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Abstract  15 

Assessing or forecasting seismic damage to buildings is an essential issue for earthquake disaster 16 
management. In this study, we explore the efficacy of several machine learning models for damage 17 
characterization, trained and tested on the database of damage observed after Italian earthquakes 18 
(DaDO). Six regression- and classification-based machine learning models were considered: random 19 
forest, gradient boosting and extreme gradient boosting. The structural features considered were divided 20 
into two groups: all structural features provided by DaDO or only those considered to be the most 21 
reliable and easiest to collect (age, number of storeys, floor area, building height). Macroseismic 22 
intensity was also included as an input feature. The seismic damage per building was determined 23 
according to the EMS-98 scale observed after seven significant earthquakes occurring in several Italian 24 

regions. The results showed that extreme gradient boosting classification is statistically the most 25 
efficient method, particularly when considering the basic structural features and grouping the damage 26 
according to the traffic-light based system used, for example, during the post-disaster period (green, 27 
yellow and red). The results obtained by the machine learning-based heuristic model for damage 28 
assessment are of the same order of accuracy as those obtained by the traditional Risk-UE method. 29 
Finally, the machine learning analysis found that the importance of structural features with respect to 30 
damage was conditioned by the level of damage considered.    31 
 32 
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Earthquake building-damage, DaDO building damage database, Machine learning, RISK-UE, Seismic 34 
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1. Introduction 36 

Population growth worldwide increases exposure to natural hazards, bringing consequences in terms of 37 
global economic and human losses. For example, between 1985 and 2014, the world's population 38 
increased by 50% and average annual losses due to natural disasters increased from US$14 billion to 39 
over US$140 billion. Among other natural hazards, earthquakes represent one-fifth of total annual 40 
economic losses and cause more than 20 thousand deaths per year (Daniell et al., 2017; Silva et al., 41 

2019). In order to develop effective seismic risk reduction policies, decision-makers and stakeholders 42 
rely on a representation of consequences when earthquakes affect the built environment. Two main risk 43 
metrics generally considered at the global scale are associated with building damage: direct economic 44 
losses due to costs of repair/replacement and loss of life of inhabitants due to building damage. The 45 
necessary damage is estimated by combining the seismic hazard, exposure models and 46 
vulnerability/fragility functions (Silva et al., 2019).  47 

For scenario-based risk assessment, damage and related consequences are computed for a single 48 
earthquake scenario. Many methods to characterize the urban environment for exposure models have 49 
been developed. In particular, damage assessment requires  vulnerability/fragility functions for all types 50 
of existing buildings, defined according to their design characteristics (shape, position, materials, 51 
height, etc.) and grouped (for example) in a building taxonomy (e.g. among other conventional methods  52 
FEMA, 2003; Grünthal, 1998; Guéguen et al., 2007; Lagomarsino & Giovinazzi, 2006; Mouroux & Le 53 
Brun, 2006; Silva et al., 2014). At the regional/country scale, damage assessment is therefore confronted 54 
with the difficulty of accurately characterizing exposure according to the required criteria and assigning 55 
appropriate vulnerability/fragility functions to building features. Unfortunately, the necessary 56 
information is often sparse and incomplete, and exposure modeling is suffering from economic and 57 
time constraints. 58 

Over the past decade, there has been growing interest in methods using artificial intelligence  for seismic 59 

risk assessment, due to its superior computational efficiency, easy handling of complex problems, and 60 
the incorporation of uncertainties (e.g., Riedel et al., 2014, 2015; Azimi et al., 2020; Ghimire et al., 61 
2022; Hegde and Rokseth, 2020; Kim et al., 2020; Mangalathu & Jeon, 2020; Morfidis & Kostinakis, 62 
2018; Salehi & Burgueño, 2018; Sun et al., 2021; Wang et al., 2021; Xie et al., 2020; Y. Xu et al., 2020; 63 
Z. Xu et al., 2020).  In particular, several studies have tested the effectiveness of machine learning 64 
methods in associating damage degrees with basic building features and spatially-distributed seismic 65 
demand with acceptable accuracy compared with conventional methods or  tested with post-earthquake 66 
observations (e.g., Riedel et al., 2014, 2015; Guettiche et al., 2017; Harirchian et al., 2021; Mangalathu 67 
et al., 2020; Roeslin et al., 2020; Stojadinović et al., 2021; Ghimire et al., 2022). In parallel, significant 68 
efforts have been made to collect post-earthquake building damage observations after damaging 69 
earthquakes (Dolce et al., 2019; MINVU, 2021; MTPTC, 2010; NPC, 2015). With more than 10,000 70 
samples compiled, the Database of Observed Damage (DaDO), platform of the Civil Protection 71 
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Department, developed by the Eucentre Foundation (Dolce et al., 2019), allows exploration of the value 72 
of heuristic vulnerability functions calibrated on observations (Lagomarsino et al., 2021), as well as the 73 
training of heuristic functions using machine learning models (Ghimire et al., 2022) and considering 74 
sparse and incomplete building features.  75 
The main objective of this study is to investigate the effectiveness of several machine learning models 76 
trained and tested on information from the DaDO to develop a heuristic model for damage assessment. 77 
The model may be classified as heuristic in the sense that it applies a problem-solving approach in 78 
which a calculated guess based on previous experience is considered for damage assessment (as 79 
opposed to the application of algorithms which effectively eliminates the approximation). The damage 80 

is thus estimated in a non-rigorous way defined during training phase and the results must be validated 81 
and then tested against observed damage. By analogy with psychology, this procedure can reduce the 82 
cognitive load associated with uncertainties when making decisions based on damage assessment. The 83 
dataset and methods are described in the data and method sections, respectively. The fourth section 84 
presents the results of damage prediction produced by machine learning models compared with 85 
conventional methods, followed by a conclusion section. 86 

 87 

2. Data 88 
The Database of Observed Damage (DaDO, Dolce et al., 2019) is accessible through a web-GIS 89 
platform and is designed to collect and share information about building features, seismic ground 90 
motions and observed damage following major earthquakes in Italy. A framework has been designed 91 
to homogenize the different forms of information collected and to translate the damage information into 92 
the EMS-98 scale (Grunthal et al., 1998) using the method proposed by Dolce et al. (2019). For this 93 
study, we selected building damage data from seven earthquakes summarized in Table 1 and presented 94 
in Fig.1. 95 

 96 
Table 1. Building-damage data from the DaDO for the seven earthquakes considered in this study. ‘Ref’ 97 
is the reference of the earthquake used in the manuscript. ‘DL’ is the number of the damage grade 98 
available in DaDO. ‘NB’ is the number of buildings considered in this study. AeDES is the post-99 
earthquake damage survey form, first introduced in 1997 and become the official operational tool 100 
recognized by the Italian Civil Protection in 2002. 101 

Ref Earthquake Event date Mag. Epicentre Damage 
survey form 

DL NB 
Lat. Long. 

E1 Irpinia-1980  23/11/1980 6.9 40.91 15.37 Irpinia-980 8  37,828 
 

E2 Pollino-1998  09/09/1998 5.6 40.04 15.98 AeDES-1998 4  9,485 
E3 Molise-Puglia-2002  31/10/2002 5.9 41.79 14.87 AeDES-2000 4  6,396 
E4 Emilia-Romagna-2003  14/09/2003 5.3 44.33 11.45 AeDES-2000 4  239 
E5 L'Aquila-2009  06/04/2009 6.3 42.34 13.34 AeDES-2008 4  37,999 
E6 Emilia-Romagna-2012  20/05/2012 6.1 44.89 11.23 AeDES-2008 4  10,581 
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E7 Garfagnana-Lunigiana-2013  21/06/2013 5.3 44.15 10.14 AeDES-2008 4  1,474 
 102 
The converted damage grade (DG) ranges from damage grade DG0 (no damage) to DG5 (total 103 
collapse). The building features are available for each individual building and relate to the shape and 104 
design of the building and the built-up environment (Tab. 2, Fig. 2), as follows:  105 
Building location - the location of each building is defined by its latitude and longitude, assigned using 106 
either the exact address of the building if available or the address of the local administrative centre 107 
(Dolce et al., 2019). 108 
Numbers of storeys - total numbers of floors above the surface of the ground. 109 
Age of building - time difference between the date of the earthquake and the date of building 110 

construction/renovation.  111 
Height of building - total height of the building above the surface of the ground, in m.  112 
Floor area – average of the storey surface area, in m2.  113 
Ground slope condition - four types of ground slope conditions are defined (flat, mild slope, steep 114 
slope, and ridge). 115 
Roof type – four types of roofs are defined (thrusting heavy roof, non-thrusting heavy roof, thrusting 116 
light roof, and non-thrusting light roof). 117 
Position of building - indication of the building’s position in the block: isolated, extreme, corner, and 118 
intermediate. 119 
Regularity: building regularity in terms of plan and elevation, classified as either irregular or regular.  120 
Construction material:  vertical elements: good and poor-quality masonry, good and poor quality 121 
mixed frame masonry, reinforced concrete frame and wall, steel frame, and other. 122 
For features defined as value ranges (e.g., date of construction/renovation, floor area, and building 123 
height), the average value was used. Furthermore, the Irpinia-1980 building damage portfolio (E1) was 124 
constructed using the specific Irpinia-1980 damage survey form, while the AeDES damage survey form 125 
was used for the others. The Irpinia-1980 dataset will therefore be analysed separately. 126 
The data on building damage from earthquake survey other than Irpinia earthquake damage survey 127 
mostly includes damaged buildings. This is because the data was collected based on requests for damage 128 

assessments after the earthquake event (Dolce et al. 2019). The damage information in DaDO database 129 
is still relevant for testing the machine learning models for heuristic damage assessment. Mixing these 130 
datasets to train machine learning models can lead to biased outcomes. Therefore, the machine learning 131 
methods were developed on the other earthquake’s dataset excluding Irpinia dataset, and the Irpinia 132 
earthquake dataset was used only in the testing phase.  133 
The distribution of the samples is very imbalanced (Fig. 2): for example, there is a small proportion of 134 
buildings in DG4+DG5 (7.59%), and a large majority of masonry (65.47%) compared to reinforced 135 
concrete frame (21.31%) buildings. This imbalance should be taken into account when defining the 136 
machine learning models.   137 
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 138 

 139 
Figure 1. Geographic location of the buildings considered in this study.  140 
 141 
In order to consider spatially-distributed ground motion, the original DaDO data are supplemented with 142 
the main event macroseismic intensities (MSI) provided by the United States Geological Survey 143 
(USGS) ShakeMap tool (Wald et al., 2005). Macroseismic intensities (MSI) given in terms of modified 144 
Mercalli intensities are considered and assigned to buildings based on their location. The distribution 145 
of MSI values in the database is shown in Fig. 2k. 146 
 147 
Table 2. Distribution of the different features used in this study. 148 

No. Parameters Data type Distribution 
(%) Remarks 

1 
Damage 
grades 
(DG) 

No damage DG0 

Categorical 

43.63 

Fig. 2a 
Slight damage DG1 28.90 
Moderate damage DG2 7.41 
Substantial damage DG3 12.48 
Very heavy damage DG4 3.94 
Total collapse DG5 3.65 

2 Number 
of storeys 

0-3 NF1 
Numerical 

85.81 
Fig. 2b 3-5 NF2 13.01 

> 5 NF3 1.19 

3 Age 
(years) 

0-20 AG1 Numerical 15.22 Fig. 2c 21-40 AG2 18.81 
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41-60 AG3 34.15 
61-80 AG4 21.34 
>80 AG5 10.49 

4 
Floor area 
(square 
metres) 

0-50 A1 

Numerical 

22.16 

Fig. 2d 
50-100 A2 34.73 
100-150 A3 22.53 
150-200 A4 8.32 
> 200 A5 12.26 

5 Height 
(metres) 

0-10 H1 
Numerical 

87.78 
Fig. 2e 10-15 H2 10.69 

>15 H3 1.50 

6 Position 

Corner P1 

Categorical 

9.71 

Fig. 2f Extreme P2 24.47 
Internal P3 22.80 
Isolated P4 43.02 

7 Ground 
slope 

Ridge GS1 

Categorical 

2.62 

Fig. 2g Plain GS2 34.25 
Moderate slope GS3 43.74 
Steep Slope GS4 20.39 

8 Regularit
y 

Irregular in plan and elevation IR Categorical 22.28 Fig. 2h Regular in plan and elevation Re 77.72 

9 Roof type 

Heavy no thrust R1 

Categorical 

36.43 

Fig. 2i Heavy thrust R2 11.25 
Light thrust R3 26.48 
Light no thrust R4 25.83 

10 Material 

Masonry poor quality CM1 

Categorical 

36.51 

Fig. 2j 

Masonry good quality CM2 28.96 
Mixed frame masonry poor 
quality CM3 2.64 

Mixed frame masonry good 
quality CM4 5.21 

Reinforced concrete frame CM5 21.31 
Reinforced concrete wall CM6 0.42 
Steel frame CM7 0.09 
Other CM8 4.10 

 149 
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 150 
Figure 2. Distribution of the different features in the database. E1, E2, E3, E4, E5, E6, and E7, representing 151 
Irpinia-1980, Pollino-1998, Molise-Puglia-2002, Emilia-Romagna-2003, L'Aquila-2009, Emilia-Romagna-2012, 152 
and Garfagnana-Lunigiana-2013 building damage portfolios, respectively. The y-axis is the percentage 153 
distribution and the x-axis is (a) Damage grade, (b) Number of storeys (NF1: 0-3, NF2: 3-5, NF3: >5), (c) Building 154 
age (AG1: 0-20, AG2: 21-40, AG3: 41-60, AG4: 61-80, AG5: >80), (d) Floor area (A1: 0-50, A2: 51-100, A3: 155 
101-150,  A4: 151-200, A5: >200), (e) Height (H1: 0-10, H2: 10-15, H3: >15), (f) Building position (P1: corner, 156 
P2: extreme, P3: internal, P4: isolated), (g) Ground slope condition (GS1: ridge, GS2: plain, GS3: moderate slope, 157 
GS4: steep slope), (h) Regularity in plan and elevation (IRe: irregular, Re: Regular), (i) Roof type (RT1: heavy 158 
no thrust, RT2: heavy thrust, RT3: light no thrust, RT4: light thrust), (j) Construction material (CM1: poor-quality 159 
masonry, CM2: good-quality masonry, CM3: poor-quality mixed frame masonry, CM4: good-quality mixed 160 
frame masonry, CM5: reinforced concrete frame, CM6: reinforced concrete wall, CM7: steel frames, CM8: other), 161 
and (k) macro-seismic intensity. 162 
 163 
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3. Method 164 
3.1. Machine learning models 165 
Ghimire et al. (2022) applied classification- and regression-based machine learning models to the 166 
damage observed after the 2015 Gorkha Nepal earthquake (NPC, 2015). The main concepts for method 167 
selection, definition of the dataset for training and testing, and the representation of model performance 168 
are presented here. 169 
To develop the heuristic damage assessment model, the damage grades are considered as the target 170 
feature. The damage grades are discrete labels, from DG0 to DG5. A label (or class) was thus assigned 171 
to the categorical response variables (DG) for the classification-based machine learning models. The 172 

three most advanced classification machine learning algorithms were selected: random forest 173 
classification (RFC) (Breiman, 2001), gradient boosting classification (GBC) (Friedman, 1999), and 174 
extreme gradient boosting classification (XGBC) (Chen and Guestrin, 2016). For the regression-based 175 
machine learning models, DG is converted into a continuous variable to minimize misclassifications 176 
(Ghimire et al., 2022). The three advanced regression models selected were: random forest regression 177 
(RFR) (Brieman, 2001), gradient boosting regression (GBR) (Brieman, 2001), and extreme gradient 178 
boosting regression (XGBR) (Chen and Guestrain, 2016).  179 
Building features and macroseismic intensities were considered as input features. A one-hot encoding 180 
technique was used to convert the categorical features (i.e., ground slope condition, building position, 181 
roof type, construction material) into binary values (1 or 0), resulting in 28 input variables (Tab. 2). No 182 
input features were removed from the dataset: some building features (e.g., number of storeys and 183 
height) may be correlated but we assumed that the presence of correlated features does not impact the 184 
overall performance of these machine learning methods (Ghimire et al., 2022). No specific data cleaning 185 
methods were applied to the DaDO database. 186 
The machine learning algorithms from the Scikit-learn package developed in Python (Pedregosa et al., 187 
2011) were applied. The machine learning models were trained and tested on the randomly selected 188 
training (60% of the dataset) and testing (40% of the dataset) subsets of data, considering a single 189 
earthquake dataset or the whole DaDO dataset. The testing subset was kept hidden from the model 190 

during the training phase.  191 
 192 
3.2. Machine learning model efficacy 193 
The efficacy of the heuristic damage assessment model (i.e., its ability to predict damage to a 194 
satisfactory or expected degree) was analysed in three stages: comparison of the efficacy of the machine 195 
learning models using metrics; analysis of specific issues related to machine learning using the selected 196 
models; and application of the heuristic model to the whole DaDO dataset. 197 
 198 
3.2.1 First stage: model selection 199 
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In the first stage, only the L’Aquila-2009 portfolio was considered for the training and testing phases. 200 
This is the largest dataset in terms of number of buildings and was obtained using the AeDES survey 201 
format (Baggio et al., 2007; Dolce et al., 2019). Model efficacy was provided by the confusion matrix, 202 
which represents model prediction compared with the so-called “ground truth” value. Accuracy was 203 
then represented on the confusion matrix by the ratio of the number of correctly predicted DGs to the 204 
total number of observed values per DG (ADG).  205 
Total accuracy (AT) was computed in a similar manner as the ratio of the number of correctly predicted 206 
DGs to the total number of observed values. AT and ADG values close to 1 indicate high efficacy. 207 
Moreover, the quantitative statistical error was also calculated as the average of the absolute value of 208 

errors (MAE) and the average squared error (MSE) (MAE and MSE values close to 0 indicate high 209 
efficacy). For classification-based machine learning models, the ordinal value of the DG was used to 210 
calculate the MAE and MSE scores directly. For the regression-based machine learning models, the 211 
output DG values were rounded to the nearest integer for the accuracy scores plotted for the confusion 212 
matrix, but not for the MAE and MSE value calculations.  213 
 214 
3.2.2 Second stage: machine learning related issues 215 
In the second stage, the best heuristic model for damage assessment was selected based on the highest 216 
efficacy, and used to analyse and test specific issues related to machine learning: (1) the imbalance 217 
distribution of DGs in the DaDO, (2) the performance of the selected model when only some basic, but 218 
accurately assessed, building features are considered (i.e., number of storeys, location, age, floor area), 219 
and (3) the simplification of the heuristic model, in the sense that DGs are grouped into a traffic-light 220 
based classification (i.e., green, yellow and red, corresponding to DG0+DG1, DG2+DG3 and 221 
DG4+DG5, respectively). In the second stage, the issues related to machine learning were first analysed 222 
using the L’Aquila-2009 portfolio. The whole DaDO dataset was then used.  223 
 224 
3.2.2 Third stage: application to the whole DaDO portfolio and comparison with Risk-UE 225 
In the third stage, several learning and testing sequences were considered, with the idea of moving to 226 

an operational configuration in which past information is used to predict damage of future earthquakes: 227 
either learning based on a portfolio of damage caused by one earthquake and tested on another portfolio, 228 
or learning based on a series of damage portfolios and tested on the portfolio of damage caused by an 229 
earthquake placed in the chronological continuity of the earthquake sequence considered.  In this stage, 230 
the efficacy of the heuristic damage assessment model was analysed by comparing the prediction values 231 
with the so-called “ground truth” values through the error distribution, as follows: 232 

 𝜀!(%) = %"!
#
& ∗ 100   (1) 233 

where 𝑛! is the total number of buildings at a given error level (difference between observed and 234 

predicted DGs), 𝑁 is the total number of buildings in the damage portfolio.  235 
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In this stage, the efficacy of the heuristic damage assessment model was compared with the 236 
conventional damage prediction framework proposed by the RISK-UE method (Milutinovic and 237 
Trendafiloski, 2003). The RISK-UE method assigns a vulnerability index (IV) to a building, based on 238 
its construction material and structural properties (e.g., height, building age, position, regularities, 239 
geographic location, etc.). For a given level of seismic demand (MSI), the mean damage (µd) and the 240 
probability, pk, of observing a given damage level k (k = 0 to 5) are given by: 241 
 242 

 µ" = 2.5 (1 + 𝑡𝑎𝑛ℎ	 /#$%&'.)*%+,-..-
)..

01   (2)   243 

 244 

 𝑝/ =
*!

/!(*,/)!
/3!
*
0
*
/1 − 3!

*
0
*,/

 (3) 245 

 246 
Herein, comparing the heuristic model and the RISK-UE method amounts to considering the following 247 
steps, based on the equations given by RISK-UE:  248 
Step 1 - The buildings in the training and testing datasets are grouped into different classes according 249 
to construction material. 250 
Step 2 - For a given building class in the training dataset, computation of 251 

 Step 2.1 - mean damage (µ") using the observed damage distribution at a given MSI value by: 252 

 µ" = ∑ 𝑝/𝑘*
/45   (4) 253 

 254 

 Step 2.2 - vulnerability index (IV) with the µ" obtained in step 2.1 by: 255 
 256 

 𝐼𝑉 = -
'.)*

(13.1 − 𝑀𝑆𝐼 + 2.3 <𝑡𝑎𝑛ℎ,- /3!).* − 10=1   (5) 257 

 258 
Step 3 - For the same building class in the test dataset, calculation of 259 

 Step 3.1 - mean damage (µ") Eq. 2 for a given MSI value with the value of IV obtained in step 260 

2.2; 261 

 Step 3.2 - damage probability (𝑝/)  Eq. 3 with the value of µ" obtained in step 3.1; 262 

 Step 3.3 - distribution of buildings in each damage grade within a range of MSI values observed 263 
in the test dataset as follows: 264 
 265 

  𝑁67!",/ = ∑ 𝑝/ 	𝑛9:;,#$%#$%   (6) 266 

 267 

where	𝑛9:;,#$% is the total number of buildings observed in the test set for a given MSI 268 

value;   269 

 Step 3.4 –absolute error (𝜀/) in each damage level k, given by:      270 
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 𝜀/ = ?<"#$,&,<'()!,&
<

?  (7) 271 

 272 

where, 𝑁9:;,/ is the total number of buildings observed in the given damage grade k. 273 

 274 

Similarly, the heuristic damage assessment model was also compared with the mean damage 275 
relationship (Eq. 4) applied to the test set. Thus, for each building class in the test set, the error value 276 

(Eq. 7) for each DG was computed from the µ" on the observed damage using Eq. (4), the probability 277 

𝑝/ of obtaining a given DG k (k= 0 to 5) using Eq. (3), and the distribution of buildings in each DG 278 

𝑁67!",/ for a given MSI value using Eq. (6).  279 

 280 
4. Result 281 
4.1 First stage: model selection 282 
The efficacy of the regression (RFR, GBR, XGBR) and classification (RFC, GBC, XGBC) machine 283 
learning models trained and tested on the randomly selected 60% (training set) and 40% (test set) of the 284 
2009 -L’Aquila earthquake building damage portfolio is summarized in Table 3. The regression-based 285 
machine learning models RFR, GBR and XGBR yielded similar MSE scores (1.22, 1.22 and 1.21) and 286 
accuracy scores (AT = 0.49, 0.49 and 0.50), considering the five DGs of the EMS-98 scale. In the 287 
confusion matrix (Fig. 2a: RFR, Fig. 2b: GBR, and Fig. 2c: XGBR), the accuracy ADG values show that 288 
the efficacy of these models is higher for the lower DGs (around 60% for DG0 and 55% for DG1) and 289 

lower for the higher DGs (6% and 1% of the buildings are correctly classified in DG4 and DG5, 290 
respectively).  291 
For the classification-based machine learning models, the XGBC model ([MSE, AT] = [1.78, 0.59]) was 292 
more effective than the RFC ([MSE, AT] = [1.86, 0.57]) and GBC ([MSE, AT] = [1.80, 0.58]) models, 293 
considering the EMS-98 scale. In the confusion matrix (Fig. 2d: RFC, Fig. 2e: GBC, and Fig. 2f: 294 
XGBC), the accuracy ADG values also show higher model efficacy for the lower DGs (85% for DG0 295 
and 40% for DG1) and lower efficacy for the higher DGs (6%, 12% and 16% buildings correctly 296 
classified in DG2, DG4 and DG5, respectively).  297 
 298 
Table 3. Summary of optimized input parameters, accuracy AT and quantitative statistical error values 299 
for the regression-based and classification-based machine learning methods. The parameters are the 300 
hyperparameters chosen for the machine learning models (the other hyperparameters not mentioned 301 
here are the default parameters in the Scikit-learn documentation (Pedregosa et al., 2011)). The best 302 
accuracy and error values are indicated in bold. 303 

Method Parameters Accuracy AT MSE MAE 

RFR n_estimators = 1000 0.49 1.22 0.77 
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max_depth = 25 
GBR n_estimators = 1000 

max_depth = 10 
learning_rate = 0.01 

0.50 1.22 0.77 

XGBR n_estimators = 1000 
max_depth = 10 
learning_rate = 0.01 

0.50 1.21 0.76 

RFC no_estimators = 1000 
max_depth = 25 

0.57 1.86 0.77 

GBC no_estimators = 1000 
max_depth = 10 
learning_rate = 0.01 

0.58 1.80 0.77 

XGBC n_estimators = 1000 
max_depth = 10 
learning_rate = 0.01 

0.59 1.78 0.74 

 304 
The classification-based machine learning models thus yielded slightly better predictive efficacy, but 305 
still lower than recent studies applied to other datasets (Ghimire et al., 2022; Harirchian et al., 2021; 306 
Mangalathu et al., 2020; Roeslin et al., 2020; Stojadinović et al., 2021). The high classification error in 307 
the higher DGs could be related to the characteristics of the building portfolio and the imbalance of DG 308 
distribution. Among the classification methods, the XGBC model showed slightly higher classification 309 
efficacy; the XGBC model was therefore selected for the next stages 2 and 3. 310 
 311 
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 312 
Figure 3. Normalized confusion matrix between predicted and observed DGs. The values given in each main 313 
diagonal cell are the accuracy scores ADG. All values are also represented by the colour scale. 314 
 315 
4.2 Second stage: issues related to machine learning  316 
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4.2.1 Imbalance distribution of the DGs in the DaDO 317 
The efficacy of the heuristic damage assessment model depends on the distribution of target features in 318 
the training dataset. This can lead to low prediction efficacy, especially for minority classes (Estabrooks 319 
& Japkowicz 2001; Japkowicz & Stephen 2002; Branco et al. 2017; Ghimire et al., 2022).  The previous 320 
section reports significant misclassification associated with the highest DGs for all classification- and 321 
regression-based models (Fig. 3), i.e., for the DGs with the lowest number of buildings (Fig. 2a). The 322 
efficacy of the XGBC model is analysed below, addressing the class-imbalance issue with data 323 
resampling techniques applied to the training phase and considering the L’Aquila-2009 portfolio.  324 
 325 

Four strategies to solve the class imbalance issue were tested:  326 
(a) random undersampling: randomly selecting the number of data entries in each class equal to the 327 
number of data entries in the minority class (DG4 in our case);  328 
(b) random oversampling: randomly replacing the number of data entries in each class equal to the 329 
number of data entries in the majority class (DG0 in our case);  330 
(c) Synthetic Minority Oversampling Technique (SMOTE): creating an equal number of data entries in 331 
each class by generating synthetic samples by interpolating the neighbouring data in the minority class;  332 
(d) a combination of oversampling and undersampling methods: oversampling of the minority class 333 
using the SMOTE method, followed by the Edited Nearest Neighbours (ENN) undersampling method 334 
to eliminate data that is misclassified by its three nearest neighbours (SMOTE-ENN).  335 
 336 
Fig. 4 shows the confusion matrices of the four strategies considered for the class imbalance issue. 337 
Compared with Fig. 3f (i.e., XGBC), the effects of addressing the issue of imbalance were as follows: 338 
(a) undersampling (Fig. 4a): ADG value increased by 20/22/26% for DG2/DG4/DG5 and decreased by 339 
29% for DG0.  340 
(b) oversampling (Fig. 4b): ADG value increased by 11/16/18% for DG2/DG4/DG5 and decreased by 341 
13% for DG0 342 
(c) SMOTE (Fig. 4c): ADG value increased by 4/1/4% for DG2/DG4/DG5 and decreased by 3% for 343 

DG0 344 
(d) SMOTE-ENN (Fig. 4d): ADG value increased by 13/9/8% for DG2/DG4/DG5 and decreased by 25% 345 
for DG0. 346 
The AT, MAE and MSE scores are given in Table 4 with the associated effects.  347 
 348 
Table 4 – Scores of the accuracy AT, MSE and MAE metrics considering the imbalance issue and their 349 
variation Δ compared with values without consideration of the imbalance. 350 

Method Accuracy AT MSE MAE 

 Scores 
 

Δ Score Δ Score Δ 
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Undersampling 0.26 -0.33 1.24 -0.34 1.20 0.46 

Oversampling 0.53 -0.06 2.13 0.35 0.86 0.12 

SMOTE 0.57 -0.02 1.87 0.09 0.77 0.03 

SMOTE-ENN 0.49 -0.10 2.28 0.50 0.93 0.19 

 351 
In conclusion, the random oversampling method improves prediction in the minority class without 352 
significantly decreasing prediction in the majority class. The random oversampling method was 353 
therefore applied in this study. 354 

 355 
Figure 4. Confusion matrices for the four methods to solve the DG imbalance issue in the DaDO. The values 356 
given in each main diagonal cell are the accuracy scores ADG. All values are also represented by the colour scale. 357 
 358 
4.2.2 Testing the XBGC model with basic features 359 

(c) SMOTE oversampling

(b) Random oversampling(a) Random undersampling

(d) SMOTE-ENN overrsampling
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This section begins by exploring the importance of each feature in the heuristic damage assessment 360 
model applied to the L’Aquila-2009 portfolio. We used the Shapely Additive Explanations (SHAP) 361 
method developed by Lundberg and Lee (2017). The SHAP method compares the efficacy of the model 362 
with and without considering each input feature to measure its average impact, provided in terms of 363 
mean absolute SHAP values.  364 
Figure 5a shows the average SHAP value associated with each feature considered in this study as a 365 
function of DG. The most weighted features are building age, location (latitude and longitude), material 366 
(poor quality masonry, RC frame), MSI, roof type, floor area, and height. Interestingly, the mean SHAP 367 
values are dependent on the DG, i.e., the weight of the feature is not linear depending on the DG 368 

considered; this is never taken into account in vulnerability methods. For example, Scala et al. (2022) 369 
and Del Gaudio et al. (2021) observed a decrease in the vulnerability of structures as construction year 370 
increases, without distinguishing the DG considered, which is not the case herein. Note also that the 371 
importance score associated with the location feature can capture variations in local geological 372 
properties, with buildings serving as low-resolution seismometers for the neighbourhood (Stojadinović 373 
et al., 2021), and the vulnerability associated with the built-up area of the L'Aquila-2009 portfolio (e.g., 374 
the distinction between the historic town and more modern urban areas). Furthermore, the average 375 
SHAP value obtained for poor quality masonry buildings for DG3/DG4/DG5 confirms the same high 376 
vulnerability of this typology as in the EMS-98 scale (Grünthal, 1998), regardless of DG. 377 
Some basic features of the building (e.g., location, age, floor area, number of storeys, height) are 378 
observed with a high mean SHAP value (Fig. 5a). Compared with others, these five basic features can 379 
be easily collected from the field or provided by national census databases, for example. Fig. 5b shows 380 
the efficacy of the heuristic damage assessment model using XGBC trained with a set of easily 381 
accessible building features (i.e., basic-features-setting: geographic location, floor area, number of 382 
stories, height, age, MSI), after addressing the class-imbalance issue using the random oversampling 383 
method. Compared with Fig. 4b (considering all features and named the full-features-setting), the 384 
XGBC model with the basic-features-setting (Fig. 5b) gives almost the same efficacy with only a 6% 385 
average reduction in the accuracy scores.  386 
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 387 
Figure 5. (a) Graphic representation of the importance scores associated with the different input features 388 
considered for the XGBC model. The features (the same as in Fig. 2) considered in this study are on the y-axis, 389 
and the x-axis is the mean SHAP score according to DG. (b) Confusion matrices considering the basic-features-390 
setting. The values given in each main diagonal cell are the accuracy scores ADG. All values are also represented 391 
by the colour scale. 392 
 393 
4.2.3 Testing the XBGC model with the traffic-light system for damage grades 394 
In this section, a simplified version of the DG scale was used, in the sense that the DGs are classified 395 
according to a traffic-light system (TLS) (i.e., green G, yellow Y and red R classes, corresponding to 396 
DG0+DG1, DG2+DG3 and DG4+DG5, respectively), as monitored during post-earthquake emergency 397 
situations (Mangalathu et al., 2020; Riedel et al., 2015; ATC, 2005; Bazzurro et al., 2004).  For the 398 
TLS-based damage classification, the XGBC model (after oversampling to compensate of the 399 
imbalance issue) with the basic-features-setting applied to the L’Aquila-2009 portfolio (Fig. 6a) gives 400 
almost the same efficacy compared to the full-features-setting (Fig. 6b). For example, accuracy values 401 
ADG using the basic-features-setting and the full-features-setting were 0.76/0.34/0.56 and 0.82/0.36/0.54 402 
for G/Y/R classes, with the accuracy score AT of 0.68 and 0.72, respectively. Mangalatheu et al. (2020), 403 
Roslin et al., (2020), and Harirchian et al., (2021) reported similar damage grade classification accuracy 404 
values of 0.66, 0.67, and 0.65 respectively.  405 
The efficacy of the heuristic damage assessment model using TLS-based damage classification 406 
indicates that classifying damage into three classes is much easier for the machine compared with the 407 
six-class classification system (EMS-98 damage classification). This is also observed during damage 408 
surveys in the field, which sometimes find it hard to distinguish the intermediate damage grades, such 409 
as DG2 and DG3, or DG3 and DG4. Similar observations have been reported in previous studies by 410 
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Guettiche et al., (2017); Harirchian et al., (2021); Riedel et al., (2015); Roeslin et al., (2020) and 411 
Stojadinović et al., (2021).  412 
 413 

 414 
Figure 6. Confusion matrices for (a) the basic-features-setting and (b) the full-features-setting using the traffic-415 
light (TLS)-based classification, grouping the EMS-98 damage grades (DG) into three classes (green for no or 416 
slight damage; yellow for moderate damage; and red for heavy damage). The values given in each main diagonal 417 
cell are the accuracy scores ADG. All values are also represented by the colour scale. 418 
 419 
4.2.4 Testing the XGBC model with the whole dataset 420 
The efficacy of the XGBC model was tested using a dataset with six building damage portfolios, 421 
excluding the 1980-Irpinia building damage portfolio. The XGBC model was trained and tested on the 422 
randomly selected 60% (training set) and 40% (test set) of the dataset for EMS-98/TLS damage 423 
classification, with two sets of features (full-features-setting and basic-features-setting), applying the 424 
random oversampling method to compensate for class-imbalance issues. Fig.7 shows the associated 425 
confusion matrix. 426 
The basic-features-setting resulted in a similar level of damage prediction compared with the full-427 
features setting for both EMS-98 and TLS-based damage classification systems. For EMS-98 damage 428 
classification (Fig. 7a, b), the accuracy ADG scores indicated in the confusion matrices are almost the 429 
same for the basic-features-setting and the full-features-setting. Furthermore, the accuracy AT and MAE 430 
scores are also almost the same (0.45 and 1.08 for the basic-features-setting and 0.48 and 0.95 for the 431 
full-features-setting). 432 
Likewise, for TLS-based damage classification (Fig. 7c, d), the accuracy values ADG for the basic-433 
features-setting and the full-features-setting are almost the same, with similar accuracy AT and MAE 434 

scores (0.63/0.45 and 0.67/0.39, respectively).  435 
 436 
 437 

(a) TLS: basic-features-setting (b) TLS: full-features-setting
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 438 
Figure 7. Confusion matrices for EMS-98 (a, b) and TLS (c, d) damage classification systems using the basic- 439 
and full-features-settings (green for no or slight damage; yellow for moderate damage; red for heavy damage) 440 
with (c) the full-features-setting and (d) the basic-features-setting. The values given in each main diagonal cell 441 
are the accuracy scores ADG. All values are also represented by the colour scale. 442 
 443 
4.3 Third stage: application to the whole DaDO portfolio and comparison with Risk-UE 444 
In this section, the efficacy of the heuristic damage assessment model was considered for building 445 
damage predictions, without respecting the time frame of the earthquakes. Two scenarios were 446 
considered: (1) a single building damage portfolio was used for training and the model was then tested 447 
on the others (named single-single), in situations using a single portfolio to predict future damage; and 448 
(2) a number of building damage portfolios were used for training but testing was performed on a single 449 
portfolio (named aggregate-single), i.e. a larger number of damage portfolios were used as a training 450 
set to predict the damage caused by the next earthquake. The model XGBC was applied with the basic-451 
features-setting (number of storeys, building age, floor area, height, MSI for EMS-98) and EMS-98- 452 
and TLS-based damage classification.  453 

(c) TLS: full-features-setting (d) TLS: basic-features-setting

(a) EMS-98: full-features-setting (b) EMS-98: basic-features-setting
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 454 
4.3.1 Single-single scenario 455 
First, a series of building damage portfolios, concerning earthquakes occurring in northern or southern 456 
Italy and of different magnitudes, was used for training and testing: 457 

(i) Training set: E3 – test set: E1, E5, E7. 458 
(ii) Training set: E5 – test set: E1, E3, E7. 459 
(iii) Training set: E7 – test set: E1, E3, E5.  460 

 461 

Figure 8 shows the distribution of correct DG classification (i.e., 1 − 𝜀" in % given by Eq. 1) observed 462 

for each building for the EMS-98 damage grade (8a) and the TLS (8b) systems.  The x-axis represents 463 
the incremental error in the damage grade (e.g., 1 corresponds to the delta of damage grade between 464 
observation and prediction, regardless of the DG considered).  465 
For the EMS-98 damage scale, correct classification (x-value centred on 0) in the range of 31% to 48% 466 
was found, depending on the training/test data sets. The error distribution is quite wide with incorrect 467 
predictions of +/-1 DG in the range of +/- 13-35%. Remarkably, when considering the E1 portfolio 468 
(Irpinia-1980), for which the post-earthquake inventory was based on another form, as the test set, the 469 
error is larger. The predictions at +/-1 DG (i.e., the sum of the x-values Fig. 8a between -1 and +1) were 470 
70.5%, 69.9% and 72.8% with portfolios E3, E5 and E7 as the test set, respectively, for an average of 471 

71%. For the other portfolios, the average of the predictions at +/- 1 DG was 77%, 78% and 77%, 472 
respectively, for portfolios E5, E3 and E7 as the test set. This tendency was also observed for the TLS 473 
damage system (Fig. 8b). In this case, classification of the E1 portfolio was correct on average (average 474 
of x-values centred on 0) at 63% and equal to 72%, 73% and 70.5% for the test on portfolios E5, E3 475 
and E7. For both damage scales, the distributions were skewed, with a larger number of predictions 476 
being underestimated (positive x-values). 477 

 478 
4.3.2. Aggregate-single scenario 479 
Secondly, several aggregated building damage portfolio scenarios were considered to predict a single 480 
earthquake, thus testing whether prediction was improved by increasing the number of post-earthquake 481 
damage observations. Three scenarios were tested. They are represented in Fig. 9 applying the EMS-98 482 
damage grade (9a) and the TLS (9b): 483 
  484 

(i) Training set:  E2+E3+E4+E6 (shown as E2346) – test set: E1, E5 and E7.  485 
(ii) Training set:  E2+E4+E5+E6 (shown as E2456) – test set: E1, E3 and E7.  486 
(iii) Training set:  E2+E4+E6+E7 (shown as E2467) – test set: E1, E3 and E5.  487 
 488 

For the EMS-98 damage scale, correct classification (x-value centred on 0) in the range of 27% to 49% 489 

was found, depending on the training/test datasets. As in Fig. 8, using the E1 (Irpinia-1980) earthquake 490 
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for testing scored lower regardless of the portfolio used for training (28.7%, 27.2% and 27.4% 491 
prediction accuracy). With E1 as the test set, the predictions at +/-1 DG (i.e., the sum of the x-values 492 
on Fig. 9a between -1 and +1) were 65.7%, 63.8% and 62.4% considering the E2346, E2456 and E2467 493 
portfolios as the training set, respectively, for an average of 64% (compared with the 70% score for the 494 
single portfolio scenario, Fig. 8a). Other scenarios were also tested by aggregating the building damage 495 
portfolios differently (not presented herein), leading to the two main conclusions: (1) the quality and 496 
homogeneity of the input data (i.e., building features) affect the efficacy of the heuristic model and (2) 497 
this efficacy is limited and not improved by increasing the number of building damage observations, 498 
with a score (excluding E1) between 40% and 49% (x-value centred on 0), and up to 78% (average of 499 

the two scenarios, Fig. 8a and Fig. 9a) at +/-1 DG. Considering the TLS damage scale (Fig. 9b), efficacy 500 
of about 72% was obtained (compared with 72% in Fig. 8b), i.e., but no significant improvement was 501 
observed when the number of damaged buildings in the training portfolio was increased. For EMS-98 502 
and TLS, the distributions were skewed, with a larger number of predictions being underestimated 503 
(positive x-values).  504 
Finally, in conclusion, the heuristic damage assessment model based on the XGBC model gives a better 505 
score for TLS damage assessment than for the EMS-98 damage scale. The TLS system also allows for 506 
quick assessment of damage on the large scale such as city or region from an operational point of view. 507 
 508 
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Figure 8. Distribution of the classification value (1 − 𝜀" in % given by Eq. 1) for (a) EMS-98- and (b) TLS-based 510 
damage classification using XGBC machine learning models and considering a single damage portfolio to predict 511 
a single portfolio (single-single scenario). The colour bar indicates the associated value in each cell. The x-values 512 
are the difference between the DG observed and the DG predicted, regardless of the DG considered. 513 
 514 

 515 
Figure 9. Distribution of the classification value (1 − 𝜀" in % given by Eq. 1) for (a) EMS-98- and (b) TLS-based 516 
damage classification using XGBC machine learning models and considering an aggregate damage portfolio to 517 
predict a single portfolio (aggregate-single scenario). The colour bar indicates the associated value in each cell. 518 
The x-values are the difference between the DG observed and the DG predicted, regardless of the DG considered. 519 
 520 
4.3.3 Comparing efficacy with the Risk-UE model 521 
The efficacy of the heuristic damage assessment model was then compared with conventional damage 522 
prediction methods, i.e., RISK-UE and mean damage relationship (Eq. 2 to 7), considering the basic-523 

features-settings. For RISK-UE, mean damage µ" (Eq. 4) was computed using the training set and the 524 

vulnerability index IV for each building (Eq. 5). A vulnerability index was then attributed to all the 525 
buildings in each class defined according to building features. The vulnerability indexes were then 526 

attributed to every building in the test set, mean damage µ"was computed with Eq. 2 and then DG 527 
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distribution with Eq. 3, before being compared with the damage portfolio used for testing. Finally, the 528 
distribution of the mean damage observed (Eq. 4) was compared with the distribution of damage directly 529 
on the test set, using Eq. 3.  530 
Fig. 10 shows the distribution of absolute errors associated with the RISK-UE, mean damage 531 
relationship, and XGBC methods (with and without compensation for the class-imbalance issue) trained 532 
on earthquake building damage portfolio E5 and tested on E3. For EMS-98 damage classification (Fig. 533 
10a), the XGBC model (without compensation for class-imbalance issues) resulted in a level of absolute 534 
errors similar to that of the RISK-UE and/or mean damage relationship, except for DG0 (24%). Random 535 
oversampling to compensate for the class-imbalance issues improved the distribution of errors for the 536 

XGBC model (errors less than 8%, except for DG1: 13%).  537 
For TLS-based damage classification, the XGBC model also resulted in a similar level of errors 538 
compared with the mean damage relationship and/or RISK-UE methods (Fig. 10b), except for the green 539 
class (no or slight damage, 17.04%). Compensation for class-imbalance issues slightly improved the 540 
distribution of errors for the XGBC model with a 2% drop in errors for green (no/slight damage) and 541 
yellow (moderate damage) classes.  542 
Figure 11 shows the distribution of absolute errors trained using the E2456 portfolio and tested on the 543 
E3 portfolio. For EMS-98 damage classification (Fig. 11a), the XGBC model (without compensation 544 
for class-imbalance issues) resulted in a level of errors similar to that of the RISK-UE and/or mean 545 
damage relationship; errors were highest for DG0 with 15.15%. With compensation for the class-546 
imbalance issues, the XGBC model achieved a slightly lower error distribution for DG0 (5%) and DG3 547 
(4%); however, for other damage grades, the error value increased significantly (DG1: 11%, DG2: 12% 548 
DG4: 7%, DG5: 2%). For TLS-based damage classification, the distribution of absolute errors was 549 
similar for both the XGBC model and the mean damage relationship and/or RISK-UE methods (Fig. 550 
11b). The highest absolute error value was associated with the green (no or slight damage) class of 551 
buildings (16.40%). Compensation for the class-imbalance issues slightly increased the error 552 
distribution for the XGBC model with nearly 5% for buildings in the green (no or slight) and red (heavy) 553 
classes.  554 

These results show that the heuristic building damage model based on the XGBC model, trained using 555 
building damage portfolios with the basic-features-setting, provides a reasonable estimation of potential 556 
damage, particularly with TLS-based damage classification.  557 
 558 
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 559 
Figure 10. Comparison of the efficacy of the heuristic model with the conventional model considering the DaDO 560 
portfolio (training set: E5; test set: E3) for (a) EMS-98- and (b) TLS-based damage classification. The x-axis is 561 
the damage grade and the y-axis is the percentage of absolute error (𝜀# in % given by Eq. 7). The blue bar 562 
corresponds to the mean damage relationship, the red bar corresponds to the RISK-UE method, the green and 563 
orange bars correspond to the heuristic model without (XGBC1) and with (XGBC2) compensation for the class-564 
imbalance issues, respectively.  565 

 566 
Figure 11. Comparison of the efficacy of the heuristic model with the conventional model considering the DaDO 567 
portfolio (training set: E2456; test set: E3) for (a) EMS-98- and (b) TLS-based damage classification. The x-axis 568 
is the damage grade and the y-axis is the percentage of absolute error (𝜀# in % given by Eq. 7). The blue bar 569 
corresponds to the mean damage relationship, the red bar corresponds to the RISK-UE method, the green and 570 
orange bars correspond to the heuristic model without (XGBC1) and with (XGBC2) compensation for the class-571 
imbalance issues, respectively. 572 
 573 

5. Conclusion 574 
In this study, we explored the efficacy of machine learning models trained using DaDO post-earthquake 575 
building damage portfolios. We compared six machine learning models: RFC, GBC, XGBC, RFR, 576 
GBR, and XGBR. These models were trained on a number of building features (location, number of 577 
storeys, age, floor area, height, position, construction material, regularity, roof type, ground slope 578 
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condition) and ground motion intensity defined in terms of macro-seismic intensity. The classification 579 
models performed slight better than the regression methods and the XGBC model was ultimately found 580 
to be optimal. To solve the imbalance issue concerning observed damage, the random oversampling 581 
method was applied to the training dataset to improve the efficacy of the heuristic damage assessment 582 
model by rectifying the skewed distribution of the target features (DGs).  583 
Surprisingly, we found that the weight of the most important building feature evolves according to DG, 584 
i.e., the weight of the feature for damage prediction changes depending on the DG considered, which is 585 
not taken into account in conventional methods.  586 
The basic-features-setting (i.e., considering number of storeys, age, floor area, height and macroseismic 587 

intensity, which are accurately evaluated for the existing building portfolio) gave the same accuracy as 588 
the full-features-settings with the TLS-based damage classification method. For training and testing, 589 
the homogeneity of the information in the portfolios is a key issue for the definition of a highly effective 590 
machine, as shown by the data from the E1 earthquake (Irpinia-1990). However, the efficacy of the 591 
model reaches a limit which is not improved by increasing the number of damaged buildings in the 592 
portfolio used as training set, for example. For damage prediction, this type of heuristic model results 593 
in approximately 75% correct classification. Other authors (e.g., Riedel et al., 2014, 2015; Ghimire et 594 
al. 2022) have already reached this same conclusion by increasing the percentage of the training set 595 
compared with the test set.  596 
Despite this limit threshold, the level of accuracy achieved remains similar to that attained by 597 
conventional methods, such as Risk-UE and the mean damage relationship, for the basic-features-598 
settings and TLS-based damage classification. Machine learning models trained on post-earthquake 599 
building damage portfolios could provide a reasonable estimation of damage for a different region with 600 
similar building portfolios.  601 
Some variability may have been introduced into the damage prediction model due to the framework 602 
defined to translate the original damage scale to the EMS-98 damage scale and because in the DaDO 603 
database, the year of construction and the floor area of each building are provided as interval values, 604 
and missing locations of buildings were replaced with the location of local administrative centres. The 605 

latter can lead to a smoothing of the macro-seismic intensities to be considered for each structure and 606 
also affect the distance to the earthquake. Similarly, the building damage surveys were carried out after 607 
the seismic sequence, which includes aftershocks as well as the mainshock, whereas the MSI input 608 
corresponds to the mainshock from the USGS ShakeMap. All these issues may reduce the efficacy of 609 
the heuristic model and its limit threshold. Addressing these issues could improve the damage prediction 610 
performance of machine learning models. 611 
 612 
Code availability 613 
The machine learning models were developed using Scikit-learn documentation and the value of 614 
hyperparameters used are provided in table 3. 615 
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