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Abstract.  

Slope units are terrain partitions bounded by drainage and divide lines. They provide several advantages over 35 
gridded units in In landslide-susceptibility modeling, including susceptibility modeling and event-specific modeling 

of landslide occurrence, slope units provide several advantages over gridded units, such as better capturing terrain 

geometry, improved incorporation of geospatial landslide-occurrence data in different formats (e.g., point and 

polygon), and better accommodating the varying data accuracy and precision in landslide inventories. However, the 

use of slope units in regional (>100 km2) landslide susceptibility studies remains limited due, in part, to prohibitive 40 
the large computational costs and/or poor reproducibility with current delineation methods. We introduce a 

computationally efficient algorithm for the parameter-free delineation of slope units that leverages tools from within 

TauDEM and GRASS, using an R interface. The algorithm uses geomorphic scaling laws to define the appropriate 

scaling of the slope units representative of hillslope processes, avoiding the costly parameter optimization 

procedures of other slope unit delineation methodsoften ambiguous determination of slope unit scaling. We then 45 
demonstrate how slope units enable more robust regional-scale landslide susceptibility and event-specific landslide 

occurrence maps.  

Short summary 

Dividing landscapes into representative hillslopes greatly improves predictions of landslide potential across 

landscapes but their scaling is often arbitrarily set and can require significant computing power to delineaterequires 50 
vast computing power. Here, we present a new computer program that can efficiently divide landscapes into 

meaningful slope units scaled to best capture landslide processes. The results of this work will allow an improved 

understanding of landslide potential across different landscapes and can ultimately help reduce the impacts of 

landslides worldwide.  

1 Introduction 55 

Landslides cause substantial losses of life, infrastructure, and property every year across the world (Froude and 

Petley, 2018). One of the most common tools for mitigating these losses is landslide-susceptibility mapping, which 

provides information on the spatial patterns and likelihood of landslide occurrence. Data-driven statistical models 

are typically used for creating these maps due to their computational efficiency and the relative availability of data 

needed to develop and deploy these models (van Westen et al., 2008). Statistical models analyze the spatial 60 
distribution of known landslides in relation to local terrain conditions (e.g., slope, curvature, aspect), and other areas 

with similar conditions are identified as being susceptible to landslides. In essence, the models identify features in 

the terrain similar to known landslides as a measure of landslide susceptibility. As such, the quality of the landslide 

inventory used to develop the susceptibility model is paramount for creating reliable maps. However, inventories 

with accurate information on landslide positioning, extent, triggering mechanism, and type are unavailable in many 65 
parts of the world. More often, if an inventory exists at all, it consists of a compilation of landslide data collected at 

different scales, times, accuracies, and formats (e.g., polygons or points) with limited information on the landslide 

type or triggering mechanism (Mirus et al., 2020). Thus, a common problem in the landslide community is 

determining an effective way of assessing susceptibility, despite the imperfect data available . 

Another tool used to mitigate losses associated with landslides are near real-time or forecasted landslide occurrence 70 
models (Nowicki Jessee et al., 2018; Nowicki et al., 2014; Tanyas et al., 2019; Kirschbaum and Stanley, 2018). 

Rather than characterizing the potential of landslide existence from static terrain conditions, these models include a 

dynamic input designed to characterize landslide potential from a particular forcing event. For example, Tanyas et 

al. (2019), analyzed the static terrain conditions and dynamic ground motion metrics (e.g., peak ground velocity) 

from 25 earthquake-induced landslide-event inventories from across the world to create a landslide model that can 75 
estimate the distribution of landslides during an earthquake. Herein, we will refer to this model type as landslide 

occurrence models. Like susceptibility models, landslide occurrence models often suffer from imperfect and 

heterogeneous landslide data. Thus, a common problem in the landslide community is determining an effective way 

of assessing landslide susceptibility and/or occurrence, despite the imperfect data available for model development. 

 80 



3 

 

The foundation of any landslide susceptibility map (susceptibility and occurrence) is the mapping unit used to 

subdivide the terrain for susceptibility landslide analysis. Grid cells (pixels) are the most used mapping unit, 

constituting about 86% of all publications on landslide susceptibility as of 2018 (Reichenbach et al., 2018). This is 

due largely to their ease in processing. However, grid-based mapping units have several major drawbacks. First, the 

grid cells have no physical relationship to landslide processes. Landslides occur at various spatial scales and 85 
manifest a large range of footprints not appropriately captured by grid cells. Second, variable scales of data that 

describe the local terrain conditions used to develop landslide susceptibility models (i.e., predictors or covariates) 

can lead to model biases. For example, the size of the grid cell can have major effects on the output of the landslide 

susceptibility model (Chang et al., 2019; Guzzetti et al., 1999; Catani et al., 2013). To mitigate these effects, some 

researchers suggest creating multiple models at different resolutions (e.g., Guzzetti et al., 1999). Third, landslide 90 
inventories are often mapped using a mix of formats (i.e., polygon and points). This requires modelers to standardize 

the data in some way (Zêzere et al., 2017; Jacobs et al., 2020; Süzen and Doyuran, 2004; Zhu et al., 2017; Tanyas et 

al., 2019). For regional-scale (>100 km2) models that use high-resolution (<100 m) rasters, this standardization is 

often implemented by sampling a single representative cell from within each landslide polygon (Qi et al., 2010; 

Gorum et al., 2011; Xu et al., 2014; Oliveira et al., 2015). Alternatively, some studies use lower resolution rasters 95 
(>100 m) and sampling all the cells that touch a landslide polygon or point (e.g., Nowicki et al., 2014).  

Slope units alleviate many of the problems of grid mapping units and are based on drainage and divide lines that 

effectively segregate the terrain according to the hillslope processes that shaped it (Carrara, 1983; Guzzetti et al., 

1999). First, the slope units’ relationship with the natural terrain allows modelers to use an array of statistics of the 

predictors inside of the mapping unit (e.g., max, min, standard deviation). Second, the amalgamation of grid cells to 100 
create a slope unit provides a natural subset of the terrain that reduces the need for multiple raster resolutions for the 

susceptibility analysis (Jacobs et al., 2020). Third, slope units provide an alternative solution for the incorporation of 

landslide data in different formats. In contrast to the common grid-based standardization procedures, slope units 

allow modelers to study the characteristics of the whole hillslope(s) that experienced a landslide. Fourth, slope units 

are less sensitive to the effects of inaccurate landslide locations (Jacobs et al., 2020). Finally, although the use of 105 
slope units requires more processing at the beginning of the analysis, the limited number of mapping units enables 

the use of input data from every mapping unit, even over large regions. The representation of every mapping unit in 

the study area prevents the potential of sampling bias common when using grid mapping units (e.g., Oommen et al., 

2011; Petschko et al., 2013).  

Recognition of the advantages of slope units has led to many different methods for delineating them. However, the 110 
disadvantages of these methods include inhibiting computational costs, time-intensive manual cleaning and/or 

delineation, or indeterminate parameterizations that control the slope units’ scaling. For example, the most 

rudimentary method for creating slope units is using watersheds to draw their boundaries (Carrara, 1988). A 

drawback of this approach is that the sizes of the slope units are determined by the user and the cleaning of artifacts 

which occur during the watershed delineation process can be highly labor intensive and difficult to reproduce. 115 
Computer-vision techniques (e.g., landform classification) have also been used to delineate slope units (Luo and Liu, 

2018; Martinello et al., 2022; Zhao et al., 2012; Cheng and Zhou, 2018) which overcome the reproducibility and 

labor issues of the manual delineation method. However, the scale of the slope units is still often arbitrarily set. The 

algorithm r.slopeunits developed by Alvioli et al. (2020, 2016) uses watershed delineations whose shape and 

dimensions are determined by the user or an iterative optimization procedure (i.e., a parameter sweep) that evaluates 120 
the algorithm’s outputs while using different input parameter values (see Alvioli et al., 20202016, for details). 

Although the algorithm can avoid manual parameter assignments (i.e., parameter free), the computational expense of 

the parameter sweep can beis prohibitive for large areas. For example, Alvioli et al., (2020) summarizes a three-

month process to delineate slope units based on a 25 m digital elevation model (DEM) for the country of Italy while 

omitting the flat regions (~24% of the total area) using a 64-core machine with 320 GB of memory.  Additionally, 125 
the optimization procedure required for the parameter-free delineation of slope units is not openly available. The 

limitations of all the current slope unit delineation methods prevents the widespread use of slope units in 

susceptibility modeling.  
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The scaling of slope units should not be arbitrarily set to avoid the modifiable areal unit problem (MAUP) 130 
(Openshaw and Taylor, 1983; Buzzelli, 2020; Goodchild, 2011). The MAUP occurs when the cartographic 

representation of data varies significantly by the scale of the mapping unit used to represent the data. MAUP is a 

challenging issue to overcome; however, determining a scale of the slope units so that they effectively capture the 

hillslope processes that lead to landslides can greatly mitigate the negative effects of the MAUP (Buzzelli, 2020). 

Alvioli et al. (2020) recognized this challenge, which motivated the development of their custom optimization 135 
procedure. Importantly, the optimal scale for capturing hillslope processes is spatially variant. Thus, the ideal scaling 

of slope units should adjust to the local topography.  

The objective of this paper is to introduce Slope Unit Maker (SUMak), an open-source, slope-unit delineation tool 

that is computationally efficient and parameter-free and to demonstrate how slope-unit based susceptibility landslide 

maps are generally a better mapping unit for regional (>100 km2) susceptibility landslide analysis. SUMak leverages 140 
the watershed optimization algorithm available in the software package ‘Terrain Analysis Using Digital Elevation 

Models’ (TauDEM) (Tarboton, 2015) to determine the optimal scale of the watersheds for capturing hillslope 

processes. This optimization avoids the computationally inefficient parameter sweeps required by other parameter-

free algorithms, making it markedly faster. To demonstrate the utility of SUMak, we divide this manuscript into two 

parts: 1) an explanation and comparison of our slope-unit results to those created using the r.slopeunits algorithm for 145 
the Island of Sicily (Italy), demonstration of our slope unit delineation algorithm, 2) an demonstration example of 

how slope units are generally a better mapping unit for regional susceptibility landslide analysismodeling due to the 

larger mapping units that align with the local terrain (slope units). In part two, we first show that slope units provide 

a conservative means of displaying the nebulous susceptibility model output caused by imprecise input data (e.g., no 

time component, imprecise locations, and/or variable formats). We do this by comparing landslide susceptibility 150 
map outputs from grid and slope unit-based maps in two watersheds in the state of Oregon (U.S.) which have 

inventory data mapped at a range of scales and formats. Next, we demonstrate the advantages of slope units for 

assessing event-based susceptibility landslide occurrence using a landslide catalog from Hurricane Maria over the 

island of Puerto Rico (Hughes et al., 2019). Landslide models are developed using logistic regression and XGBoost 

machine learning algorithms. 155 

2 Methods 

2.1 Slope unit delineation 

To efficiently map slope units over a given terrain, we adapt tools from the software TauDEM (Tarboton, 2015) 

which determine the scale where the topography transitions from fluvial to hillslope processes using the constant 

drop law (Figure S1).  The constant drop law states that the average drop in elevation along Strahler stream orders 160 
(Strahler, 1957) is constant (i.e., independent of order) at scales, or aerial extents, of the terrain controlled by fluvial 

processes. At sufficiently small scales, the constant drop law does not hold, indicating that hillslope processes are 

controlling the terrain morphology. The scale at which the constant drop law breaks is determined by applying a 

series of flow accumulation thresholds to the input DEM and finding the threshold where the mean stream drop of 

the first order streams is statistically different from the higher order streams, using a T-test (Davis, 2002). The 165 
stream accumulation threshold just below where the law breaks is then used to delineate the largest watersheds that 

capture the hillslope processes of that terrain. This scaling law is independent of the raster resolution (Tarboton et 

al., 1991; Tarboton, 1989) and has been used extensively in the field of fluvial geomorphology. provides a non-

arbitrary scale for delineating slope units. We further process these optimally scaled watersheds by splitting them by 

the longest flow path within the watershed using GRASS (GRASS Development Team, 2020). Thus, the watersheds 170 
essentially become what would be objectively recognized as a slope. We argue that basing the scaling of slope units 

used for landslide analysis on established geomorphic laws provides the best justification for their appropriate sizing 

and odds of mitigating the negative effects of the MAUP. Further details on how the algorithm was implemented in 

R are in Text S1 and the online repository (Woodard, 2023). 

To provide some insight on the validity and efficiency of our approach, we delineate slope units using SUMak for 175 
the island of Sicily (Italy) and compare our results with slope units delineated for the same area using the 

r.slopeunits algorithm (Alvioli et al., 2020). The same 25 m DEM (European Environmental Agency, 2016) is used 

in both delineation efforts. To evaluate the slope units produced from the two methods, we apply similar metrics 



5 

 

used by Alvioli et al. (2020, 2016) to optimize their algorithm. These metrics aim to measure the internal 

homogeneity and external heterogeneity of the aspect values within the slope units using the area-normalized local 180 
variance (V) and the Moran spatial autocorrelation index (I), respectively (Moran, 1950). The area-normalized local 

variance is given by  

𝑉𝑖 =
𝑐𝑖𝑠𝑖  

∑ 𝑠𝑖𝑖

,  

 

(1) 

where c is the circular variance of the aspect within slope unit i, and s is the slope unit’s surface area. The Moran 

spatial autocorrelation index was estimated using the r.object.spatialautocor addon in GRASS GIS (Lennert, 2021). 

The values for I range from -1 to 1 and indicate perfect anti-correlation or perfect correlation between the aspect 185 
values and slope unit position, respectively. Thus, lower values of V and I indicate higher internal homogeneity and 

external heterogeneity of the slope units. We limit our comparison to the algorithm of Alvioli et al. (2016, 2020) 

because it is the only other parameter-free slope unit delineation method we are aware of.  

2.2 Susceptibility maps 

Several papers have evaluated the relative effectiveness of slope units over grid mapping units in statistical landslide 190 
susceptibility models (Jacobs et al., 2020; Steger et al., 2017; Zêzere et al., 2017; Van Den Eeckhaut et al., 2009; 

Martinello et al., 2022). However, none of these studies has thoroughly evaluated the effectiveness of slope units for 

better displaying visualizing the nebulousimprecise susceptibility model outputs caused by inconsistent input data  

or their advantages in displaying event-based susceptibilitynear real-time or forecasted landslide occurrence maps. 

To demonstrate these benefits, we use the Middle Umpqua and Calapooia 10-digit hydrologic unit code (HUC) 195 
watersheds (U.S. Geological Survey, 2004) in the State of Oregon (U.S.) and the island of Puerto Rico which have 

areas of 257 km2, 743 km2, and 8,870 km2, respectively. Each area’s landslide catalog includes an assortment of 

landslide types (slumps, debris flows, rockfalls, deep-seated landslides, and others), which are not differentiated in 

this study. The landslide data from the Oregon were collected over decades using a combination of 1-m DEM data 

and its derivatives, geologic maps, orthophotos, aerial photography, and field reconnaissance and consists of both 200 
point and polygon data  (Burns and Madin, 2009). The Oregon landslide catalogs contains no temporal constraints 

on landslide occurrence. The Umpqua dataset contains 941 points and 3213 polygons, while the Calapooia dataset 

contains 33 points and 456 polygons. In this dataset, polygons cover the extent of the landslide affected area while 

points are placed at the centroid of the landslide affected areas. All data were reviewed for accuracy after their initial 

mapping. The areas of the individual landslides mapped using polygons are highly variable, spanning 302×106-205 
4.4×106 m2 and 1500 - 1.88x107 m2  in Umpqua and Calapooia, respectively. This data variability can lead to 

problems when using grid mapping units because the landslide data is standardized to a consistent format for the 

creation of the landslide susceptibility models. The Puerto Rico landslide dataset consists of 71,431 point locations 

of the centers of landslide headscarps that occurred during Hurricane Maria on September 20-21, 2017 (Hughes et 

al., 2019). Headscarps were manually identified using high-resolution (15-50 cm), post-event imagery and quality 210 
checked by three experienced supervisors. Importantly, the output of the landslide models for Puerto Rico are not a 

susceptibility map, rather a landslide occurrence map. That is, the models output the probability of a landslide 

occurring during Hurricane Maria. This type of output is similar to the landslide models developed for near real-time 

or forecasted assessment of event-specific landslides (Nowicki Jessee et al., 2018; Nowicki et al., 2014; Tanyas et 

al., 2019; Kirschbaum and Stanley, 2018). Our example from Hurricane Maria is intended to show how event-215 
specific model outputs might differ between slope unit and pixel-based assessments.Headscarps were manually 

identified using high-resolution (15-50 cm), post-event imagery and quality checked by three experienced 

supervisors. Thus, the Oregon watersheds and Puerto Rico datasets are used to demonstrate the benefits of slope 

units when using inconsistent and event-based input data, respectively.   

We evaluate four different methods of standardizing landslide polygons to points for grid-based susceptibility maps 220 
in the Oregon watersheds. Each method converts the polygons to input points that are combined with the landslides 

originally mapped as points. The first method converts the landslide polygons into a single point at the highest 

elevation cell within the polygon using a 10 m DEM from the US Geological Survey’s three-dimensional (3D) 

Elevation Program (3DEP) database (U.S. Geological Survey, 2019), which has a vertical root mean square error of 
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0.82 m (Stoker and Miller, 2022). In cases where there are multiple points, the highest elevation cell with the highest 225 
slope is selected. This sampling method is designed to capture the attributes nearest the landslide scarp and the 

conditions that led to failure (Zêzere et al., 2017; Süzen and Doyuran, 2004; Jacobs et al., 2020). The second method 

follows the same procedure but is conducted using the same 10 m DEM resampled to 30 m resolution using a 

bilinear interpolation method. The coarser raster may better average the landslide characteristics compared to the 

finer-resolution rasters. Third, we sample multiple random points from the 10 m DEM within the polygons with a 230 
200 m spacing, roughly halfway between the average radii of the landslide polygons from the two study sites (93 

and 386 m for Umpqua and Calapooia, respectively). Each landslide polygon is guaranteed at least one point. 

Creating multiple points within the polygons allows us to capture some of the variability in the large landslides’ 

measured attributes without eliminating the influence of landslides originally mapped as points. Using all the raster 

cells within the polygons would essentially oversaturate the model with data from the landslide polygons and omit 235 
any influence of the landslides originally mapped as points. Finally, we sample a point within each polygon at the 

median elevation value using the 10m DEM. In the case of multiple points per polygon, we select the point with the 

highest slope. This data set is used to verify that the chosen statistics in the slope unit-based approach did not bias 

the results and to make the standardization more compatible with the Oregon point data. We refer to these four 

sampling methods as “10m”, “30m”, “10m_multi”, and “10m_med”, respectively. For Puerto Rico, we only use the 240 
“30m” sampling method as that dataset is used to demonstrate the use of slope units for event-based landslide 

inventories rather than for inconsistent inventories. For all study sites, non-landslide data are randomly sampled 

from areas outside the landslide polygons and points buffered with a radius derived from the average area of the 

landslide polygons within each study area. For Puerto Rico, this radius is set to a value between the two Oregon 

mean polygon radii (100m).  TFor grid-based maps, the sampling ratio of landslide and non-landslide points is set to 245 
1:1, following the most common practice (Petschko et al., 2013; Reichenbach et al., 2018).  

Slope units for the study sites are delineated using the same 10 m DEM as the grid-based approaches. We note that 

slope units can be delineated with coarser resolution elevation data with a loss in precision. The sampling scheme 

for the slope unit-based maps is simpler than the grid-based schemes. Each slope unit in the study area is set to be 

either a landslide sample or non-landslide sample dependent upon the intersection of a landslide point or polygon 250 
within that slope unit. We use an overlap threshold of 0.1% (i.e., at least 0.1% of the slope unit is covered by a 

landslide polygon) for determining the positive presence of landslides within a given slope unit (Jacobs et al., 2020). 

Figures S2-S3 illustrate the slope units that contain landslides.  For the slope unit-based maps, we train two different 

models. The first uses only the median value of the predictor data within the slope unit and the other uses the median 

and standard deviation (SD) of the predictor data. To assure that the sampling ratio does not bias the comparison 255 
between the slope unit and grid-based maps, we set the sampling ratio of landslide and non-landslide locations to 1:1 

for the slope unit maps. 

We created landslide susceptibility models using the logistic regression and XGBoost (Chen and Guestrin, 2016) 

machine learning algorithms. Logistic regression is the most commonly used algorithm for data-driven landslide 

susceptibility modeling (Reichenbach et al., 2018). It calculates the log odds (log(𝑃 1 − 𝑃⁄ ), where P is the 260 
probability) of a binary outcome given some predictor data (x) that describes the terrain. For M input predictors, 

logistic regression is expressed as follows: 

log (
𝑃

1 − 𝑃
) = 𝛽𝑜 + 𝛽1𝑥1 + 𝛽2𝑥2+. . . +𝛽𝑀𝑥𝑀 . 

 

(2) 

The input data’s coefficients (𝛽) are fit to the input data using a maximum likelihood criterion. XGBoost 

(https://xgboost.readthedocs.io/) uses a gradient boosting decision tree algorithm that increases in complexity until 

the lowest model residuals are reached (Chen and Guestrin, 2016). This algorithm is fast, easy to implement, and has 265 
been shown to produce highly accurate susceptibility maps (Sahin, 2020). To increase the model accuracy while 

preventing overfitting, we optimize the ‘max_depth’, ‘min_child_weight’, ‘subsample’, ‘gamma’, and 

‘colsample_bytree’ hyperparameters of XGBoost (see Chen & Guestrin, 2016 and https://xgboost.readthedocs.io/ for 

an explanation of these parameters) using a Bayesian cross-validation procedure on a random sampling of half of the 

landslide data (Snoek et al., 2012). In short, these hyperparameters adjust how the model adapts to fit the training 270 
data. The Bayesian cross-validation procedure uses ten folds and ten iterations and assess the results from the 

previous iterations to inform the next iteration of hyperparameters to use (Snoek et al., 2012). This procedure 
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prevents the use of unwieldly grid searches and permits faster optimization of the model hyperparameters.  For both 

algorithms, we limit the predictor variables to elevation, slope, aspect (𝜙), roughness (standard deviation of the 

elevation using a 100 m square window), and curvature to illustrate the effectiveness of the different models using 275 
only widely available data. Aspect is measured using cos(𝜙 − 45°) to make it periodic and to account for variations 

in solar heat flux (McCune and Keon, 2002). As the Puerto Rico landslide dataset has a known trigger, we also 

include root zone soil moisture estimates from NASA’s Soil Moisture Active Passive (SMAP) mission on 

September 21, 2017. Bessette-Kirton et al. (2019) found the SMAP data to be a better predictor of landslide 

distributions from Hurricane Maria than other rainfall datasets. After the models are trained, we generated maps by 280 
applying the trained models to the entire study areas. 

 

Importantly, the meaning of the models’ output probability is different depending on the sampling methods used. 

The single-cell methods (‘10m’, ‘30m’, ‘10m_med') measure the probability of a cell containing the high point 

(scarp) or center point of a landslide deposit recognized by the team(s) that compiled the landslide inventory. The 285 
multiple cell method (‘10m_multi’) is measuring the probability of a cell containing a landslide deposit recognized 

by the team(s) that compiled the landslide inventory. Lastly, the slope-unit based maps measure the probability of a 

slope unit containing a landslide. For the two Oregon watersheds, each method, the probability output of each 

method is used as a measure of landslide susceptibility. In contrast, the Puerto Rico probability outputs are the 

probability of landslide occurrence during Hurricane Maria. 290 
 

We measure the accuracy of the susceptibility models using the area under the curve (AUC) of the receiver operator 

characteristics (ROC) and the Brier score (Brier, 1950). The ROC curve compares the true positive rate against the 

false-positive rate at various discrimination thresholds (see Oommen et al., 2011 for an overview). If every landslide 

and non-landslide from the data is modeled correctly, the AUC values of the ROC curve will be 1.0. In contrast, 295 
AUC values near 0.5 suggest the model classification is equivalent to random guessing.  Values from 0.5-0.6, 0.6-

0.7, 0.7-0.8, 0.8-0.9, and 0.9-1.0 can be classified as poor, average, good, very good, and excellent performance, 

respectively (Yesilnacar, 2005). The Brier score (B) measures the mean-square error between the model predictions 

(i.e., probability, P) and observations (binary variable of landslide presence, O):  

𝐵 =
1

𝑁
∑(𝑃𝑖 − 𝑂𝑖)2

𝑁

𝑖=1

, 

 

(3) 

 300 

where N is the number of observations (Brier, 1950). Thus, a B value of zero suggests perfect model fit and a value 

of one indicates perfect misfit. In contrast to AUC-ROC, the Brier score provides measure of the scale of the model 

fit and not just its ordering of landslide and non-landslide observations. Both metrics together provide a 

comprehensive evaluation of the model results. Following common practice  Molinaro et al. (e.g., Molinaro et al., 

2005), we use 70% of the data to perform a 10-fold cross-validation procedure with ten iterations to optimize the 305 
models parameters and obtain representative distributions of the ROC-AUC and Brier score metrics, while reserving 

30% of the data as a final test set. Model development and post-processing is conducted within R (R Core Team, 

2016). For the grid-based maps, the non-landslide points are randomly sampled for each iteration. Following 

common practice (e.g., Tanyu et al., 2021), final susceptibility maps were created using 70% of the available data to 

train on, and the remaining 30% of the data to test. 310 

 

3 Results 

3.1 SUMak Slope Unit DelineationComparison with r.slopeunits 

Our slope unit algorithm produces comparable V and I values to r.slopeunits but is substantially faster. Figure 1 

shows the delineations of Alvioli et al. (2020) and SUMak for two sections of Sicily and shows the boxplots of the V 315 
distributions. The two algorithms produce some variations in the sizing of slope units due to the differences in the 

optimization procedures. SUMak and r.slopeunits produced a mean V value of 0.55 and 0.48, respectively but there 

is large overlap between their distributions (Figure 1c). SUMak and r.slopeunits also produced I values of 0.78 and 
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0.77, respectively. In sum, these metrics indicate that the internal homogeneity and external heterogeneity of the 

slope units produced by SUMak are comparable to those produce using r.slopeunits which was specifically 320 
optimized to minimize these values. However, our algorithm delineated the entire island in 7.7 hours on a local 

desktop machine (16-core, 64 GB memory). As Sicily covers approximately 9% of Italy, it should take our 

algorithm about 3.2 days to process the same area that took Alvioli et al. (2020) three-months to delineate using four 

times the number of cores and five times the memory we used with SUMak.  

SUMak quickly delineates slope units over the three study areas while automatically adapting the scaling of the 325 
slope units by the local terrain. Table 1 shows the time to delineate each of the study areas. Both Oregon watersheds 

were delineated in only a few minutes while the island of Puerto Rico took substantially longer. This is due to the 

larger area and the increased complexity of the delineating watersheds near coastlines where watersheds get 

increasingly small due to decreased accumulation areas. The adaptation of the slope unit sizes to the local 

topography is apparent in the slope unit maps (Figures S4, 1-2). For example, the Calapooia Watershed includes a 330 
mountainous and flat region (Figure 1). SUMak creates smaller slope units over the flat region compared to the 

mountainous region to accommodate the difference in scale where hillslope processes occur (Figure S4).  

 

Table 1. SUMak performance metrics.     

Location 

Area 

(km2) Coastline 

DEM 

Resolution 

(m) 

Compute 

Time 

(minutes) 

Slope 

Unit 

Count 

Time per 

area 

(seconds/km2)  

Time per 

Slope unit 

(seconds) 

Umpqua 257 No 10 3.11 3841 0.7 0.05 

Calapooia 743 No 10 9.97 6990 0.8 0.09 

Puerto Rico 8870 Yes 10 383.28 140367 2.6 0.16 
We note that the processing time described in Alvioli et al. (2020) is largely due to their chosen optimization 

procedure and alternative optimization methods may decrease this time.  335 
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Figure 1: (a,b) A comparison of slope unit delineations over two regions of Sicily, Italy from Alvioli et al. 

(2020) (blue lines) and SUMak (red lines). (c) Map showing the locations of a and b. (d) Boxplots of area-

normalized local variance (V) of the slope units produced from the two algorithms. The box hinges show the 

first and third quartiles; the whiskers extend to 1.5 times the inter-quartile range and the minima; and the 340 
horizonal bars show the median values of the distributions. The black triangles show the means of the 

distributions.  
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3.2 Susceptibility Landslide map comparison 

Comparison of the final susceptibility landslide maps to the distribution of landslide deposits highlights several 345 
differences between the grid and slope unit-based maps. The SUMak delineated slope units, landslide inventories, 

and examples of the grid sampling methods for the Oregon watersheds and Puerto Rico are in Figures 12 and 23, 

respectively. The slope units provide a division for landslides that enables the characterization of the entire slope(s) 

that experiences a failure (Figures 12ce,df,  and 23b). In contrast, the grid-based methods either minimize the entire 

landslide to a single representative point even for large (>1 km2) landslides or an array of points. Figures 4Figures 3 350 
and 45 show the final susceptibility landslide maps of the Oregon watersheds and Puerto Rico, respectively, using 

the 30m sampling method for the grid-based maps and the slope unit-based maps using the median and SD predictor 

values with XGBoost. The other susceptibility landslide maps are in Figures S56-S1011. . The slope unit maps 

generally better distinguish high and low susceptibility probability zones with less area displaying probabilities near 

0.5. Cumulative distribution functions of the maps’ probabilities are shown in Figures S112 and S123. Additionally, 355 
the slope-unit based maps are more granular, which prevents the more localized variation in susceptibility 

probability present in the grid-based maps. This granularity generally results in a higher percent of study sites’ areas 

displaying higher probabilities (Figure S134-S145). We note that the difference in map granularity is less for Puerto 

Rico than for the Oregon watersheds, likely due to the scale of mapped area, 30 m mapping unit, and the density of 

the landslide points (Figure 3Figure 2).  Finally, the different maps highlight similar locations within the watersheds 360 
as having a relatively high or low probabilities. The ROC-AUC and Brier score of the models used to make the final 

maps are shown as black dots in Figures 6 and 7.  
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Figure 2Figure 1: Umpqua and Calapooia watersheds in Oregon. (a, b) digital elevation models and landslide 

inventories. Also shown are the log-normalized histograms of the landslide polygon areas. (cd, d) zoomed-in 365 
portions of the slope unit maps with landslide polygons and grid sampled points using the four sampling 

techniques superimposed. The 10 m point samples often overlap the 30 m samples.  Sampling techniques are 

described in section 2.2. 

 



12 

 

 370 

Figure 3Figure 2: Island of Puerto Rico. (a) Slope unit delineation and mapped landslide points from 

Hurricane Maria. (b) Zoomed--in portion of the island. 
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Figure 4Figure 3: Landslide susceptibility models from the 30m sampling method for the grid-based maps 

and using slope units with median and standard deviation predictor values (SU_medianSD) with XGBoost.  375 
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Figure 5Figure 4: Puerto Rico landslide susceptibility occurrence models from the 30m grid-based maps and 

using slope units with median and standard deviation predictor values (SU_medianSD) with XGBoost. 

Both the ROC-AUC and Brier score metrics show a better model fit using slope units compared to any of the grid-

based models for our study sites (Figures 56 and 67). The XGBoost and Logistic regression machine learning 380 
algorithms show an increase in the median ROC-AUC and a decrease in the Brier scores for the slope unit-based 

maps. For example, at Calapooia, the XGBoost algorithm on the  grid-based models showed AUC-ROC values that 

would qualify as very good model performance (average of 0.834) when applied to the test data, while the two final 

slope-unit based models had excellent performance (average of 0.96) when applied to the test data. The Brier scores 

of the same models applied to the test data demonstrate an average root-mean-square error of 0.17 and 0.07 for the 385 
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grid-based and slope unit models, respectively. Using the median and SD of the predictor values in each slope unit 

also increases the model performance compared to slope unit models developed with only the median predictor 

values. The different sampling techniques for the grid-based maps showed little variation in the two model 

performance metrics. Finally, XGBoost generally shows better model performance compared to logistic regression. 

In summary, the slope unit-based models can better differentiate susceptible and non-susceptiblehigh and low 390 
probability areas of the terrain.  

 

Figure 6Figure 5: (a,b) Reciever operator characteristics (ROC)-area under the curve (AUC) and (c,d) Brier 

score boxplots from the 10-fold cross-validation procedure for landslide susceptibility models using the 395 
XGBoost (blue) and logistic regression (red) machine learning algorithms. The box hinges show the first and 

third quartiles; the whiskers extend to a maximum of 1.5 times the inter-quartile range; and the horizonal 

bars show the median values of the distributions. Distributions are for the different sampling methods (10m, 
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30m, 10m_multi, 10m_med) and the slope unit (SU) maps using only the median (SU_medians) and the 

median and standard deviation of the predictor values (SU_medianSD). The black dots show the scores of the 400 
final susceptibility map of the test datasetss.  

 

Figure 7Figure 6: (a) ROC-AUC and (b) Brier score boxplots from the 10-fold cross-validation procedure for 

landslide susceptibility models using the XGBoost (blue) and logistic regression (red) machine learning 

algorithms for the Hurricane Maria landslide catalog in Puerto Rico. Symbology is the same as Figure 405 
6Figure 5. 

4 Discussion 

Our slope unit delineation algorithm, SUMak, has significant advantages over previous delineation methods. First, 

iIn contrast to other methods which use an optimization function or user-dictated setting for determining the 

appropriate scaling and positions of slope units, SUMak uses established geomorphic laws for determining an 410 
appropriate scale of the slope units to capture hillslope processes. This scaling provides a non-arbitrary scaling of 

the slope units that are optimized to capture hillslope processes and help prevent MAUP. Second, SUMak produces 

slope units with high aspect internal homogeneity and external heterogeneity between adjacent slope units which 

have been used in previous studies to measure the performance of a slope unit delineation algorithm (Alvioli et al., 

2020, 2016). Lastly, SUMak is computationally efficient compared to some other parameter-free algorithms. These 415 
advantages, coupled with it being open-source and easy-to-use, make it desirable for an array of geomorphic 

analyses.  

Our analysis highlights some of the benefits and drawbacks of using grids or slope units for landslide susceptibility 

modeling when using landslide data with variable formats and no temporal component. While both methods 

generally highlight the same areas as being more susceptible, the 30 and 10 m resolution grid mapping units used in 420 
this study produce maps with smaller scale variations in susceptibility. While this level of detail can be 

advantageous, the vague nature of the susceptibility models’ output caused by imprecise input data (e.g., no time 

component, imprecise locations, and variable formats) generally used to make susceptibility maps can cause 

misleading results. Indeed, producing high resolution (<100 m) grid-based maps is attempting to output results 

beyond the capacity of the input data. For example, in the Umpqua watershed, all the grid-based maps show only 425 
half of the terrain as having higher (P > 0.5) susceptibility (Figures S112). This phenomenon may partially reflect Formatted: Font: 10 pt, Not Italic
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the limits of the statistical models used. However, slope units consistently produce more granular model results 

compared to grid-based maps independent of the model used, suggesting that the improved model performance is 

not merely an artifact of the statistical models. The lack of granularity of the grid-based maps at the Umpqua 

watershed on  This may lead some to conclude that the watershed is generally not susceptible to landsliding. 430 
However, the abundance of the mapped landslides in the region (Figure 1b2e) indicate that most of the Umpqua 

watershed is highly prone to landsliding. This shortcoming of the grid-based maps is also reflected in the poorer 

model metrics (Figure 6Figure 5). In contrast, the larger mapping units available through slope units allows for a 

more conservative map that, we argue, better captures the level of susceptibility, even with imprecise input data. 

This is supported by the better model metrics (Figure 6Figure 5) and a higher proportion of the Umpqua terrain as 435 
having higher susceptibility (Figures 4Figures 3, S211, and S412). More conservative grid-based maps are generally 

achieved using larger grid cells, which accentuates the unrealistic geometry of the cells and exacerbates the 

imprecise mapping of susceptible areas. Thus, slope units provide an effective mapping unit that accurately 

delineates the terrain into slopes that can be used to create conservative susceptibility maps that better accommodate 

the nebulous output of regional susceptibility models created with inconsistent input data. 440 

Slope units also provide a more conservative output for event-based landslide susceptibility maps that may be more 

effective at communicating the likelihood of future landslide occurrences over large regions. Like the maps created 

using non-temporal landslide datasets, the grid-based susceptibility occurrence maps created for Puerto Rico show 

fine-scale variations in susceptibility landslide probability that may be too precise to accurately reflect landslide 

occurrencefuture landslide potential. Figure S152, shows a zoomed in portion of the model results and illustrates the 445 
diversity in probability values in the grid-based map compared to the slope unit map within a relatively small, 

mountainous terrain. The grid-based Puerto Rico susceptibility landslide models are attempting to specify the pixel 

that contains the center of the head scarp. This level of precision may be too high and cause the model to miss future 

landslides that don’t occur at the same point as past landslidesthe location of landslides induced by hurricane Maria 

or overpredict potential locations. In contrast, the slope unit maps characterize the susceptibility of the entire 450 
hillslope and thus provide a more conservative output that better predicts landslides that better generalizes the 

location of hurricane-induced landslidesdon’t occur in the exact location as previous failures. In near real-time 

landslide occurrence products (Nowicki Jessee et al., 2018; Nowicki et al., 2014; Tanyas et al., 2019; Kirschbaum 

and Stanley, 2018), larger mapping units that conform to the actual topography will facilitate more informative and 

useful model outputs for decision makers to prioritize resources after landslide-inducing events. This difference in 455 
approach between the two mapping unit models is another reason why the slope-unit models perform better than 

grid-based models in our examples (Figures 6 and 7).  

Here we have focused on using slope units for statistical landslide susceptibility and near real-time landslide 

prediction modeling; however, objectively divided terrain can be used in an array of geomorphic studies. For 

instance, slope units could improve other landslide studies such as physically based models, early warning systems, 460 
debris flow modeling, or hazard assessments. These studies often use grid-based analysis which suffer from some of 

the same drawbacks of grid-based susceptibility modeling. Thus, adopting slope units as the mapping unit for these 

studies could yield more favorable results. Slope units could also help downscale topographically sensitive 

measurements (e.g., soil moisture, land cover, etc.) and provide a reasonable mapping unit for hydrologic and 

avalanche studies. Thus, SUMak could facilitate advances in geospatial analysis across several research areas 465 
beyond landslide susceptibility analysis. 

5 Conclusions 

The widespread use of slope units as the mapping unit of choice in landslide susceptibility studies has been limited 

partially due to the lack of an efficient and easy-to-use method for delineating them. Here we introduce a new 

parameter-free algorithm for the automatic delineation of slope units. The algorithm is relatively computationally 470 
efficient and can be implemented anywhere there is digital elevation data. We also demonstrate that landslide 

susceptibility maps created with slope units are more accurate and conservative compared to grid-based approaches. 

Code and data availability 

The code for SUMak and data used in this manuscript are available at Woodard (2023). 
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