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Abstract  15 

Assessing or forecasting seismic damage to buildings is an essential issue for earthquake disaster 16 
management. In this study, we explore the efficacy of several machine learning models for damage 17 
characterization, trained and tested on the database of damage observed after Italian earthquakes 18 

(DaDO). Six models were considered: regression- and classification-based machine learning models, 19 
each using random forest, gradient boosting and extreme gradient boosting. The structural features 20 
considered were divided into two groups: all structural features provided by DaDO or only those 21 

considered to be the most reliable and easiest to collect (age, number of storeys, floor area, building 22 
height). Macroseismic intensity was also included as an input feature. The seismic damage per building 23 
was determined according to the EMS-98 scale observed after seven significant earthquakes occurring 24 

in several Italian regions. The results showed that extreme gradient boosting classification is statistically 25 
the most efficient method, particularly when considering the basic structural features and grouping the 26 

damage according to the traffic-light based system used, for example, during the post-disaster period 27 

(green, yellow and red), 68% buildings were correctly classified. The results obtained by the machine 28 
learning-based heuristic model for damage assessment are of the same order of accuracy (error values 29 

were less than 17%) as those obtained by the traditional Risk-UE method. Finally, the machine learning 30 

analysis found that the importance of structural features with respect to damage was conditioned by the 31 
level of damage considered.    32 

 33 
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1. Introduction 37 

Population growth worldwide increases exposure to natural hazards, increasing consequences in terms 38 

of global economic and human losses. For example, between 1985 and 2014, the world's population 39 
increased by 50% and average annual losses due to natural disasters increased from US$14 billion to 40 

over US$140 billion (Silva et al., 2019). Among other natural hazards, earthquakes represent one-fifth 41 

of total annual economic losses and cause more than 20 thousand deaths per year (Daniell et al., 2017; 42 

Silva et al., 2019). To develop effective seismic risk reduction policies, decision-makers and 43 

stakeholders rely on a representation of consequences when earthquakes affect the built environment. 44 

Two main risk metrics generally considered at the global scale are associated with building damage: 45 
direct economic losses due to costs of repair/replacement and loss of life of inhabitants due to building 46 

damage. The damage is estimated by combining the seismic hazard, exposure models and 47 

vulnerability/fragility functions (Silva et al., 2019).  48 

For scenario-based risk assessment, damage and related consequences are computed for a single 49 

earthquake defined in terms of magnitude, location, and other seismological features. Many methods 50 
have been developed to characterize the urban environment for exposure models. In particular, damage 51 

assessment requires vulnerability/fragility functions for all types of existing buildings, defined 52 
according to their design characteristics (shape, position, materials, height, etc.) and grouped in a 53 
building taxonomy (e.g. among other conventional methods  FEMA, 2003; Grünthal, 1998; Guéguen 54 

et al., 2007; Lagomarsino & Giovinazzi, 2006; Mouroux & Le Brun, 2006; Silva et al., 2014). At the 55 
regional/country scale, damage assessment is therefore confronted with the difficulty of accurately 56 
characterizing exposure according to the required criteria and assigning appropriate 57 

vulnerability/fragility functions to building features. Unfortunately, the necessary information is often 58 
sparse and incomplete, and exposure model is suffering from economic and time constraints. 59 

Over the past decade, there has been growing interest in artificial intelligence methods for seismic risk 60 

assessment, due to its superior computational efficiency, easy handling of complex problems, and the 61 
incorporation of uncertainties (e.g., Riedel et al., 2014, 2015; Azimi et al., 2020; Ghimire et al., 2022; 62 

Hegde and Rokseth, 2020; Kim et al., 2020; Mangalathu & Jeon, 2020; Morfidis & Kostinakis, 2018; 63 

Salehi & Burgueño, 2018; Seo et al., 2012; Sun et al., 2021; Wang et al., 2021; Xie et al., 2020; Y. Xu 64 
et al., 2020; Z. Xu et al., 2020).  In particular, several studies have tested the effectiveness of machine 65 

learning methods in associating damage degrees with basic building features and spatially-distributed 66 

seismic demand with acceptable accuracy compared with conventional methods or  tested with post-67 
earthquake observations (e.g., Riedel et al., 2014, 2015; Guettiche et al., 2017; Harirchian et al., 2021; 68 

Mangalathu et al., 2020; Roeslin et al., 2020; Stojadinović et al., 2021; Ghimire et al., 2022). In parallel, 69 

significant efforts have been made to collect post-earthquake building damage observations after 70 
damaging earthquakes (Dolce et al., 2019; MINVU, 2010; MTPTC, 2010; NPC, 2015). With more than 71 

10,000 samples compiled, the Database of Observed Damage (DaDO) in Italy, a platform of the Civil 72 
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Protection Department, developed by the Eucentre Foundation (Dolce et al., 2019), allows exploration 73 

of the value of heuristic vulnerability functions calibrated on observations (Lagomarsino et al., 2021), 74 
as well as the training of heuristic functions using machine learning models (Ghimire et al., 2022) and 75 

considering sparse and incomplete building features.  76 

The main objective of this study is to investigate the effectiveness of several machine learning models 77 
trained and tested on information from the DaDO to develop a heuristic model for damage assessment. 78 

The model may be classified as heuristic because it applies a problem-solving approach in which a 79 

calculated guess based on previous experience is considered for damage assessment (as opposed to 80 
applying algorithms that effectively eliminate the approximation). The damage is thus estimated in a 81 

non-rigorous way defined during the training phase and the results must be validated and then tested 82 

against observed damage. By analogy with psychology, this procedure can reduce the cognitive load 83 
associated with uncertainties when making decisions based on damage assessment, by explicitly 84 

considering the uncertainties in the assessment, being aware about the incompleteness of the 85 

information and the accuracy level to make a decision. The dataset and methods are described in the 86 
data and method sections, respectively. The fourth section presents the results of damage prediction 87 

produced by machine learning models compared with conventional methods, followed by a conclusion 88 
section. 89 

 90 

2. Data 91 
The Database of Observed Damage (DaDO, Dolce et al., 2019) is accessible through a web-GIS 92 
platform and is designed to collect and share information about building features, seismic ground 93 

motions and observed damage following major earthquakes in Italy from 1976 to 2019. A framework 94 
was adopted to homogenize the different forms of information collected and to translate the damage 95 
information into the EMS-98 scale (Grunthal et al., 1998) using the method proposed by Dolce et al. 96 

(2019). For this study, we selected building damage data from seven earthquakes summarized in Table 97 
1 and presented in Fig.1. 98 

 99 

Table 1. Building-damage data from the DaDO for the seven earthquakes considered in this study. ‘Ref’ 100 
is the reference to the earthquake used in the manuscript. ‘DL’ is the number of the damage grade 101 

available in DaDO. ‘NB’ is the number of buildings considered in this study. AeDES is the post-102 

earthquake damage survey form, first introduced in 1997 and become the official operational tool 103 
recognized by the Italian Civil Protection in 2002. 104 

Ref Earthquake Event date Mag. Epicentre Damage 
survey form 

DL NB 
Lat. Long. 

E1 Irpinia-1980  23/11/1980 6.9 40.91 15.37 Irpinia-980 8  37,828 
 

E2 Pollino-1998  09/09/1998 5.6 40.04 15.98 AeDES-1998 4  9,485 
E3 Molise-Puglia-2002  31/10/2002 5.9 41.79 14.87 AeDES-2000 4  6,396 
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E4 Emilia-Romagna-2003  14/09/2003 5.3 44.33 11.45 AeDES-2000 4  239 
E5 L'Aquila-2009  06/04/2009 6.3 42.34 13.34 AeDES-2008 4  37,999 
E6 Emilia-Romagna-2012  20/05/2012 6.1 44.89 11.23 AeDES-2008 4  10,581 
E7 Garfagnana-Lunigiana-2013  21/06/2013 5.3 44.15 10.14 AeDES-2008 4  1,474 

 105 

The converted EMS-98 damage grade (DG) ranges from damage grade DG0 (no damage) to DG5 (total 106 

collapse). The building features are available for each individual building and relate to the shape and 107 
design of the building and the built-up environment (Tab. 2, Fig. 2), as follows:  108 

Building location - the location of each building is defined by its latitude and longitude, assigned using 109 

either the exact address of the building if available or the address of the local administrative centre 110 
(Dolce et al., 2019). 111 

Numbers of storeys - total number of floors above the surface of the ground. 112 
Age of building - time difference between the date of the earthquake and the date of building 113 

construction/renovation.  114 

Height of building - total height of the building above the surface of the ground, in m.  115 
Floor area – average of the storey surface area, in m2.  116 
Ground slope condition - four types of ground slope conditions are defined (flat, mild slope, steep 117 

slope, and ridge). 118 

Roof type – four types of roofs are defined (thrusting heavy roof, non-thrusting heavy roof, thrusting 119 
light roof, and non-thrusting light roof). 120 

Position of building - indication of the building’s position in the block: isolated, extreme, corner, and 121 
intermediate. 122 

Regularity: building regularity in terms of plan and elevation, classified as either irregular or regular.  123 
Construction material:  vertical elements: good and poor-quality masonry, good and poor quality 124 
mixed frame masonry, reinforced concrete frame and wall, steel frame, and other. 125 

For features defined as value ranges (e.g., date of construction/renovation, floor area, and building 126 

height), the average value was used. Furthermore, the Irpinia-1980 building damage portfolio (E1) was 127 
constructed using the specific Irpinia-1980 damage survey form, while the AeDES damage survey form 128 

was used for the others. The Irpinia-1980 dataset will therefore be analysed separately. 129 

Building damage data from earthquake surveys other than the Irpinia-1980 earthquake damage survey 130 
primarily include damaged buildings. This is because the data was collected based on requests for 131 
damage assessments after the earthquake event (Dolce et al. 2019). The damage information in the 132 

DaDO database is still relevant for testing the machine learning models for heuristic damage 133 
assessment. Mixing these datasets to train machine learning models can lead to biased outcomes. 134 
Therefore, the machine learning models were developed on the other earthquake dataset excluding the 135 

Irpinia dataset, and the Irpinia earthquake dataset was used only in the testing phase.  136 

The distribution of the samples is very imbalanced (Fig. 2): for example, there is a small proportion of 137 

buildings in DG4+DG5 (7.59%), and a large majority of masonry (65.47%) compared to reinforced 138 



 5 

concrete frame (21.31%) buildings. This imbalance should be taken into account when defining the 139 

machine learning models.   140 
 141 

 142 
Figure 1. Geographic location of the buildings considered in this study.  143 
 144 
To consider spatially-distributed ground motion, the original DaDO data are supplemented with the 145 

main event macroseismic intensities (MSI) provided by the United States Geological Survey (USGS) 146 
ShakeMap tool (Wald et al., 2005). Macroseismic intensities (MSI) given in terms of modified Mercalli 147 

intensities are considered and assigned to buildings based on their location. The distribution of MSI 148 

values in the database is shown in Fig. 2k. 149 
 150 

Table 2. Distribution of the different features used in this study. 151 

No. Parameters Data type Distribution 
(%) Remarks 

1 
Damage 
grades 
(DG) 

No damage DG0 

Categorical 

43.63 

Fig. 2a 
Slight damage DG1 28.90 
Moderate damage DG2 7.41 
Substantial damage DG3 12.48 
Very heavy damage DG4 3.94 
Total collapse DG5 3.65 

2 Number 
of storeys 

0-3 NF1 
Numerical 

85.81 
Fig. 2b 3-5 NF2 13.01 

> 5 NF3 1.19 
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3 Age 
(years) 

0-20 AG1 

Numerical 

15.22 

Fig. 2c 
21-40 AG2 18.81 
41-60 AG3 34.15 
61-80 AG4 21.34 
>80 AG5 10.49 

4 
Floor area 
(square 
metres) 

0-50 A1 

Numerical 

22.16 

Fig. 2d 
50-100 A2 34.73 
100-150 A3 22.53 
150-200 A4 8.32 
> 200 A5 12.26 

5 Height 
(metres) 

0-10 H1 
Numerical 

87.78 
Fig. 2e 10-15 H2 10.69 

>15 H3 1.50 

6 Position 

Corner P1 

Categorical 

9.71 

Fig. 2f Extreme P2 24.47 
Internal P3 22.80 
Isolated P4 43.02 

7 Ground 
slope 

Ridge GS1 

Categorical 

2.62 

Fig. 2g Plain GS2 34.25 
Moderate slope GS3 43.74 
Steep Slope GS4 20.39 

8 Regularit
y 

Irregular in plan and elevation IR Categorical 22.28 Fig. 2h Regular in plan and elevation Re 77.72 

9 Roof type 

Heavy no thrust R1 

Categorical 

36.43 

Fig. 2i Heavy thrust R2 11.25 
Light thrust R3 26.48 
Light no thrust R4 25.83 

10 Material 

Masonry poor quality CM1 

Categorical 

36.51 

Fig. 2j 

Masonry good quality CM2 28.96 
Mixed frame masonry poor 
quality CM3 2.64 

Mixed frame masonry good 
quality CM4 5.21 

Reinforced concrete frame CM5 21.31 
Reinforced concrete wall CM6 0.42 
Steel frame CM7 0.09 
Other CM8 4.10 

 152 
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 153 
Figure 2. Distribution of the different features in the database. E1, E2, E3, E4, E5, E6, and E7, representing 154 
Irpinia-1980, Pollino-1998, Molise-Puglia-2002, Emilia-Romagna-2003, L'Aquila-2009, Emilia-Romagna-2012, 155 
and Garfagnana-Lunigiana-2013 building damage portfolios, respectively. The y-axis is the percentage 156 
distribution and the x-axis is (a) Damage grade, (b) Number of storeys (NF1: 0-3, NF2: 3-5, NF3: >5), (c) Building 157 
age (AG1: 0-20, AG2: 21-40, AG3: 41-60, AG4: 61-80, AG5: >80), (d) Floor area (A1: 0-50, A2: 51-100, A3: 158 
101-150,  A4: 151-200, A5: >200), (e) Height (H1: 0-10, H2: 10-15, H3: >15), (f) Building position (P1: corner, 159 
P2: extreme, P3: internal, P4: isolated), (g) Ground slope condition (GS1: ridge, GS2: plain, GS3: moderate slope, 160 
GS4: steep slope), (h) Regularity in plan and elevation (IRe: irregular, Re: Regular), (i) Roof type (RT1: heavy 161 
no thrust, RT2: heavy thrust, RT3: light no thrust, RT4: light thrust), (j) Construction material (CM1: poor-quality 162 
masonry, CM2: good-quality masonry, CM3: poor-quality mixed frame masonry, CM4: good-quality mixed 163 
frame masonry, CM5: reinforced concrete frame, CM6: reinforced concrete wall, CM7: steel frames, CM8: other), 164 
and (k) macro-seismic intensity. 165 
 166 
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3. Method 167 

3.1. Machine learning models 168 
Ghimire et al. (2022) applied classification- and regression-based machine learning models to the 169 

damage observed after the 2015 Gorkha Nepal earthquake (NPC, 2015). The main concepts for method 170 

selection, the definition of the dataset for training and testing, and the representation of model 171 
performance are presented here. 172 

To develop the heuristic damage assessment model, the damage grades are considered as the target 173 

feature. The damage grades are discrete labels, from DG0 to DG5. Three most advanced classification 174 
and regression machine learning algorithms were selected: random forest (RFC) and regression (RFR) 175 

(Breiman, 2001), gradient boosting classification (GBC) and regression (GBR) (Friedman, 1999), and 176 

extreme gradient boosting classification (XGBC) and regression (XGBR) (Chen and Guestrin, 2016). 177 
A label (or class) was thus assigned to the categorical response variables (DG) for the classification-178 

based machine learning models. For the regression-based machine learning models, DG is converted 179 

into a continuous variable to minimize misclassifications (Ghimire et al., 2022).  180 
Building features and macroseismic intensities were considered as input features. A one-hot encoding 181 

technique was used to convert the categorical features (i.e., ground slope condition, building position, 182 
roof type, construction material) into binary values (1 or 0), resulting in 28 input variables (Tab. 2). No 183 
input features were removed from the dataset: some building features (e.g., number of storeys and 184 

height) may be correlated but we assumed that the presence of correlated features does not impact the 185 
overall performance of these machine learning methods (Ghimire et al., 2022). No specific data cleaning 186 
methods were applied to the DaDO database. 187 
The machine learning algorithms from the Scikit-learn package developed in Python (Pedregosa et al., 188 

2011) were applied. The machine learning models were trained and tested on the randomly selected 189 
training (60% of the dataset) and testing (40% of the dataset) subsets of data, considering a single 190 
earthquake dataset or the whole DaDO dataset. The testing subset was kept hidden from the model 191 

during the training phase.  192 

 193 

3.2. Machine learning model efficacy 194 

The efficacy of the heuristic damage assessment model (i.e., its ability to predict damage to a 195 
satisfactory or expected degree) was analysed in three stages: comparison of the efficacy of the machine 196 
learning models using metrics; analysis of specific issues related to machine learning using the selected 197 

models; and application of the heuristic model to the whole DaDO dataset. 198 

 199 
3.2.1 First stage: model selection 200 

In the first stage, only the L’Aquila-2009 portfolio was considered for the training and testing phases. 201 

This is the largest dataset in terms of the number of buildings and was obtained using the AeDES survey 202 
format (Baggio et al., 2007; Dolce et al., 2019). Model efficacy was provided by the confusion matrix, 203 
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which represents model prediction compared with the so-called “ground truth” value. Accuracy was 204 

then represented on the confusion matrix by the ratio of the number of correctly predicted DGs to the 205 
total number of observed values per DG (ADG).  206 

Total accuracy (AT) was computed as the ratio of the number of correctly predicted DGs to the total 207 

number of observed values. AT and ADG values close to 1 indicate high efficacy. Moreover, the 208 
quantitative statistical error was also calculated as the mean of the absolute value of errors (MAE) and 209 

the mean squared error (MSE) (MAE and MSE values close to 0 indicate high efficacy). For 210 

classification-based machine learning models, the ordinal value of the DG was used to calculate the 211 
MAE and MSE scores directly. For the regression-based machine learning models, the output DG 212 

values were rounded to the nearest integer for the accuracy scores plotted for the confusion matrix, but 213 

not for the MAE and MSE value calculations.  214 
 215 

3.2.2 Second stage: machine learning related issues 216 

In the second stage, the best heuristic model for damage assessment was selected based on the highest 217 
efficacy, and used to analyse and test specific issues related to machine learning: (1) the imbalance 218 

distribution of DGs in the DaDO, (2) the performance of the selected model when only some basic, but 219 
accurately assessed, building features are considered (i.e., number of storeys, location, age, floor area), 220 
and (3) the simplification of the heuristic model, in the sense that DGs are grouped into a traffic-light-221 

based classification (i.e., green, yellow and red, corresponding to DG0+DG1, DG2+DG3 and 222 
DG4+DG5, respectively). In the second stage, the issues related to machine learning were first analysed 223 
using the L’Aquila-2009 portfolio. The whole DaDO dataset was then used.  224 
 225 

3.2.2 Third stage: application to the whole DaDO portfolio and comparison with Risk-UE 226 
In the third stage, several learning and testing sequences were considered, with the idea of moving to 227 
an operational configuration in which past information is used to predict damage from future 228 

earthquakes: either learning based on a portfolio of damage caused by one earthquake and tested on 229 

another portfolio, or learning based on a series of damage portfolios and tested on the portfolio of 230 

damage caused by an earthquake placed in the chronological continuity of the earthquake sequence 231 

considered.  In this stage, the efficacy of the heuristic damage assessment model was analysed by 232 
comparing the prediction values with the so-called “ground truth” values through the error distribution, 233 
as follows: 234 

 𝜀!(%) = %"!
#
& ∗ 100   (1) 235 

where 𝑛! is the total number of buildings at a given error level (difference between observed and 236 

predicted DGs), 𝑁 is the total number of buildings in the damage portfolio.  237 

In this stage, the efficacy of the heuristic damage assessment model was compared with the 238 

conventional damage prediction framework proposed by the RISK-UE method (Milutinovic and 239 



 10 

Trendafiloski, 2003). The RISK-UE method assigns a vulnerability index (IV) to a building, based on 240 

its construction material and structural properties (e.g., height, building age, position, regularities, 241 
geographic location, etc.). For a given level of seismic demand (MSI), the mean damage (µd) and the 242 

probability, pk, of observing a given damage level k (k = 0 to 5) are given by: 243 

 244 

 µ" = 2.5 (1 + 𝑡𝑎𝑛ℎ	 /#$%&'.)*%+,-..-
)..

01   (2)   245 

 246 

 𝑝/ =
*!

/!(*,/)!
/3!
*
0
*
/1 − 3!

*
0
*,/

 (3) 247 

 248 

Herein, comparing the heuristic model and the RISK-UE method amounts to considering the following 249 

steps, based on the equations given by RISK-UE:  250 
Step 1 - The buildings in the training and testing datasets are grouped into different classes according 251 

to construction material. 252 

Step 2 - For a given building class in the training dataset, computation of 253 

 Step 2.1 - mean damage (µ") using the observed damage distribution at a given MSI value by: 254 

 µ" = ∑ 𝑝/𝑘*
/45   (4) 255 

 256 

 Step 2.2 - vulnerability index (IV) with the µ" obtained in step 2.1 by: 257 

 258 

 𝐼𝑉 = -
'.)*

(13.1 − 𝑀𝑆𝐼 + 2.3 <𝑡𝑎𝑛ℎ,- /3!).* − 10=1   (5) 259 

 260 

Step 3 - For the same building class in the test dataset, calculation of 261 

 Step 3.1 - mean damage (µ") Eq. 2 for a given MSI value with the value of IV obtained in step 262 

2.2; 263 

 Step 3.2 - damage probability (𝑝/)  Eq. 3 with the value of µ" obtained in step 3.1; 264 

 Step 3.3 - distribution of buildings in each damage grade within a range of MSI values observed 265 

in the test dataset as follows: 266 

 267 

  𝑁67!",/ = ∑ 𝑝/ 	𝑛9:;,#$%#$%   (6) 268 

 269 

where	𝑛9:;,#$% is the total number of buildings observed in the test set for a given MSI 270 

value;   271 

 Step 3.4 –absolute error (𝜀/) in each damage level k, given by:      272 

 𝜀/ = ?<"#$,&,<'()!,&
<

?  (7) 273 
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 274 

where, 𝑁9:;,/ is the total number of buildings observed in the given damage grade k. 275 

 276 

Similarly, the heuristic damage assessment model was also compared with the mean damage 277 

relationship (Eq. 4) applied to the test set. Thus, for each building class in the test set, the error value 278 

(Eq. 7) for each DG was computed from the µ" on the observed damage using Eq. (4), the probability 279 

𝑝/ of obtaining a given DG k (k= 0 to 5) using Eq. (3), and the distribution of buildings in each DG 280 

𝑁67!",/ for a given MSI value using Eq. (6).  281 

 282 
4. Result 283 

4.1 First stage: model selection 284 

The efficacy of the regression (RFR, GBR, XGBR) and classification (RFC, GBC, XGBC) machine 285 
learning models trained and tested on the randomly selected 60% (training set) and 40% (test set) of the 286 

2009 -L’Aquila earthquake building damage portfolio is summarized in Table 3. The hyperparameters 287 

indicated in Tab. 3 were chosen after tests performed by Ghimire et al. (2021). The regression-based 288 
machine learning models RFR, GBR and XGBR yielded similar MSE scores (1.22, 1.22 and 1.21) and 289 

accuracy scores (AT = 0.49, 0.50 and 0.50), considering the five DGs of the EMS-98 scale. In the 290 
confusion matrix (Fig. 3a: RFR, Fig. 3b: GBR, and Fig. 3c: XGBR), the accuracy ADG values show that 291 
the efficacy of these models is higher for the lower DGs (around 60% for DG0 and 55% for DG1) and 292 

lower for the higher DGs (6% and 1% of the buildings are correctly classified in DG4 and DG5, 293 
respectively).  294 
For the classification-based machine learning models, the XGBC model ([MSE, AT] = [1.78, 0.59]) was 295 

more effective than the RFC ([MSE, AT] = [1.86, 0.57]) and GBC ([MSE, AT] = [1.80, 0.58]) models, 296 
considering the EMS-98 scale. In the confusion matrix (Fig. 3d: RFC, Fig. 3e: GBC, and Fig. 3f: 297 

XGBC), the accuracy ADG values also show higher model efficacy for the lower DGs (86% for DG0 298 

and 39% for DG1) and lower efficacy for the higher DGs (5%, 23%, 12% and 17% buildings correctly 299 
classified in DG2, DG3, DG4 and DG5, respectively).  300 

 301 

Table 3. Summary of optimized hyperparameters parameters, accuracy AT and quantitative statistical 302 
error values for the regression-based and classification-based machine learning methods. The 303 

parameters are the hyperparameters chosen for the machine learning models (the other hyperparameters 304 

not mentioned here are the default parameters in the Scikit-learn documentation (Pedregosa et al., 305 
2011)). The best accuracy and error values are indicated in bold. 306 

Method Parameters Accuracy AT MSE MAE 

RFR n_estimators = 1000 0.49 1.22 0.77 
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max_depth = 25 
GBR n_estimators = 1000 

max_depth = 10 
learning_rate = 0.01 

0.50 1.22 0.77 

XGBR n_estimators = 1000 
max_depth = 10 
learning_rate = 0.01 

0.50 1.21 0.76 

RFC no_estimators = 1000 
max_depth = 25 

0.57 1.86 0.77 

GBC no_estimators = 1000 
max_depth = 10 
learning_rate = 0.01 

0.58 1.80 0.77 

XGBC n_estimators = 1000 
max_depth = 10 
learning_rate = 0.01 

0.59 1.78 0.74 

 307 

The classification-based machine learning models thus yielded slightly better predictive efficacy, but 308 
still lower than recent studies applied to other datasets (Ghimire et al., 2022; Harirchian et al., 2021; 309 

Mangalathu et al., 2020; Roeslin et al., 2020; Stojadinović et al., 2021). The high classification error in 310 

the higher DGs could be related to the characteristics of the building portfolio and the imbalance of DG 311 
distribution. Among the classification methods, the XGBC model showed slightly higher classification 312 
efficacy; the XGBC model was therefore selected for the next stages 2 and 3. 313 

 314 
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 315 
Figure 3. Normalized confusion matrix between predicted and observed DGs. The values given in each main 316 
diagonal cell are the accuracy scores ADG. All values are also represented by the colour scale. 317 
 318 
4.2 Second stage: issues related to machine learning  319 
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4.2.1 Imbalance distribution of the DGs in the DaDO 320 

The efficacy of the heuristic damage assessment model depends on the distribution of target features in 321 
the training dataset. This can lead to low prediction efficacy, especially for minority classes (Estabrooks 322 

& Japkowicz 2001; Japkowicz & Stephen 2002; Branco et al. 2017; Ghimire et al., 2022).  The previous 323 

section reports significant misclassification associated with the highest DGs for all classification- and 324 
regression-based models (Fig. 3), i.e., for the DGs with the lowest number of buildings (Fig. 2a). The 325 

efficacy of the XGBC model is analysed below, addressing the class-imbalance issue with data 326 

resampling techniques applied to the training phase and considering the L’Aquila-2009 portfolio.  327 
 328 

Four strategies to solve the class imbalance issue were tested:  329 

(a) random undersampling: randomly selecting the number of data entries in each class equal to the 330 
number of data entries in the minority class (DG4 in our case);  331 

(b) random oversampling: randomly replacing the number of data entries in each class equal to the 332 

number of data entries in the majority class (DG0 in our case);  333 
(c) Synthetic Minority Oversampling Technique (SMOTE): creating an equal number of data entries in 334 

each class by generating synthetic samples by interpolating the neighbouring data in the minority class;  335 
(d) a combination of oversampling and undersampling methods: oversampling of the minority class 336 
using the SMOTE method, followed by the Edited Nearest Neighbours (ENN) undersampling method 337 

to eliminate data that is misclassified by its three nearest neighbours (SMOTE-ENN).  338 
 339 
Fig. 4 shows the confusion matrices of the four strategies considered for the class imbalance issue. 340 
Compared with Fig. 3f (i.e., XGBC), the effects of addressing the issue of imbalance were as follows: 341 

(a) undersampling (Fig. 4a): ADG value increased by 20/22/26% for DG2/DG4/DG5 and decreased by 342 
29% for DG0.  343 
(b) oversampling (Fig. 4b): ADG value increased by 11/16/18% for DG2/DG4/DG5 and decreased by 344 

13% for DG0 345 

(c) SMOTE (Fig. 4c): ADG value increased by 4/1/4% for DG2/DG4/DG5 and decreased by 3% for 346 

DG0 347 

(d) SMOTE-ENN (Fig. 4d): ADG value increased by 13/9/8% for DG2/DG4/DG5 and decreased by 25% 348 
for DG0. 349 
The AT, MAE and MSE scores are given in Table 4 with the associated effects.  350 

 351 

Table 4 – Scores of the accuracy AT, MSE and MAE metrics considering the imbalance issue and their 352 
variation Δ compared with values without consideration of the imbalance. 353 

Method Accuracy AT MSE MAE 

 Scores 
 

Δ Score Δ Score Δ 
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Undersampling 0.26 -0.33 1.24 -0.34 1.20 0.46 

Oversampling 0.53 -0.06 2.13 0.35 0.86 0.12 

SMOTE 0.57 -0.02 1.87 0.09 0.77 0.03 

SMOTE-ENN 0.49 -0.10 2.28 0.50 0.93 0.19 

 354 

In conclusion, the random oversampling method improves prediction in the minority class without 355 

significantly decreasing prediction in the majority class. The random oversampling method was 356 
therefore applied in this study. 357 

 358 
Figure 4. Confusion matrices for the four methods to solve the DG imbalance issue in the DaDO. The values 359 
given in each main diagonal cell are the accuracy scores ADG. All values are also represented by the colour scale. 360 
 361 

4.2.2 Testing the XBGC model with basic features 362 

(c) SMOTE oversampling

(b) Random oversampling(a) Random undersampling

(d) SMOTE-ENN overrsampling
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This section begins by exploring the importance of each feature in the heuristic damage assessment 363 

model applied to the L’Aquila-2009 portfolio. We used the Shapely Additive Explanations (SHAP) 364 
method developed by Lundberg and Lee (2017). The SHAP method compares the efficacy of the model 365 

with and without considering each input feature to measure its average impact, provided in terms of 366 

mean absolute SHAP values.  367 
Figure 5a shows the average SHAP value associated with each feature considered in this study as a 368 

function of DG. The most weighted features are building age, location (latitude and longitude), material 369 

(poor quality masonry, RC frame), MSI, roof type, floor area, and height. Interestingly, the mean SHAP 370 
values are dependent on the DG, i.e., the weight of the feature is not linear depending on the DG 371 

considered; this is never taken into account in vulnerability methods. For example, Scala et al. (2022) 372 

and Del Gaudio et al. (2021) observed a decrease in the vulnerability of structures as construction year 373 
increases, without distinguishing the DG considered, which is not the case herein. Note also that the 374 

importance score associated with the location feature can indirectly capture variations in local 375 

geological properties and the spatially distributed vulnerability associated with the built-up area of the 376 
L'Aquila-2009 portfolio (e.g., the distinction between the historic town and more modern urban areas). 377 

Furthermore, the average SHAP value obtained for poor quality masonry buildings for DG3/DG4/DG5 378 
confirms the same high vulnerability of this typology as in the EMS-98 scale (Grünthal, 1998), 379 
regardless of DG. 380 

Some basic features of the building (e.g., location, age, floor area, number of storeys, height) are 381 
observed with a high mean SHAP value (Fig. 5a). Compared with others, these five basic features can 382 
be easily collected from the field or provided by national census databases, for example. Fig. 5b shows 383 
the efficacy of the heuristic damage assessment model using XGBC trained with a set of easily 384 

accessible building features (i.e., basic-features-setting: geographic location, floor area, number of 385 
stories, height, age, MSI), after addressing the class-imbalance issue using the random oversampling 386 
method. Compared with Fig. 4b (considering all features and named as the full-features-setting), the 387 

XGBC model with the basic-features-setting (Fig. 5b) gives almost the same efficacy with only a 6% 388 

average reduction in the accuracy scores.  389 



 17 

 390 
Figure 5. (a) Graphic representation of the importance scores associated with the different input features 391 
considered for the XGBC model. The features (the same as in Fig. 2) considered in this study are on the y-axis, 392 
and the x-axis is the mean SHAP score according to DG. (b) Confusion matrices considering the basic-features-393 
setting. The values given in each main diagonal cell are the accuracy scores ADG. All values are also represented 394 
by the colour scale. 395 
 396 
4.2.3 Testing the XBGC model with the traffic-light system for damage grades 397 

In this section, a simplified version of the DG scale was used, in the sense that the DGs are classified 398 
according to a traffic-light system (TLS) (i.e., green G, yellow Y and red R classes, corresponding to 399 
DG0+DG1, DG2+DG3 and DG4+DG5, respectively), as monitored during post-earthquake emergency 400 

situations (Mangalathu et al., 2020; Riedel et al., 2015; ATC, 2005; Bazzurro et al., 2004).  For the 401 
TLS-based damage classification, the XGBC model (after oversampling to compensate of the 402 

imbalance issue) with the basic-features-setting applied to the L’Aquila-2009 portfolio (Fig. 6a) gives 403 

almost the same efficacy compared to the full-features-setting (Fig. 6b). For example, accuracy values 404 
ADG using the basic-features-setting and the full-features-setting were 0.76/0.34/0.56 and 0.82/0.36/0.54 405 

for G/Y/R classes, with the accuracy score AT of 0.68 and 0.72, respectively. Mangalatheu et al. (2020), 406 

Roslin et al., (2020), and Harirchian et al., (2021) reported similar damage grade classification accuracy 407 
values of 0.66, 0.67, and 0.65 respectively.  408 

The efficacy of the heuristic damage assessment model using TLS-based damage classification 409 

indicates that classifying damage into three classes is much easier for the machine learning model 410 
compared with the six-class classification system (EMS-98 damage classification). This is also 411 
observed during damage surveys in the field, which sometimes find it hard to distinguish the 412 

intermediate damage grades, such as DG2 and DG3, or DG3 and DG4. Similar observations have been 413 
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reported in previous studies by Guettiche et al., (2017); Harirchian et al., (2021); Riedel et al., (2015); 414 

Roeslin et al., (2020) and Stojadinović et al., (2021).  415 
 416 

 417 
Figure 6. Confusion matrices for (a) the basic-features-setting and (b) the full-features-setting using the traffic-418 
light (TLS)-based classification, grouping the EMS-98 damage grades (DG) into three classes (green for no or 419 
slight damage; yellow for moderate damage; and red for heavy damage). The values given in each main diagonal 420 
cell are the accuracy scores ADG. All values are also represented by the colour scale. 421 
 422 
4.2.4 Testing the XGBC model with the whole dataset 423 
The efficacy of the XGBC model was tested using a dataset with six building damage portfolios, 424 
excluding the 1980-Irpinia building damage portfolio. The XGBC model was trained and tested on the 425 

randomly selected 60% (training set) and 40% (test set) of the dataset for EMS-98/TLS damage 426 
classification, with two sets of features (full-features-setting and basic-features-setting), applying the 427 
random oversampling method to compensate for class-imbalance issues. Fig.7 shows the associated 428 

confusion matrix. 429 

The basic-features-setting resulted in a similar level of damage prediction compared with the full-430 
features setting for both EMS-98 and TLS-based damage classification systems. For EMS-98 damage 431 

classification (Fig. 7a, b), the accuracy ADG scores indicated in the confusion matrices are almost the 432 

same for the basic-features-setting and the full-features-setting. Furthermore, the accuracy AT and MAE 433 
scores are also almost the same (0.45 and 1.08 for the basic-features-setting and 0.48 and 0.95 for the 434 

full-features-setting). 435 

Likewise, for TLS-based damage classification (Fig. 7c, d), the accuracy values ADG for the basic-436 
features-setting and the full-features-setting are almost the same, with similar accuracy AT and MAE 437 

scores (0.63/0.45 and 0.67/0.39, respectively).  438 

 439 
 440 

(a) TLS: basic-features-setting (b) TLS: full-features-setting
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 441 
Figure 7. Confusion matrices for EMS-98 (a, b) and TLS (c, d) damage classification systems using the basic- 442 
and full-features-settings (green for no or slight damage; yellow for moderate damage; red for heavy damage) 443 
with (c) the full-features-setting and (d) the basic-features-setting. The values given in each main diagonal cell 444 
are the accuracy scores ADG. All values are also represented by the colour scale. 445 
 446 

4.3 Third stage: application to the whole DaDO portfolio and comparison with Risk-UE 447 

In this section, the efficacy of the heuristic damage assessment model was considered for building 448 
damage predictions, without respecting the time frame of the earthquakes. Two scenarios were 449 

considered: (1) a single building damage portfolio was used for training and the model was then tested 450 

on the others (named single-single), in situations using a single portfolio to predict future damage; and 451 
(2) some building damage portfolios were used for training but testing was performed on a single 452 

portfolio (named aggregate-single), i.e. a larger number of damage portfolios were used as a training 453 

set to predict the damage caused by the next earthquake. The model XGBC was applied with the basic-454 
features-setting (number of storeys, building age, floor area, height, MSI for EMS-98) and EMS-98- 455 

and TLS-based damage classification.  456 

(c) TLS: full-features-setting (d) TLS: basic-features-setting

(a) EMS-98: full-features-setting (b) EMS-98: basic-features-setting
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 457 

4.3.1 Single-single scenario 458 
First, a series of building damage portfolios, concerning earthquakes occurring in northern or southern 459 

Italy and of different magnitudes, was used for training and testing: 460 

(i) Training set: E3 – test set: E1, E5, E7. 461 
(ii) Training set: E5 – test set: E1, E3, E7. 462 

(iii) Training set: E7 – test set: E1, E3, E5.  463 

 464 

Figure 8 shows the distribution of correct DG classification (i.e., 1 − 𝜀" in % given by Eq. 1) observed 465 

for each building for the EMS-98 damage grade (8a) and the TLS (8b) systems.  The x-axis represents 466 

the incremental error in the damage grade (e.g., 1 corresponds to the delta of damage grade between 467 
observation and prediction, regardless of the DG considered).  468 

For the EMS-98 damage scale, correct classification (x-value centred on 0) in the range of 31% to 48% 469 

was found, depending on the training/test data sets. The error distribution is quite wide with incorrect 470 
predictions of +/-1 DG in the range of +/- 13-35%. Remarkably, when considering the E1 portfolio 471 
(Irpinia-1980), for which the post-earthquake inventory was based on another form, as the test set, the 472 

error is larger. The predictions at +/-1 DG (i.e., the sum of the x-values Fig. 8a between -1 and +1) were 473 
70.5%, 69.9% and 72.8% with portfolios E3, E5 and E7 as the test set, respectively, for an average of 474 

71%. For the other portfolios, the average of the predictions at +/- 1 DG was 77%, 78% and 77%, 475 

respectively, for portfolios E5, E3 and E7 as the test set. This tendency was also observed for the TLS 476 
damage system (Fig. 8b). In this case, the classification of the E1 portfolio was correct on average 477 

(average of x-values centred on 0) at 63% and equal to 72%, 73%, and 70.5% for the test on portfolios 478 
E5, E3, and E7. For both damage scales, the distributions were skewed, with a larger number of 479 
predictions being underestimated (positive x-values), as certainly a consequence of the choice of 480 

machine learning models, their implementation (including imbalance issues), the distribution of input 481 

and target features considered, or all. The interest of machine learning model is also to have a relevant 482 
representation of the errors and limits of these methods. 483 

 484 

4.3.2. Aggregate-single scenario 485 
Secondly, several aggregated building damage portfolio scenarios were considered to predict a single 486 
earthquake, thus testing whether the prediction was improved by increasing the number of post-487 

earthquake damage observations. Three scenarios were tested. They are represented in Fig. 9 applying 488 
the EMS-98 damage grade (9a) and the TLS (9b): 489 
  490 

(i) Training set:  E2+E3+E4+E6 (shown as E2346) – test set: E1, E5 and E7.  491 

(ii) Training set:  E2+E4+E5+E6 (shown as E2456) – test set: E1, E3 and E7.  492 

(iii) Training set:  E2+E4+E6+E7 (shown as E2467) – test set: E1, E3 and E5.  493 
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 494 

For the EMS-98 damage scale, correct classification (x-value centred on 0) in the range of 27% to 49% 495 
was found, depending on the training/test datasets. As in Fig. 8, using the E1 (Irpinia-1980) earthquake 496 

for testing scored lower regardless of the portfolio used for training (28.7%, 27.2% and 27.4% 497 

prediction accuracy). With E1 as the test set, the predictions at +/-1 DG (i.e., the sum of the x-values 498 
on Fig. 9a between -1 and +1) were 65.7%, 63.8% and 62.4% considering the E2346, E2456 and E2467 499 

portfolios as the training set, respectively, for an average of 64% (compared with the 70% score for the 500 

single portfolio scenario, Fig. 8a). Other scenarios were also tested by aggregating the building damage 501 
portfolios differently (not presented herein), leading to the two main conclusions: (1) the quality and 502 

homogeneity of the input data (i.e., building features) affect the efficacy of the heuristic model and (2) 503 

this efficacy is limited and not improved by increasing the number of building damage observations, 504 
with a score (excluding E1) between 40% and 49% (x-value centred on 0), and up to 78% (average of 505 

the two scenarios, Fig. 8a and Fig. 9a) at +/-1 DG. Considering the TLS damage scale (Fig. 9b), a 506 

damage prediction efficacy of about 72% was obtained (compared with 72% in Fig. 8b), i.e., but no 507 
significant improvement was observed when the number of damaged buildings in the training portfolio 508 

was increased. For EMS-98 and TLS, the distributions were skewed, with a larger number of predictions 509 
being underestimated (positive x-values).  510 
Finally, in conclusion, the heuristic damage assessment model based on the XGBC model gives a better 511 

score for TLS damage assessment than for the EMS-98 damage scale. The TLS system also allows for 512 
quick assessment of damage on a large scale such as a city or region from an operational point of view. 513 
 514 
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 515 
Figure 8. Distribution of the classification value (1 − 𝜀" in % given by Eq. 1) for (a) EMS-98- and (b) TLS-based 516 
damage classification using XGBC machine learning models and considering a single damage portfolio to predict 517 
a single portfolio (single-single scenario). The colour bar indicates the associated value in each cell. The x-values 518 
are the difference between the DG observed and the DG predicted, regardless of the DG considered. 519 
 520 
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 521 
Figure 9. Distribution of the classification value (1 − 𝜀" in % given by Eq. 1) for (a) EMS-98- and (b) TLS-based 522 
damage classification using XGBC machine learning models and considering an aggregate damage portfolio to 523 
predict a single portfolio (aggregate-single scenario). The colour bar indicates the associated value in each cell. 524 
The x-values are the difference between the DG observed and the DG predicted, regardless of the DG considered. 525 
 526 

4.3.3 Comparing efficacy with the Risk-UE model 527 

The efficacy of the heuristic damage assessment model was then compared with conventional damage 528 
prediction methods, i.e., RISK-UE and mean damage relationship (Eq. 2 to 7), considering the basic-529 

features-settings. For RISK-UE, mean damage µ" (Eq. 4) was computed using the training set and the 530 

vulnerability index IV for each building (Eq. 5). A vulnerability index was then attributed to all the 531 
buildings in each class defined according to building features. The vulnerability indexes were then 532 

attributed to every building in the test set, mean damage (µ")	was computed with Eq. 2 and then DG 533 
distribution with Eq. 3, before being compared with the damage portfolio used for testing. Finally, the 534 
distribution of the mean damage observed (Eq. 4) was compared with the distribution of damage directly 535 

on the test set, using Eq. 3.  536 
Fig. 10 shows the distribution of absolute errors associated with the RISK-UE, mean damage 537 

relationship, and XGBC methods (with and without compensation for the class-imbalance issue) trained 538 
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on earthquake building damage portfolio E5 and tested on E3. For EMS-98 damage classification (Fig. 539 

10a), the XGBC model (without compensation for class-imbalance issues) resulted in a level of absolute 540 
errors similar to that of the RISK-UE and/or mean damage relationship, except for DG0 (24%). Random 541 

oversampling to compensate for the class-imbalance issues improved the distribution of errors for the 542 

XGBC model (errors less than 8%, except for DG1: 13%).  543 
For TLS-based damage classification, the XGBC model also resulted in a similar level of errors 544 

compared with the mean damage relationship and/or RISK-UE methods (Fig. 10b), except for the green 545 

class (no or slight damage, 17.04%). Compensation for class-imbalance issues slightly improved the 546 
distribution of errors for the XGBC model with a 2% drop in errors for green (no/slight damage) and 547 

yellow (moderate damage) classes.  548 

Figure 11 shows the distribution of absolute errors trained using the E2456 portfolio and tested on the 549 
E3 portfolio. For EMS-98 damage classification (Fig. 11a), the XGBC model (without compensation 550 

for class-imbalance issues) resulted in a level of errors similar to that of the RISK-UE and/or mean 551 

damage relationship; errors were highest for DG0 with 15.15%. With compensation for the class-552 
imbalance issues, the XGBC model achieved a slightly lower error distribution for DG0 (5%) and DG3 553 

(4%); however, for other damage grades, the error value increased significantly (DG1: 11%, DG2: 12% 554 
DG4: 7%, DG5: 2%). For TLS-based damage classification, the distribution of absolute errors was 555 
similar for both the XGBC model and the mean damage relationship and/or RISK-UE methods (Fig. 556 

11b). The highest absolute error value was associated with the green (no or slight damage) class of 557 
buildings (16.40%). Compensation for the class-imbalance issues slightly increased the error 558 
distribution for the XGBC model with nearly 5% for buildings in the green (no or slight) and red (heavy) 559 
classes.  560 

These results show that the heuristic building damage model based on the XGBC model, trained using 561 
building damage portfolios with the basic-features-setting, provides a reasonable estimation of potential 562 
damage, particularly with TLS-based damage classification.  563 
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Figure 10. Comparison of the efficacy of the heuristic model with the conventional model considering the DaDO 566 
portfolio (training set: E5; test set: E3) for (a) EMS-98- and (b) TLS-based damage classification. The x-axis is 567 
the damage grade and the y-axis is the percentage of absolute error (𝜀# in % given by Eq. 7). The blue bar 568 
corresponds to the mean damage relationship, the red bar corresponds to the RISK-UE method, the green and 569 
orange bars correspond to the heuristic model without (XGBC1) and with (XGBC2) compensation for the class-570 
imbalance issues, respectively.  571 

 572 
Figure 11. Comparison of the efficacy of the heuristic model with the conventional model considering the DaDO 573 
portfolio (training set: E2456; test set: E3) for (a) EMS-98- and (b) TLS-based damage classification. The x-axis 574 
is the damage grade and the y-axis is the percentage of absolute error (𝜀# in % given by Eq. 7). The blue bar 575 
corresponds to the mean damage relationship, the red bar corresponds to the RISK-UE method, the green and 576 
orange bars correspond to the heuristic model without (XGBC1) and with (XGBC2) compensation for the class-577 
imbalance issues, respectively. 578 
 579 
5. Discussion 580 
Previous studies have aimed to test a machine learning framework for seismic building damage 581 

assessment (e.g., Mangalathu et al., 2020; Roeslin et al., 2020; Harirchan et al., 2021; Ghimire et al., 582 

2022). They evaluated various machine learning and data balancing methods to classify earthquake 583 
damage to buildings. However, these studies (Mangalathu et al., 2020, Roeslin et al., 2020, Harirchan 584 

et al., 2021) had limitations such as limited data samples, damage classes, and building characteristics 585 

limited to a spatial coverage and range of seismic demand values. Ghimire et al. (2022) also used a 586 
larger building damage database, but did not investigate the importance of input features as a function 587 
of damage levels and did not compare machine learning with conventional damage assessment methods.  588 

Our study aims to go beyond previous studies by testing advanced machine learning methods and data 589 
resampling techniques using the unique DaDO dataset collected from several major earthquakes in Italy. 590 
This database covers a wide range of seismic damage and seismic demands of a specific region, 591 

including undamaged buildings. Most importantly, this study highlights the importance of input features 592 

according to the degrees of damage and finally compares the machine learning models with a classical 593 

damage prediction model (Risk-UE). The machine learning models achieved comparable accuracy to 594 
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the Risk-UE method. In addition, TLS-based damage classification, using red for heavily damaged, 595 

yellow for moderate damage, and green for no to slight damage, could be appropriate when the 596 
information for undamaged buildings is unavailable during model training. 597 

Indeed, it is worth noting that the importance of the input features used in the learning process changes 598 

with the degree of damage: this indicates that each feature may have a contribution to the damage that 599 
changes with the damage level. Thus, the weight of each feature does not depend linearly on the degree 600 

of damage, which is not considered in conventional vulnerability methods. 601 

The prediction of seismic damage by machine learning remains until now tested on geographically 602 
limited data. The damage distribution is strongly influenced by region-specific factors such as 603 

construction quality and regional typologies, implementation of seismic regulations and hazard level. 604 

Therefore, machine learning-based models can only work well in regions with comparable 605 
characteristics and a host-to-target transfer of these models should be studied. In addition, the 606 

distribution of damage is often imbalanced, impacting the performance of machine learning models by 607 

assigning higher weights to the features of the majority class. However, data balancing methods like 608 
random oversampling can reduce bias caused by imbalanced data during the training phase, but they 609 

may also introduce overfitting issues depending on the distribution of input and target features. Thus, 610 
integrating data from a wider range of input features and earthquake damage from different regions, 611 
relying on a host-to-target strategy, could help achieve a more natural balance of data sets and lead to 612 

less biased results. Moreover, the machine learning methods only train on the data available in the 613 
learning phase, that reflects the building portfolio in the study area. The importance of the features 614 
contributing to the damage could thus be modulated, and would require a host-to-target adjustment for 615 
the application of the model to another urban zone/seismic region.” 616 

However, the machine learning models trained and tested on the DaDO dataset resulted in similar 617 
damage prediction accuracy values reported in existing literature using different models and datasets 618 
with different combinations of input features. This might suggest that the uncertainty related to building 619 

vulnerability in damage classification may be smaller than the primary source of uncertainty related to 620 

the hazard component (such as ground motion, fault rupture, slip duration, etc.).  621 

 622 

In recent years, there has been a proliferation of open building data, such as the OpenStreetMap-based 623 
dynamic global exposure model (Schorlemmer et al., 2020) and building damage dataset after an 624 
earthquake (such as DaDO). We must therefore continue this paradigm shift initiated by Riedel et al. 625 

(2014, 2015) which consisted in identifying the exposure data available and as certain as possible, and 626 

in finding the most effective relationships for estimating the damage, unlike conventional approaches 627 
which proposed established and robust methods but relying on data not available and therefore difficult 628 

to collect. The global dynamic exposure model will make it possible to meet the challenge of modelling 629 

exposure on a larger scale on available data, using a tool capable of integrating this large volume of 630 
data. Machine learning methods are one such rapidly growing tool that can aid in exposure classification 631 
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and damage prediction by leveraging readily available information. It is therefore necessary to continue 632 

in this direction in order to evaluate the performance of the methods and their pros and cons for 633 
maximum efficacy of the prediction of damage. 634 

Future works will therefore have to address several key issues that have been discussed here but that 635 

need to be further investigated. For example, the weight of the input features varies according to the 636 
level of damage, but one can question the systematization of this observation whatever the dataset and 637 

the feature considered. The efficiency of the selected models and the management of imbalance data 638 

remain to be explored, in particular by verifying regional independence. Taking advantage of the 639 
increasing abundance of exposure data and post-seismic observations, the imbalanced feature 640 

distribution and observed damage levels could be solved by aggregating datasets independent of the 641 

exposure and hazard contexts of the regions, once the host-to-target transfer of the models has been 642 
resolved. Finally, key input features (still not yet identified) describing hazard or vulnerability may be 643 

unexplored, and incorporating them into the models may improve the accuracy of damage classification. 644 

 645 
6. Conclusion 646 

In this study, we explored the efficacy of machine learning models trained using DaDO post-earthquake 647 
building damage portfolios. We compared six machine learning models: RFC, GBC, XGBC, RFR, 648 
GBR, and XGBR. These models were trained on numbers of building features (location, number of 649 

storeys, age, floor area, height, position, construction material, regularity, roof type, ground slope 650 
condition) and ground motion intensity defined in terms of macro-seismic intensity. The classification 651 
models performed slightly better than the regression methods and the XGBC model was ultimately 652 
found to be the most efficient model for this dataset. To solve the imbalance issue concerning observed 653 

damage, the random oversampling method was applied to the training dataset to improve the efficacy 654 
of the heuristic damage assessment model by rectifying the skewed distribution of the target features 655 
(DGs).  656 

Surprisingly, we found that the weight of the most important building feature evolves according to DG, 657 

i.e., the weight of the feature for damage prediction changes depending on the DG considered, which is 658 

not taken into account in conventional methods.  659 

The basic-features-setting (i.e., considering number of storeys, age, floor area, height and macroseismic 660 
intensity, which are accurately evaluated for the existing building portfolio) gave the same accuracy 661 
(0.68) as the full-features-settings (0.72) with the TLS-based damage classification method. For training 662 

and testing, the homogeneity of the information in the portfolios is a key issue for the definition of a 663 

highly effective machine learning model, as shown by the data from the E1 earthquake (Irpinia-1990). 664 
However, the efficacy of the model reaches a limit which is not improved by increasing the number of 665 

damaged buildings in the portfolio used as the training set, for example. For damage prediction, this 666 

type of heuristic model results in approximately 75% correct classification. Other authors (e.g., Riedel 667 
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et al., 2014, 2015; Ghimire et al. 2022) have already reached this same conclusion by increasing the 668 

percentage of the training set compared with the test set.  669 
Despite this limit threshold, the level of accuracy achieved remains similar to that attained by 670 

conventional methods, such as Risk-UE and the mean damage relationship, for the basic-features-671 

settings and TLS-based damage classification (error values less than 17 %). Machine learning models 672 
trained on post-earthquake building damage portfolios could provide a reasonable estimation of damage 673 

for a different region with similar building portfolios, after host-to-target adjustment.  674 

Some variability may have been introduced into the damage prediction model due to the framework 675 
defined to translate the original damage scale to the EMS-98 damage scale and because in the DaDO 676 

database, the year of construction and the floor area of each building are provided as interval values, 677 

and missing locations of buildings were replaced with the location of local administrative centres. The 678 
latter can lead to a smoothing of the macro-seismic intensities to be considered for each structure and 679 

also affect the distance to the earthquake. Similarly, the building damage surveys were carried out after 680 

the seismic sequence, which includes aftershocks as well as the mainshock, whereas the MSI input 681 
corresponds to the mainshock from the USGS ShakeMap. All these issues may reduce the efficacy of 682 

the heuristic model and its limit threshold. Addressing these issues could improve the damage prediction 683 
performance of machine learning models. 684 
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hyperparameters used are provided in table 3. 688 
Data availability 689 

The data used in this study is available in the Database of Observed Damage (DaDO) web-GIS platform 690 
of the Civil Protection Department, developed by the Eucentre Foundation.  691 
https://egeos.eucentre.it/danno_osservato/web/danno_osservato?lang=EN. 692 

 693 

Author contribution 694 

Subash Ghimire: Conceptualization, methodology, data preparation, investigation, visualization, draft 695 

preparation. Philippe Guéguen: Conceptualization, investigation, visualization, supervision, review and 696 
editing. Adrien Pothon: Conceptualization, supervision, review and editing draft. Danijel Schorlemmer: 697 
Conceptualization, supervision, review and editing draft. 698 

 699 

Competing interests 700 
The authors declare that they have no conflict of interest. 701 

 702 

Acknowledgment 703 



 29 

The author(s) disclosed receipt of the following financial support for the research, authorship, and/ or 704 

publication of this article: This study was funded by the URBASIS-EU project (H2020-MSCA- ITN-705 
2018, Grant No. 813137). A.P. and P.G. thank the AXA Research Fund supporting the project New 706 

Probabilistic Assessment of Seismic Hazard, Losses and Risks in Strong Seismic Prone Regions. P.G. 707 

thanks LabEx OSUG@2020 (Investissements d’avenir- ANR10LABX56)  708 
 

References 

ATC: ATC-20-1, Field Manual: Postearthquake Safety Evaluation of Buildings Second Edition,, 709 
Applied Technology Council, Redwood City, California., 2005. 710 

Azimi, M., Eslamlou, A. D., and Pekcan, G.: Data-driven structural health monitoring and damage 711 
detection through deep learning: State-ofthe- art review, https://doi.org/10.3390/s20102778, 2020. 712 

Baggio, C., Bernardini, A., Colozza, R., Pinto, A. V, and Taucer, F.: Field Manual for post-earthquake 713 
damage and safety assessment and short term countermeasures (AeDES) Translation from Italian: 714 
Maria ROTA and Agostino GORETTI, 2007. 715 

Bazzurro, P., Cornell, C. A., Menun, C., and Motahari, M.: GUIDELINES FOR SEISMIC 716 
ASSESSMENT OF DAMAGED BUILDINGS, in: 13th World Conference on Earthquake Engineering, 717 
Vancouver, B.C. m Canada, 74–76, https://doi.org/10.5459/bnzsee.38.1.41-49, 2004. 718 

Branco, P., Ribeiro, R. P., Torgo, L., Krawczyk, B., and Moniz, N.: SMOGN: a Pre-processing 719 
Approach for Imbalanced Regression, Proc. Mach. Learn. Res., 74, 36–50, 2017. 720 

Breiman, L.: Random Forests, Mach. Learn., 5–32, 2001. 721 

Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: 22nd acm sigkdd 722 
international conference on knowledge discovery and data mining, 785–794, 723 
https://doi.org/10.1145/2939672.2939785, 2016. 724 

Daniell, J. E., Schaefer, A. M., Wenzel, F., and Tsang, H. H.: The global role of earthquake fatalities in 725 
decision-making: earthquakes versus other causes of fatalities, Proc. Sixt. world Conf. Earthq. Eng. 726 
Santiago, Chile, 9–13, 2017. 727 

Dolce, M., Speranza, E., Giordano, F., Borzi, B., Bocchi, F., Conte, C., Meo, A. Di, Faravelli, M., and 728 
Pascale, V.: Observed damage database of past italian earthquakes: The da.D.O. WebGIS, Boll. di 729 
Geofis. Teor. ed Appl., 60, 141–164, https://doi.org/10.4430/bgta0254, 2019. 730 

Estabrooks, A. and Japkowicz, N.: A mixture-of-experts framework for learning from imbalanced data 731 
sets, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 732 
2189, 34–43, https://doi.org/10.1007/3-540-44816-0_4, 2001. 733 

FEMA: Hazus –MH 2.1 Multi-hazard Loss Estimation Methodology Earthquake, 2003. 734 

Friedman, J. H.: Greedy Function Approximation:A Gradient Boosting Machine, 1999. 735 

Del Gaudio, C., Scala, S. A., Ricci, P., and Verderame, G. M.: Evolution of the seismic vulnerability of 736 
masonry buildings based on the damage data from L’Aquila 2009 event, Bull. Earthq. Eng., 19, 737 
https://doi.org/10.1007/s10518-021-01132-x, 2021. 738 

Ghimire, S., Guéguen, P., Giffard-Roisin, S., and Schorlemmer, D.: Testing machine learning models 739 
for seismic damage prediction at a regional scale using building-damage dataset compiled after the 2015 740 



 30 

Gorkha Nepal earthquake, Earthq. Spectra, https://doi.org/10.1177/87552930221106495, 2022. 741 

Grünthal, G.: Escala Macro Sísmica Europea EMS - 98, 101 pp., 1998. 742 

Guéguen, P., Michel, C., and Lecorre, L.: A simplified approach for vulnerability assessment in 743 
moderate-to-low seismic hazard regions: Application to Grenoble (France), Bull. Earthq. Eng., 5, 467–744 
490, https://doi.org/10.1007/s10518-007-9036-3, 2007. 745 

Guettiche, A., Guéguen, P., and Mimoune, M.: Seismic vulnerability assessment using association rule 746 
learning: application to the city of Constantine, Algeria, Nat. Hazards, 86, 1223–1245, 747 
https://doi.org/10.1007/s11069-016-2739-5, 2017. 748 

Harirchian, E., Kumari, V., Jadhav, K., Rasulzade, S., Lahmer, T., and Das, R. R.: A synthesized study 749 
based on machine learning approaches for rapid classifying earthquake damage grades to rc buildings, 750 
Appl. Sci., 11, https://doi.org/10.3390/app11167540, 2021. 751 

Hegde, J. and Rokseth, B.: Applications of machine learning methods for engineering risk assessment 752 
– A review, Saf. Sci., 122, 104492, https://doi.org/10.1016/j.ssci.2019.09.015, 2020. 753 

Japkowicz, N. and Stephen, S.: The class imbalance problem A systematic study fulltext.pdf, 6, 429–754 
449, 2002. 755 

Kim, T., Song, J., and Kwon, O. S.: Pre- and post-earthquake regional loss assessment using deep 756 
learning, Earthq. Eng. Struct. Dyn., 49, 657–678, https://doi.org/10.1002/eqe.3258, 2020. 757 

Lagomarsino, S. and Giovinazzi, S.: Macroseismic and mechanical models for the vulnerability and 758 
damage assessment of current buildings, Bull. Earthq. Eng., 4, 415–443, 759 
https://doi.org/10.1007/s10518-006-9024-z, 2006. 760 

Lagomarsino, S., Cattari, S., and Ottonelli, D.: The heuristic vulnerability model: fragility curves for 761 
masonry buildings, Springer Netherlands, 3129–3163 pp., https://doi.org/10.1007/s10518-021-01063-762 
7, 2021. 763 

Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, in: 31st 764 
Conference on Neural Information Processing Systems, 2017. 765 

Mangalathu, S. and Jeon, J.-S.: Regional Seismic Risk Assessment of Infrastructure Systems through 766 
Machine Learning: Active Learning Approach, J. Struct. Eng., 146, 04020269, 767 
https://doi.org/10.1061/(asce)st.1943-541x.0002831, 2020. 768 

Mangalathu, S., Sun, H., Nweke, C. C., Yi, Z., and Burton, H. V.: Classifying earthquake damage to 769 
buildings using machine learning, Earthq. Spectra, 36, 183–208, 770 
https://doi.org/10.1177/8755293019878137, 2020. 771 

Milutinovic, Z. and Trendafiloski, G.: Risk-UE An advanced approach to earthquake risk scenarios with 772 
applications to different european towns, Rep. to WP4 vulnerability Curr. Build., 1–83, 2003. 773 

MINVU: Ministry of Housing and Urbanism of Chile,Terremoto y Tsunami 27F, 2010.  774 

Morfidis, K. and Kostinakis, K.: Approaches to the rapid seismic damage prediction of r/c buildings 775 
using artificial neural networks, Eng. Struct., 165, 120–141, 776 
https://doi.org/10.1016/j.engstruct.2018.03.028, 2018. 777 

Mouroux, P. and Le Brun, B.: Presentation of RISK-UE Project, Bull. Earthq. Eng. 2006 44, 4, 323–778 
339, https://doi.org/10.1007/S10518-006-9020-3, 2006. 779 



 31 

MTPTC: Ministere des Travaux Publics, Transports et Communications: Evaluation des Bâtiments: 780 
https://www.mtptc.gouv.ht/accueil/recherche/article_7.html, 2010. 781 

NPA: Police Countermeasures and Damage Situation associated with 2011Tohoku district - off the 782 
Pacific Ocean Earthquake Total burn down Inundated below floor level Partially damaged Property 783 
damages Damaged roads Partial burn down March 10, 2021, 784 
https://doi.org/https://www.npa.go.jp/news/other/earthquake2011/pdf/higaijokyo_e.pdf (last access: 22 785 
March 2021), 2021. 786 

NPC: Nepal Planning Commission (NPC). 2015 Nepal Earthquake: Open Data Portal: 787 
/eq2015.npc.gov.np/#/, (last access: 22 March 2021), 2015. 788 

Pedregosa, F., Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., and Mueller, A.: Scikit-learn, 789 
GetMobile Mob. Comput. Commun., 19, 29–33, https://doi.org/10.1145/2786984.2786995, 2011. 790 

Riedel, I., Guéguen, P., Dunand, F., and Cottaz, S.: Macroscale vulnerability assessment of cities using 791 
association rule learning, Seismol. Res. Lett., 85, 295–305, https://doi.org/10.1785/0220130148, 2014. 792 

Riedel, I., Guéguen, P., Dalla Mura, M., Pathier, E., Leduc, T., and Chanussot, J.: Seismic vulnerability 793 
assessment of urban environments in moderate-to-low seismic hazard regions using association rule 794 
learning and support vector machine methods, Nat. Hazards, 76, 1111–1141, 795 
https://doi.org/10.1007/s11069-014-1538-0, 2015. 796 

Roeslin, S., Ma, Q., Juárez-Garcia, H., Gómez-Bernal, A., Wicker, J., and Wotherspoon, L.: A machine 797 
learning damage prediction model for the 2017 Puebla-Morelos, Mexico, earthquake, Earthq. Spectra, 798 
36, 314–339, https://doi.org/10.1177/8755293020936714, 2020. 799 

Salehi, H. and Burgueño, R.: Emerging artificial intelligence methods in structural engineering, Eng. 800 
Struct., 171, 170–189, https://doi.org/10.1016/j.engstruct.2018.05.084, 2018. 801 

Scala, S. A., Del Gaudio, C., and Verderame, G. M.: Influence of construction age on seismic 802 
vulnerability of masonry buildings damaged after 2009 L’Aquila earthquake, Soil Dyn. Earthq. Eng., 803 
157, 107199, https://doi.org/10.1016/J.SOILDYN.2022.107199, 2022. 804 

Schorlemmer, D., Beutin, T., Cotton, F., Garcia Ospina, N., Hirata, N., Ma, K. F., ... and Wyss, M. : 805 
Global dynamic exposure and the OpenBuildingMap-a big-data and crowd-sourcing approach to 806 
exposure modeling, In EGU General Assembly Conference Abstracts (p. 18920), 2020. 807 

Seo, J., Dueñas-Osorio, L., Craig, J. I., and Goodno, B. J.: Metamodel-based regional vulnerability 808 
estimate of irregular steel moment-frame structures subjected to earthquake events, Eng. Struct., 45, 809 
585–597, https://doi.org/10.1016/j.engstruct.2012.07.003, 2012. 810 

Silva, V., Crowley, H., Pagani, M., Monelli, D., and Pinho, R.: Development of the OpenQuake engine, 811 
the Global Earthquake Model’s open-source software for seismic risk assessment, Nat. Hazards, 72, 812 
1409–1427, https://doi.org/10.1007/s11069-013-0618-x, 2014. 813 

Silva, V., Pagani, M., Schneider, J., and Henshaw, P.: Assessing Seismic Hazard and Risk Globally for 814 
an Earthquake Resilient World, Contrib. Pap. to GAR 2019, 24 p., 2019. 815 

Stojadinović, Z., Kovačević, M., Marinković, D., and Stojadinović, B.: Rapid earthquake loss 816 
assessment based on machine learning and representative sampling, Earthq. Spectra, 817 
https://doi.org/10.1177/87552930211042393, 2021. 818 

Sun, H., Burton, H. V., and Huang, H.: Machine learning applications for building structural design and 819 
performance assessment: State-of-the-art review, J. Build. Eng., 33, 101816, 820 



 32 

https://doi.org/10.1016/j.jobe.2020.101816, 2021. 821 

Wald, D. J., Worden, B. C., Quitoriano, V., and Pankow, K. L.: ShakeMap manual: technical manual, 822 
user’s guide, and software guide, Techniques and Methods, https://doi.org/10.3133/tm12A1, 2005. 823 

Wang, C., Yu, Q., Law, K. H., McKenna, F., Yu, S. X., Taciroglu, E., Zsarnóczay, A., Elhaddad, W., 824 
and Cetiner, B.: Machine learning-based regional scale intelligent modeling of building information for 825 
natural hazard risk management, Autom. Constr., 122, https://doi.org/10.1016/j.autcon.2020.103474, 826 
2021. 827 

Xie, Y., Ebad Sichani, M., Padgett, J. E., and DesRoches, R.: The promise of implementing machine 828 
learning in earthquake engineering: A state-of-the-art review, Earthq. Spectra, 829 
https://doi.org/10.1177/8755293020919419, 2020. 830 

Xu, Y., Lu, X., Cetiner, B., and Taciroglu, E.: Real-time regional seismic damage assessment 831 
framework based on long short-term memory neural network, Comput. Civ. Infrastruct. Eng., 1–18, 832 
https://doi.org/10.1111/mice.12628, 2020a. 833 

Xu, Z., Wu, Y., Qi, M. zhu, Zheng, M., Xiong, C., and Lu, X.: Prediction of structural type for city-834 
scale seismic damage simulation based on machine learning, Appl. Sci., 10, 835 
https://doi.org/10.3390/app10051795, 2020b. 836 

 837 


