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Manuscript number: nhess-2023-73 1 

My co-authors and I would like to express our gratitude to the reviewers for their constructive 2 
feedback and suggestions for strengthening our research. The changes we have made to the 3 
attached file in response to such feedback and suggestions have been highlighted in blue to 4 
facilitate their identification. I would also like to offer my apologies for the length of time it 5 
took us to prepare this response. We also record our deep appreciation for the efficient handling 6 
of the manuscript. 7 

 8 

Response to Reviewer#2 9 

General remarks: Landslide volume prediction is the key to Landslide risk analysis and 10 
prediction. The topic of this paper is very interesting. However, the paper is poor prepared. The 11 
structure of the paper is weakly logical and I cannot follow the paper clearly. My decision of 12 
this manuscript is rejection. Please find my comments as following. 13 

 14 
We would like to thank the reviewer for her/his insightful comments, which have greatly 15 
contributed to improving the text as well as the logical structure of the manuscript. We have 16 
responded point by point to all the comments and suggestions raised by Reviwer#2 as follows: 17 
 18 
Comment 1: The logic of the paper's structure is unclear. I suggest the authors to organize the 19 

paper according to Introduction – study area – Data colleagues and Methods - 20 
Results - Discussion - Conclusion. 21 

 22 
Response: Thank you for your comment. We understand the reviewer's concern and have 23 
accordingly restructured the manuscript as follows: Introduction – Study Area – Data and 24 
Methods – Results – Discussion – Conclusion. 25 
 26 
Comment 2: The introduction section should rewrite. For example, the author describes the 27 

damage caused by the landslide in several places. Line 56 -58: The author talks 28 
very abruptly about landslide volumes. 29 

 30 
Response: Thank you for your comment. As suggested, the introduction section has been 31 
rewritten in the revised manuscript with greater emphasis on landslide volumes as follows: 32 
 33 
‘Rainfall-induced landslides (RFIL) frequently occur in the mountainous region of South 34 
Korea due to the heavy rainfall during the monsoon season (July to September) (Lee et al., 35 
2013). The RFIL debris occurs when the slope fails due to the saturation of soil after the rainfall 36 
exceeds a certain threshold (Au, 1998; Takara et al., 2010; Peruccacci et al., 2017; Segoni et 37 
al., 2018; Crawford et al., 2019; Coppola et al., 2022). These RFIL-resulting debris, depending 38 
on their volume, cause enormous environmental degradation, infrastructure damage, casualties, 39 
and loss of life, which disturb the socio-economic aspect of the community (Li et al., 2012; 40 
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Sarkar and Dorji, 2019; Zhao et al., 2019; Taylor et al., 2020; Lacroix et al., 2020; Winter, 41 
2020; Negi et al., 2020; Ju et al., 2020; Van et al., 2021). Park et al. (2013) reported that the 42 
annual property damage caused by RFIL in South Korea averaged between US$500M to 43 
US$1000M and approximately 36 human deaths per year from 1997 to 2010. Therefore, 44 
predicting the volume of debris resulting from RFIL is essential for managing the effect of 45 
RFIL debris and planning for post-disaster recovery.  46 
 To mitigate and prevent the effect of RFIL in South Korea, different studies have been 47 
carried out on landslide susceptibility modeling (Kadavi et al., 2019; Lee and Winter, 2019; 48 
Sameen et al., 2020; Panahi et al., 2020; Hakim et al., 2022). Lee et al. (2020) applied the Naïve 49 
and Bayesian Networks model for landslide susceptibility mapping in Umyeon Mountain. Lee 50 
et al. (2012) used physical slope and probabilistic model, i.e., decision trees and logistic 51 
regression for landslide susceptibility mapping in Gangwon-do. Lee et al. (2013) developed 52 
the binary logistic regression model for predicting the occurrence of landslides. Woo et al. 53 
(2014) constructed a landslide hazard map using binary logistic regression. Park and Kim 54 
(2019) compared boosted trees and random forest model's performance in landslide 55 
susceptibility mapping for Umyeon Mountain; the same methods were previously applied at 56 
Pyeong-Chang by Kim et al. (2018). It was observed that the objectives of previous studies 57 
were to predict landslide susceptibility, but they did not specify the size (volume) of the 58 
occurring landslides (Lee et al., 2013; Park and Kim, 2019; Lee et al., 2020).  59 

Globally, numerous researchers have attempted to predict the landslide magnitude 60 
through different statistical approaches (Lombardo et al., 2020). For example, Dai and Lee 61 
(2001) analyzed the relationship between landslide volume, cumulative frequency, and the 62 
connection between rainfall and landslide occurrence. Malamud et al. (2004) proposed 63 
frequency and size distribution for landslides to quantify the magnitude of landslide events. 64 
Shirzadi et al. (2017) compared popular statistical and machine-learning methods for 65 
simulating the volume of landslides. Lombardo et al. (2018) introduced the concept of 66 
estimating landslide intensity to complement susceptibility measures. They used the Poisson 67 
distribution for spatial estimates of the landslide intensity within terrain units. Further, 68 
Lombardo et al. (2021) explored advanced techniques, leveraging Bayesian versions of a 69 
Generalized Additive Model and Log-Gaussian model to estimate landslide susceptibility and 70 
intensity. The existing literature lacks a widely applied machine-learning model capable of 71 
capturing and predicting landslide sizes (volume). To address this gap and assess the potential 72 
of machine learning methods for predicting landslide volume in South Korea, we used the 73 
proportional odds logistic regression (POLR), random forest (RF), support vector machine 74 
(SVM), and extreme gradient boosting (EGB) methods to evaluate the relationship between 75 
various influencing & triggering factors and RFIL debris volume. Consequently, the present 76 
study aims to predict the RFIL debris volume based on the triggering and influencing factors. 77 
The quantification of debris volume may be useful in land management by highlighting regions 78 
prone to higher RFIL debris to know whether economic activities may be carried out in the 79 
given region, so that those activities may not be vulnerable to extreme landslide hazards.’ 80 
 81 
 82 
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Comment 3: The subject of the paper is very unclear. What is the difference between Rainfall-83 
induced debris and Landslide-induced debris? In my opinion, they are different. 84 
The author needs to give a clear definition of the research subject of the paper. 85 

 86 
Response: Thank you for your insightful review. We appreciate your insights regarding the 87 
clarity of the paper's subject. Your input is valuable in enhancing our research's overall clarity 88 
and conciseness. 89 

Rainfall-induced debris and landslide-induced debris are different processes related to 90 
the movement of materials on slopes. Rainfall-induced debris occurs when extensive or 91 
prolonged rainfall removes loose materials like soil, rocks, and vegetation, leading to erosion 92 
and surface runoff. It frequently affects areas with steep slopes and insufficient vegetation 93 
cover. On the other hand, landslide-induced debris results from significant slope failures, where 94 
a large mass of soil, rock, and debris moves downslope due to triggers like extensive rainfall, 95 
earthquakes, or human activities. While both processes involve the movement of debris, 96 
rainfall-induced debris mostly involves surface erosion caused by rainfall impact. In contrast, 97 
landslide-induced debris stems from more profound slope failures caused by various factors. 98 
However, the present study focuses on rainfall-induced landslides (RFIL) debris volume 99 
prediction through different machine learning algorithms. 100 

 101 
Accordingly, the introduction section has been revised in the manuscript. 102 

 103 
Comment 4: Magnitude of landslide-induced debris and debris severity are two totally 104 

different probabilities, and the authors confuse them in the introduction. There 105 
is a big difference between Landslide and Landslide-induced debris. The author 106 
has confused them in the manuscript as well. 107 

 108 
Response: Thank you for your comment and valuable insight. We appreciate your observation 109 
regarding the distinction between 'Magnitude of landslide-induced debris' and 'debris severity.' 110 
We apologize for any confusion caused by our terminology. For clarification, the magnitude 111 
of landslide-induced debris refers to the volume and size of materials involved, while debris 112 
severity denotes the level of damage caused. These concepts represent distinct probabilities: 113 
one quantifies the physical extent, and the other assesses the potential impact and destruction 114 
resulting from landslides. Accordingly, we thoroughly revised the introduction section in the 115 
revised manuscript. 116 
 117 
Comment 5: The authors present a lot of research about landslide susceptibility and hazard 118 

mapping in the study area, but this is not necessary. There are some studies about 119 
landslide volume prediction, but the author do not presents a review of the topic. 120 
This is why the paper's innovation drive is unclear. 121 

 122 
Response: Thank you for your insightful comment. In response to your concern and to enhance 123 
the clarity of the innovative aspect of our paper, we have included a review of the topic of 124 
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landslide volume prediction in the revised manuscript as, 125 
‘Globally, numerous researchers have attempted to predict the landslide magnitude 126 

through different statistical approaches (Lombardo et al., 2020). For example, Dai and Lee 127 
(2001) analyzed the relationship between landslide volume, cumulative frequency, and the 128 
connection between rainfall and landslide occurrence. Malamud et al. (2004) proposed 129 
frequency and size distribution for landslides to quantify the magnitude of landslide events. 130 
Shirzadi et al. (2017) compared popular statistical and machine-learning methods for 131 
simulating the volume of landslides. Lombardo et al. (2018) introduced the concept of 132 
estimating landslide intensity to complement susceptibility measures. They used the Poisson 133 
distribution for spatial estimates of the landslide intensity within terrain units. Further, 134 
Lombardo et al. (2021) explored advanced techniques, leveraging Bayesian versions of a 135 
Generalized Additive Model and Log-Gaussian model to estimate landslide susceptibility and 136 
intensity. The existing literature lacks a widely applied machine-learning model capable of 137 
capturing and predicting landslide sizes (volume). To address this gap and assess the potential 138 
of machine learning methods for predicting landslide volume in South Korea, we used the 139 
proportional odds logistic regression (POLR), random forest (RF), support vector machine 140 
(SVM), and extreme gradient boosting (EGB) methods to evaluate the relationship between 141 
various influencing & triggering factors and RFIL debris volume. Consequently, the present 142 
study aims to predict the RFIL debris volume based on the triggering and influencing factors. 143 
The quantification of debris volume may be useful in land management by highlighting regions 144 
prone to higher RFIL debris to know whether economic activities may be carried out in the 145 
given region so that those activities may not be vulnerable to extreme landslide hazards.’ 146 
 147 
 148 
Comment 6: Problem formulation: The authors give a flowchart for the proposed method, but 149 

the goal of the prediction is not clearly stated in this section. This subsection 150 
should rewrite. 151 

 152 
Response: Thank you for your comment. We appreciate your attention to detail and your 153 
insights regarding the problem formulation section. The goal of the prediction has been 154 
adequately clarified in the revised version of the flowchart. Furthermore, we have thoroughly 155 
revised the subsection to ensure that the objective of the prediction is explicitly stated and 156 
clearly aligned with the proposed method as follows: 157 

‘The present study aims to predict the RFIL debris volume based on the triggering and 158 
influencing factors. Predictive models that deal with multi-variate random variables were 159 
investigated to predict the volume of the RFIL. In the modeling process, the model choice is 160 
based on the distribution of the data and the type of outcome variable. For continuous outcome 161 
variables, continuous distributions are adopted after the assumptions constrained on the model 162 
are satisfied. The choice of categorical outcome variable depends on the number of categories 163 
(levels) and their order. For the case of two categories, the appropriate model is found in binary 164 
models, while the multi-level models are adopted when the outcome variable has more than 165 
two level categories. Multi-level models are divided into unordered models, which deal with 166 
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outcome that has no inherent order and ordered models, which deal with data involving 167 
multiple ordered outcomes. In the present study, concerning the prediction of the volume of 168 
RFIL debris, the outcome variable was ordered; thus, POLR was chosen after verification of 169 
proportional odd assumptions (McCullagh, 1980; McNulty, 2021). The POLR has a feature of 170 
visualizing the effect of each independent variable in the output. The high prediction accuracy 171 
of RF, SVM, and EGB in a classification problem, these last three models were widely used as 172 
alternative models for predicting landslide susceptibility (Biau and Scornet, 2016; Lechner and 173 
Okasa, 2020; Lee et al., 2017; Noble, 2006; Chang et al., 2018; Georganos et al., 2018). 174 
Therefore, the four models were applied to evaluate the relationship between various 175 
influencing & triggering factors and RFIL debris volume. Detailed objectives of this study 176 
were: 1) to collect data of RFIL inventory, triggering and influencing factors; 2) to conduct 177 
exploratory data analysis to understand the relationship between RFIL debris volume and 178 
independent variables; 3) to predict the RFIL debris volume based on the triggering and 179 
influencing factors using suggested models; and 4) to conduct model effectiveness, model 180 
comparison using predictive accuracy and the value of kappa. The overall methodology is 181 
depicted in Figure 2.’ 182 

 183 

 184 
 185 

Figure 2. Modeling workflow process for the prediction of RFIL debris volume. 186 

Comment 7: Table 1: The failure mechanism of each landslide/rackfall type is different. It is 187 
not reasonable to conduct the volume prediction for these different types without 188 
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distinction. 189 
 190 
Response: Thank you for your insightful comment. The different types of landslides mentioned 191 
in Table 1 are not all technically distinct landslide types but rather variations in erosion 192 
processes or morphological features. The landslide classes mentioned in Table 1 (preprint 193 
version) describe different geomorphological processes that lead to various landslide forms. 194 
For instance, valley erosion occurs when material moves due to a valley's erosion, and falling 195 
rocks describe the tumbling of loose rocks down slopes (Causes, 2001). While mixed or 196 
complex landslides involve multiple processes, slope failures result from a slope's collapse 197 
(Wang et al., 2016). Landslides from scour result from erosion, while curved wedge-shaped 198 
slides display a distinctly curved structure (Ritchie, 1958). Circular arc-shaped landslides take 199 
on a semi-circular shape, and plane-shaped ones occur on inclined planes (Causes, 2001). Each 200 
type emerges from specific geological actions, defining distinct characteristics and 201 
appearances. 202 

However, in the present study, we considered 455 landslide inventory data based on the 203 
magnitude of the landslides: below 500m³, between 500-2000m³, 2000-5000m³, and above 204 
5000m³ (Fig. 1b). Consequently, we analyzed the relationship between independent variables 205 
and debris size. As a result, Table 1 has been updated in the revised manuscript to provide a 206 
detailed summary of data features rather than focusing solely on different geomorphological 207 
processes. Additionally, a summary of continuous variables is provided in Table 2, including 208 
minimum, mean, median, maximum, standard deviation, and associated units for each 209 
considered feature. 210 

 211 
 212 

Figure 1. (a) The distribution of RFIL in South Korea, (b) Histogram of RFIL debris volume, 213 
and (c) Province-wise RFIL debris frequency distribution (Data source: elevation data 214 
acquired from NGII, 2018). 215 
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Table 1: The detailed description of continuous and categorical variables. 

Causative factors Variables Type Importance 
 
 
 
 
 
 
 
Rainfall 

Continuous 
hourly rainfall 

 
 
 
 
 
 
 

Continuous 

 
 
 
 
 
 
Triggering factor and effect 
on soil moisture (Ngo et al., 
2021) 

Three hours 
rainfall 
Six hours rainfall 
Nine hours rain 
Twelve hours 
rain 
One day rain 
Three days rain 
Seven days rain 
Two weeks rain 
Three weeks rain 
Four weeks rain 

Soil Soil depth (cm) Categorical 
1) <20, 2) 20-50, 3) 
50-100 

   
Permeability, infiltration, 
surface runoff, and soil 
strength affect slope 
stability (Meena et al., 
2022) 
  

Soil type Categorical 
1) Sandy loam, 2) Silt 
loam, 3) Lithosol, 4) 
Clay  

 
 
 
 
 
 
 
 
 
 
 
 
Forest features 

Leafage Categorical 
1) Broad-leaved, 2) 
Mixed, 3) Pines 

 
 
 
Effect on slope stability i.e., 
vegetation roots cause more 
stability (Ngo et al., 2021) 

Size of wood Categorical 
1) No tree, 2) Small, 
3) Average, 4) Large  

Age of tree Categorical 
1) No tree, 2) 1-5, 3) 
5-15, 4) 15-25, 5) 25-
35, 6) 35-45, 7) 45-
60, 8) >60 

Forest density Categorical 
1) No tree, 2) Low, 3) 
Medium, 4) High 

It reflects the inhibitory 
effect of landslide 
occurrence (Huang et al., 
2020) 

Forest Fire 
history 

Categorical 
1) No, 2) Yes  

Effect on soil erosion 

Topographical and 
geomorphological 
parameters 

Slope (degree) Continuous Effect on infiltration 
process, shear stress, and 
gravity. Landforms with a 
steep slope and high slope 
length are usually more 
susceptible to collapse 
(Pham et al., 2018) 

Slope length (m) Continuous 

Slope aspect Categorical (8 
directions)  
North, Northeast, 
south, East, 

Effect on rainfall, soil 
moisture, and vegetation 
cover (Dahal et al., 2008 ) 
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Causative factors Variables Type Importance 
Southeast, South, 
Southwest, West, 
Northwest 

Altitude (m) Continuous Effect on rainfall, 
vegetation cover, and soil 
depth (Raja et al., 2017) 

Drainage Categorical 
1) Bad, 2) Good, 3) 
Very good 

Effect on water flow, 
saturation, soil moisture, 
and valley landslides 
(Shahabi and Hashim, 
2015) 
 

 
Table 2. Summary statistics of continuous variables. 

Variables Observation Min Mean Median Max SD unit 
Maximum hourly rainfall 455 0 48.2 48 78.5 20.262 

 
 
 
 
 
 
 

mm 

Continuous hourly rainfall 455 0 285.341 327 549.5 106.279 
Three hours rainfall 455 0 87.716 79.5 171 60.166 
Six hours rainfall 455 0 114.381 89 240.5 79.493 
Nine hours rainfall 455 0 136.317 95 284.5 85.988 
Twelve hours rainfall 455 0 150.161 99 447 95.431 
One-day rainfall 455 0 201.598 162 538.5 111.62 
Three-days rainfall 455 0 279.6 283.5 549.5 85.875 
Seven-days rainfall 455 0.5 323.16 330 633.5 87.895 
Two-weeks rainfall 455 0.5 385.033 399.5 663 89.754 
Three-weeks rainfall 455 85.5 503.989 533 914.4 114.888 
Four-weeks rainfall 455 108 586.585 561 1135 159.945 
Slope 455 10 34.004 34.004 65 7.938 Degree 
Slope length 455 1.8 21313 13 180 22.623 m 
Altitude 455 9 390.789 272 1324 273.069 m 

 
 
Comment 8: Why these four machine learning methods were chosen. These methods have 

become very common. Please simplify the principle of the methods. Model 
inputs and parameters need to be given. 

 
Response: Thank you for your comment. The rationale behind selecting POLR, RF, SVM, and 
EGB for predicting landslide-induced debris is rooted in their widespread adoption and 
demonstrated success in predictive modeling tasks, including those involving complex 
relationships in data. Their common use in the landslide susceptibility modeling adds 
credibility to our approach. To simplify the principles of these methods, we have thoroughly 
revised section 3 in the revised manuscript as follows: 

‘In the modeling process, the model choice is based on the distribution of the data and 
the type of outcome variable. For continuous outcome variables, continuous distributions are 
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adopted after the assumptions constrained on the model are satisfied. The choice of categorical 
outcome variable depends on the number of categories (levels) and their order. For the case of 
two categories, the appropriate model is found in binary models, while the multi-level models 
are adopted when the outcome variable has more than two level categories. Multi-level models 
are divided into unordered models, which deal with outcome that has no inherent order and 
ordered models, which deal with data involving multiple ordered outcomes. In the present 
study, concerning the prediction of the volume of RFIL debris, the outcome variable was 
ordered; thus, POLR was chosen after verification of proportional odd assumptions 
(McCullagh 1980; McNulty 2021). The POLR has a feature of visualizing the effect of each 
independent variable in the output. The high prediction accuracy of RF, SVM, and EGB in a 
classification problem, these last three models were widely used as alternative models for 
predicting landslide susceptibility (Biau and Scornet, 2016; Lechner and Okasa, 2020; Lee et 
al., 2017; Noble, 2006; Chang et al., 2018; Georganos et al., 2018). Therefore, the four models 
were applied to evaluate the relationship between various influencing & triggering factors and 
RFIL debris volume. Detailed objectives of this study were: 1) to collect data of RFIL 
inventory, triggering and influencing factors; 2) to conduct exploratory data analysis to 
understand the relationship between RFIL debris volume and independent variables; 3) to 
predict the RFIL debris volume based on the triggering and influencing factors using suggested 
models; and 4) to conduct model effectiveness, model comparison using predictive accuracy 
and the value of kappa. The overall methodology is depicted in Figure 2’ 
  

Additionally, model input and parameters are now incorporated into Tables 1 and 2 in 
the revised manuscript.  
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