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Prediction of landslide induced debris’ severity using machine learning 27 

algorithms: a case of South Korea 28 

Abstract 29 

Rainfall-induced landslides frequently occur in the mountainous region of Korean peninsula. 30 

The resulting landslide induced debris cause extreme property damages, huge financial losses 31 

and human deaths. To mitigate their effect different landslide susceptibility mapping are 32 

frequently used. However, these methods do identify regions with potential landslides but they 33 

do not quantify their severity. In this paper multi-category ordered machine models, namely, 34 

proportional odd logistic regression (POLR), random forest (RF), support vector machine 35 

(SVM), and extreme gradient boosting (EGB) methods, are proposed to fill the specified gap. 36 

Moreover, the exploratory data analysis on landslide induced derris’s dataset has been 37 

conducted on to examine patterns and relationship between landslide-induced debris 38 

severity(size), causal factors(rainfall) and influencing factors. Findings revealed that 39 

cumulative three days’ rainfall and slope length were most responsible for the severity of 40 

landslide-originated debris severity and slopes between 20° to 40° was identified as most 41 

vulnerable region. Furthermore, the predictive accuracy statistics were compared to assess the 42 

suitable model for debris severity for Korean case. The RF and EGB ranked higher with an 43 

overall accuracy of 90.07% and 86.09% and kappa of 0.72 and 0.61 on the validation set, 44 

respectively. The findings of this research may be useful in the identification of high risk zones 45 

for extreme rainfall-induced debris to elaborate mitigation and resilience policies, post-disaster 46 

rehabilitation planning and land use management.  47 

 48 

Keywords: Rainfall-induced debris Severity; Proportional odd logistic regression; Random 49 

forest; Support vector machine; Extreme gradient boosting; Machine learning , South Korea  50 

https://doi.org/10.5194/nhess-2023-73
Preprint. Discussion started: 8 June 2023
c© Author(s) 2023. CC BY 4.0 License.



 

 

3 
 

1. Introduction 51 

Rainfall-induced debris is a natural phenomenon that occurs when the slope fails due to the 52 

saturation of soil after the rainfall exceeds a certain threshold (Au 1998; Takara et al. 2010; 53 

Peruccacci et al. 2017; Segoni et al. 2018; Crawford et al. 2019; Coppola et al. 2022). 54 

Rainwater penetrates the soil through cracks or pores (Zeng et al. 2022) which destabilizes the 55 

slope and induces landslides (Franzluebbers 2002). Furthermore, the volume of landslide-56 

induced debris depends on the geological condition of the terrain, rainfall intensity and duration 57 

(Chang et al. 2011). Extreme rainfall is the triggering factor for landslides which is one of the 58 

most damaging natural disasters with the expensive cost of repair and indemnification 59 

(Kockelman 1986; Gariano and Guzzetti 2016). In addition, heavy windstorms, typhoons, and 60 

extensive rainfall have destroyed many properties and taken many human lives yearly (Liu et 61 

al. 2018). Furthermore, landslides have caused enormous environmental degradation, 62 

infrastructure damage, casualties, and loss of life, which disturb the socio-economic aspect of 63 

the community (Li et al. 2012; Sarkar and Dorji 2019; Zhao et al. 2019; Taylor et al. 2020; 64 

Lacroix et al. 2020; Winter 2020; Negi et al. 2020; Ju et al. 2020; Van et al. 2021). Most rainfall-65 

induced landslides were found to be shallow (de Jesús et al. 2019; Liu et al. 2021; Chang et al. 66 

2021) however, some were very extreme and resulted in severe human and financial damage 67 

(Turner, 2018; Meena et al., 2021). Klose et al. (2016) found that from 1980 to 2013, landslides 68 

took thousands of lives and an annual average of about $20 bilion of economic losses, which 69 

was 17% of the total ($121 billion) annual mean of global disaster-induced losses.  70 

The Korean peninsula is characterized by mountainous, which makes it more prone to 71 

rainfall-induced landslides (Lee et al. 2013). Lee et al. (2012) found that the triggering factor 72 

for landslides was short-duration heavy rainfall. Park et al. (2013) reported that the annual 73 

property damage caused by rainfall-induced landslides in South Korea averaged between 74 

US$500M to US$1000M and approximately 36 human deaths per year from 1997 to 2010. 75 
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Therefore, to mitigate the effect of landslides in South Korea, different studies have been 76 

carried out on landslide assessment (Kadavi et al. 2019; Lee and Winter 2019; Sameen et al. 77 

2020; Panahi et al. 2020; Hakim et al. 2022). Lee et al. (2020) applied the Naïve and Bayesian 78 

Networks model for landslide susceptibility mapping in Umyeon Mountain. Lee et al. (2012) 79 

used physical slope and probabilistic model, i.e., decision trees and logistic regression for 80 

landslide susceptibility mapping in Gangwon-do. Lee et al. (2013) developed the binary 81 

logistic regression model for predicting the occurrence of landslides. Woo et al. (2014) 82 

constructed a landslide hazard map using binary logistic regression. Park and Kim (2019) 83 

compared boosted trees and random forest model's performance in landslide susceptibility 84 

mapping for Umyeon Mountain; the same methods were previously applied at Pyeong-Chang 85 

by Kim et al. (2018). It was observed that the objectives of previous studies were  to predict 86 

landslide susceptibility; they did not specify how severe the occurring landslides would be. 87 

Further, most of studies were performed on a small scale and only predicted the occurrence, 88 

not the size. Therefore, in the present study, we analyzed landslide-induced debris severity 89 

based on the causative variables and influencing factors. This study is novel in expressing the 90 

relationship of debris’ severity, causative and influencing factors. It is an extention on landslide 91 

mapping which quantifies the magnitude of landslide-induced debris. The quantification of  92 

debris severity may be useful in land management by highlighting regions prone to higher 93 

rainfall-induced debris to know whether  economic activities that may be carried out on the 94 

given region may not be vulnerable to extreme landslide hazards. The severity of debris is 95 

measured in unit of volume (m3) and classified as shallow(below 500m3) small(500-2000m3), 96 

medium (2000-5000m3) and critical, i.e., above 5000m3. Words severity of debris, debris 97 

volume or size of debris express the same quantity in different ways and are used 98 

interchangeably in this manuscript. 99 
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2. Study region 100 

Korean peninsula is located in the northern hemisphere, between China and Japan in Northeast 101 

Asia. Its climate has continental and oceanic features with wide temperature differences. The 102 

yearly mean temperature ranges from 10°C to 16°C, that is, from -6°C to 7°C in winter and 103 

23°C to 27°C in summer. In South Korea, the rainy season range from June to September, with 104 

1000mm to 1800mm of precipitation in the southern part and 1100 to 1400mm in the central 105 

region (https://web.kma.go.kr/).  106 

The altitude ranges from 0 to 1911 meters, with mount Halla (in Jeju Island) being the 107 

highest peak in South Korea. The Gangwon Province is the most mountainous region of about 108 

64% of all tallest mountains in Korea, that is, 23 of 36 mountains. The surface geology of the 109 

Korean peninsula is mostly composed of igneous, sedimentary, and metamorphic rock (Chough 110 

et al., 2000). The arable soil depth varies between 1 to 2m (Lee and Winter, 2019). Due to the 111 

high intensity rainfall and weak geological formation in the mountainous region causes high 112 

frequency of landslides. Figure 1(a) illustrates the distribution of landslides by the volume of 113 

landslides, while subplots (b & c) exhibited the relationship of slope length, altitude, and 114 

rainfall with the landslide size.   115 
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 116 

Figure 1. (a) Landslide location in South Korea, (b) Distribution of landslide volume per 117 

slope length and altitude, and (c) Distribution of landslide volume per slope length 118 

and rainfall (Data source: elevation data acquired from NGII, 2018). 119 

3. Methodology 120 

3.1. Problem formulation  121 

Predictive models that deal with multi-variate random variables were investigated to 122 

predict the severity of rainfall-induced landslides. Among those predictive models, 123 

proportional odd logistic regression and other machine learning-based algorithms such as 124 

extreme gradient boosting, random forest, and support vector machine are widely used to deal 125 

with classification problems (Marjanović et al. 2011; Lee et al. 2012; Woo et al. 2014;Wang et 126 

al. 2022a). The main steps for the modeling process were to analyze the interaction of variables 127 
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that influence the severity of landslides with results in a higher size of debris. For the purposes, 128 

four machine learning models i.e.,  POLR, RF, SVM, and EGB, were used to assess the most 129 

suitable predictive model for landslide-induced debris in south Korea (;Su et al.,2022). The 130 

comparison was made using predictive accuracy and the value of kappa. Figure 2 shows the 131 

steps followed in the construction of the model. 132 

   133 

Figure 2. Modelling workflow process for the prediction of landslide induced debris’ severity 134 

using machine learning algorithms. 135 

3.2. Data description 136 

The dataset contains 455 debris inventory collected from field surveys with the help of 137 
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portable GPS, a laser ranger and a clinometer. Variable definitions and descriptions for each 138 

feature in the dataset are presented in Table 1. The rainfall data were collected from Korea 139 

meteorological Administration stations scattered around the country nearest each landslide-140 

induced debris site. It was revealed that the duration and quantity of rainfall directly affect 141 

landslides (Berti et al. 2012; Kim et al. 2014; Sarkar et al. 2019; Liu et al. 2020; Ngo et al. 142 

2021). Rainfall data were grouped into twelve variables: cumulative rainfall, continuous hourly 143 

rainfall, three hours, six hours, nine hours, twelve hours, one day, three days, seven days, two 144 

weeks, three weeks, and four weeks’ rainfall. Different measures of rainfall were captured due 145 

to the time-dependent cumulative effect of rainfall on the slope stability, and prolonged rainfall 146 

has a more damaging effect in mountainous regions (Baum and Godt 2010; Hidalgo et al. 2017; 147 

Meena et al. 2022). The conditioning factors, i.e., soil type, topsoil depth, altitude, slope, slope-148 

length, slope aspect, and vegetation (leafage, size of tree, age of trees, and fire history), were 149 

collected. The soil type was classified as sandy loam, lithosols, silt loam, and clay. The soil 150 

depth was grouped into below 20 centimeters, between 20-50, and 50-100 centimeters. The 151 

rainfall infiltrating the topsoil causes saturation, which initiates the landslide and then results 152 

in debris flow (Baum and Godt 2010;Vahedifard et al.,  2017; Zhu and Zhang 2019). The anti-153 

erosive drainage presence and status were categorized into: very good, good, and bad. Dranage 154 

channels reduces the concentration of water in soil and effect on water flow, saturation, soil 155 

moisture, and valley landslides(Shahabi and Hashim 2015).  The vegetation-covered and 156 

necked lands have different affect of landslide (Lee et al. 2013; Ozioko and Igwe 2020;Huang 157 

et al. 2021). The foliage information was classified into pines, broad-leaved, and mixture, while, 158 

the size of trees was classified as large, small, and medium. The age of trees was grouped into 159 

seven classes viz. 1-5 5-15, 15-25, 25-35, 35-45 and >45 years. The forest fire history was also 160 

considered as a influencing factor due to its erosive nature(Huang et al. 2020). Geographical 161 

features were found to contribute to the severity of landslides at different levels; steep slopes 162 
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were found to fail as the intensity of the rainfall increased (Brand et al. 1984; Au 1998; Charles 163 

and Shi 1998; Nandi and Shakoor 2008; Pham et al. 2018; Chen et al. 2020). It was also noted 164 

that plane areas beneath steep slopes face the damage caused by debris flowing from the top of 165 

mountains (Raja et al. 2017,Wang et al. 2022b). 166 

 167 

 The output variable (volume) of landslides has been classified into four categories, i.e., 168 

below 500m3, between 500-2000m3, 2000-5000m3, and above 5000m3(Fig. 4c). There are 169 

different types of landslides; which are classified based on the cause or shape after occurrence 170 

(Causes 2001). Landslides may result from liquefaction, earthquakes, intense surface water 171 

flow due to precipitation, underground water, ice melting, human activities, tectonic 172 

movements etc.( Alexander 1992; Causes, 2001; van der Beek, 2021;McColl 2022). In this 173 

paper, we only considered landslide-induced debris originating from rainfall. Table 1 174 

summarizes the characteristics of debris: its types, frequency and size. 175 

Table 1: Landslide-induced debris types and frequency 176 

                      Volume (m3)  
Destroyed area <500 500-2000 2000-5000 >5000 Total 

valley erosion 1 1 1   3 
falling rocks 1       1 
mixed/ complexes 3 2 1   6 
slope 1 1   1 3 
scour 1       1 
curved wedges 4 1     5 
a circular arc 205 45 14 2 266 
Plane 120 35 10 5 170 
Total 336 85 26 8 455 

3.3 Exploratory data analysis 177 

The relationship between the influencing factors and the debris size were analyzed. We 178 

consider categorical variables, also known as qualitative set of information, that is divided into 179 

groups. It describes data which are non-numerical and serve qualitative purposes, such as 180 
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representing a certain value or distinctive character of objects (nominal), when there is no order 181 

in levels and ordinal when there is an order in the dataset (Bilder and Loughin 2014). In addition, 182 

continuous features were presented in form of histograms and boxplots to analyze the 183 

dispersion and influence on the size of debris. Figure 3 illustrates that most of the occurred 184 

debris was shallow (below 500m3, 73.85%), followed by 500-2000m3 (18.68%), and the 185 

extreme debris (above 5000m3) was the least frequent (1.76%). Debris with a size above 186 

5000m3 was mainly associated with sandy loam soil of depth above 20cm and a  non-perfected 187 

drainage system, where the forest density was medium and in a place that experienced wildfire. 188 

The region with pines leafage experienced shallower debris compared to other types of leafage. 189 

The region with older trees, above 45 years of age, experienced more severe debris than 190 

younger forests. Šilhán and Stoffel (2015) highlighted that the area with timber age of above 191 

45years were more sensitivity to landslide occurrences. The size of debris for wildfire-192 

experienced regions was observable; compared to the frequency of cases with no wildfire 193 

history, the severity was quite higher. The wildfire influence on the rainfall-induced debris is 194 

due to the reduced infiltration of water into the soil, which increases the erodibility of soil 195 

(Ranger et al. 2020; Tiwari et al. 2020). The inadequate drainage system resulted in severe 196 

debris(Popescu 2002), where the system was very good, no severe debris occurred. The 197 

resulting huge number of shallow debris for a very good drainage system is due to the fact 198 

those systems are usually created in the most vulnerable regions and the shallow debris is an 199 

indication of improvement in landslide mitigation. 200 
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 201 

Figure 3. Interlinkage between the size of debris and categorical influencing factors.      202 

Figure 4a illustrates that sandy soil, which totalizes about 70% of all debris, was the 203 

most vulnerable soil, followed by clay (22%), silt loam (7%) and lithosols (1%). Similarly, 204 

sandy soil not only ranked higher in terms of frequency but also in terms of size. The high 205 

sensitivity of sandy soil to rainfall-induced debris may be due to its high coefficient of 206 

permeability which facilitates fast saturation of topsoil during the rainfall period that induces 207 

shallow debris (Lee et al. 2013). Overall, about 73.85% of all debris was shallow, that is, below 208 

500m3, 18.68 % (500-2000m3) was small, 5.71% (2000-5000m3) was medium, and only 1.76% 209 

were critical, i.e., above 5000m3, as depicted in Fig. 4b.  Figure 4c, illustrates that about 74% 210 

of landslide-induced debris occurred in Gangwon and Seoul; this made the two provinces more 211 

vulnerable than other regions. South and North Gyeongsang provinces ranked third and fourth 212 

with 7% (25 cases)  and 5% (18 cases) of all debris inventory, respectively.  213 
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 214 

Figure 4. Distribution of debris’: (a) debris’ volume (in m3)  per soil types, (b) debris’ 215 

frequency per volume, and (c) debris’ frequency per provinces. 216 

 217 

To examine the relationship between continuous explanatory variables and their effect 218 

on the size of debris, 3D scatter plots and boxplots were presented (Fig. 5). It was observed on 219 

the 3D scatterplot that most debris occurred at slope between 20° and 40° (Fig. 5a), this was 220 

also confirmed by the boxplot (Fig. 5b), where few exceptions were observed for shallow 221 

debris for clay and sandy soil where debris occurred at small or at very large slope angles as 222 

outliers. Shallow debris was independent of the slope angle as depicted in Fig.5c; outliers were 223 
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scattered on all slope angles, and as the size of debris increased, the occurrence converged at 224 

slope between 20° and 40°. There was a pseudo-decreasing trend between altitude and size of 225 

debris (Fig. 5c), the highest altitudes (above 600m) were associated with shallow debris and 226 

critical debris occurred at altitude between 200 and 900m. On the other hand, a quasi-increasing 227 

relationship between size of debris and slope length was observed in all type of soil (Fig. 5d). 228 

Debris below 500m3 was associated with slope length below 80m, the highest quartile was 229 

about 140m associated with clay soil of above 5000m3 of debris size. 230 

 231 

Figure 5. Distribution of debris and continuous predictors: (a) 3D Scatter plot between altitude, 232 

topographic slope and slope length, (b) boxplot of volume of debris per slope angle and 233 

soil types, (c) boxplot of volume of debris per altitude and soil types, and (d) boxplot of 234 

volume of debris per slope length and soil types. 235 
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The analysis of the relationship between the size of debris and rainfall over different 236 

time intervals has shown that short time rainfall was associated with shallow debris(fig.6 a-f), 237 

as the cumulative time interval of rainfall increased, the debris size increased and stabilized at 238 

three days cumulative rainfall(Fig. 6g). we observed that the increase in severity of debris was 239 

associated with lower precipitation as reflected in the yellow boxplot for debris above 240 

5000m3(Fig. 6. g-f), the precipitation of occurrence was below the corresponding median 241 

rainfall. Therefore the lower precipitation on prolonged time greater or equal to three days was 242 

responsible for severe debris. On the other hand, short-duration heavy rains were responsible 243 

for shallow debris(Polemio and Petrucci 2000).The relationship between  shallow debris and 244 

heavy rain was reflected in the boxplot representing debris below 500m3(Fig. 6 a-f), where the 245 

interquartile range of precipitation was large. 246 
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 247 

Figure 6. Distribution of severity of debris per antecedent rainfall groupped in different time 248 
intervals 249 

 250 

The precipitation at the time of the incident exhibited an inverse relationship between 251 

the size of debris and rainfall intensity (Fig. 7 a-f). From three days’ cumulative of antecedent 252 

rainfall, the relationship became almost constant in all time-based cumulative rainfall (Fig. 7 253 

g-h). The rainfall of lower intensity falling over a prolonged period was observed to trigger the 254 
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large size of rainfall-induced debris (Tang et al. 2017; Rivas et al. 2022). The threshold for the 255 

triggering factor was the rainfall duration of atleast 3days (Chinkulkijniwat et al., 2020; 256 

Rahardjo et al., 2020). In terms of soiltype, clay exhibited  shallow debris at lowest 257 

precipitation followed by sandy soil. The median of the occurrence of shallow debris was the 258 

lowest for silt loam compared with other soil types. From three days cumulative rainfall(Fig. 259 

7g), the median of occurrence of all size of debris stabilized around 300mm of precipitation 260 

and clay was more likely to produce severe debris. 261 
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 262 

Figure 7. Relationship between rainfall and the size of debris. 263 

 264 
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3.3. Method Description 265 

The analysis, construction, and evaluation of models were done in the following 266 

chronological order as depicted in Fig. 2. First, the data set was curated: formatting the 267 

variables to match their types, that is, numerical variables into a numerical format, and 268 

categorical variables into factor and ordered factors according to their natural characteristics 269 

(Table 1). Second, the dataset was split into training and test set. Third, the four machine 270 

learning algorithms (Kainthura and Sharma 2022; Su et al.,2022), were applied to the training 271 

and test set on all variables consecutively. Finally, confusion matrices for each method were 272 

generated to compare the performance based on the overall accuracy and kappa. The variable 273 

ranking plot was generated to identify the cause of differences in the predictive power of the 274 

four methods. 275 

All analyses were done using the following packages in R software: Caret (Max 2022) 276 

for the creation of confusion matrix, dplyr (Wickham et al. 2022) for data manipulation and 277 

formatting, MASS for running proportional odd logistic model, Random Forest for running the 278 

random forest algorithm, Xgboost for running extreme gradient boost, SVM for supporting 279 

vector machine, Ggplot2 (Wickham 2016), alluvial (Brunson 2020) for plotting, and Matrix for 280 

creation of sparse matrix which is used in training extreme gradient boosting.  281 

Variable importance is a systematic approach for identifying the contribution of input 282 

variable in the prediction of the outcome variable in the predicative model. For graphical 283 

representation of variable importance (Biecek and Burzykowski 2021), the plot was made using 284 

DALEX libraries (Biecek 2018) and the e1071 package (Meyer et al. 2021) in R (Team 2021). 285 

This plot ranks variables according to its influence on the predictive power of the model.  286 

The selected methods for modeling were chosen based on low parsimony and are 287 

frequently applied to ordered outcome problems. The predictive performance for each model 288 

was evaluated using confusion matrix information accuracy and kappa (Caelen 2017). The 289 
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kappa statistic k measures the agreement between the observed and predicted values to quantify 290 

the ability of the model to classify the output variable into their appropriate classes or categories. 291 

Let both the observed Y variable and predicted Z variable have g categories or levels. Let  𝑓𝑓𝑖𝑖𝑖𝑖 292 

be the frequencies of observations in the 𝑖𝑖𝑡𝑡ℎ categorical output variable Y and the 𝑗𝑗𝑡𝑡ℎ category 293 

of the predicted values, then the frequency table known as the confusion matrix can be arranged 294 

as follows: 295 

 Z=1 Z=2 … Z=g 
Y=1 𝑓𝑓11  𝑓𝑓21  … 𝑓𝑓1𝑔𝑔  

Y=2 𝑓𝑓21  𝑓𝑓22  … 𝑓𝑓2𝑔𝑔  

…
 

…
 

…
 

… …
 

Y=g 𝑓𝑓𝑔𝑔1  𝑓𝑓2𝑔𝑔  … 𝑓𝑓𝑔𝑔𝑔𝑔  

 296 

The observed (actual values)  ratio of agreement between Y and Z is expressed as: 297 

 𝑝𝑝0 = 1
𝑛𝑛
∑ 𝑓𝑓𝑖𝑖𝑖𝑖
𝑔𝑔
𝑖𝑖=1  (1) 298 

 299 

and the expected agreement by chance is defined as: 300 

 𝑝𝑝𝑒𝑒 = 1
𝑛𝑛2
∑ 𝑓𝑓𝑖𝑖+𝑓𝑓+𝑖𝑖
𝑔𝑔
𝑖𝑖=1  (2) 301 

 302 

where 𝑓𝑓𝑖𝑖+  is the total for the it h  row   𝑓𝑓𝑖𝑖+ is the total for the ith column. The value of kappa is 303 

the estimate of the population coefficient calculated using the following formula: 304 

 𝑘𝑘 = Pr[Y=Z]−Pr [y=z|Y and Z  are independent]
1−Pr [y=z|Y and Z  are independent]

 (3) 305 

      306 
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The confusion matrix   is useful for analyses, control tunes of different classifiers, and 307 

identification of a combination of classes with its recognition values or rates (Susmaga 2004). 308 

The confusion matrix is a (g × g) dimension table (matrix) which matches predicted values 309 

from the model vs. actual values from the dataset, where g stands for levels of the outcome 310 

variable, entries on the diagonal represents the correct classification, and non-diagonal 311 

elements represent misclassification. The accuracy is defined as the ratio of correctly classified 312 

entries and the sum of correctly classified and misclassification. The accuracy of the model is 313 

compared to the value of the No information rate (NIR). The NIR is the baseline for assessing 314 

performance, not 0.5. For the model to be useful (better than random guess), the lower bound 315 

for a 95% confidence interval (CI) of prediction must be greater than NIR (Garson 2021). The 316 

next paragraphs describe each method in detail. 317 

The proportional odds logistic model (POLR) (McCullagh 1980) is one of the usefull 318 

methods designed to handle ordered or ranked outcome variables when the outcome categories 319 

(levels) are more than two. This model is constructed based on cumulative probability 320 

distribution (Brant 1990), 𝑦𝑦𝑖𝑖 = Pr (𝑦𝑦 ≤ 𝑗𝑗 ) and is expressed in the form: 321 

 logit [𝑦𝑦𝑖𝑖 (1 −⁄ 𝑦𝑦𝑖𝑖)] = 𝜃𝜃𝑖𝑖 − 𝛽𝛽𝑡𝑡X (4 ) 322 

where y is a set of N and independent observation taking values j= 1, 2, …, k, X is a 323 

vector of independent variables, 𝜃𝜃1 < 𝜃𝜃2 < ⋯ < 𝜃𝜃𝑘𝑘−1 and 𝛽𝛽𝑡𝑡 are unknown parameters. To use 324 

ordinal regression, assumptions must be satisfied.  325 

To use the proportional odds logistic regression, the proportional odd assumption or the 326 

parallel regression conditions must be satisfied. The first states that no independent variable 327 

has a disproportionate effect on any level of the dependent variable (McNulty 2021). If this 328 

condition is not satisfied, other methods such as adjacent logit models may be used (Agresti, 329 

2010; Harrell, 2015). To test the parallel regression, the Brant-Wald test is used and this test 330 
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compares the general ordinal logistic regression (with no assumption of proportional odd) with 331 

POLR. It is the test of significance in the difference between the two models, which produces 332 

chi-square statistics. If the p-value of each of the different coefficients of variables in the model 333 

is greater than 0.05, then the parallel regression assumption holds (Brant 1990) or the 334 

assumption is violated otherwise. Binary logistic regression is frequentry used for landslide 335 

susceptiblity mapping(Yesilnacar and Topal 2005; Yilmaz 2009; Lin et al. 2017; Lombardo and 336 

Mai 2018; Sun et al. 2021), the ordered logistic regression is an extension for binary logistic 337 

applied to solve problems with multilevel ordered outcomes(Brant 1990). 338 

The second used method was the Random Forest which is a classification and regression 339 

methods. The RF algorithm (Breiman 2001) is a combination of tree predictors and every tree 340 

is made based on values of random vectors, which are sampled independently using the same 341 

distribution to create all trees of the forest. In this study, the RF classification method (Biau 342 

and Scornet 2016; Lechner and Okasa 2020;) is appropriate due to its capability to handle 343 

multiple outcome-related problems (Diaz-Uriarte and de Andrés 2005). It was applied in 344 

different regions for landslide susceptibility mapping(He et al. 2021; Sun et al. 2021; Huang et 345 

al. 2022). 346 

The third used method is SVM, which was widely used for mapping the likelihood of 347 

landslides (Lee et al., 2017). Among the multiple class prediction methods, the SVM method 348 

performed better for protein fold recognition (Ding and Dubchak 2001;Huang and Zhao 2018), 349 

landslide hazard (Hong et al. 2015), landslide spatial prediction (Pham et al. 2018), etc. SVM 350 

performed not only in multiclass problems but also better in ordered multilevel problems and 351 

it worked better than traditional regression methods (Li et al. 2012). More details about the 352 

SVM algorithm is described by Noble (2006).  353 

The last but not least to choose was the EGB. Extreme gradient boosting is also a machine 354 

learning algorithm known for its high-speed performance and efficient prediction accuracy 355 
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(Chang et al. 2018). The algorithm is based on Friedman's work (Friedman 2001) and 356 

implemented in R under the package xgboost (Chen et al. 2015). This method is known for its 357 

high performance on larger sample sizes (Georganos et al. 2018).  358 

4. Analysis & discussion 359 

To identify the suitable model for the prediction of the size of debris, previously discussed 360 

methods were explored, and results were summarized and compared in this section. 361 

4.1 Debris prediction using POLR 362 

The significance of the observed relationship between the size of the debris and the 363 

associated explanatory variables was measured using proportional odd logistic regression. 364 

Variable selection was made using backward selection (Andersen 2010). The above coefficients 365 

can be interpreted as follows: taking into consideration of p-values, and for each case supposing 366 

that all other coefficients were held constant, the decrease in three hours' rainfall is associated 367 

with a 94% lower odd the size of debris, an increase is six hours' rainfall was associated with 368 

4% increase in higher odd of the size of the debris (Table 2).   369 

Table 2. POLR model coefficients. 370 

Variables Coefficient P value Odds ratio 
Three hours rain -0.051 <0.01 0.949 
Six hours rain 0.039 <0.01 1.040 
One day rain -0.009 0.01 0.990 
Slope length 0.039 <0.01 1.040 
altitude 0.001 0.02 1.001 
Drainage: Good 1.246 0.13 3.477 
Drainage: Very good 1.818 0.04 6.164 
Intercepts:    
<500|500-2000 2.313 <0.01 10.105 
500-2000|2000-5000 4.455 <0.01 86.102 
2000-5000|>5000 6.428 <0.01 619.397 

 371 

 372 
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The goodness of fit and model diagnostic result shows that McFadden pseudo-R2 was 373 

0.23 where the values between 0.2 and 0.4 indicated an excellent fit (Louviere et al. 2000). To 374 

test proportional odd assumptions, the Brant-Wald test (Brant, 1990) was used, and the result 375 

was summarized in Table 3. It shows that all probabilities for all variables including the 376 

omnibus are greater than the 0.05 threshold, except for slope length, which proves that the 377 

parallel regression assumption is satisfied. 378 

Table 3. Parallel regression assumption test. 379 

Test for X2 df Probability 
Omnibus 12.6 14 0.56 
Three hours rain 1.76 2 0.41 
Six hours rain 1.18 2 0.56 
One day rain 1.18 2 0.55 
Slope length 7.1 2 0.03 
altitude 1.31 2 0.52 
Drainage 0.19 4 1 

 380 

The effect plot was used to demonstrate the change, in the likelihood of occurrence of 381 

landslides of a given volume, associated with the change in selected predictors. Figure 7 depicts 382 

the variation of probability of landslides of a given volume per three days' rainfall and slope 383 

length. The likelihood of occurrence of debris below 500m3 was directly proportional to an 384 

increase in the rainfall for the slope length below 30m. There was a decrease in the occurrence 385 

of debris larger than 500m3 as the rainfall increased. This decrease is an indication that shorter 386 

slope length was associated with a shallow debris (First column of Fig. 7). Moving from the 387 

first to the 4th column, the probability of shallow debris (below 500m3), the probability shifted 388 

from 0.9 to 0.6 as slope length increased from 30m to 170m, and the long tail of probability 389 

plots for debris of size above 500m3 disappeared as the slope-length and rainfall increased. This 390 

shifted up the probability curve for critical debris from 0.2 to 0.9 for slope length below 30m 391 

to 0.9 for slope length above 110m, respectively.  392 
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 393 

Figure 8. Effect of three hours of rainfall and slope length on size of debris. 394 

 395 

Figure 9 illustrates that the maximum size of debris occurred at slope lengths above 50m 396 

and with rainfall between 80mm to 110mm. Looking at the two upper light hand corners of Fig. 397 

9, the probability of occurrence of debris above 5000m3 peaked at slope length above 100m 398 

and fade as the rain value increased, this fading associated with rain does not mean that there 399 

is an inverse relationship with rainfall but it associated with the rarity of heavy rain in the 400 

dataset. The probability of occurrence of shallow debris decreased as both altitude and slope 401 

length increased. On the other hand, the chance of occurrence of debris of size between 500m3 402 

and 2000m3 increased with slope length and attained the maximum length between 70 and 80m 403 

with the maximum probability of occurrence of 0.6, and the last one decreased for slope length 404 
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above 100m. For the medeium sized debris, the maximum probability of occurrence was 0.7 405 

and associated with slope lengths between 120m and 150m. The probability of occurrence of 406 

critical debris increased exponentially with slope length and altitude.  407 

 408 

Figure 9. Effect of altitude and slope length on size of debris. 409 

The intuitive explanation of the continuous decrease with shallow debris is associated 410 

with the cumulative character of the model, which means that, what looks like a decrease is not 411 

a real decrease, it is a shift from a lower level to a higher level associated with an increase in 412 

variables into consideration. For altitude below 300m, shifting from a size below 500m3 to 500-413 

2000m3 happened at 20m of slope length, while shifting from 500-2000m3 to 2000-5000m3 and 414 

above occurred at slope length between 60 to 80m. 415 
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4.2 Debris prediction using RF 416 

The random forest model was run on the training set of 304 observations. The number of 417 

grown trees was 1000, the variable tried at each split was 4, and the out-of-bag error estimates 418 

(OOB) error rate was 24.42%. Figure 10a depicts the predictions of a class below 500m3 that 419 

had the least errors. Since the model is for classification, to calculate the prediction error, the 420 

model was run on the test set. The variable importance graph illustrates the slope length was 421 

the most contributing variable to the model accuracy (Fig. 10b). The mean decrease Gini (cross-422 

entropy loss after permutation) value is the measure of the contribution of each variable to the 423 

homogeneity of nodes and leaves in the random forest (Martinez-Taboada and Redondo 2020). 424 

The higher the value, the more important the variable is, which exhibited that slope length is 425 

more influencing factor for the size of debris.  426 

 427 

 Figure 10. RF model: (a) training error rate, and (b) variable importance. 428 

4.3 Debris prediction using EGB  429 

To run the EGB, the train and test set were transformed into a sparse matrix, as it is run 430 

on numerical data matrices (Chen et al. 2022). The optimum model was obtained at the 881 431 

number of iterations and the learning rate of 0.3. Since the task was a multi-classification, the 432 

multi: softmax objective was used (Chen et al. 2022). The evaluation metric was mlogloss 433 
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(Multi-class log loss) (Kabani and El-Sakka 2016). While training the model, the minimum 434 

mlogloss were 0.025 and 0.088 for the training and test sets respectively (Fig. 11a). The 435 

difference between training and the test error is due to the larger variance associated with the 436 

fewer number of observations in the test set. The extreme gradient boosting associated with 437 

higher importance to slope length, altitude, slope and three hours of rainfall, respectively (Fig. 438 

11b). 439 

 440 

Figure 11. EGB model: (a) error rate and (b) variable importance. 441 

4.4 Debris prediction using SVM 442 

The support vector classification model with linear kernel was applied, and the number 443 

of support vectors was 142. The outcome of SVM model shown a higher performance rate on 444 

the test than the training set. Figure 11a depicts a two-dimensional projection of train data using 445 

slope length and three hours of rainfall showing different shading and support vectors. One of 446 

the weaknesses of the SVM, it classified predictions into two lower classes as indicated in Fig. 447 

12a, it couldn’t distinguish the moderates from extreme debris. The SVM assigned higher 448 

importance to slope length and three hours of rainfall as the second high ranking variable as 449 
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shown in Fig. 11b. 450 

 451 

Figure 12. SVM model: (a) SVM classification plot,  and (b) variable importance. 452 

4.4 Discussion and model suitability assessment for landslide-induced debris severity 453 

prediction 454 

This study analyzed the relationship between the severity of landslide-induced debris. The 455 

exploratory data analysis revealed that 93% of occurred debris was below 2000m3. The 456 

Gangwon province and Seoul were more vulnerable regions in terms of the frequency of 457 

incidents. Despite a higher frequency of debris in Seoul, their size was small compared to 458 

Gangwon province with higher number of cases and more large sized-debris. To analyse the 459 

significance of the relationship between the size of debris with different models ranked the 460 

slope length as the most influential variable for the size of the debris. To visualize the 461 

association of the slope lengh with the size of debris, the scatter plot (Fig.13) revealed that the 462 

pattern of increasing trend of slope length and size of debris was more remarkable across all 463 

provinces, shallow debris were associatted with slope length blow 50m. The debris cases were 464 

clustered between 20° and 40°, as depicted in Fig.13, and critical debris tended to be clustered 465 

around 30 degrees; the association of slope angle and size of debris was not statistically 466 

significant. For the soil-debris size relationship, sandy soil and clay were associated with a 467 
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higher frequency of debris; they exhibited shallow debris in all provinces except in Gangwon 468 

where severe debris occurred. It was observed that even though the silt loam soil was not highly 469 

frequent, it was vulnerable to severe debris as the slope length increased. Gangwon province 470 

was the region where the increasing relationship between the size of debris was observed, other 471 

provinces were not prone to severe debris. 472 
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 473 

Figure 13. Province-wise scatter plot of debris’ size per slope length, slope angle and soil 474 
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types. 475 

 476 

To assess the suitability of utilized models, it was observed that the ordinal regression 477 

prediction power was low due to its inherent weakness; it does not perform well on the 478 

imbalanced dataset (Agresti 2010). That is, the outcome variable has some more prevalent 479 

levels than others. It also estimates the coefficient using maximum likelihood techniques, 480 

which require a large sample size, the used dataset was highly imbal                                                                                                                                    481 

anced. Figure 7 revealed that almost 80% of all occurred debris was shallow, as result, the 482 

model coefficients became unstable with larger prediction intervals. Despite the weakness, the 483 

ordinal model has the effect display (Fox and Weisberg 2019), which clearly shows the effect 484 

of each variable to each extent and the associated probability. The predictive performance for 485 

each of the four discussed methods was summarized in Table 4 to facilitate their comparison. 486 

The random forest model performed well in all cases on the training set and validation as well. 487 

This model associated the influencing factor with higher importance and lower importance to 488 

rain-associated variables. RF prediction accuracy was very high on the training set (0.93), and 489 

0.90 on the test set. The prediction at 95% of confidence interval width ranged from 0.84 to 490 

0.94 on training and test sets, respectively. The NIR shifted from 72.28% to 74.17%, and this 491 

small increase is due to a small sample of the validation set. 492 

The model accuracy for POLR was quite moderate based on the kappa value of 0.38. The 493 

performance accuracy was better, the no information rate, NIR=0.7228<0.7314 lower 494 

boundaries of CI on the training set. This last condition was not satisfied for the test set, that is 495 

NIR=0.74 was higher than 0.69, which was the lower CI for the prediction interval on the test 496 

set. Based on the p-value for the prediction on test 0.26 > 0.05, the performance was not reliable. 497 

This is confirmed by the overall performance metric kappa =0.30, which was quite moderate. 498 

 499 
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 500 

The EGB model ranked the second best model after the RF, it satisfied all prediction 501 

conditions the overall performance (kappa = 0.6121) was slightly below the random forest 502 

0.7273. The SVM model result was satisfactory for the training set. The lower bound of very 503 

close to the information rate and the overall performance was moderate (kappa=0.32), the 504 

weakness of the model was its incapacity to distinguish the moderate debris from the extreme 505 

ones; as result, it predicted all debris into two lower categories in Fig. 8a. The NIR fell into the 506 

prediction interval on the validation set, and the p-value was 0.11>0.05, which is an indication 507 

of moderate prediction accuracy. 508 

Table 4. Model accuracy statistics for the four methods. 509 

  Model accuracy statistics 
Method Data Accuracy  95% CI   NIR P-Value  kappa  

RF 
Train 0.93  (0.89, 0.95) 0.72 <0.001 0.82 
Test 0.90  (0.84, 0.94) 0.74 <0.001 0.72 

POLR 
Train 0.78  (0.73, 0.82) 0.72 0.011 0.38 
Test 0.76  (0.69, 0.83) 0.74 0.26 0.3 

SVM 
Train  0.77  (0.72, 0.82) 0.72 0.015 0.32 
Test 0.78  (0.71, 0.85) 0.74 0.11 0.3 

EGB 
Train 0.86  (0.81, 0.89) 0.72 <0.001 0.63 
Test 0.86  (0.79, 0.91) 0.74 0 0.6 

 510 

The landslide-induced debris prediction is an extension of landslide susceptibility mapping and 511 

may be useful in the quantification and prediction of debris resulting from a rainfall-induced 512 

landslide. This quantification can facilitate risk management (Ho and Ko 2009), in the 513 

identification of regions prone to severe debris and the making of policies for mitigation 514 

(Carmela and Mario Parise 2022). For example the decision of planting more vegetation that 515 

fits the conditions of the region to strengthen the soil or deciding an appropriate activity to be 516 

done in a given region to improve stability ,safety and efficient land use (Mayer et al. 2008) . 517 

Furthermore, some activities in regions prone to severe debris may be prohibited for the safety 518 
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and well-being of the public(Frattini et al. 2010; DeGraff and Romesburg 2020; Di Napoli et 519 

al. 2020).   In addition, the model may serve the disaster manager to create appropriate funds 520 

for post-disaster recovery. For example, if a region is expected to have shallow debris, the 521 

manager may establish a small fund for paying minor labour to repair the damaged environment. 522 

In extreme cases, a big fund may be created to pay for machinery and construction of preventive 523 

walls, plantation, and cost of machinery to remove debris in the affected region, to rehabilitate 524 

the impacted economic activities in the neighbourhood (Kachi et al. 2016). Due to the lack of 525 

financial data associated with the inventories the cost of post-disaster recovery was not 526 

estimated, more studies in the future may be carried out to fill this gap. The approach in this 527 

paper is valid for the studied area based on the user input data; more research in the future may 528 

be conducted to know whether the findings in this paper are general for regions with different 529 

characteristics or settings. 530 

6. Conclusions 531 

The study analyzed the relationship between the size of rainfall-induced debris and causal 532 

factors, i.e., time-based cumulative rainfall and influencing factors: soil types, vegetation, and 533 

geomorphology features. The exploratory data analysis revealed that the Gangwon province is 534 

prone to more frequent and more severe landslide-induced debris. Soil-related information 535 

revealed that the landslide-induced debris was more frequent in sandy soil and more severe, 536 

but its influence was not statistically significant in the predictive model. The region with non-537 

perfected drainage systems also experienced severe debris. The regions with old timber that 538 

experienced fire had a higher debris likelihood. To examine the significance and to identify the 539 

suitable model for landslide-induced debris severity, four predictive modeling techniques i.e., 540 

POLR, RF, EGB and SVM, were applied to examine the causal and influencing factors of the 541 

severity of rainfall-induced debris in South Korea. The performance metrics, accuracy and 542 
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kappa were applied to compare the predictive power of each of the four methods. The findings 543 

of this research revealed that three hours’ rainfall, one-day rainfall, and slope length were the 544 

most influencing factor and altitude took the second place. This finding was consistent with the 545 

results of Lee et al. (2012), stating that short-duration rainfalls were responsible for landslides 546 

and are the cause of their severity. The comparative analysis has shown that random forest had 547 

better predictive power with an accuracy of 90% and kappa = 0.72, and extreme gradient 548 

boosting followed with an accuracy of 86% (kappa = 0.6). The last two methods SVM with an 549 

accuracy of 78% (4% above NIR), and POLR performance was moderate at 76%, which is 550 

only 2% above 74% performance decision basis (No information rate NIR), but we did not 551 

have enough information to confirm their use as a basis for creation early warning system for 552 

rainfall-induced extreme debris. This is because POLR does not perform well on limited and 553 

imbalanced data (Rahman et al. 2021), which is the root cause of a wide range of prediction 554 

intervals. Thus, RF and EGB may be used as a suitable models for rainfall-induced debris 555 

prediction. The creation of a nationwide landslide database would solve the shortage of reliable 556 

data and allow the usage of more alternative methods, which will result in more improved 557 

models. The findings of this research may be used for the elaboration of rainfall-induced debris 558 

mitigation policies such as post-disaster rehabilitation planning and land use management.  559 

List of abbreviations 560 

• DALEX: moDel Agnostic Language for Exploration and explanation. 561 

• MASS: Modern Applied Statistics with S. 562 

• SVM: Support Vector Machine. 563 

• POLR: Proportional Odd Logistic Regression. 564 

• EGB: Extreme Gradient Boosting. 565 

• RF: Random Forest. 566 
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• NIR: No information Rate. 567 

• Acc: Accuracy. 568 

• CI: confidence interval. 569 

• OOB: Out Of Bag error estimates.  570 

• CFM: Confusion Matrix.  571 

• Caret: Classification and Regression Training 572 
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