
Discussion
The spatial prediction of landslides is considered to be one of the most com-
plex tasks in natural hazard risk assessment. Despite the fact that numerous
methodologies have been proposed, the accuracy of the predictions is still a con-
troversial issue. The development in the field of machine learning and the GIS
platforms has led to the development of many new techniques, and methods.
However, the further exploration of new methods is still necessary.

This research addresses this issue by evaluating and comparing four machine
learning techniques. In general, RF outperform the other models in terms of
classification effectiveness. In terms of hyperparameter calibration, the available
computational resources have been used to perform a grid search. In the case
of RF and Xgboost, these algorithms need to adjust a larger set of parameters.

The machine learning models are suitable for solving the studied problem, since
they are able to handle the complex relationships between LCFs and removal
susceptibility and to be robust in noisy environments (He et al. (2012), Wu et
al. (2013), Huang et al. (2020)). The algorithms presented in this paper have
been widely used in the literature for the generation of landslide susceptibility
maps. SVM has obtained AUROC values ranging from 0.768 to 0.946 (Abedini
et al. (2019b), Zhao et al. (2022), Huang et al. (2020), Huang et al. (2022), Chen
and Guestrin (2016)). Logistic regression, which is mainly used as a benchmark
with which it is possible to make a comparison with other models, has obtained
AUROC values ranging from 0.792 to 0.934 (Zhao et al. (2022), Tsangaratos and
Ilia (2016), Bruzón et al. (2021), Zhu et al. (2020), Huang et al. (2022)). On the
other hand, XGBoost, although it has been used in fewer publications than the
other algorithms, has obtained promising results: in Can et al. (2021) it obtained
an AUROC of 0.96, while in Bruzón et al. (2021) it obtained an AUROC of 0.979.
Finally, RF, which almost always obtains outstanding results in this problem,
has an AUROC ranging from 0.9 to 0.985 (Zhao et al. (2022), Tsangaratos and
Ilia (2016), Bruzón et al. (2021), Arabameri et al. (2020), Huang et al. (2022)),
which is consistent with the results obtained, which are also supported by find-
ings from previous studies (Pourghasemi and Rahmati (2018), Ali et al. (2021),
Zhao et al. (2022)). One of the advantages that RF has in conjunction with
XGBoost is that both are immune to multicollinearity that can occur due to the
presence of multiple topographic derivatives as conditioning factors (Kotsiantis
(2013), Piramuthu (2008), Can et al. (2021)) and has the ability to handle large
data sets and its resistance to overfitting. Other advantages of RF are that it
does not require assumptions on the statistical distribution in the conditioning
factors, it takes into account interactions and nonlinear characteristics among
the variables, and the ability to provide information on the influence of each vari-
able in the final model (Catani et al. (2013), Pourghasemi and Rahmati (2018),
Tsangaratos and Ilia (2016)). The differences between the models lie mainly in
the fact that the principles they use to generate predictions are different. The
SVM is able to map low-dimensional features to high-dimensional spaces using
a kernel to find a characteristic hyperplane to maximize the categorical space.
The problem with this method is that the corresponding mapping may be poor
for the prediction in question, and also, if the data is noisy or overlapping, the
performance of SVM may decrease. The RL characterizes the spatial relation-
ship between the landslide events and the conditioning factors looking for the
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best fitting algorithm. However, it is very sensitive to multicollinearity, which
limits its performance (Huang et al., 2022) and also, as the amount of data in-
creased, it may not have been able to effectively model the relationship between
variables, resulting in a decrease in accuracy. In the case of XGBoost, it can
lead to overfitting if the number of trees is not carefully controlled (Abedi et
al., 2022).

This study is novel in respect from a machine learning perspective in that a
5-fold cross-validation with 100 replicates is used to calculate the prediction
metrics, while most studies use a static data partition to then calculate the
indexes of interest. This methodology does not deal with the stochastic nature
of the problem, so applying cross-validation with repetitions allows obtaining
more robust results.

The choice of conditioning factors is a key aspect that influences the quality of
susceptibility models (Costanzo et al., 2014). Although various methodologies
for selecting factors have been proposed, including linear correlation (Irigaray
et al., 2007) and the Kolmogorov-Smirnov test (Costanzo et al., 2014), there is
still no universal criterion for making these selections, and the issue remains a
topic for debate (Tien Bui et al., 2017). In general, topographic, geologic, soil,
hydrologic, geomorphologic, and anthropogenic factors have been accepted in
the literature for most susceptibility models. In some cases, factors that do not
have predictive capability cause noise, affecting the quality of the model. In
addition, it is important to eliminate those factors that have a high correlation
index between them, to be able to apply cross-validation.

In our model, the NDGI and EVI spectral indices were used, instead of the
NDVI, which has been widely used. However, it has important limitations, such
as its dependence on the daily time in which the aerial images are taken, since it
does not correct for changes in the angle of solar incidence. Therefore, this index
produces inaccurate results. In this sense, EVI, which is calculated similarly
to the NDVI, uses additional wavelengths to correct the NDVI inaccuracies.
This corrects for variations in the solar angle, atmospheric distortions caused
by airborne particles and land cover signals under vegetation. On the other
hand, the NDGI, which has mainly used for glacier characterization, has a high
predictive value for the susceptibility estimation, given by the IGR, so it also
replaces the NDVI. NDGI uses spectral bands corresponding to green and red, so
this would imply that landslide and non-landslide areas create contrast between
these wavelengths. Therefore, it is suggested to use these indices in areas similar
to the studied in this work.

Among the factors studied in this work, two stand out with respect to the
others in terms of their influence on the model: the valley depth index (VD)
and the TWI. A high valley depth index may be related to a high susceptibility
to landslides due to the steep topography and abrupt relief present in the study
area, which may favor the occurrence of gravitational processes and increase the
erosion rate on the slopes, while a high TWI indicates a saturated soil, which
implies an increase in the susceptibility to landslides.

It is also novel that the “Valley Depth” (VD) index is the one that provides the
most information for the model. The variable VD (Valley Depth) in the study
refers to the vertical distance to a base level of the hydrographic network. This
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index is calculated using an algorithm that involves interpolating the elevation
of the base level of the hydrographic network and then subtracting this base
level from the original elevations. This characteristic corresponds to the verti-
cal distance to a base level of the hydrographic network. The algorithm that
calculates this index consists of two steps, which involve the interpolation of
the elevation of the base level of the hydrographic network, and the subsequent
subtraction of this base level from the original elevations (Conrad, 2015). A
high valley depth index may be related to a high susceptibility to landslides
due to the steep topography and abrupt relief present in the study area, which
favors the occurrence of gravitational processes and increases the rate of ero-
sion on the slopes. This implies that the landslide and non-landslide sites in
the area share similar values of VD respectively. This aspect is important for
morphologies such as that of the Salado River basin, which has a marked slope
at the geographic transition as it crosses from the foothills to the intermediate
depression and has a “funnel” shape (González, 2018).

In summary, in terms of the the novelty of this study consists of applying re-
peated cross-validation to obtain the metrics of the models, and the use of Valley
depth index, NDGI and EVI to construct the susceptibility models. Also, other
novelty is the use of the MLR3 package in solving the machine learning problem,
and the combination with other geospatial packages in R in order to produce
the susceptibility maps. Also, The data sources used in the construction of the
model proposed in our article come exclusively from satellite images and digital
elevation models, unlike other studies, which consider sources of information
with a greater number of data and are therefore more difficult for disaster risk
management analysts to apply in practice. The approach has the advantage that
it can allow the generation of systems that create susceptibility maps based on
the periodic updating of satellite images, which can contribute to the creation
of a susceptibility monitoring system that can be implemented by technical
agencies in the disaster area.

After an extensive and updated literature review, we found few publications
linked to susceptibility assessment in the Andes. In this regard, we found that in
(Ospina-Gutiérrez, 2021) a susceptibility mapping was performed in a different
Andean area in terms of geomorphology and climate, but like our study, the
most successful algorithm corresponds to Random Forest. In (Brenning, 2015)
they use GAM models for the calculation of susceptibility in areas near roads,
and here they note the importance of curvature, like our study, as an important
factor in the calculation of susceptibility. In (Lizama, 2022), they also found
the relevance in the curvature. Finally, in (Buecchi, 2019) found that they can
build useful and effective landslide susceptibility maps using only the DEM of
the zone, holding the results obtained in this work, which also uses satellite
imagery. Also, they use a logistic regression model to calculate susceptibility
in the Cordillera Blanca, achieving an AUC of 0.75. The region in question
presents topographic similarities with the Salado Basin, so the model built in
this study may have promising results in that area.

The applicability of the proposed model is determined by the climatic, topo-
graphic and the morphometric characteristics of the study area. Under that
perspective, the model can be expected to be suitable in areas worldwide that is
a semi-arid zone, with a variable topography and a Mediterranean climate with
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a prolonged dry season, in addition to having narrow and deep valleys, where
the maximum susceptibility is concentrated. Examples of these zones are the
following:

• Colca Valley, Peru: This region is located in southern Peru and has a
rugged topography with narrow and deep valleys. The climate is semi-arid
with a prolonged dry season and has geomorphological characteristics
similar to those of the Salado Basin.

• Indo Valley, Pakistan: This valley is located in northern Pakistan and is
a mountainous region with deep, narrow valleys. The climate is arid with
a prolonged dry season and the region has a geomorphology similar to
the study zone.

• Colorado River Valley, United States: This region is located in the south-
ern part of the state of Colorado and in northern New Mexico. It is a
semi-arid area with a rugged and mountainous topography, and has nar-
row and deep valleys similar to those of the Salado Basin.
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