
Below we have responded to each comment made by the two reviewers. The reviewers’ 

comments are in bold, and our responses are in roman text. Changes we have made to the 

original text are in italics. 

Reviewer 1 Comments 

--------------------------------------------------------------------------------------------------------------------- 

Review comment on the manuscript “Slope Unit Maker (SUMak): An efficient and 

parameter-free algorithm for delineating slope units to improve landslide susceptibility 

modeling” submitted to NHESS by Woodard et al. 

GENERAL COMMENTS 

Thank you for inviting me for this review. I have read the manuscript with great interest 

and I appreciate the effort to come up with a parameter-free tool for slope unit (SU) 

delineation. 

In their manuscript, the authors present a newly developed tool for the automatic and 

parameter-free delineation of SU for landslide susceptibility mapping. In a first step, they 

compare SU created by their tool to SU created with the commonly used r.slopeunits 

algorithm by Alvioli et al., and in a second step, they compare the performance of landslide 

susceptibility models trained using different pixel-based and their SU-based landslide 

discretization methods for three case study sites to demonstrate the superiority of the SU-

based approach as opposed to pixel-based methods. 

I strongly believe in the advantages of SU as mapping units. I have used the r.slopeunits 

tool myself and found that the parametrization can be tricky and is not always transferable 

to other study areas. Thus, I believe that a parameter-free tool is an important step 

towards more objective and generalizable approaches in landslide susceptibility modelling. 

As it comes to the comparison of SU vs. pixel-based approaches for landslide susceptibility 

modelling, it should be noted that there are already numerous publications on this topic. 

Moreover, I am not totally convinced by the discussion of the SU result presented in Fig. 1 

and by the attempt to demonstrate the superiority of the SU-based approach. This is partly 

because there is some information lacking that would enable the readers to clearly 

interpret the results. But also, the discussion appears a bit brief and shallow, considering 

the authors compared so many different approaches in three study areas. I would expect a 

deeper and more critical discussion not only focusing on performance metrics, but also 

model set-up and spatial performance for all case studies, also the Puerto Rico one. Please 

find some specific comments and questions below. 

We thank the reviewer for their careful reading of our manuscript and are pleased that they 

appreciate the importance of creating a parameter-free slope unit delineation tool. We have 

removed our direct comparison to r.slopeunits to better focus the manuscript and to avoid any 

unfair comparisons between the two delineation tools. We have added more details to the 

manuscript to better describe our model setup and the datasets used in our analysis. Please see 



our responses below to your comments on section 2 for more details. A few additional 

adjustments to better discuss our method and results are described here. 

We have revised the introduction to discuss the importance of an appropriate scaling of slope 

units. It reads as follows: 

The scaling of slope units should not be arbitrarily set to avoid the modifiable areal unit problem 

(MAUP) (Openshaw and Taylor, 1983; Buzzelli, 2020; Goodchild, 2011). The MAUP occurs 

when the cartographic representation of data varies significantly by the scale of the mapping 

unit used to represent the data. MAUP is a challenging issue to overcome; however, determining 

a scale of the slope units so that they effectively capture the hillslope processes of interest can 

greatly mitigate the negative effects of the MAUP (Buzzelli, 2020). Alvioli et al. (2020) 

recognized this challenge, which motivated the development of their custom optimization 

procedure. Importantly, the optimal scale for capturing hillslope processes is spatially variant. 

Thus, the ideal scaling of slope units should adjust to the local topography.  

 

We add to this point at the end of section 2.1 where we write the following: 

We argue that basing the scaling of slope units used for landslide analysis on established 

geomorphic laws provides the best justification for their appropriate sizing and odds of 

mitigating the negative effects of the MAUP. Further details on how the algorithm was 

implemented in R are in Text S1 and the online repository (Woodard, 2023). 

We follow up this discussion in the first paragraph of section 4. It reads as follows: 

Our slope unit delineation algorithm, SUMak, has significant advantages over previous 

delineation methods. In contrast to other methods which use an optimization function or user-

dictated setting for determining the appropriate scaling and positions of slope units, SUMak uses 

established geomorphic laws for determining an appropriate scale of the slope units to capture 

hillslope processes. This scaling provides a non-arbitrary scaling of the slope units that are 

optimized to capture hillslope processes and help prevent MAUP. Lastly, SUMak is 

computationally efficient compared to some other parameter-free algorithms. These advantages, 

coupled with it being open-source and easy-to-use, make it desirable for an array of geomorphic 

analyses.  

 

To better describe the details on the model set-up and spatial performance we augmented section 

2.2 in several locations. The first paragraph now reads as follows: 

Several papers have evaluated the relative effectiveness of slope units over grid mapping units in 

statistical landslide susceptibility models (Jacobs et al., 2020; Steger et al., 2017; Zêzere et al., 

2017; Van Den Eeckhaut et al., 2009; Martinello et al., 2022). However, none of these studies 

has thoroughly evaluated the effectiveness of slope units for better visualizing the imprecise 

susceptibility model outputs caused by inconsistent input data or their advantages in displaying 

near real-time or forecasted landslide occurrence maps. To demonstrate these benefits, we use 



the Middle Umpqua and Calapooia 10-digit hydrologic unit code (HUC) watersheds (U.S. 

Geological Survey, 2004) in the State of Oregon (U.S.) and the island of Puerto Rico which have 

areas of 257 km2, 743 km2, and 8,870 km2, respectively. Each area’s landslide catalog includes 

an assortment of landslide types (slumps, debris flows, rockfalls, deep-seated landslides, and 

others) which are not differentiated in this study. The landslide data from the Oregon were 

collected over decades using a combination of 1-m DEM data and its derivatives, geologic maps, 

orthophotos, aerial photography, and field reconnaissance and consists of both point and polygon 

data (Burns and Madin, 2009). The Oregon landslide catalogs contains no temporal constraints 

on landslide occurrence. The Umpqua dataset contains 941 points and 3213 polygons, while the 

Calapooia dataset contains 33 points and 456 polygons. In this dataset, polygons cover the 

extent of the landslide affected area while points are placed at the centroid of the landslide 

affected areas. All data were reviewed for accuracy after their initial mapping. The areas of the 

individual landslides mapped using polygons are highly variable, spanning 30-4.4×106 m2 and 

1500 - 1.88x107 m2  in Umpqua and Calapooia, respectively. This data variability can lead to 

problems when using grid mapping units because the landslide data is standardized to a 

consistent format for the creation of the landslide susceptibility models. The Puerto Rico 

landslide dataset consists of 71,431 point locations of the centers of landslide headscarps that 

occurred during Hurricane Maria on September 20-21, 2017 (Hughes et al., 2019). Headscarps 

were manually identified using high-resolution (15-50 cm), post-event imagery and quality 

checked by three experienced supervisors. Importantly, the output of the landslide models for 

Puerto Rico are not a susceptibility map, rather a landslide occurrence map. That is, the models 

output the probability of a landslide occurring during Hurricane Maria. This type of output is 

similar to the landslide models developed for near real-time or forecasted assessment of event-

specific landslides (Nowicki Jessee et al., 2018; Nowicki et al., 2014; Tanyas et al., 2019; 

Kirschbaum and Stanley, 2018). Our example from Hurricane Maria is intended to show how 

event-specific model outputs might differ between slope unit and pixel-based assessments. Thus, 

the Oregon watersheds and Puerto Rico datasets are used to demonstrate the benefits of slope 

units when using inconsistent and event-based input data, respectively.   

 

The middle of the second paragraph was augmented as follows: 

Creating multiple points within the polygons allows us to capture some of the variability in the 

large landslides’ measured attributes without eliminating the influence of landslides originally 

mapped as points. Using all the raster cells within the polygons would essentially oversaturate 

the model with data from the landslide polygons and omit any influence of the landslides 

originally mapped as points. Finally, we sample a point within each polygon at the median 

elevation value using the 10m DEM. In the case of multiple points per polygon, we select the 

point with the highest slope. This dataset is used to verify that the chosen statistics in the slope 

unit-based approach did not bias the results and to make the standardization more compatible 

with the Oregon point data. 

The final paragraph of section 2.2 reads, in part, as follows: 

Following common practice (e.g., Molinaro et al., 2005), we use 70% of the data to perform a 

10-fold cross-validation procedure with ten iterations to optimize the models parameters and 



obtain representative distributions of the ROC-AUC and Brier score metrics, while reserving 

30% of the data as a final test set. Model development and post-processing is conducted within R 

(R Core Team, 2016).  

 

We also added a figure to better illustrate the slope unit binary classification of landslide 

existence (see our response to Line 200 below). 

 

Also, some maps are in my opinion not ideally composed. 

We have removed figure 1 from the manuscript to better focus our analysis. We have remade 

figure 2 (now figure 1) per the reviewer’s recommendations below and moved the slope units of 

the entire watersheds to larger figures in the supplemental information document (Figure S4). 

We also adjusted the color of the slope units in Figure 3 to improve their visualization. 

 



 



Figure S4. SUMak delineated slope units over the (a) Umpqua and (b) Calapooia watersheds, 

Oregon. 

 

 

 
Figure 2: Island of Puerto Rico. (a) Slope unit delineation and mapped landslide points from 

Hurricane Maria. (b) Zoomed--in portion of the island. 

 



Apart from that, the English language is flawless, the paper is well structured, and the 

references are complete. Multiple references in the text should be sorted alphabetically 

though. 

We appreciate the positive feedback. We have double checked the sorting of references. 

I think that after the additional information on the methodology has been provided and the 

discussion improved, the paper could be published. 

  

SPECIFIC COMMENTS 

Abstract 

I would suggest to mention the software the proposed algorithm runs on in the abstract 

(and also in the main text in section 2.1). This is relevant information for the readers. 

 We rewrote part of the abstract to specify the software used by the algorithm. It now reads as 

follows: 

We introduce a computationally efficient algorithm for the parameter-free delineation of slope 

units that leverages tools from within TauDEM and GRASS, using an R interface. 

In section 2.1 we specify how the SUMak algorithm leverages different software packages. 

1 Introduction 

Lines 120-127: Could you mention here which methods were used for landslide 

susceptibility modelling? 

 We inserted the following sentence into this section. 

Landslide models were developed using logistic regression and XGBoost machine learning 

algorithms. 

2 Methods 

Lines 130-143: Since the new method is presented as “easy-to-use” I would expect a little 

more information and instructions on where and how to run it for readers who are not so 

familiar with GRASS or R for geospatial analyses, or at least a reference to the repository 

where more detailed instructions can be found. 

We amended this paragraph to include a reference to the online repository that details how to run 

the software within R. The last sentence of this paragraph now reads as follows: 



Further details on how the algorithm was implemented in R are in Text S1 and the online 

repository (Woodard, 2023). 

Lines 144-147: Which parameters were used for the r.slopeunits algorithm? 

Per the recommendation of the other reviewer, we have omitted this direct comparison with 

r.slopeunits. 

Lines 163-169: What types of landslides were included in the invetories? 

We included the following sentence to address this point: 

Each area’s landslide catalog includes an assortment of landslide types (slumps, debris flows, 

rockfalls, deep-seated landslides, and others) which are not differentiated in this study. 

Lines 167-168, lines 179-180: It is a bit unclear to me. What I understand is that the 

landslide inventories were mixed, with some landslides represented as points, and others as 

polygons, and the points were mapped at the centroids of the landslides. How many points 

and polygons, respectively, did each of the landslide inventories contain? How did you deal 

with landslides that were originally mapped as (centroid?) points for the different sampling 

strategies that put the points at the scarp or randomly within a landslide body? 

We added the number of landslide points and polygons to this paragraph. It now reads, in part, as 

follows: 

The Umpqua dataset contains 941 points and 3213 polygons, while the Calapooia dataset 

contains 33 points and 456 polygons.  

Further down the paragraph, it now reads, 

The Puerto Rico landslide dataset consists of 71,431 point locations of the centers of landslide 

headscarps that occurred during Hurricane Maria on September 20-21, 2017 (Hughes et al., 

2019).  

The median point location conversion method allows the landslide data to be more compatible 

with the centroid mapping method used in the Oregon datasets. However, as only a minority of 

landslides in the different datasets were mapped as points (29% and 7% for Umpqua and 

Calapooia, respectively), we did not pursue an additional standardization method using the 

centroids of all the landslide polygons. 

Lines 200-201 and lines 202-209: It would be very helpful for the interpretation of the 

modelling results if you could provide some statistics. How many samples did each dataset 

contain? How many SU were delineated in each study area? What was the original positive 

to negative ratio, especially for the SU? 



We have added the number of landslides of each datatype to section 2.2. Please see our response 

to your previous comment for details. We have included the number of slope units to Table 1. 

Finally, we added additional figures to the supplemental (Figures S2 and S3) that shows which 

slope units do or do not contain a landslide, per your recommendation in your final comment 

below. This illustrates the positive to negative ratio and facilitates interpretation of the model 

results. 

 

 

Table 1. SUMak performance metrics.     

Location 

Area 

(km2) Coastline 

DEM 

Resolution 

(m) 

Compute 

Time 

(minutes) 

Slope 

Unit 

Count 

Time per 

area 

(seconds/km2)  

Time per 

Slope unit 

(seconds) 

Umpqua 257 No 10 3.11 3841 0.7 0.05 

Calapooia 743 No 10 9.97 6990 0.8 0.09 

Puerto Rico 8870 Yes 10 383.28 140367 2.6 0.16 

 



 



Figure S2: Maps illustrating the existence (red) or non-existence (green) of a landslide within 

each slope unit over the Umpqua and Calapooia watersheds, Oregon. 

 

 
Figure S3: Maps illustrating the existence (red) or non-existence (green) of a landslide within 

each slope unit over Puerto Rico. 

 

 

Line 210-229: Which software was used for the susceptibility modelling? Did you conduct 

any data preparation, such as scaling? Why didn’t you use lithology as an input 

parameter? 

We inserted the following at the end of section 2.2:  

Model development and post-processing was conducted within R (R Core Team, 2016).  

We did not perform any data preparation beyond what we describe in the text. 

We did not use lithology as an input parameter because we did not have a consistent lithological 

map of all the areas that has sufficient resolution to be useful. 

Section 2.2: How were the final landslide susceptibility maps generated? Were the trained 

models applied to all pixels in the study area in the pixel-based approaches? And for the 

SU-based approach, did you apply the trained model on a pixel-basis or SU-basis? 



We applied the trained models to entire study areas to create the final maps. Models were applied 

to all the pixels or slope units depending on the mapping unit used to train the model. To clarify 

this point we added the following to the end of the 4th paragraph of section 2.2. 

After the models are trained we generated maps by applying the trained models to the entire 

study areas. 

3 Results 

Fig. 1: The different scales of the two excerpts are confusing. What are the colors in map c? 

In case they are SU, its unrecognizable. A plain hillshade or DEM could work better. 

We have removed this figure per the recommendation of the other reviewer. 

Lines 259-260 and Fig. 1: To me the SUMak SU look much more heterogenous than the 

r.slopeunits ones. Some SU are larger, and then there are some areas containing many 

small ones. Could you explain this in more detail? Is the result really so similar to the 

r.slopeunits one? Here it would also help to know which parameters were used for the 

latter, see my previous comment. 

We have removed this figure and text per the recommendation of the other reviewer. 

Fig. 2 a, b, Fig. 3 a: at these scales it is impossible to recognize the SU. I would suggest to 

enlarge the maps or omit them. Then again, for being able to interpret the performance of 

the landslide susceptibility maps, it would be helpful to see maps with the distribution of 

positive and negative SU. 

We have removed fig. 2a,b, instead putting a larger figure of the slope units of the entire 

watersheds in the supplemental (Figure S4). We changed the colors of the slope units in Figure 3. 

While the slope units are still difficult to see in 3a, it provides a reference map for figure 3b and 

provides a figure illustrating the distribution of landslide points associated with Hurricane Maria. 

We provide zoomed in portions of the slope unit maps to make the slope unit more recognizable 

(2c,d and 3b). We have also created an additional figure that shows a binary categorization of the 

slope units for comparison to the final landslide maps (Figures S2 and S3). See these new figures 

above. 

 

 

 

 

 

 

 

 

 

 

 



 

Reviewer 2 Comments 

--------------------------------------------------------------------------------------------------------------------- 

The manuscript nhess-2023-70 proposed for publication in NHESS describes a new 

algorithm for slope unit delineation. Slope units are a well-known terrain subdivision type 

in the landslide research community; the topic of the manuscript is well within the aims & 

scope of the Journal. The authors make a good case about the use of slope units in landslide 

susceptibility mapping. They describe the advantages of using slope units in conjunction 

with statistical methods, discussing the use of heterogeneous data, landslide inventories of 

varying quality, data inaccuracies, and drawbacks of using grid cells. 

We thank the reviewer for their thorough and thoughtful comments and are pleased that they 

appreciate the importance of our manuscript. 

The paper is intentionally split into a rather technical part, about the outcomes of the 

software introduced here, and an application part, about use of slope units for landslide 

susceptibility mapping. I have two main general comments about those parts, and a few 

specific comments that I will list afterwards. 

The main issue in the technical part in my opinion is that it is rather focused on the 

comparison of the outcome and, above all, speed of the new software with respect to the 

existing r.slopeunits software by Alvioli et al. I believe the way this part is presented is a bit 

misleading, because it makes assumptions and comparisons that may be not entirely 

justified. My understanding is that the main difference between the two pieces of work are 

that the previous one require parametric inputs, while the one presented here only gives 

one possible result, with no additional parameters. (The new software is not described in 

detail, so it is difficult to be more specific on the input requirements). Because of this 

difference the authors stress in several occasions that the existing software has much larger 

computational demands, and it has "prohibitive" processing times. In an explicit 

comparison of the outputs of the two software in Sicily (a part of Italy where the slope unit 

map were published by the r.slopeunit team) the authors of the new software estimated the 

processing and optimization time based on the total running time quoted in the original 

paper for the entire Italy, scaling it down proportionally to the size of the area. I felt that as 

an unfair comparison and, being myself a user of r.slopeunits, it was easy to run the 

software a couple of times with different values of the input parameters (on the same 25 m 

EU-DEM). The two runs required 100 minutes and 140 minutes with typical values of 

parameters I usually input, using a maximum of about 2GB of RAM, on a single computing 

core (a rather outdated CPU, to tell the truth). To compare with the computing time 

quoted by the authors of the new software (7 hours), who used 16 computing cores, running 

about 48 instances of r.slopeunits if would require three times that; say, an average of 

about 120x3 = 360 minutes. Thus in four hours one could have done about 48 runs, and 

picked up the "best" one, within the criteria developed by the r.slopeunit team. I would say 

that the difference is mostly due to the fact that the quoted processing time in the previous 

paper was due to a rather complicated optimization algorithm, taking into account a huge 

number of runs and some peculiar arrangement of optimization spatial domains. Then I 

would go on and say that this is not a fair comparison either, because the outputs of the two 



pieces of software seem very different, judging from figure 1 in the manuscript: one can 

clearly see that the slope units obtained with the new software are different from the 

existing ones, and to be honest I can hardly say that they provide a comparable accuracy in 

segmenting the sub-areas: one can see areas with very similar morphological setting that 

are split into tiny details by SUMak, where the previous delineation looks more 

"reasonable". There probably are areas with the opposite situation, even if they are more 

difficult to spot. So, different output, different computing times and rather different 

flexibility - the possibility of having different outputs with different input requirements 

looks like an advantage, in my opinion, because it gives the possibility of tuning the map to 

one's needs. In conclusion, and in essence, my suggestion is either to substantially improve 

the comparison part (I will not suggest to try and compare with other methods - even if I 

believe other methods exist that were defined as parameter-free by their respective 

authors), or to reduce its relative importance in the manuscript, in favour of the practical 

application part. 

The reviewer is correct that the use of r.slopeunits is a valid approach in circumstances where the 

user is not concerned about obtaining the optimum sizing of the slope units in the study area or 

when a custom optimization function is desired. However, slope units are often delineated and 

chosen at an arbitrary scale that reduces reproducibility and complicates the utility of slope units 

as a mapping unit for landslide susceptibility analysis. The reviewer is also correct that it is the 

optimization procedure and cleaning algorithm used by Avlioli et al. (2020) that drastically 

increased the computational time for delineating slope units over Italy. However, as argued by 

Alvioli et al. (2020) this optimization procedure is critical. They state, “Identifying the correct 

scale of a particular spatial analysis is a way out from what is known as modifiable areal unit 

problem (Openshaw (1984); Manley (2014)). Any study associated with the use of data 

aggregated within geographical areas is prone to the MAUP, and an objective link between 

mapping units and the underlying topography is highly desirable.” 

 

To address the reviewer’s point, we have augmented the introduction to better highlight the 

importance of the proper scaling of slope units. The second to last paragraph of the introduction 

now reads as follows: 

 

The correct scaling (size) of slope units should not be arbitrarily set to avoid the modifiable 

areal unit problem (MAUP) (Openshaw and Taylor, 1983; Buzzelli, 2020; Goodchild, 2011). 

The MAUP occurs when the cartographic representation of data varies significantly by the scale 

of the mapping unit used to represent the data. MAUP is a challenging issue to overcome. 

However, determining a scale of the slope units so that they effectively capture the hillslope 

processes of interest can greatly mitigate the negative effects of the MAUP (Buzzelli, 2020). 

Alvioli et al. (2020) recognized this challenge, which motivated the development of their custom 

optimization procedure.  Importantly, the optimal scale for capturing hillslope processes is 

spatially variant. Thus, the ideal scaling of slope units should adjust to the local topography.  

 

We also agree that the comparison to r.slopeunits is ancillary to the main objectives of the paper. 

We have removed this portion of the methods and results in favor of a paragraph in the results 



that describes the speed and other specifications of our algorithm without the in-depth 

comparison to r.slopeunits. Section 3.1 now reads as follows: 

3.1 SUMak Slope Unit Delineation 

SUMak quickly delineates slope units over the three study areas while automatically adapting 

the scaling of the slope units by the local terrain. Table 1 shows the time to delineate each of the 

study areas. Both Oregon watersheds were delineated in only a few minutes while the island of 

Puerto Rico took substantially longer. This is due to the larger area and the increased 

complexity of the delineating watersheds near coastlines where watersheds get increasingly 

small due to decreased accumulation areas. The adaptation of the slope unit sizes to the local 

topography is apparent in the slope unit maps (Figures S4, 1-2). For example, the Calapooia 

Watershed includes a mountainous and flat region (Figure 1). SUMak created smaller slope 

units over the flat region compared to the mountainous region to accommodate the difference in 

scale where hillslope processes occur (Figure S4).  

 

Table 1. SUMak performance metrics.     

Location 

Area 

(km2) Coastline 

DEM 

Resolution 

(m) 

Compute 

Time 

(minutes) 

Slope 

Unit 

Count 

Time per 

area 

(seconds/km2)  

Time per 

Slope unit 

(seconds) 

Umpqua 257 No 10 3.11 3841 0.7 0.05 

Calapooia 743 No 10 9.97 6990 0.8 0.09 

Puerto Rico 8870 Yes 10 383.28 140367 2.6 0.16 

 

The authors proposed two applications of the slope unit maps produced with the new 

software, in two different areas. The two applications are substantially different: in the one 

case (actually two, in Oregon, USA), they authors use landslide data collected over decades, 

and the the other case (island of Puerto Rico) landslides were all caused by a hurricane - 

thus, a specific event. I believe that many would question the use of an event-based 

landslide inventory to map landslide susceptibility, without mentioning the necessary 

caveats. In fact - if we agree that landslide susceptibility is the spatial component of 

landslide hazard - it is difficult to fit an event-based map within this definition. While a 

"generic", or "historical" landslide inventory actually tells something about the different 

likelihood of landslides to occur at different locations in a study area, an event-based 

landslide inventory clearly does a very different job. This is very clear from the maps 

obtained in the two areas, with statistical methods; but this is in contradiction with the 

statement "statistical models analyze the spatial distribution of known landslides in 

relation to local terrain condition", because there no terrain condition alone can explain 

the landslide distribution in figure 3, and the susceptibility map in figure 5. The authors 

stated all of this in one line (228), just mentioning that they included soil moisture data as 

an additional predictor. This singles out the map obtained from the event data as 

something different from a susceptibility map. For example, in a few papers, this was done 

using shake maps to account for a trigger in co-seismic landslides. There, the ground 



shaking parameters are interpreted somewhat as a dynamical input; examples are in 

Nowicki et al. (10.1016/j.enggeo.2014.02.002) and in Tanyas et al. 

(10.1016/j.geomorph.2018.10.022). In conclusion, I believe this aspect has been overlooked 

by the authors of the proposed manuscript, and it should be discussed in some detail as the 

different interpretation and purpose of the results is not obvious. Another, related point is 

the repeated reference to the absence of a time component in input data; how would it 

change the outcome? That would require a totally different framework, in my opinion. 

We have rewritten several portions of the text to both clarify and elaborate on the differences 

between Oregon and Puerto Rico examples. We included a new introductory paragraph that 

explains the difference between the two datasets. It reads as follows: 

Another tool used to mitigate losses associated with landslides are near real-time or forecasted 

landslide occurrence models (Nowicki Jessee et al., 2018; Nowicki et al., 2014; Tanyas et al., 

2019; Kirschbaum and Stanley, 2018). Rather than characterizing the potential of landslide 

existence from static terrain conditions, these models include a dynamic input designed to 

characterize landslide potential from a particular forcing event. For example, Tanyas et al. 

(2019), analyzed the static terrain conditions and dynamic ground motion metrics (e.g., peak 

ground velocity) from 25 earthquake-induced landslide-event inventories from across the world 

to create a landslide model that can estimate the distribution of landslides during an earthquake. 

Herein, we will refer to this model type as landslide occurrence models. Like susceptibility 

models, landslide occurrence models often suffer from imperfect and heterogeneous landslide 

data. Thus, a common problem in the landslide community is determining an effective way of 

assessing landslide susceptibility and/or occurrence, despite the imperfect data available for 

model development. 

The first paragraph of section 2.2 now reads, in part, as follows: 

Several papers have evaluated the relative effectiveness of slope units over grid mapping units in 

statistical landslide susceptibility models (Jacobs et al., 2020; Steger et al., 2017; Zêzere et al., 

2017; Van Den Eeckhaut et al., 2009; Martinello et al., 2022). However, none of these studies 

has thoroughly evaluated the effectiveness of slope units for better visualizing the imprecise 

susceptibility model output caused by inconsistent input data or their advantages in displaying 

near real-time or forecasted landslide occurrence maps. To demonstrate these benefits, we use 

the Middle Umpqua and Calapooia 10-digit hydrologic unit code (HUC) watersheds (U.S. 

Geological Survey, 2004) in the State of Oregon (U.S.) and the island of Puerto Rico which have 

areas of 257 km2, 743 km2, and 8,870 km2, respectively. Each area’s landslide catalog includes 

an assortment of landslide types (slumps, debris flows, rockfalls, deep-seated landslides, and 

others) which are not differentiated in this study. The landslide data from the Oregon were 

collected over decades using a combination of 1-m DEM data and its derivatives, geologic maps, 

orthophotos, aerial photography, and field reconnaissance and consists of both point and polygon 

data (Burns and Madin, 2009). The Oregon landslide catalogs contains no temporal constraints 

on landslide occurrence. The Umpqua dataset contains 941 points and 3213 polygons, while the 

Calapooia dataset contains 33 points and 456 polygons. In this dataset, polygons cover the 

extent of the landslide affected area while points are placed at the centroid of the landslide 

affected areas. All data were reviewed for accuracy after their initial mapping. The areas of the 



individual landslides mapped using polygons are highly variable, spanning 2×106-4.4×106 m2 

and 1500 - 1.88x107 m2  in Umpqua and Calapooia, respectively. This data variability can lead to 

problems when using grid mapping units because the landslide data is standardized to a 

consistent format for the creation of the landslide susceptibility models. The Puerto Rico 

landslide dataset consists of 71,431 point locations of the centers of landslide headscarps that 

occurred during Hurricane Maria on September 20-21, 2017 (Hughes et al., 2019). Headscarps 

were manually identified using high-resolution (15-50 cm), post-event imagery and quality 

checked by three experienced supervisors. Importantly, the output of the landslide models for 

Puerto Rico are not a susceptibility map, rather a landslide occurrence map. That is, the models 

output the probability of a landslide occurring during Hurricane Maria. This type of output is 

similar to the landslide models developed for near real-time or forecasted assessment of event-

specific landslides (Nowicki Jessee et al., 2018; Nowicki et al., 2014; Tanyas et al., 2019; 

Kirschbaum and Stanley, 2018). Our example from Hurricane Maria is intended to show how 

event-specific model outputs might differ between slope unit and pixel-based assessments. Thus, 

the Oregon watersheds and Puerto Rico datasets are used to demonstrate the benefits of slope 

units when using inconsistent and event-based input data, respectively.   

 

The second to last paragraph of section 2.2. now reads, in part, as follows: 

For the two Oregon watersheds, the probability output of each method is used as a measure of 

landslide susceptibility. In contrast, the Puerto Rico probability outputs are the probability of 

landslide occurrence during Hurricane Maria. 

The second to last paragraph of section 4 now reads as follows: 

Slope units also provide a more conservative output for event-based landslide susceptibility maps 

that may be more effective at communicating the likelihood of landslide occurrence over large 

regions. Like the maps created using non-temporal landslide datasets, the grid-based 

susceptibility maps created for Puerto Rico show fine-scale variations in landslide probability 

that may be too precise to accurately reflect landslide occurrence. Figure S15, shows a zoomed 

in portion of the model results and illustrates the diversity in probability values in the grid-based 

map compared to the slope unit map within a relatively small, mountainous terrain. The grid-

based Puerto Rico landslide models are attempting to specify the pixel that contains the center of 

the head scarp. This level of precision may be too high and cause the model to miss the location 

of landslides induced by hurricane Maria or overpredict potential locations. In contrast, the 

slope unit maps characterize the susceptibility of the entire hillslope and thus provide a more 

conservative output that better generalizes the location of hurricane-induced landslides. In near 

real-time landslide occurrence products (Nowicki Jessee et al., 2018; Nowicki et al., 2014; 

Tanyas et al., 2019; Kirschbaum and Stanley, 2018), larger mapping units that conform to the 

actual topography will facilitate more informative and useful model outputs for decision makers 

to prioritize resources after landslide-inducing events.  

 

Finally, we have made several minor changes to the text to avoid confusion of the uses of the 

two maps. 



The references to input data often missing a time component was intended to exemplify the 

vague character of most landslide catalogs used to create landslide susceptibility maps. We 

believe that our previous adjustments to the text have resolved the reviewer’s last point in this 

general comment. 

 

Minor or not-so-minor comments follow. 

As anticipated, the abstract is very unbalanced towards the computational speed of the 

codes, rather than on actual methods and conclusions of the proposed work. As similar 

comments apply in different parts of the text, I will not point to all of them - only I would 

like to add that one fair comment can be that regardless of the few or many hours needed 

to prepare a slope unit map, that is a one-time effort and processing time may be less 

important than other aspects. 

We have rewritten the abstract to deemphasize the computational speed comparison with other 

methods. We did the same for the short summary and elsewhere in the text. The abstract and 

short summary now read as follows. 

Abstract.  

Slope units are terrain partitions bounded by drainage and divide lines. In landslide modeling, 

including susceptibility modeling and event-specific modeling of landslide occurrence, slope 

units provide several advantages over gridded units, such as better capturing terrain geometry, 

improved incorporation of geospatial landslide-occurrence data in different formats (e.g., point 

and polygon), and better accommodating the varying data accuracy and precision in landslide 

inventories. However, the use of slope units in regional (>100 km2) landslide studies remains 

limited due, in part, to the large computational costs and/or poor reproducibility with current 

delineation methods. We introduce a computationally efficient algorithm for the parameter-free 

delineation of slope units that leverages tools from within TauDEM and GRASS, using an R 

interface. The algorithm uses geomorphic scaling laws to define the appropriate scaling of the 

slope units representative of hillslope processes, avoiding the often ambiguous determination of 

slope unit scaling. We then demonstrate how slope units enable more robust regional-scale 

landslide susceptibility and event-specific landslide occurrence maps.  

 

Short summary 

Dividing landscapes into representative hillslopes greatly improves predictions of landslide 

potential across landscapes but their scaling is often arbitrarily set and can require significant 

computing power to delineate. Here, we present a new computer program that can efficiently 

divide landscapes into meaningful slope units scaled to best capture landslide processes. The 

results of this work will allow an improved understanding of landslide potential across different 

landscapes and can ultimately help reduce the impacts of landslides worldwide.  

 

Please see our response to your first general comment for more examples of how we have 

adjusted the text to comply with this suggestion. 



In section 2.1 the authors refer to the "constant drop law"; I feel it would be nice to have a 

bit more on this law and its meaning. In addition to a quantitative description it would be 

nice to explain why is the law relevant for slope unit delineation. Do hillslope processes 

uniquely determine slope unit boundaries, or are they more relevant to identify landslides? 

Are slope units produced by this criterion suited for any kind of landslides, or for a subset 

of them? Did the authors check that the law actually holds, in the specific areas 

investigated here and - more importantly - with the representation of the terrain provided 

by the digital elevation models adopted here? Moreover, another relevant point is - is this 

criterion applicable to areas of any size? This is probably the motivation behind the 

different optimization procedure adopted by Alvioli at al 2020 (and further refined in 

Alvioli et al 2021 - 10.1080/17445647.2022.2052768). 

We have rewritten section 2.1 to address the concerns about the reliability of TauDEM and the 

appropriateness of our selected scaling for characterizing landslide hazards. It reads as follows: 

This scaling law is independent of the raster resolution (Tarboton et al., 1991; Tarboton, 1989) 

and has been used extensively in the field of fluvial geomorphology. We further process these 

optimally scaled watersheds by splitting them by the longest flow path within the watershed 

using GRASS (GRASS Development Team, 2020). Thus, the watersheds essentially become 

what would be objectively recognized as a slope. We argue that basing the scaling of slope units 

used for landslide analysis on established geomorphic laws provides the best justification for 

their appropriate sizing and odds of mitigating the negative effects of the MAUP. Further details 

on how the algorithm was implemented in R are in Text S1 and the online repository (Woodard, 

2023). 

 

Based on the extensive validation procedures conducted by the Tarboton (1989) and Tarboton et 

al. (1991) and the sound theoretical basis of the drop law, we do not perform further validations 

for our areas of interest. 

The criterion is applicable to areas of any size as it will find the desired threshold for flow 

accumulation across area of interest. However, the size of the area of interest can alter the 

calculated threshold if it includes a significant variation in topographic signatures (e.g.., 

mountains and alluvial fans. We discuss this in the second paragraph of the supplemental text 1 

where we state the following: 

“Creating intermediate watersheds allows the algorithm to adapt the scaling of the slope units 

according to the characteristics of the local topography. If the intermediate watershed has 

significant variation in topography, TauDEM may choose a threshold that doesn’t adequately 

characterize every area within the watershed. Thus, intermediate watersheds must be small 

enough to limit the variation in topography but large enough to avoid significantly reducing 

computational efficiency. While experimenting with different watershed dimensions on the 

topographically diverse regions of Sicily, Puerto Rico, and the Umpqua and Calapooia 

watersheds, we found an accumulation threshold of ~100 km2 to adequately strike this balance. 

This threshold can be adjusted to meet the user’s needs, or SUMak has an option to input 

predetermined intermediate watersheds. After appropriate intermediate watersheds are created, 



the algorithm runs the rest of the processing steps individually for each intermediate watershed in 

parallel. “ 

 

About the conversion of landslide polygons to point-like features: it is not very clear to me 

why this is necessary or, actually, what is the rationale of the different methods, especially 

converting one polygon into multiple points; I can understand using the highest elevation 

point as an indicator for the landslide initiation point - but what is the difference in using 

equally-spaced multiple points instead of all of the grid cells overlapping a landslides? 

Maybe I am missing something, here. 

We have revised this section to better explain our rational for using multiple points per polygon. 

It now reads as follows: 

Creating multiple points within the polygons allows us to capture some of the variability in the 

large landslides’ measured attributes without eliminating the influence of landslides originally 

mapped as points. Using all the raster cells within the polygons would essentially oversaturate 

the model with data from the landslide polygons and omit any influence of the landslides 

originally mapped as points. 

When introducing the XGBoost method - what is the meaning of the list of parameters 

(max_depth) and most importantly how does the optimization work, in short? 

We have added a short description of the XGBoost optimization procedure. It reads as follows: 

To increase the model accuracy while preventing overfitting, we optimize the ‘max_depth’, 

‘min_child_weight’, ‘subsample’, ‘gamma’, and ‘colsample_bytree’ hyperparameters of XGBoost 

(see Chen & Guestrin, 2016 and https://xgboost.readthedocs.io/ for an explanation of these 

parameters) using a Bayesian cross-validation procedure. In short, these hyperparameters adjust 

how the model adapts to fit the training data. The Bayesian cross-validation procedure uses ten 

folds and ten iterations and uses the results from the previous iterations to inform the next 

iteration of hyperparameters to use (Snoek et al., 2012). This procedure prevents the use of 

unwieldly grid searches and permits faster optimization of the model hyperparameters. 

I do not understand the sentence "the Brier score provides measure of the scale of the 

model fit and not just its ordering"; can the authors explain, in short? 

We rewrote this sentence to clarify our meaning. It now reads as follows: 

Thus, a B value of zero suggests perfect model fit and a value of one indicates perfect misfit. In 

contrast to AUC-ROC, the Brier score provides measure of the scale of the model fit and not just 

its ordering of landslide and non-landslide observations. 

As already mentioned, the method to scale down the computing time in lines 265-267 does 

not seem reasonable at all, for a quantitative nor qualitative comparison. 



We have removed this portion of the text. 

I believe the overall view of slope units in figure 1(c) is rather poor - most probably due to 

the attempt of showing the slope unit vector layer at that zoom scale. On similar grounds, it 

is kind of impossible to see anything sensible in figure 2(a)-(b). Slope units would be much 

more visible in figure 3(b) if they weren't colorized as the higher elevation values. 

We have removed figure 1 from the text to better focus the scope of the manuscript. We have 

also removed figure 2a,b and changed the colors of the slope units in figure 3 to facilitate 

visualization. The updated figures are copied below. 

 

 

Figure 2: Umpqua and Calapooia watersheds in Oregon. (a, b) digital elevation models and 

landslide inventories. Also shown are the log-normalized histograms of the landslide polygon 

areas. (d, d) zoomed-in portions of the slope unit maps with landslide polygons and grid sampled 

points using the four sampling techniques superimposed. The 10 m point samples often overlap 

the 30 m samples. Sampling techniques are described in section 2.2. 

 



 

Figure 3: Island of Puerto Rico. (a) Slope unit delineation and mapped landslide points from 

Hurricane Maria. (b) Zoomed--in portion of the island. 

 

The discussion about the percentage of grid cells with large susceptibility values, which 

result in visually under-represented with respect to the number and size of landslides, is 



interesting. The authors ascribe that to a poor performance of methods based on grid cells, 

and better suitability of the slope unit approach. Could it be that the statistical methods 

themselves reveal their limits? The observed overall picture is seemingly typical of over-

fitting, for methods with poor generalization performance. 

Yes, that is one reason why we used two different algorithms in our analysis. However, the 

ability of slope unit-based maps to better differentiate high and low susceptibility zones remains. 

To address this point, we inserted the following into the second paragraph of section 4: 

This phenomenon may partially reflect the limits of the statistical models used. However, slope 

units consistently produced more granular model results compared to grid-based maps 

independent of the model used, suggesting that this is not merely an artifact of the statistical 

models. The lack of granularity of the grid-based maps at the Umpqua watershed may lead some 

to conclude that the watershed is generally not susceptible to landsliding. 

Despite the interesting premises set by the introduction and discussion sections, the 

conclusions drawn by the authors do not seem to meet the expectations (at least, my 

expectations). I mean, the difference between slope units vs. pixel based models has been 

investigated by several authors, with similar conclusions. Maybe a bit more could have 

been done in highlighting the role of the optimization algorithm, for the slope unit 

delineation part, and on the meaning of using a landslide inventory corresponding to an 

individual event instead of a "generic" inventory, for the susceptibility part. 

We believe that our adjustments made in response to the second minor comment and the second 

general point address this concern. 

 

 


