
simulated and the best simulation might sit between return
periods). Ideally, all observed wet land parcels would be in-
undated before the observed dry cells (perfect model), while
a model will be worse than a random guess if a greater pro- 85

portion of observed dry land parcels are inundated before the
observed wet land parcels. However, for the household sur-
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Figure 9. Critical success index scores by return period against remotely sensed (solid lines) and household survey (dotted lines) validation
data for a MERIT-based (red) GFM and a FABDEM-based (black) GFM. The return period on the x axis refers to the flood return period
from the GFM.

vey we expect to see simulation of observed dry land parcels
due to recall bias.

For all villages the peak CSI between the remote sensing
and GFM simulations was greater than between the village
data and GFM. For Thon 3 KND and Thon 6 VB the best5

model performance against both the household and remotely
sensed data occurs in the range of 0.02–0.05 AEP, with very
good agreement (> 0.8 CSI) between FABDEM and the re-
motely sensed data. When disaggregated into wet and dry
CDF (cumulative distribution function) plots, the FABDEM10

GFM inundates almost all (80 %–100 %) of identified wet
land parcels by 0.05 AEP at Thon 3 KND and Thon 6 VB,
although inundation of dry land parcels increases around the
same AEP at these villages, suggesting the model optimal
performance might sit just above 0.05 AEP. The increase in15

dry land parcel inundation at this AEP in the Thon 3 KND
household survey data is nearly twice that shown with the re-
motely sensed data, which is likely the result of previously
mentioned recall bias in the household survey data.

The MERIT GFM has a more gradual increase in the land 20

parcels inundated, suggesting a fundamentally different in-
undation dynamic. For FABDEM GFM much of the valley
bottom inundates at the about the same magnitude, while
for the MERIT GFM the inundation extents have a relatively
gradual increase with flood magnitude. MERIT DEM tends 25

to be smoother than FABDEM due to larger filtering win-
dows that were applied to reduce noise from the underlying
SRTM DEM relative to that required when processing the
Copernicus DEM data that underpin FABDEM. On the one
hand this might be expected to flatten the valley floor and re- 30

sult in widespread inundation at a particular magnitude (and
may do so on larger floodplains). However, it also reduces the
definition between the valley bottom and sides at our sites
such that FABDEM appears to have a clearer demarcation
between valley floor and valley sides. 35

In summary, the FABDEM GFM was able to attain greater
accuracy to both sets of observation data and simulated a
sharper transition from high hazard (valley bottom) to lower
hazard (valley side). Local-scale inundation models based on
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Figure 10. Cumulative density functions tracking agreement with observed wet and dry land parcels in the household survey data (a, c, e)
and remotely sensed data (b, d, f). Solid lines are FABDEM GFM, and dotted lines are MERIT GFM.

lidar often show a characteristic “valley filling” event mag-
nitude, where a substantial area of the floodplain inundates
shortly after the river overtops its banks, followed by a sub-
stantial drop in inundation extent growth with event mag-
nitude after the river valley has filled. MERIT GFM simu-5

lated a relatively gradual increase in inundation extent with
magnitude and has less fidelity at segmenting the most and
least exposed locations. At Thon 3 KND, the MERIT DEM
model outperformed FABDEM at lower return periods, but
this is because the flood extent is substantially less sensitive10

to flow magnitude in the MERIT model, most likely due to
the smoothness of the DEM. The maximum fit between the
FABDEM model and validation data is higher, meaning this
is not a reason to conclude the DEM is more accurate or bet-
ter from a flood modelling perspective. In our experience of15

using MERIT DEM in other contexts it is likely that MERIT
DEM would struggle not to overestimate a low-magnitude
flood at Thon 3 KND because we see such low sensitivity to
flow magnitude.

At Buon Triet the MERIT GFM obtained a greater CSI, al- 20

though for a very high magnitude flood around 0.005–0.002
AEP, and both GFMs best fit the data at below 0.01 AEP
(> 1-in-100 year return period). Analysis of Fig. 8 indicates
that many of the locations only inundated during very high
magnitude flooding sit on the northern side of the village 25

along a small tributary that is below the minimum catchment
size represented in the fluvial component of the GFM. There-
fore, an analysis of pluvial flood model outputs is presented
next.

4.3 Evaluation of GFM pluvial hazard simulations 30

based on FABDEM DEM

When simulating flood hazards, flooding caused by intense
rainfall at the local scale is often simulated separately from
the fluvial flood hazard and referred to as pluvial or surface
water flooding. The exact definition of this type of flooding 35

and how it should be simulated with respect to fluvial flood-
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Figure 11. Six panel fluvial vs. pluvial flood maps for three villages. Only FABDEM GFM results are plotted.

ing is contested. True surface water flooding where no river
channels are involved in the inundation dynamics represents
one definition. However, all fluvial models fail to capture
small streams at some scale, and in practice flooding from
these is often only simulated as part of a pluvial model if at5

all. The concept behind the modelling is further complicated
by compounding effects between fluvial and surface water

flooding that are rarely simulated. There are also substantial
challenges associated with capturing data for model valida-
tion at these scales due to the limited inundation extents and 10

durations. Remote sensing often misses pluvial flooding due
to its short duration and flow inundation depths. However, the
household survey data obtained here are useful because they
observe household land parcels being impacted by flooding
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Figure 12. Cumulative density functions tracking agreement with observed wet and dry land parcels in the household survey data (a, c, e)
and remotely sensed data (b, d, f). Solid lines are FABDEM GFM including combined pluvial and fluvial hazard, and dotted lines are MERIT
GFM including combined pluvial and fluvial.

in a way that is insensitive to event duration, spatial extent, or
source and only need to be intense enough for the household
to recall the event.

In the GFM used here the demarcation between the fluvial
and pluvial model occurs for any river channel with a catch-5

ment smaller than 50 km2. Thus, the pluvial model extends
far into what many practitioners will class as fluvial flood-
plain. Most GFMs do not include a pluvial model due to low
expectations around accuracy and challenges associated with
model validation. However, commercially focused models,10

like the one used here, often include a pluvial component due
to historically significant losses from such flooding (Rözer et
al., 2019; Singh et al., 2023). Here we attempt one of the first
evaluations of a GFM pluvial model but restrict the discus-
sion of map data to FABDEM due to its greater accuracy for15

the fluvial modelling.

Hazard at our village sites from the FABDEM GFM plu-
vial flood model is mapped in Fig. 11b, d, and f, with fluvial
hazard plotted in subplots a, c, and e. At Thon 3 KND the
pluvial hazard sits largely within the fluvial floodplain but 20

increases the hazard to the south and along the northern edge
of the survey land parcels. The principal fluvial floodplain to
the north and north-west of the village is not inundated by the
pluvial model. At Thon 6 VB the pluvial model identifies in-
creased hazard along a topographic depression that runs from 25

the centre towards the north-east of the village where a num-
ber of land parcels observed as wet in the household survey
data only flood in the fluvial model at high magnitude. At
Buon Triet the pluvial model does not inundate the fluvial
floodplain to the south of the village. However, the hazard 30

is significantly greater along the northern edge of the village
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Figure 13. Total exposure for fluvial and pluvial flooding for the 11 provinces analysed. Flood return periods (RPs) range from the 1-in-5
year flood to the 1-in-1000 year flood (x axis). The GFM MERIT is given in orange and GFM FABDEM in blue.

along a stream that is too small to be represented in the fluvial
model.

At all three villages the CSI scores were lower for com-
bined fluvial and pluvial hazard due to an increase in the false
alarm rate that was greater than the additional hit rate bene-5

fit, although the inclusion of the pluvial model had less im-
pact on the CSI scores than the choice of DEM. Cumulative
density functions tracking agreement with observed wet and
dry land parcels are plotted in Fig. 12. These are identical to
those in Fig. 10 except the flood hazard takes the maximum10

of the fluvial and pluvial model AEP. At Thon 3 KND and
Thon 6 VB the inclusion of the pluvial model has a minor vi-
sual impact on these plots for rare flood events (AEPs below
0.05), but somewhat increases the hit rate and false alarms for
the more frequent floods. At Buon Triet the impact is more15

pronounced due to the tributary entering the floodplain to the
north of the village as discussed previously in relation to the
fluvial hazard maps.

In conclusion, the pluvial model can identify some of the
hazard related to flooding from small tributaries that is not20

captured in the GFM fluvial model. For a risk-adverse ap-
plication of the GFM, considering outputs from the pluvial
model is likely to be beneficial, especially for smaller rivers
that sit close to the minimum catchment size represented
in the fluvial model. False alarms increase marginally faster25

than the hits, which might indicate the model is less accurate
due to over-prediction of the hazard. However, our observa-
tions are likely to lack the fidelity to identify whether the
model has skill with respect to “true” surface water flooding
away from a river channel, and we would therefore expect the30

pluvial hazard to over-predict the observation data available.
In the case of the remotely sensed data, it almost certainly

does not capture surface water flooding due to the expected
short duration, low depth, and limited spatial extent. How-
ever, in the case of the household survey data we can hypoth- 35

esise, although not validate, that the under-reporting bias will
likely increase for smaller-scale flooding of limited spatial
impact given that households are reporting flooded agricul-
tural land rather than buildings. A different set of test cases
will be needed to disaggregate the performance of the GFM 40

with respect to surface water flooding.

5 Flood exposure for the Central Highlands of Vietnam

Flood exposure (i.e. the number of people in flooded pixels in
the GFM) is calculated for 11 Vietnamese provinces for both
fluvial and pluvial flooding for both versions of the GFM. 45

Population count is taken from WorldPop data.

5.1 Exposure calculations

Estimates of flood exposure for the region reveal GFM FAB-
DEM gives consistently higher exposure estimates than GFM
MERIT across all return periods (Fig. 13). We compare flood 50

exposure from GFM FABDEM by province for the 1-in-
100 year flood event. The 1-in-100 year flood event is com-
monly used for planning purposes and thus was selected.
Our analysis in Fig. 14 reveals that Quang Nam province
has the most exposure with 459 000 exposed to flooding, or 55

31.9 % of the province’s population. Other coastal provinces
of Binh Dinh, Khanh Hoa, and Quang Ngai have significant
exposure between 340 000 and 370 000, or 25 %–30 % of to-
tal province population. The other coastal province in this
analysis, Phu Yen, has less exposure of around 130 000, or 60



18 L. Hawker et al.: Assessing LISFLOOD-FP with FABDEM using household survey and remote sensing data

Figure 14. Flood exposure for the 1-in-100 year flood return period as total numbers per province (purple) and percent of total province
population (orange).

approximately 14 % of province population. Of the inland
provinces, Lam Dong has the largest exposure with approx-
imately 200 000, or ∼ 14 % of the province population. Dak
Lak, the province of our villages, has an exposure of around
187 000, or 8 % of the population. Quang Nam, the most ex-5

posed province, has ∼ 8× as much exposure as the least ex-
posed (Dak Nong). Nevertheless, the exposure, and partic-
ularly the percent province population exposed to flooding,

is significant for all regions, with even the lowest percent
province population exposed 7.4 %. 10

For fluvial flooding we found 32.8 % more exposure in the
GFM FABDEM model compared to GFM MERIT for the
1-in-20 year flood event and 25.5 % more for the 1-in-100
year flood event (∼ 0.5 million people) (Table 2). Variation
between provinces varies significantly, with Ninh Thuan ac- 15

tually showing a decrease in exposure in GFM FABDEM for
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Figure 15. Flood exposure per province for fluvial flooding. Results shown for GFM MERIT (orange) and GFM FABDEM (blue). Flood
return periods (RPs) range from the 1-in-5 year flood to the 1-in-1000 year flood (x axis). Note the y axis (exposure to flooding) varies per
province.

the 1-in-20 year flood event. Pluvial flooding gives greater
exposure (Table 3) than fluvial flooding, with GFM FAB-
DEM giving 32 % and 16.1 % more exposure for the 1-in-20-
and 1-in-100 year flood respectively. There is even greater
variation between provinces compared to fluvial flooding,5

with Kon Tum province having ∼ 10 % less exposure for

both the 1-in-20- and 1-in-100 year flood events in the GFM
FABDEM model. The biggest difference is in Dak Nong
province, with GFM FABDEM estimating almost 50 % more
exposure compared to GFM MERIT. 10

Across the spectrum of return periods analysed, GFM
FABDEM gives more exposure than GFM MERIT for all
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Figure 16. Flood exposure per province for fluvial flooding as a percentage of total province population. Results shown for GFM MERIT
(orange) and GFM FABDEM (blue). Flood return periods (RPs) range from the 1-in-5 year flood to the 1-in-1000 year flood (x axis). Note
the y axis (% province population exposed to flooding) varies per province.

return periods except above the 1-in-250 year event in Kon
Tum. For one of the most extreme climate scenarios (SSP5-
RCP8.5), Hirabayashi et al. (2021) used CMIP6 data to esti-
mate that the present-day 1-in-100 year flood event could be
between the 1-in-20 and 1-in-50 year flood event by 2071–5

2100 for this region. In other words, the 1-in-100 year flood

event exposure shown in our figures could occur 2–5× more
frequently than present day, significantly altering the risk
profile of the region.
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Figure 17. Total exposure (y axis) for fluvial flooding by land cover
(rural, peri-urban, and urban) for GFM MERIT and GFM FAB-
DEM. Flood return periods (x axis) range from the 1-in-5 year flood
to the 1-in-1000 year flood.

5.2 Exposure by land use type

Further analysis across land use types reveals intriguing dif-
ferences between GFM MERIT and GFM FABDEM. GFM
FABDEM gives greater exposure across all return periods
(Fig. 17), but for all return periods it has a higher propor- 5

tion in urban areas. The greatest differences are at the most
frequent flood return periods, where the proportion of peo-
ple exposed is approximately 7 % higher in GFM FABDEM
compared to GFM MERIT for the 1-in-5 year flood and the
1-in-10 year flood (Fig. 18). This could be explained by FAB- 10

DEM removing buildings from the DEM, while MERIT does
not. Exposure in rural areas is approximately the same per-
cent between both models. The increase in percent of expo-
sure in urban areas in the GFM FABDEM is made up of ap-
proximately the same percentage less exposure in the peri- 15

urban areas.
Exposure by land use type varies greatly between the

provinces (Figs. 19 and 20). The coastal provinces, partic-
ularly Khanh Hoa and Ninh Thuan, have a high percent of
exposure in urban areas, with Ninh Thuan being between 20

60 %–70 % across return periods (Fig. 20). Conversely, the
inland Central Highland provinces have a much greater com-
position of risk in rural areas, in particular Dak Lak and Dak
Nong, with ∼ 70 % of people exposed to flooding in rural ar-
eas. With increasing urbanisation throughout the region, risk 25

profiles could shift to more urbanised areas; thus care should
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Table 3. Pluvial flood exposures for the 1-in-20- and 1-in-100 year return period flood for both GFM MERIT and GFM FABDEM.

Province GFM FABDEM GFM MERIT GFM FABDEM GFM MERIT % difference GFM FABDEM % difference GFM FABDEM
1 in 20 1 in 20 1 in 100 1 in 100 to GFM MERIT 1 in 20 to GFM MERIT 1 in 100

Binh Dinh 290 500 179 300 457 800 335 600 + 38.3 % + 26.7 %
Dak Lak 199 400 151 100 299 700 260 700 + 24.2 % + 13.0 %
Dak Nong 88 300 45 800 119 500 80 500 + 48.1 % + 32.6 %
Gia Lai 172 700 159 300 251 100 245 500 + 7.8 % + 2.2 %
Khanh Hoa 217 100 160 200 375 400 291 900 + 26.2 % + 22.2 %
Kon Tum 99 300 110 900 137 300 156 200 − 11.7 % − 13.8 %
Lam Dong 217 800 141 500 293 900 233 100 + 35.0 % + 20.7 %
Ninh Thuan 104 200 81 000 182 000 161 600 + 22.3 % + 11.2 %
Phu Yen 141 500 102 800 224 400 187 800 + 27.3 % + 16.3 %
Quang Nam 235 000 207 100 358 800 375 500 + 11.9 % − 4.7 %
Quang Ngai 207 100 156 100 320 300 271 700 + 24.6 % + 15.2 %

Total 1 972 900 1 495 100 3 020 200 2 600 100 + 32.0 % + 16.2 %

Figure 18. Total exposure per flood return period as a percentage by land cover (rural, peri-urban, and urban) for GFM MERIT and GFM
FABDEM (y axis). The percentages refer to the percent of exposure for the associated return period in the given land cover (x axis).
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Figure 19. Total exposure (y axis) for fluvial flooding by land cover (rural, peri-urban, and urban) for GFM FABDEM per province. Flood
return periods (x axis) range from the 1-in-5 year flood to the 1-in-1000 year flood.

be taken when planning new urban developments. Flood de-
fences were not included in any of the model simulations
here and would likely make a significant difference to the
exposure, especially for FABDEM.

6 Conclusions5

In this paper, we assess a new GFM, taking a unique ap-
proach to validate using two data sources – commonly used
remote sensing data and household survey data. We find that
the GFM that uses FABDEM DEM matches a relatively fre-
quent flood event (∼ 1-in-10 year flood event) more closely10

than a GFM using the MERIT DEM. The improved grid
spacing (1 arcsec compared to 3 arcsec), and most impor-
tantly removal of both buildings and trees, means FABDEM

gives more realistic inundation extents when compared to a
GFM using MERIT, as the GFM FABDEM follows the be- 15

haviour of more local-scale models built with lidar data that
show a characteristic “valley filling” event magnitude.

By using two sources of validation data, we found that nei-
ther are perfect to the extent that the FABDEM GFM could
provide a better fit to both validation data sets (in terms of 20

CSI) than they could to each other. Household surveys, where
participants were asked to specify the year of a flood on a
given land parcel, suffered from recall bias. The longer ago
the flood event, the more difficulty the participants had in re-
membering the timing and severity of the flood. This could 25

have been due to no “once in a generation” flood impact-
ing the surveyed villages in the survey period – instead there
were several relatively small non-problematic floods. The re-
mote sensing data, often assumed by practitioners to depict
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Figure 20. Total exposure per flood return period as a percentage by land cover (rural, peri-urban, and urban) for GFM FABDEM (y axis)
per province. The percentages refer to the percent of exposure for the associated return period in the given land cover (x axis).

the “true” flood and thus be the most suitable data to bench-
mark a model, are not without their deficiencies. By using
two data sources, as well as field surveys, we find that re-
mote sensing data are not always reliable, especially on the
flood margins. Remote sensing allows us to “see” flooding5

from space, but what remote sensing sees may not directly
correlate to true risk. If participants do not recall events, it
is unlikely the event had much impact, highlighting poten-
tial adaptations that are invisible to remotely sensed images.
Therefore, when assessing flood model performance, mul-10

tiple validation data set sources are preferable and sources
should be rigorously assessed. Often only remote sensing
sources will be available, but wherever possible different
classification schemes and/or different satellites should be
used and augmented with auxiliary sources (e.g. social media15

and media reports).

Lastly, we presented flood exposure estimates for 11
provinces in the central region of Vietnam. This helps fulfil
the dearth of studies for the region (Nguyen et al., 2021) and
the comprehensive flood hazard information across a spec- 20

trum of flood severities. The flood hazard data presented
in this paper are available from the Natural Environment
Research Council Environmental Information Data Centre
(NERC EIDC) (Hawker et al., 2022a). We find the coastal
provinces have the most exposure, with Binh Dinh, Quang 25

Nam, and Quang Ngai having the most exposure for both
fluvial and pluvial flooding. For the 1-in-100 year flood,
we estimate ∼ 2.5 m will be exposed to fluvial flooding and
∼ 3 m to pluvial flooding. The proportion of people exposed
to flooding in each province is significant with almost a third 30

of the total population of Ninh Thuan and Quang Ngai ex-
posed to the 1-in-100 year event. The FABDEM model finds
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a greater proportion of flood exposure in urban areas relative
to MERIT DEM, prior to considering flood defences. With
extreme events set to become more common, and the urbani-
sation in the region which can encroach onto risky floodplain
areas, it is essential proper planning is implemented to min-5

imise the flood risk.

Code availability. The flood simulations use LISFLOOD-FP,
with a similar version of the model used here available at
https://doi.org/10.5281/zenodo.6912932 (Neal et al., 2022). The
other analysis was conducted using bespoke scripts in R, with maps10

made in QGIS.

Data availability. TS5The Scientific colour maps were used
for accurate and fair visualisation (Crameri et al., 2020;
https://doi.org/10.5281/zenodo.8035877, Crameri, 2023). Flood
data (GFM FABDEM) used in this paper are available from15

https://doi.org/10.5285/74e4e6ec-a119-4dc7-8ada-9513252b1b60
(Hawker et al., 2022a). GFM MERIT data are available from
Fathom for academic purposes: please contact James Savage at
j.savage@fathom.global. Discharge data for Giang Son were ob-
tained through the Global Runoff Data Centre (GRDC). WorldPop20

data are available at https://doi.org/10.5258/SOTON/WP00685
(Bondarenko et al., 2022). Global Human Settlement Layer
Settlement Model Grid (GHS-SMOD) data are available
from https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-
BF9E64DA5218 (Pesaresi et al., 2019).25

Author contributions. LH designed and led the study. LH and JN
drafted the manuscript, and all authors reviewed and edited the
manuscript. LH and JS ran the flood model simulations. LH and
RL processed the river gauge data and computed flood return pe-
riods. TK processed the satellite flood imagery. YZ, AG, and PKN30

led the design and implementation of the household survey with
support from LH, JN, TDT, SF, and FA, as well as a team of Viet-
namese enumerators. LH, JN, and YZ carried out the formal anal-
ysis. Project administration and funding acquisition were led by JN
and PKN.35

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-40

resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. This research is funded by the Vietnam Na-
tional Foundation for Science and Technology Development45

(NAFOSTED) and Natural Environment Research Council (NERC)

under grant no. NE/S003061/1. We would also like to thank Niels
Wendt for his invaluable help and guidance for the household sur-
vey.

Financial support. This research has been supported by the Na- 50

tional Foundation for Science and Technology Development and the
Natural Environment Research Council (grant no. NE/S003061/1).

Review statement. This paper was edited by Lindsay Beevers and
reviewed by two anonymous referees.

References 55

Aerts, J. P. M., Uhlemann-Elmer, S., Eilander, D., and Ward,
P. J.: Comparison of estimates of global flood models for
flood hazard and exposed gross domestic product: a China
case study, Nat. Hazards Earth Syst. Sci., 20, 3245–3260,
https://doi.org/10.5194/nhess-20-3245-2020, 2020. 60

Airbus: Copernicus DEM: Copernicus Digital Elevation Model
Product Handbook, https://doi.org/10.5270/ESA-c5d3d65, 2020.

Alemu, A. N., Haile, A. T., Carr, A. B., Trigg, M. A., Mengistie, G.
K., and Walsh, C. L.: Filling data gaps using citizen science for
flood modeling in urbanized catchment of akaki, Nat. Hazards 65

Res., 3, 395–407, https://doi.org/10.1016/j.nhres.2023.05.002,
2023.

Apel, H., Martínez Trepat, O., Hung, N. N., Chinh, D. T., Merz, B.,
and Dung, N. V.: Combined fluvial and pluvial urban flood haz-
ard analysis: concept development and application to Can Tho 70

city, Mekong Delta, Vietnam, Nat. Hazards Earth Syst. Sci., 16,
941–961, https://doi.org/10.5194/nhess-16-941-2016, 2016.

Archer, L., Neal, J., Bates, P., and House, J.: Comparing
TanDEM-X Data with Frequently Used DEMs for Flood In-
undation Modelling, Water Resour. Res., 54, 10205–10222, 75

https://doi.org/10.1029/2018WR023688, 2018.
Arnell, N. W. and Gosling, S. N.: The impacts of climate change on

river flood risk at the global scale, Climatic Change, 134, 387–
401, https://doi.org/10.1007/s10584-014-1084-5, 2016.

Bangalore, M., Smith, A., and Veldkamp, T.: Exposure to 80

Floods, Climate Change, and Poverty in Vietnam, Eco-
nomics of Disasters and Climate Change, 3, 79–99,
https://doi.org/10.1007/s41885-018-0035-4, 2019.

Bates, P. D.: Flood Inundation Prediction, Annu. Rev. Fluid Mech.,
54, 287–315, https://doi.org/10.1146/annurev-fluid-030121- 85

113138, 2022.
Bates, P. D., Horritt, M. S., Aronica, G., and Beven, K.:

Bayesian updating of flood inundation likelihoods condi-
tioned on flood extent data, Hydrol. Process., 18, 3347–3370,
https://doi.org/10.1002/hyp.1499, 2004. 90

Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial
formulation of the shallow water equations for efficient two-
dimensional flood inundation modelling, J. Hydrol., 387, 33–45,
https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010.

Bates, P. D., Savage, J., Wing, O., Quinn, N., Sampson, C., Neal, 95

J., and Smith, A.: A climate-conditioned catastrophe risk model
for UK flooding, Nat. Hazards Earth Syst. Sci., 23, 891–908,
https://doi.org/10.5194/nhess-23-891-2023, 2023.

https://doi.org/10.5281/zenodo.6912932
https://doi.org/10.5281/zenodo.8035877
https://doi.org/10.5285/74e4e6ec-a119-4dc7-8ada-9513252b1b60
https://doi.org/10.5258/SOTON/WP00685
https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218
https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218
https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218
https://doi.org/10.5194/nhess-20-3245-2020
https://doi.org/10.5270/ESA-c5d3d65
https://doi.org/10.1016/j.nhres.2023.05.002
https://doi.org/10.5194/nhess-16-941-2016
https://doi.org/10.1029/2018WR023688
https://doi.org/10.1007/s10584-014-1084-5
https://doi.org/10.1007/s41885-018-0035-4
https://doi.org/10.1146/annurev-fluid-030121-113138
https://doi.org/10.1146/annurev-fluid-030121-113138
https://doi.org/10.1146/annurev-fluid-030121-113138
https://doi.org/10.1002/hyp.1499
https://doi.org/10.1016/j.jhydrol.2010.03.027
https://doi.org/10.5194/nhess-23-891-2023


26 L. Hawker et al.: Assessing LISFLOOD-FP with FABDEM using household survey and remote sensing data

Bell, A., Ward, P., Tamal, M. E. H., and Killilea, M.: Assessing
recall bias and measurement error in high-frequency social data
collection for human-environment research, Popul. Environ., 40,
325–345, https://doi.org/10.1007/s11111-019-0314-1, 2019.

Bernhofen, M. V., Whyman, C., Trigg, M. A., Sleigh, P. A., Smith,5

A. M., Sampson, C. C., Yamazaki, D., Ward, P. J., Rudari, R.,
Pappenberger, F., Dottori, F., Salamon, P., and Winsemius, H.
C.: A first collective validation of global fluvial flood models for
major floods in Nigeria and Mozambique, Environ. Res. Lett.,
13, 10, https://doi.org/10.1088/1748-9326/aae014, 2018.10

Bernhofen, M. V., Cooper, S., Trigg, M., Mdee, A., Carr, A.,
Bhave, A., Solano-Correa, Y. T., Pencue-Fierro, E. L., Teferi,
E., Haile, A. T., Yusop, Z., Alias, N. E., Sa’adi, Z., Bin
Ramzan, M. A., Dhanya, C. T., and Shukla, P.: The Role
of Global Data Sets for Riverine Flood Risk Management15

at National Scales, Water Resour. Res., 58, e2021WR031555,
https://doi.org/10.1029/2021wr031555, 2022.

Bevere, L.: Natural catastrophes in 2020, Swiss RE sigma,
https://www.swissre.com/institute/research/sigma-research/
sigma-2021-01.htmlTS6 , 2021.20

Bondarenko, M., Kerr, D., Sorichetta, A., Tatem, A., and
WorldPop: Census/projection-disaggregated gridded pop-
ulation datasets for 51 countries across sub-Saharan
Africa in 2020 using building footprints, TS7 [data set],
https://doi.org/10.5258/SOTON/WP00682, 2020.25

Bondarenko, M., Kerr, D., Sorichetta, A., and Tatem, A. J.: 2020:
Census/projection-disaggregated gridded population datasets,
adjusted to match the corresponding UNPD 2020 estimates, for
183 countries in 2020 using Built-Settlement Growth Model
(BSGM) outputs, WorldPop [data set], University of Southamp-30

ton, UK, https://doi.org/10.5258/SOTON/WP00685, 2022.
Bui, A. T., Dungey, M., Nguyen, C. V., and Pham, T. P.: The impact

of natural disasters on household income, expenditure, poverty
and inequality: evidence from Vietnam, Appl. Econ., 46, 1751–
1766, https://doi.org/10.1080/00036846.2014.884706, 2014.35

Chen, A., Giese, M., and Chen, D.: Flood impact on Main
land Southeast Asia between 1985 and 2018 – The role
of tropical cyclones, J. Flood Risk Manage., 13, 13:e12598,
https://doi.org/10.1111/jfr3.12598, 2020.

Chib, S. and Greenberg, E.: Understanding the Metropolis-40

Hastings Algorithm, Am. Stat., 49, 327–335,
https://doi.org/10.1080/00031305.1995.10476177, 1995.

Crameri, F.: Scientific colour maps (8.0.0), Zenodo [data set],
https://doi.org/10.5281/zenodo.8035877, 2023.

Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of45

colour in science communication, Nat. Commun., 11, 5444,
https://doi.org/10.1038/s41467-020-19160-7, 2020.

Crippen, R., Buckley, S., Agram, P., Belz, E., Gurrola, E., Hens-
ley, S., Kobrick, M., Lavalle, M., Martin, J., Neumann, M.,
Nguyen, Q., Rosen, P., Shimada, J., Simard, M., and Tung,50

W.: NASADEM GLOBAL ELEVATION MODEL: METHODS
AND PROGRESS, Int. Arch. Photogramm. Remote Sens. Spa-
tial Inf. Sci., XLI-B4, 125–128, https://doi.org/10.5194/isprs-
archives-XLI-B4-125-2016, 2016.

Devitt, L., Neal, J., Wagener, T., and Coxon, G.: Uncer-55

tainty in the extreme flood magnitude estimates of large-
scale flood hazard models, Environ. Res. Lett., 16, 064013,
https://doi.org/10.1088/1748-9326/abfac4, 2021.

Devitt, L., Neal, J., Coxon, G., Savage, J., and Wagener, T.: Flood
hazard potential reveals global floodplain settlement patterns, 60

Nat. Commun., 14, 2801, https://doi.org/10.1038/s41467-023-
38297-9, 2023.

Di Baldassarre, G., Laio, F., and Montanari, A.: Design flood es-
timation using model selection criteria, Phys. Chem. Earth, 34,
606–611, https://doi.org/10.1016/j.pce.2008.10.066, 2009. 65

DiGregario, M.: Learning from Typhoon Mirinae: Urbanization and
Climate Change in Quy Nhon City, Vietnam, Institute for Social
and Environmental Transition-Vietnam, Ha Noi, Vietnam, 64,
https://www.preventionweb.net/publication/learning-typhoon-
mirinae-urbanization-and-climate-change-quy-nhon-city- 70

vietnamTS8 , 2013.
Dottori, F., Salamon, P., Bianchi, A., Alfieri, L., Hirpa, F. A.,

and Feyen, L.: Development and evaluation of a framework for
global flood hazard mapping, Adv. Water Resour., 94, 87–102,
https://doi.org/10.1016/j.advwatres.2016.05.002, 2016. 75

Dottori, F., Szewczyk, W., Ciscar, J.-C., Zhao, F., Alfieri, L.,
Hirabayashi, Y., Bianchi, A., Mongelli, I., Frieler, K., Betts, R.
A., and Feyen, L.: Increased human and economic losses from
river flooding with anthropogenic warming, Nat. Clim. Change,
8, 781–786, https://doi.org/10.1038/s41558-018-0257-z, 2018. 80

Dung, N. V., Merz, B., Bárdossy, A., Thang, T. D., and Apel, H.:
Multi-objective automatic calibration of hydrodynamic models
utilizing inundation maps and gauge data, Hydrol. Earth Syst.
Sci., 15, 1339–1354, https://doi.org/10.5194/hess-15-1339-2011,
2011. 85

Fewtrell, T. J., Duncan, A., Sampson, C. C., Neal, J. C., and Bates, P.
D.: Benchmarking urban flood models of varying complexity and
scale using high resolution terrestrial LiDAR data, Phys. Chem.
Earth, 36, 281–291, https://doi.org/10.1016/j.pce.2010.12.011,
2011. 90

Fleischmann, A., Paiva, R., and Collischonn, W.: Can re-
gional to continental river hydrodynamic models be locally
relevant? A cross-scale comparison, J. Hydrol., 3, 100027,
https://doi.org/10.1016/j.hydroa.2019.100027, 2019.

Garrote, J.: Free Global DEMs and Flood Modelling – 95

A Comparison Analysis for the January 2015 Flooding
Event in Mocuba City (Mozambique), Water, 14, 176,
https://doi.org/10.3390/w14020176, 2022.

Gaume, E.: Flood frequency analysis: The Bayesian choice, WIREs
Water, 5, e1290, https://doi.org/10.1002/wat2.1290, 2018. 100

Guan, M., Guo, K., Yan, H., and Wright, N.: Bottom-up
multilevel flood hazard mapping by integrated inundation
modelling in data scarce cities, J. Hydrol., 617, 129114,
https://doi.org/10.1016/j.jhydrol.2023.129114, 2023.

Guth, P. L. and Geoffroy, T. M.: LiDAR point cloud and 105

ICESat-2 evaluation of 1 second global digital eleva-
tion models: Copernicus wins, T. GIS, 25, 2245–2261,
https://doi.org/10.1111/tgis.12825, 2021.

Haddad, K. and Rahman, A.: Selection of the best fit flood fre-
quency distribution and parameter estimation procedure: a case 110

study for Tasmania in Australia, Stoch. Env. Res. Risk A., 25,
415–428, https://doi.org/10.1007/s00477-010-0412-1, 2011.

Hastings, W. K.: Monte Carlo sampling methods using Markov
chains and their applications, Biometrika, 57, 97–109,
https://doi.org/10.1093/biomet/57.1.97, 1970. 115

Hawker, L., Neal, J., and Bates, P.: Accuracy assessment
of the TanDEM-X 90 Digital Elevation Model for se-

https://doi.org/10.1007/s11111-019-0314-1
https://doi.org/10.1088/1748-9326/aae014
https://doi.org/10.1029/2021wr031555
https://www.swissre.com/institute/research/sigma-research/sigma-2021-01.html
https://www.swissre.com/institute/research/sigma-research/sigma-2021-01.html
https://www.swissre.com/institute/research/sigma-research/sigma-2021-01.html
https://doi.org/10.5258/SOTON/WP00682
https://doi.org/10.5258/SOTON/WP00685
https://doi.org/10.1080/00036846.2014.884706
https://doi.org/10.1111/jfr3.12598
https://doi.org/10.1080/00031305.1995.10476177
https://doi.org/10.5281/zenodo.8035877
https://doi.org/10.1038/s41467-020-19160-7
https://doi.org/10.5194/isprs-archives-XLI-B4-125-2016
https://doi.org/10.5194/isprs-archives-XLI-B4-125-2016
https://doi.org/10.5194/isprs-archives-XLI-B4-125-2016
https://doi.org/10.1088/1748-9326/abfac4
https://doi.org/10.1038/s41467-023-38297-9
https://doi.org/10.1038/s41467-023-38297-9
https://doi.org/10.1038/s41467-023-38297-9
https://doi.org/10.1016/j.pce.2008.10.066
https://www.preventionweb.net/publication/learning-typhoon-mirinae-urbanization-and-climate-change-quy-nhon-city-vietnam
https://www.preventionweb.net/publication/learning-typhoon-mirinae-urbanization-and-climate-change-quy-nhon-city-vietnam
https://www.preventionweb.net/publication/learning-typhoon-mirinae-urbanization-and-climate-change-quy-nhon-city-vietnam
https://www.preventionweb.net/publication/learning-typhoon-mirinae-urbanization-and-climate-change-quy-nhon-city-vietnam
https://www.preventionweb.net/publication/learning-typhoon-mirinae-urbanization-and-climate-change-quy-nhon-city-vietnam
https://doi.org/10.1016/j.advwatres.2016.05.002
https://doi.org/10.1038/s41558-018-0257-z
https://doi.org/10.5194/hess-15-1339-2011
https://doi.org/10.1016/j.pce.2010.12.011
https://doi.org/10.1016/j.hydroa.2019.100027
https://doi.org/10.3390/w14020176
https://doi.org/10.1002/wat2.1290
https://doi.org/10.1016/j.jhydrol.2023.129114
https://doi.org/10.1111/tgis.12825
https://doi.org/10.1007/s00477-010-0412-1
https://doi.org/10.1093/biomet/57.1.97


L. Hawker et al.: Assessing LISFLOOD-FP with FABDEM using household survey and remote sensing data 27

lected floodplain sites, Remote Sens. Environ., 232, 111319,
https://doi.org/10.1016/j.rse.2019.111319, 2019.

Hawker, L., Neal, J., Tellman, B., Liang, J., Schumann, G., Doyle,
C., Sullivan, J. A., Savage, J., and Tshimanga, R.: Comparing
earth observation and inundation models to map flood hazards,5

Environ. Res. Lett., 15, 124032, https://doi.org/10.1088/1748-
9326/abc216, 2020.

Hawker, L., Neal, J., and Pham, K. N.: Fluvial and pluvial flood
maps for the central highlands of Vietnam and surrounding
provinces, NERC EDS Environmental Information Data Cen-10

tre [data set], https://doi.org/10.5285/74e4e6ec-a119-4dc7-8ada-
9513252b1b60, 2022a.

Hawker, L., Uhe, P., Paulo, L., Sosa, J., Savage, J., Samp-
son, C., and Neal, J.: A 30 m global map of elevation with
forests and buildings removed, Environ. Res. Lett., 17, 024016,15

https://doi.org/10.1088/1748-9326/ac4d4f, 2022b.
Hirabayashi, Y., Tanoue, M., Sasaki, O., Zhou, X., and Ya-

mazaki, D.: Global exposure to flooding from the new
CMIP6 climate model projections, Sci. Rep., 11, 3740,
https://doi.org/10.1038/s41598-021-83279-w, 2021.20

Horritt, M. and Bates, P.: Evaluation of 1D and 2D numerical mod-
els for predicting river flood inundation, J. Hydrol., 268, 87–99,
2002.

Iqbal, A., Mondal, M. S., Veerbeek, W., Khan, M. S. A.,
and Hakvoort, H.: Effectiveness of UAV-based DTM and25

satellitebased DEMs for local-level flood modeling in Ja-
muna floodplain, J. Flood Risk Managem., 16, e12937,
https://doi.org/10.1111/jfr3.12937, 2023.

Jongman, B., Ward, P. J., and Aerts, J. C. J. H.: Global ex-
posure to river and coastal flooding: Long term trends30

and changes, Global Environ. Change, 22, 823–835,
https://doi.org/10.1016/j.gloenvcha.2012.07.004, 2012.

Laio, F., Di Baldassarre, G., and Montanari, A.: Model
selection techniques for the frequency analysis of hy-
drological extremes, Water Resour. Res., 45, W07416,35

https://doi.org/10.1029/2007WR006666, 2009.
Le, T., Sun, C., Choy, S., and Kuleshov, Y.: Regional drought risk

assessment in the Central Highlands and the South of Viet-
nam, Geomatics, Natural Hazards and Risk, 12, 3140–3159,
https://doi.org/10.1080/19475705.2021.1998232, 2021.40

McClean, F., Dawson, R., and Kilsby, C.: Implications of Us-
ing Global Digital Elevation Models for Flood Risk Anal-
ysis in Cities, Water Resour. Res., 56, e2020WR028241,
https://doi.org/10.1029/2020WR028241, 2020.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller,45

A. H., and Teller, E.: Equation of State Calculations by
Fast Computing Machines, J. Chem. Phys., 21, 1087–1092,
https://doi.org/10.1063/1.1699114, 1953.

Nandam, V. and Patel, P. L.: A framework to assess suit-
ability of global digital elevation models for hydrodynamic50

modelling in data scarce regions, J. Hydrol., 630, 130654,
https://doi.org/10.1016/j.jhydrol.2024.130654, 2024.

Neal, J., Schumann, G., and Bates, P.: A subgrid channel model
for simulating river hydraulics and floodplain inundation over
large and data sparse areas, Water Resour. Res., 48, W11506,55

https://doi.org/10.1029/2012wr012514, 2012.
Neal, J., Hawker, L., Savage, J., Durand, M., Bates, P.,

and Sampson, C.: Estimating River Channel Bathymetry in
Large Scale Flood Inundation Models, Water Resour. Res.,

57, e2020WR028301, https://doi.org/10.1029/2020WR028301, 60

2021.
Neal, J. C., Bates, P. D., Fewtrell, T. J., Hunter, N. M., Wilson, M.

D., and Horritt, M. S.: Distributed whole city water level mea-
surements from the Carlisle 2005 urban flood event and compar-
ison with hydraulic model simulations, J. Hydrol., 368, 42–55, 65

https://doi.org/10.1016/j.jhydrol.2009.01.026, 2009.
Neal, J., Bates, P., Kesserwani, G., and Kazem Sharifian, M.:

LISFLOOD-FP 8.1 hydrodynamic model, Zenodo [data set],
https://doi.org/10.5281/zenodo.6912932, 2022.

Nguyen, M. T., Sebesvari, Z., Souvignet, M., Bachofer, F., Braun, 70

A., Garschagen, M., Schinkel, U., Yang, L. E., Nguyen, L. H. K.,
Hochschild, V., Assmann, A., and Hagenlocher, M.: Understand-
ing and assessing flood risk in Vietnam: Current status, persisting
gaps, and future directions, J. Flood Risk Manage., 14, e12689,
https://doi.org/10.1111/jfr3.12689, 2021. 75

Niveves, J. J., Bondarenko, M., Kerr, D., Ves, N., Yetman,
G., Sinha, P., Clarke, D. J., Sorichetta, A., Stevens, F.
R., Gaughan, A. E., and Tatem, A.: Measuring the con-
tribution of built-settlement data to global population map-
ping, Social Sciences & Humanities Open, 3, 100102, 80

https://doi.org/10.1016/j.ssaho.2020.100102, 2021.
Pesaresi, M., Florczyk, A., Schiavina, M., Melchiorri, M., and

Maffenini, L.: GHS settlement grid, updated and refined
regio model 2014 in application to ghs-built r2018a and ghs-
pop r2019a, multitemporal (1975–1990–2000–2015) r2019a, 85

European Commission, Joint Research Centre (JRC) [data
set], https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-
BF9E64DA5218, 2019.

Petersson, L., ten Veldhuis, M.-C., Verhoeven, G., Kapelan, Z., Ma-
holi, I., and Winsemius, H. C.: Community Mapping Supports 90

Comprehensive Urban Flood Modeling for Flood Risk Manage-
ment in a Data-Scarce Environment, Front. Earth Sci., 8, 304,
https://doi.org/10.3389/feart.2020.00304, 2020.

Reis, D. S. and Stedinger, J. R.: Bayesian MCMC flood frequency
analysis with historical information, J. Hydrol., 313, 97–116, 95

https://doi.org/10.1016/j.jhydrol.2005.02.028, 2005.
Rentschler, J., Salhab, M., and Jafino, B. A.: Flood expo-

sure and poverty in 188 countries, Nat. Commun., 13, 3527,
https://doi.org/10.1038/s41467-022-30727-4, 2022.

Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Borla Tridon, 100

D., Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber,
M., Wessel, B., Krieger, G., Zink, M., and Moreira, A.: Gen-
eration and performance assessment of the global TanDEM-X
digital elevation model, ISPRS J. Photogramm., 132, 119–139,
https://doi.org/10.1016/j.isprsjprs.2017.08.008, 2017. 105

Rodriguez, E., Morris, C. S., and Belz, J. E. A global assessment of
the SRTM performance, Photogramm. Eng. Remote Sens., 72,
249–260, https://doi.org/10.14358/PERS.72.3.249, 2006

Rollason, E., Bracken, L. J., Hardy, R. J., and Large, A. R. G.: The
importance of volunteered geographic information for the val- 110

idation of flood inundation models, J. Hydrol., 562, 267–280,
https://doi.org/10.1016/j.jhydrol.2018.05.002, 2018.

Rözer, V., Kreibich, H., Schröter, K., Müller, M., Sairam, N.,
Doss-Gollin, J., Lall, U., and Merz, B.: Probabilistic Mod-
els Significantly Reduce Uncertainty in Hurricane Harvey 115

Pluvial Flood Loss Estimates, Earth’s Future, 7, 384–394,
https://doi.org/10.1029/2018EF001074, 2019.

https://doi.org/10.1016/j.rse.2019.111319
https://doi.org/10.1088/1748-9326/abc216
https://doi.org/10.1088/1748-9326/abc216
https://doi.org/10.1088/1748-9326/abc216
https://doi.org/10.5285/74e4e6ec-a119-4dc7-8ada-9513252b1b60
https://doi.org/10.5285/74e4e6ec-a119-4dc7-8ada-9513252b1b60
https://doi.org/10.5285/74e4e6ec-a119-4dc7-8ada-9513252b1b60
https://doi.org/10.1088/1748-9326/ac4d4f
https://doi.org/10.1038/s41598-021-83279-w
https://doi.org/10.1111/jfr3.12937
https://doi.org/10.1016/j.gloenvcha.2012.07.004
https://doi.org/10.1029/2007WR006666
https://doi.org/10.1080/19475705.2021.1998232
https://doi.org/10.1029/2020WR028241
https://doi.org/10.1063/1.1699114
https://doi.org/10.1016/j.jhydrol.2024.130654
https://doi.org/10.1029/2012wr012514
https://doi.org/10.1029/2020WR028301
https://doi.org/10.1016/j.jhydrol.2009.01.026
https://doi.org/10.5281/zenodo.6912932
https://doi.org/10.1111/jfr3.12689
https://doi.org/10.1016/j.ssaho.2020.100102
https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218
https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218
https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218
https://doi.org/10.3389/feart.2020.00304
https://doi.org/10.1016/j.jhydrol.2005.02.028
https://doi.org/10.1038/s41467-022-30727-4
https://doi.org/10.1016/j.isprsjprs.2017.08.008
https://doi.org/10.14358/PERS.72.3.249
https://doi.org/10.1016/j.jhydrol.2018.05.002
https://doi.org/10.1029/2018EF001074


28 L. Hawker et al.: Assessing LISFLOOD-FP with FABDEM using household survey and remote sensing data

Saksena, S. and Merwade, V.: Incorporating the ef-
fect of DEM resolution and accuracy for improved
flood inundation mapping, J. Hydrol., 530, 180–194,
https://doi.org/10.1016/j.jhydrol.2015.09.069, 2015.

Sampson, C. C., Bates, P. D., Neal, J. C., and Horritt, M. S.: An5

automated routing methodology to enable direct rainfall in high
resolution shallow water models, Hydrol. Process., 27, 467–476,
https://doi.org/10.1002/hyp.9515, 2013.

Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J.
C., Alfieri, L., and Freer, J. E.: A high-resolution global10

flood hazard model, Water Resour. Res., 51, 7358–7381,
https://doi.org/10.1002/2015wr016954, 2015.

Savage, J., Pianosi, F., Bates, P., Freer, J., and Wagener,
T.: Quantifying the importance of spatial resolution and
other factors through global sensitivity analysis of a flood15

inundation model, Water Resour. Res., 52, 9146–9163,
https://doi.org/10.1002/2015wr018198, 2016.

Singh, H., Nielsen, M., and Greatrex, H.: Causes, impacts,
and mitigation strategies of urban pluvial floods in India:
A systematic review, Int. J. Disast. Risk Re., 93, 103751,20

https://doi.org/10.1016/j.ijdrr.2023.103751, 2023.
Smith, A., Sampson, C., and Bates, P.: Regional flood frequency

analysis at the global scale, Water Resour. Res., 51, 539–553,
https://doi.org/10.1002/2014wr015814, 2015.

Smith, A., Bates, P. D., Wing, O., Sampson, C., Quinn, N., and Neal,25

J.: New estimates of flood exposure in developing countries us-
ing high-resolution population data, Nat. Commun., 10, 1814,
https://doi.org/10.1038/s41467-019-09282-y, 2019.

Stevens, F. R., Gaughan, A. E., Linard, C., and Tatem, A. J.: Dis-
aggregating census data for population mapping using random30

forests with remotely-sensed and ancillary data, PLoS One, 10,
e0107042, https://doi.org/10.1371/journal.pone.0107042, 2015.

Stevens, F. R., Gaughan, A. E., Nieves, J. J., King, A.,
Sorichetta, A., Linard, C., and Tatem, A. J.: Comparisons
of two global built area land cover datasets in meth-35

ods to disaggregate human population in eleven countries
from the global South, Int. J. Digit. Earth, 13, 78–100,
https://doi.org/10.1080/17538947.2019.1633424, 2019.

Tadono, T., Nagai, H., Ishida, H., Oda, F., Naito, S., Mi-
nakawa, K., and Iwamoto, H.: GENERATION OF THE 30 M-40

MESH GLOBAL DIGITAL SURFACE MODEL BY ALOS
PRISM, Int. Arch. Photogramm. Remote Sens. Spatial Inf.
Sci., XLI-B4, 157–162, https://doi.org/10.5194/isprs-archives-
XLI-B4-157-2016, 2016.

Takaku, J., Tadono, T., Doutsu, M., Ohgushi, F., and Kai,45

H.: UPDATES OF “AW3D30” ALOS GLOBAL DIGI-
TAL SURFACE MODEL WITH OTHER OPEN ACCESS
DATASETS, Int. Arch. Photogramm. Remote Sens. Spatial Inf.
Sci., XLIII-B4-2020, 183–189, https://doi.org/10.5194/isprs-
archives-XLIII-B4-2020-183-2020, 2020.50

Tellman, B., Sullivan, J. A., Kuhn, C., Kettner, A. J., Doyle, C. S.,
Brakenridge, G. R., Erickson, T. A., and Slayback, D. A.: Satel-
lite imaging reveals increased proportion of population exposed
to floods, Nature, 596, 80–86, https://doi.org/10.1038/s41586-
021-03695-w, 2021.55

Triet, N. V. K., Dung, N. V., Fujii, H., Kummu, M., Merz, B.,
and Apel, H.: Has dyke development in the Vietnamese Mekong
Delta shifted flood hazard downstream?, Hydrol. Earth Syst.

Sci., 21, 3991–4010, https://doi.org/10.5194/hess-21-3991-2017,
2017. 60

Triet, N. V. K., Dung, N. V., Hoang, L. P., Duy, N. L.,
Tran, D. D., Anh, T. T., Kummu, M., Merz, B., and
Apel, H.: Future projections of flood dynamics in the Viet-
namese Mekong Delta, Sci. Total Environ., 742, 140596,
https://doi.org/10.1016/j.scitotenv.2020.140596, 2020. 65

Trigg, M. A., Birch, C. E., Neal, J. C., Bates, P. D., Smith, A.,
Sampson, C. C., Yamazaki, D., Hirabayashi, Y., Pappenberger,
F., Dutra, E., Ward, P. J., Winsemius, H. C., Salamon, P., Dot-
tori, F., Rudari, R., Kappes, M. S., Simpson, A. L., Hadzila-
cos, G., and Fewtrell, T. J.: The credibility challenge for global 70

fluvial flood risk analysis, Environ. Res. Lett., 11, 094014,
https://doi.org/10.1088/1748-9326/11/9/094014, 2016.

United Nations Office for Outer Space Affairs: UN-SPIDER
Knowledge Portal, Step-by-Step: Recommended Prac-
tice: Flood Mapping and Damage Assessment Using 75

Sentinel-1 SAR Data in Google Earth Engine, https:
//www.un-spider.org/advisory-support/recommended-practices/
recommended-practice-google-earth-engine-flood-mapping/
step-by-step, last access: 5 May 2023.

UNDRR: The Human Cost of Disasters: An Overview 80

of the Last 20 Years (2000–2019), UN Office
for Disaster Risk Reduction Geneva, Switzerland,
Geneva, Switzerland, https://www.undrr.org/publication/
human-cost-disasters-overview-last-20-years-2000-2019 (last
access: 31 January 2024), 2020. 85

Viglione, A., Hosking, J. R. M., Laio, F., Miller, A., Gaume,
E., Payrastre, O., Salinas, J. L., N’huyen, C. C., and Halbert,
K.: Non-Supervised Regional Frequency Analysis [R package
nsRFA version 0.7–15] (0.7–15), CRAN [code], https://CRAN.
R-project.org/package=nsRFA (last access: 6 June 2023), 2020. 90

Willner, S. N., Otto, C., and Levermann, A.: Global economic
response to river floods, Nat. Clim. Change, 8, 594–598,
https://doi.org/10.1038/s41558-018-0173-2, 2018.

Wing, O. E. J., Sampson, C. C., Bates, P. D., Quinn, N., Smith,
A. M., and Neal, J. C.: A flood inundation forecast of Hurricane 95

Harvey using a continental-scale 2D hydrodynamic model, J. Hy-
drol., 4, 100039, https://doi.org/10.1016/j.hydroa.2019.100039,
2019.

Wing, O. E. J., Smith, A. M., Marston, M. L., Porter, J. R., Amodeo,
M. F., Sampson, C. C., and Bates, P. D.: Simulating historical 100

flood events at the continental scale: observational validation of
a large-scale hydrodynamic model, Nat. Hazards Earth Syst. Sci.,
21, 559–575, https://doi.org/10.5194/nhess-21-559-2021, 2021.

Winsemius, H. C., Aerts, J. C. J. H., van Beek, L. P. H., Bierkens,
M. F. P., Bouwman, A., Jongman, B., Kwadijk, J. C. J., Ligtvoet, 105

W., Lucas, P. L., van Vuuren, D. P., and Ward, P. J.: Global
drivers of future river flood risk, Nat. Clim. Change, 6, 381–385,
https://doi.org/10.1038/nclimate2893, 2016.

Wood, M., Hostache, R., Neal, J., Wagener, T., Giustarini, L., Chini,
M., Corato, G., Matgen, P., and Bates, P.: Calibration of chan- 110

nel depth and friction parameters in the LISFLOOD-FP hy-
draulic model using medium-resolution SAR data and identi-
fiability techniques, Hydrol. Earth Syst. Sci., 20, 4983–4997,
https://doi.org/10.5194/hess-20-4983-2016, 2016.

World Bank: https://datahelpdesk.worldbank.org/knowledgebase/ 115

articles/906519-world-bank-country-and-lending-groups, last
access: 31 January 2024.

https://doi.org/10.1016/j.jhydrol.2015.09.069
https://doi.org/10.1002/hyp.9515
https://doi.org/10.1002/2015wr016954
https://doi.org/10.1002/2015wr018198
https://doi.org/10.1016/j.ijdrr.2023.103751
https://doi.org/10.1002/2014wr015814
https://doi.org/10.1038/s41467-019-09282-y
https://doi.org/10.1371/journal.pone.0107042
https://doi.org/10.1080/17538947.2019.1633424
https://doi.org/10.5194/isprs-archives-XLI-B4-157-2016
https://doi.org/10.5194/isprs-archives-XLI-B4-157-2016
https://doi.org/10.5194/isprs-archives-XLI-B4-157-2016
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-183-2020
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-183-2020
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-183-2020
https://doi.org/10.1038/s41586-021-03695-w
https://doi.org/10.1038/s41586-021-03695-w
https://doi.org/10.1038/s41586-021-03695-w
https://doi.org/10.5194/hess-21-3991-2017
https://doi.org/10.1016/j.scitotenv.2020.140596
https://doi.org/10.1088/1748-9326/11/9/094014
https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-google-earth-engine-flood-mapping/step-by-step
https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-google-earth-engine-flood-mapping/step-by-step
https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-google-earth-engine-flood-mapping/step-by-step
https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-google-earth-engine-flood-mapping/step-by-step
https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-google-earth-engine-flood-mapping/step-by-step
https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-google-earth-engine-flood-mapping/step-by-step
https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-google-earth-engine-flood-mapping/step-by-step
https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019
https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019
https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019
https://CRAN.R-project.org/package=nsRFA
https://CRAN.R-project.org/package=nsRFA
https://CRAN.R-project.org/package=nsRFA
https://doi.org/10.1038/s41558-018-0173-2
https://doi.org/10.1016/j.hydroa.2019.100039
https://doi.org/10.5194/nhess-21-559-2021
https://doi.org/10.1038/nclimate2893
https://doi.org/10.5194/hess-20-4983-2016
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups


L. Hawker et al.: Assessing LISFLOOD-FP with FABDEM using household survey and remote sensing data 29

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T.,
O’Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., and Bates,
P. D.: A high-accuracy map of global terrain elevations, Geophys.
Res. Lett., 5844–5853, https://doi.org/10.1002/2017gl072874,
2017.5

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G., and
Pavelsky, T.: MERIT Hydro: A high-resolution global hydrogra-
phy map based on latest topography datasets, Water Resour. Res.,
55, 5053–5073, https://doi.org/10.1029/2019WR024873, 2019.

Zischg, A. P., Mosimann, M., Bernet, D. B., and Röthlisberger, V.: 10

Validation of 2D flood models with insurance claims, J. Hydrol.,
557, 350–361, https://doi.org/10.1016/j.jhydrol.2017.12.042,
2018.

https://doi.org/10.1002/2017gl072874
https://doi.org/10.1029/2019WR024873
https://doi.org/10.1016/j.jhydrol.2017.12.042


Remarks from the typesetter

TS1 MunichRe was replaced with Bevere. Please confirm.
TS2 Year was added.
TS3 Should the URL be replaced with the DOI 10.5523/bris.20egxk888rljr25vst4u3nhnyz you provided?
TS4 Due to the requested changes regarding the update of all column headings, we have to forward your requests to the
handling editor for approval. To explain the corrections needed to the editor, please send me the reason why these corrections
are necessary. Many thanks.
TS5 Please note addition of first new sentence in the data section instead of acknowledgements.
TS6 Please provide date of last access.
TS7 Please add the host of the data set.
TS8 Please provide date of last access.

30


	Abstract
	Introduction
	Hydrodynamic modelling materials and methods
	Evolution of GFM DEM data and treatment of DEM data in this research

	Model evaluation materials and methods
	House survey data
	Remote sensing data
	Gauge data
	Population data
	Land type data

	GFM evaluation
	Comparison of remote sensing and household survey data
	Evaluation of GFM fluvial hazard simulations based on MERIT and FABDEM DEMs
	Evaluation of GFM pluvial hazard simulations based on FABDEM DEM

	Flood exposure for the Central Highlands of Vietnam
	Exposure calculations
	Exposure by land use type

	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

