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Abstract. Prolonged deficit of soil moisture can result in significant ecosystem and economical losses. General 

slowdown of vegetation growth and development, withering of foliage cover, reduction of carbon, nutrient and 

water cycling, increase of fire and insect outbreaks are just a few examples of soil moisture drought impacts. Thus, 

an early and timely warning via monitoring and forecast could help to prepare for the drought and manage its 10 

consequences. 

In the study, a new version of Global BROOK90, an automated framework to simulate water balance at any 

location is presented. The new framework integrates seasonal meteorological forecasts from European Centre for 

Medium-Range Weather Forecasts (ECMWF). Here we studied how well the framework can predict the soil 

moisture drought on a local scale. Twelve small European catchments (from 7 to 115 km2) characterised by various 15 

geographical conditions were chosen to reconstruct the 2018-2019 period, when a large-scale prolonged drought 

was observed in Europe. Setting the ERA5-forced soil moisture simulations as a reference, we analysed how the 

lead time of the ECMWF hindcasts influences the quality of the soil moisture predictions under drought and non-

drought conditions. 

It was found that the hindcasted soil moisture fits well with the reference model runs only within the first (in some 20 

cases until second and third) month of lead time. Afterwards significant deviations up to 50% of soil water volume 

were found. Furthermore, within the drought period the ECMWF hindcast forcing resulted in overestimation of 

the soil moisture for most of the catchment, indicating an earlier end of a drought period. Finally, it was shown 

that application of the probabilistic forecast using the ensembles’ quantiles to account for the uncertainty of the 

meteorological input is reasonable only for short-to-medium range lead times (up to three months). 25 

Introduction and motivation 

Drought is a complex, multifactorial phenomenon that includes climate, water resources, and socioeconomic 

factors and impacts on a community in short term as well as in long term (Crausbay et al., 2017; Grillakis, 2019; 

Mueller and Zhang, 2016; Sheffield et al., 2012; Wanders et al., 2014). In two past decades Europe experienced 

a series of dry summers with significant impacts: in 2003 (Fischer et al., 2007; Schär and Jendritzky, 2004), 2010 30 

(Barriopedro et al., 2011), 2015 (Moravec et al., 2021; Van Lanen et al., 2016), and 2018-2020 (Moravec et al., 

2021; Peters et al., 2020; Rakovec et al., 2022). The European Commission reported 9 billion euro annual 

monetary losses across Europe due to drought in the current situation, which will increase up to 65 billion by the 

end of the century for the worst climate change scenario (Naumann et al., 2021). Among commonly accepted 

drought types, the soil drought typically causes most of the damages for agriculture, forestry and ecosystems in 35 

general (Mishra and Singh, 2010; Sutanto et al., 2019; Zink et al., 2016). Although significant efforts are being 

made to develop drought monitoring and forecasting systems, the ability to forecast droughts is limited due to the 
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inherent uncertainties of long-term weather forecasts (Sutanto and Van Lanen, 2022; Wanders and Van Lanen, 

2015). Therefore, often multiple multi-year droughts are rarely mentioned in seasonal forecasts and only reported 

‘post factum’ in observations, reports and reconstructions (Boeing et al., 2022; Boergens et al., 2020; Rakovec et 40 

al., 2022). Hence, accurate monitoring and seasonal forecasting of drought is beneficial for the development of 

early prevention, mitigation, and management strategies.  

Recently, with the improvement of computing infrastructure and capacity, the use of probability-based seasonal 

weather forecasts driven by numerical weather prediction models has become more popular and advanced 

(Samaniego et al., 2019). This has led to the development of drought warning systems at various spatial and 45 

temporal scales (Wanders et al., 2019). Several operational monitoring and forecasting systems exist on 

continental, national and regional scales. These systems are principally based on rainfall, temperature and 

hydrological gridded observed and modelled data (Otkin et al., 2018; Sheffield et al., 2012), although new 

approaches such as DroughtCast (Brust et al., 2021) implementing a machine learning algorithms have also been 

attempted. For the United States, a real-time drought monitoring system provides information on current, short- 50 

(up to 8 weeks) and long-term (3.5 months) predicted drought conditions in 0.12° spatial resolution (Lorenz et al., 

2017; Svoboda et al., 2002). It uses a combination of precipitation anomalies, evaporative stress index, soil 

moisture tendencies on three levels and the input of regional and local experts. The African Flood and Drought 

Monitor (0.25° resolution with daily updates) was developed for the monitoring purposes and provides a set of 

drought indexes such as SPI, soil various moisture and vegetation indices, and streamflow percentiles and deficit 55 

(Sheffield et al., 2014). Swiss monitoring and forecasting system shows canton-based current precipitation and 

soil moisture deficit levels as well as gives a 5- and 30-day forecast (Zappa et al., 2014). The German drought 

monitor (Zink et al., 2016) provides daily drought information for topsoil and full soil column based on soil 

moisture anomalies on a 5 km grid scale. European Drought Observatory provides up-to-date information on the 

occurrence and severity of droughts across Europe with 5 km resolution based on a combination of SPI, soil 60 

moisture anomaly index and vegetation greenness (Cammalleri et al., 2021), as well as basic forecasts based on 

SPI (Wanders et al., 2019). However, the major drawbacks of the most advanced existing frameworks is their 

inability to reach local-scale for the current and predicted conditions of soil moisture. 

Tackling the problem of achieving high resolution in monitoring and forecasting of water balance components in 

general and soil moisture in particular is an ongoing process. The local scale plays a special role (Figure 1), since 65 

this is often the scale, where the final decisions are made, measures are implemented and management is taking 

place (European Commission, 2015; Suárez-Almiñana et al., 2017; Wagner et al., 2009). Although there are 

several global and national datasets, which could be used for monitoring purposes, data quality and resolution 

often, do not correspond to the local requirements. So far, the grid size for the state-of-the-art up-to-date global 

reanalysis varies in a range of 10-50 km (Gelaro et al., 2017; Ebita et al., 2011; Martens et al., 2020) and regional 70 

models can reach 1-5 km (Zink et al., 2017). Finally, even in the presence of a dense network of long-term 

measurements, it is highly improbable that the data of all observed variables will be available or transferable and 

thus representative for the desired location. 
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Figure 1. Schematic illustration of a local scale problem in water balance estimations. 75 

In 2020, a first version of a fully automated framework to simulate water balance in general, and soil moisture in 

particular on a local scale at any desired location with historical meteorological data called Global BROOK90 

was released (Vorobevskii et al., 2020). The framework has thereafter been validated using runoff and evaporation 

components (Vorobevskii et al., 2021, 2022). Here we want to present an updated version of the framework, which 

integrates seasonal forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts) and thus 80 

allows long-term forecasts of the local water balance. We compare soil moisture simulations from a set of small 

European catchments. Therefore, we focus on the recent large European drought period using hindcast and 

reanalysis forcings to answer the following research questions: 

 How reliable are global meso-scale seasonal forecasts as drivers of soil moisture drought simulations on 

a local scale? 85 

 Does the usage of ensemble quantiles advance drought prediction compared to the ensemble median or 

mean? 

1. Data and Methods 

1.1.  Pilot catchments 

For the study 12 catchments in Europe were selected (Figure 2, Table 1). The selection criteria included small 90 

catchment size, various land cover and soil types, close to natural conditions, possibly affected by the big 

European drought 2018-2019. Chosen catchments possess a size of 7 to 115 km2 (average size 52 km2). They are 

covered with three different forests (opened and closed, deciduous and evergreen, needle- and broadleaf) and two 

short canopies types (grassland, crops) and have various soil textures. Available open-source satellite images and 

maps do not show significant signs of urbanisation (maximum values of 5% were identified for few catchments) 95 

or hydraulic structures (except artificial channels in cultivated areas) which could noticeably influence a natural 

flow regime. Although numerous reports and research of the 2018-2019 drought are available, evaluations of the 

drought spatial extension in 2018-19 over the Europe differ significantly (Boergens et al., 2020; Buras et al., 2020; 

Hari et al., 2020; JRC European Drought Observatory, 2018, 2019). However, the majority of the selected 

locations appear within the commonly identified territories, which were affected by the drought. The Kling-Gupta-100 

Efficiency values for a daily scale discharge validation for the selected catchments (Vorobevskii et al., 2021) 

varies between 0.43 and 0.77 (with a mean of 0.57) for the evaluation time-period of 30-42 years (with a mean of 

38). 
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Figure 2. Overview on the selected locations 105 

Table 1. Summary on the selected catchments 

# Name Country 
Size 

[km2] 
Dominating land cover types 

Dominating soil 

texture 

1 
Ribeira de Sampaio - 

Cabriz 
Portugal 10.8 Open forest (unknown), grassland Sandy clay loam 

2 Le Langelin - Briec France 7.04 
Agriculture, grassland, open forest 

(unknown) 
Loam 

3 La Glueyre - Gluiras  France 70.9 Closed forest, deciduous broadleaf Loam 

4 Warleggan - Trengoffe UK 25.3 Grassland, agriculture Loam 

5 Jiterka - Dolni Stepanice 
Czech 

Republic 
44.1 Closed forest (evergreen, needle leaf) Loam 

6 Ucja - Zaga Slovenia 50.2 Closed forest (deciduous, broadleaf) Loam 

7 Grosse Ohe - Taferlruck Germany 19.1 
Closed forest (evergreen and 
deciduous, needle and broadleaf) 

Sandy loam 

8 Wertach - Wertach Germany 34.5 Closed forest (evergreen, needle leaf) Loam 

9 Alto – Taglio-Isolaccio France 114 Closed forest (deciduous, broadleaf) Clay loam 

10 Lenne - Oelkassen Germany 65.6 
Agriculture, closed forest (deciduous, 

broadleaf) 
Loam 

11 La Dragne - Vandenesse France 115 
Grassland, closed forest (deciduous, 
broadleaf) 

Loam 

12 Natzschung - Rothenthal Germany 76.1 Closed forest (evergreen, needle leaf) Sandy loam 

1.2 Global BROOK90 v 2.0 

The first version of Global BROOK90 framework was introduced in 2021 (Vorobevskii et al., 2020) and the new 

updated version was released in 2023 (Vorobevskii, 2023a), which is applied here to simulate soil moisture. The 

framework uses open-source global datasets to parameterise and force the water balance model in a fully automatic 110 

mode based on the input location and time-interval.  

The following datasets are incorporated to describe the characteristics of the location. For the canopy, 

identification and parameterization Copernicus Global land Cover 100 m (Buchhorn et al., 2020), MOD15A2H 

MODIS Leaf Area Index/FPAR 8-Day L4 Global (Myneni et al., 2021) and Global Forest Canopy Height 

(Potapov et al., 2021) are used. The SoilGrids250 dataset (Hengl et al., 2017) provides global information on soil 115 

properties for seven standard layers (texture, depth to the bedrock, stone content). Digital elevation model is 

downloaded from the Mapzen Terrain Tiles (Larrick et al., 2020).  

For meteorological forcing, reanalysis and forecast datasets are implemented. Historical runs could be made with 

ERA5 (Copernicus Climate Change Service Information, 2018a) and MERRA-2 (Gelaro et al., 2017). ERA5 

provides the hourly temporal and 0.25° spatial resolution data and covers the time period from 1959, while 120 

MERRA-2 has a 0.5°×0.625° grid with 6-hour time-slices and starts from 1980. For seasonal forecasting the 

ECMWF dataset (Copernicus Climate Change Service Information, 2018b) is integrated. It implements a 51-

member ensemble meteorological forecast for 215 days on a 1° grid with daily temporal resolution and is released 
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on the fifth day of each month. The dataset is also available in a hindcast mode starting from 1993. For the bias-

correction of the forecast, monthly simple empirical quantile mapping (Boé et al., 2007) is applied. For that, bias 125 

is calculated between each hindcast ensemble mean and reanalysis data on a monthly scale, and then averaged for 

each calendar month and lead time. Thereafter, the resulting bias is used to correct the forecast. Finally, Global 

BROOK90 allows combining historical and forecast simulations if the continuous timeline is preserved. 

This framework is based on the BROOK90 model (Federer et al., 2003) which is a one-dimensional physically-

based model for the vertical water fluxes simulations in soil-plant-atmosphere systems. At first, the precipitation 130 

input goes through the canopy, where it could be either intercepted (and then evaporated) or passed through to the 

ground surface. Then, the portion reaching the ground level, could be infiltrated, frozen, evaporated, converted to 

surface flow, percolated or stored as soil moisture. The Infiltrated volume is distributed between soil layers to 

macropore bypass and matrix flow using ‘top-down’ approach. Soil water movement in the model is based on the 

approximations of the Richard's equation (Richards, 1931), where the functional relationships between main soil 135 

parameters (soil-water content, matric potential and hydraulic conductivity) are estimated using Clapp and 

Hornberger parameterisation (Clapp and Hornberger, 1978). The soil column has groundwater, seepage and 

downslope outflow. Finally, soil water storage is used for evaporation from the top layers and root uptake for 

transpiration. 

The scheme of the framework is presented on Figure 3. It applies a regular 50×50 m grid to identify hydro response 140 

units (HRUs) based on the downloaded characteristics of the input catchment. The model is then applied separately 

to each HRU, and then an area-weighted mean for each variable is calculated from HRU output data. A more 

detailed description of the framework is presented in (Vorobevskii et al., 2020). 

 

Figure 3. Global BROOK90 framework 145 

As the framework aims to local scale and professional and non-professional users, it does not require substantial 

resources regarding computational power, time and memory. For example, we want to get a 7 month water balance 

forecast for a small catchment. For a test cast we can use a 4.6 km2 catchment with 24 HRUs (Wernersbach Creek 

near Tharandt in Saxony, Germany) provided with the Global BROOK90 framework on GitHub. It takes around 

5-10 min to download elevation, land cover and soil data. Depending on requested length and type of 150 

meteorological data, the download time can vary from half an hour to a few days due to system build-up of 

meteorological data providers. For instance, download of one year ERA5 data for the model warm-up and 7 

months of ECMWF forecasts without hindcasts for bias correction lasted 7 hours (6 hours from which were needed 
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for the forecast request). Finally, computational time including data processing, modelling and saving the results 

on 3.4 GHz 16 GB RAM PC lasted approximately 30 min, from which the time needed to forecast one HRU with 155 

the abovementioned time interval yields to 1.5 min. 

1.3 Model runs for drought 2018-2019 

For the assessment of the soil moisture forecast with Global BROOK90 the time period of 2017-2020 was chosen. 

Thus, two years with ‘normal’ (2017, 2020) and two with ‘drought’ (2018-2019) conditions were considered. 

ERA5 with hourly resolution was used for reanalysis benchmark simulations. ECMWF hindcasts with 51 160 

members with daily resolution and 7 months lead time were applied for each month starting from July 2016 up to 

December 2020, so that for each month in a period of 2017-2020 all possible lead times (1-7 month) will appear. 

Additionally, for all runs one warm-up year was included. In case of a simulation with hindcast, corresponding 

ERA5 data was attached. Model input files and row simulation results are available as Supplementary 

(Vorobevskii, 2023b). 165 

1.4 Validation of the simulated soil moisture 

With the absence of available data of on-site soil moisture measurements, satellite based products were chosen 

for the validation. To benchmark the soil moisture simulations from Global BROOK90 the SMAP L4 Global 3-

hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data V007 (Reichle et al., 2021a) is 

used. The product uses L-band brightness temperature data from satellites assimilated into a land surface model 170 

to estimate soil moisture on a 9 km spatial and 3 hours temporal scale globally from April 2015. The soil moisture 

is provided for the topsoil (0-5 cm), root zone (0-100 cm) and the full soil column (up to the model bedrock - e.g. 

1.3-3.8 m for the study catchments depending on specific location with a mean of 1.9 m) according to product 

description (Reichle et al., 2021b). 

For the validation, the catchment-weighted-mean of soil moisture simulated with ERA5 was taken. As the 175 

thickness of standard soil layers in Global BROOK90 (dictated by SoilGrids250 dataset) does not provide a full 

match with the SMAP layout, it was decided to use the closest values of 0-2.5 cm for topsoil, 0-80 cm for root 

zone and 2 m for the whole soil profile. Since the area of one SMAP grid (81 km2) corresponds well with the sizes 

of the chosen catchments, the closest to the catchment centre grid was selected. Kling-Gupta-Efficiency (KGE) 

(Gupta et al., 2009) was chosen to show the agreement of volumetric water content from SMAP and Global 180 

BROOK90 on a monthly scale. 

1.5 Comparison of reanalysis and forecasted soil moisture 

Daily and monthly catchment-weighted mean absolute values (mm per layer) were used to compare soil moisture 

simulations using ERA5 and ECMWF forecasts. For the calculation of relative and absolute difference between 

ERA5 and ECMWF forcings, monthly means from the 51 forecast ensemble runs were considered. Furthermore, 185 

the results for topsoil (0-5 cm) and full soil column (up to 200 cm) were analysed separately. Drought periods 

were identified based on the Relative Extractable Water coefficient (Eq. 1). 

𝑅𝐸𝑊 = (𝛩𝑐 − 𝛩𝑊𝑃)/(𝛩𝐹𝐶 − 𝛩𝑊𝑃)                                                             (1)  

where 𝛩 is volumetric soil moisture at different states: C is current value at present conditions, WP is wilting point 

(-1500 kPa), FC is field capacity. This coefficient is calculated along with soil moisture values on a daily scale in 190 

Global BROOK90 and is presented in the output. Various researchers state that the values of REW below 0.2-0.4 
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indicate the beginning of a water stress for vegetation (Bréda et al., 2006; Granier et al., 1999; Schmidt-Walter et 

al., 2019; Vilhar, 2016). Here, we have chosen a threshold of 0.3 to mark drought conditions. 

2. Results and discussion 

2.1 Comparison of SMAP and ERA5-forced soil moisture 195 

Summarised performance of Global BROOK90 with regard to SMAP data for the study catchments is shown on 

Figure 4. The performance of the soil moisture simulations in the upper zone of 5 cm (which in SMAP is directly 

assimilated from satellite data) was found better, than for the root zone and for the full profile (which in SMAP 

are already land surface model derivatives). The mean KGE value for the topsoil was 0.53, the lowest value 0.27 

was found for the catchment #8 and the highest value of 0.82 for the catchment #11. All catchments showed high 200 

correlation coefficients with a mean KGE of 0.88. However, both Global BROOK90 underestimated the mean 

(mean BIAS 0.82) as well as the variance (mean variance ratio 0.66) in comparison to SMAP, except for two 

catchments. This could be partly explained by different framework setups, namely differences in the models 

themselves as well as  underlying datasets used to derive soil properties. With increase of the soil depth, the 

agreement between two datasets decreased, leading to mean KGE values of 0.48 for the root zone and 0.34 for the 205 

full column. This is mainly due to decrease of correlation and variance ratio. 

Overall, the best performance was achieved for the short canopies (cultivated and herbaceous land covers), where 

the satellite signal could penetrate deeper through the vegetation into soil (Babaeian et al., 2019). Thus, it is not 

evident that Global BROOK90 simulations in tall canopies have worse performance, rather that the uncertainty 

of SMAP data is much higher for these land covers. 210 

 
Figure 4. Kling-Gupta-Efficiency and its components between SMAP and Global BROOK90P monthly soil moisture 

for twelve catchments 

2.2 Drought monitoring and forecasting on a local scale 

Several snapshots of spatial soil water deficit for 2018 in Natzschung catchment (#12 on Figure 1) are shown in 215 

Figure 5 to show the advantages of drought monitoring with Global BROOK90 on a local scale. In January, the 

soil is close to saturation (REW values 0.7-0.8 for topsoil and 0.9-1 for full column). Exceptions are the few HRUs 

with urban areas, where the highly-sealed surfaces lead to blockage of moisture renewal. Six months later in June, 

when meteorological and hydrological droughts were already clearly noticeable, amounts of the soil water were 

reduced by around 40%, but remaining on a plant-demand level. Cultivated territories in the catchment are mainly 220 

planted with wheat, barley, oil fruits, silage maize and rye. As these cultures have a shallow effective root 

penetration, topsoil soil moisture (where REW values were found between 0.4 and 0.6) plays a higher role, than 

deeper horizons. The predominant forest species in the catchment is Norway Spruce also quite often has shallow 

rooting system and the majority of the root mass is concentrated in the upper soil layers (Puhe, 2003). Thus, it 

https://doi.org/10.5194/nhess-2023-9
Preprint. Discussion started: 17 February 2023
c© Author(s) 2023. CC BY 4.0 License.



8 
 

could have already experienced some water stress by June as REW values in topsoil reached 0.2-0.4. On 15th 225 

October, the minimum soil water content was observed. The upper 45 cm of soil was almost completely dry, while 

deeper horizons under the croplands, beech and opened forests still contained plant-available soil moisture 

(although not accessible to the crops due to root depth). As November and December brought new precipitation, 

soil gained enough moisture for plant water supply (REW values 0.4-0.8 for topsoil and 0.5-1 for full column). 

Recovery of soil moisture under the tall canopies was not as noticeable as under the short ones. This can be 230 

explained with the harvesting of cultivated areas and withering on grasslands. Thus, almost no soil moisture was 

used for transpiration, which is typically the most consumable part of water balance in this climate. Moreover, the 

general prevailing drought conditions under the forest sites in comparison to short canopies most probably resulted 

from much higher transpiration rates of the spruce stand. Thus, a faster depletion of soil water content is observed 

there. 235 

 

Figure 5. Beginning, propagation and recovery of the 2018 drought on HRU scale in the Natzschung catchment for 

the root zone (0.45 m) and full soil column (up to 2 m). Reference to satellite imagery: Imagery 2023 TerraMetrica, Map 

Data 2023, GeoBasis-DE/BKG 2009. Reference to elevation model: NASA Shuttle Radar Topography Mission Global 1 arc 

second, 2023. Reference to land cover map - Copernicus Global Land Service: Land Cover 100m: collection 3 240 

The ECMWF data used as a forcing in Global BROOK90 allows getting daily ensemble predictions of soil 

moisture with a lead time of seven months and monthly updates. Figure 6 shows three different hindcast-forced 

soil moisture simulations for the Natzschung catchment. Start of each hindcast is indicated with the red dot, 

ensemble mean is shown with red and single ensemble runs with grey colours. In the pre-drought winter period 

of 2017-2018, the September hindcast ensemble mean showed approximately 10-15% underestimation of water 245 

content compared to ERA5 forcing until February. In fact, this is rather a 1-1.5 month lag due to delayed prediction 

of the rainy season, since the slope of the growing moisture curve as well as the saturation-plateau values look 

consistent between both forcings. In May 2018, when the soil moisture decline was clear according to ERA5 data, 

the hindcast demonstrated even a steeper depletion of water content in the first 3 months, thereafter, however, it 

quickly flattened out and soil moisture refill began due to significant precipitation input. Thus, ECMWF forcing 250 

not only predicted the drought recovery point two months earlier and severely overestimated soil water content 

by more than 25%. Finally, a hindcast started in January 2019 on the upward ‘recovery’ soil moisture curve 

showed a decent agreement with ERA5 forcing until a new seasonal decline started in April-May marking the 

beginning of the 2019 drought. For all the three presented hindcasts, ensemble band (especially lowest members) 
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covers the variability of ERA5 forced soil moisture through all lead times, however, a general overestimation of 255 

precipitation for the drought period and its variability in general in ECMWF hindcast is clear. 

 

Figure 6. Catchment-mean full-column (up to 2 m) soil moisture for the 2018 drought simulated with ERA5 and 

ECMWF ensemble hindcasts forcings in Natzschung 

2.3 Lead time affecting forecast accuracy 260 

The effect of a forecast lead time in predicting the monthly soil moisture for the root zone and the full soil column 

in twelve selected catchments is shown in Figure 7 and Figure 8. A lead time of one month resulted in a relatively 

small discrepancy between hindcast and reanalysis forcings for all catchments. The relative difference rarely 

exceeded 10-15% (up to 20 mm) and no noticeable correlation with seasonality was observed. However, already 

a lead time of two (for some catchments three) months showed much higher differences (both positive and 265 

negative) between hindcast- and ERA5-forced soil moisture (up to 70% or around 150 mm). These results are 

consistent with similar research (Wanders et al., 2019) and indicate imperfection of meteorological input, namely 

increasing uncertainties of the seasonal forecasts with the growing lead time. Moreover, for the majority of the 

catchments (except #4) positive anomalies were found within identified drought periods (REW<0.3). This 

accounts for general overestimation of small-scale precipitation in autumn forecasts compared to ERA5. On the 270 

other hand, a big negative anomaly in August-September 2017 for catchments #2, 4, 5, 6, 10, 12 symbolises a 

general issue of ECMWF forecast system, which met some general problems in the whole European domain for 

these months. With the further increase of a lead time, the differences increase as well, however, not so drastic 

compared to the differences between 1 and 3 months. Thus, based on results from twelve study sites, it can be 

concluded that the predictability of the soil moisture using the ECMWF seasonal forecasts can be successfully 275 

accomplished with a lead time up to 2-3 months. Results for both full soil column and root zone look similar and 

consistent, although the difference in two datasets is more prominent for the latter one.  Furthermore, it was 

noticed, that regardless lead time, ECMWF-forced simulations tend to show highest overestimations of the soil 

moisture near the end of REW-declared drought periods, thus forecasting the end of a water shortage too early, 

which is clearly visible for the topsoil (#1, 2, 3, 5, 6, 9, 10, 11, 12). Finally, no clear pattern between behaviour of 280 

forecasted soil moisture and catchment characteristics (i.e. dominated land cover and soil type) was found. 
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Figure 7. Absolute and relative difference between monthly soil moisture simulated with ECMWF hindcasts (mean of 

ensemble runs) and ERA5 forcings for root zone (0.45 m) 
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 285 

Figure 8. Absolute and relative difference between monthly soil moisture simulated with ECMWF hindcasts (mean of 

ensemble runs) and ERA5 forcing for full soil column (up to 2 m) 
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2.4 Advantages of using probabilistic weather forecast 

Multiple uncertainties of a weather forecast could be compensated by the advantages of using its members instead 

of only considering an ensemble mean. Here, the quantile predictions of monthly soil moisture simulated from 51 290 

members of ECMWF meteorological hindcast with different lead times are presented (Figure 9). One month lead 

time hindcast provides a good fit with ERA5 forcing. Here the width of an ensemble band is relatively narrow due 

to the small uncertainty band of the meteorological conditions within a short prediction range. Minor 

inconsistencies in soil moisture predictions for the hindcast and ERA5 forcings (summer 2017 and 2020) probably 

resulted from the difference in spatial resolution between two datasets. However, already by three month lead 295 

time, the spread between ensemble mean and quantiles becomes considerable, especially in the summer period 

due to increased uncertainty of the meteorological forecast. Here the drought development and propagation is 

better depicted by lower hindcast quantiles (10-20%), while for drought attenuation in the wet season all 

probabilities need be used due to a delay of the drought peak in the hindcast forcing dataset. Using a 7 month lead 

time, thus staying on the edge of seasonal forecast predictability, will bring even a higher spread in quantile 300 

hindcasts, however with close developments as for 3 month lead time. Here, the magnitude of soil moisture 

drought in the 2018 cannot be captured even with 1% quantile for 5 months in a row, meaning a significant 

overestimation of precipitation with increasing leading time for this year. 

 
Figure 9. Monthly averages of a catchment-mean full-column (up to 2 m) soil moisture simulated with ERA5 and 305 

ECMWF hindcasts forcings in Natzschung 
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3. Conclusion and outlook 

In the article, we present a new version of an automatic framework for water balance modelling on a local scale 

for any location on the globe called Global BROOK90. The special focus is given on the ability of the new version 

to provide predictions of water balance components up to seven months in advance by incorporation of ECMWF 310 

seasonal meteorological forecasts. We showed how a combination of global open-source datasets with a 

physically-based model could forecast a soil moisture drought on a local scale. 

Soil moisture simulations were conducted for twelve small catchments with various landscapes located in Europe 

within the 2017-2020 time period, which cover the well-known continent-scale European drought of 2018-2019. 

We used ERA5 reanalysis and ECMWF hindcasts as a meteorological forcing, where the ERA5 runs served as a 315 

reference for the soil moisture to assess the quality of the forecast performance. With an example catchment we 

showed spatio-temporal advantages of small-scale modelling in monitoring and forecasting a drought. 

Additionally, the ERA5-forced model runs were compared with SMAP data, which represents a satellite 

brightness temperature assimilated in a land surface model. Validation resulted in a good agreement of both 

datasets on a monthly scale, especially for the correlation coefficient. However, Global BROOK90 ended up with 320 

lower mean and variance of soil moisture. Highest KGE values were found for the topsoil and the goodness of fit 

declined with a profile depth.  

Comparison of monthly soil moisture showed that forecasts could provide acceptable results up to maximum 3 

month lead time. Thereafter, the difference between two forcings could be more than 100 mm or 50% of the total 

soil water, which is a considerable amount, especially for the drought periods. Furthermore, it was found that for 325 

the majority of the study sites, ECMWF forecast resulted in overestimation of the soil moisture in identified plant-

water-stress periods. 

Finally, possible advantages of probabilistic instead of only deterministic soil moisture forecasts using quantiles 

of ensemble runs were assessed. It was shown that for the lead times up to three months the method could be 

advantageous as the band of quantile forecast could cover the variability of soil moisture produced with ERA5 330 

forcing. However, as the hindcast-forced runs in the drought period generally tend to overestimate soil moisture 

and for the 7 month lead time even 10% hindcast was found insufficient to reach ERA5-forced soil moisture 

values. 

Overall, Global BROOK90 combined with ECMWF seasonal ensemble forecasts showed good results for a mid-

term range and can serve as a decent basis for drought monitoring and forecasting on a local scale. Moreover, one 335 

of the definitive advantages of the framework is that it does not require big computational resources or 

programming background and could be run on a normal computer or laptop by a non-professional user. 

Data and Code availability 

Authors fully support open-source and reproducible research. Global BROOK90 framework is available under 

https://github.com/hydrovorobey/Global_BROOK90 repository (CC BY-NC-ND 4.0). Simulation results, initial 340 

and simulation datasets and R-scripts to reproduce figures and tables for the manuscript are available under the 

following HydroShare composite resource https://doi.org/10.4211/hs.d882e83bae95438881c7b47f003e7a3c. 
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