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Abstract. Wildfire is a critical ecological disturbance in terrestrial ecosystems. Australia, in particular, has experienced 12 

increasingly large and severe wildfires over the past two decades while globally fire risk is expected to increase significantly 13 

due to the projected increase in fire weather severity and drought condition. Therefore, understanding and predicting fire 14 

severity is critical for evaluating current and future impacts of wildfires on ecosystems. Here, we firstly introduce a vegetation-15 

type specific fire severity classification applied on satellite imagery, which is further used to predict fire severity using 16 

antecedent drought conditions, fire weather, and topography of the fire season. Based on a ‘leave-one-out’ cross-validation 17 

experiment, we demonstrate high accuracy for both the fire severity classification and the regression using a suite of 18 

performance metrics: determination coefficient (𝑅 ), mean absolute error (MPE) and root mean square error (RMSE), which 19 

are 0.89, 0.05, and 0.07, respectively. Our results also show that the fire severity prediction results using the vegetation-type 20 

specific thresholds could better capture the spatial patterns of fire severity, and has the potential to be applicable for seasonal 21 

fire severity forecasting due to the availability of seasonal forecasts of the predictor variables. 22 

Keywords: Fire severity; Normalized Burning Ratio; Random Forest; Vegetation type; Severity classification. 23 

1 Introduction 24 

Fire is recognized as a critical disturbance in ecosystems, which shapes vegetation across several continents (Archibald et al., 25 

2013; Gill, 1975; Giglio et al., 2010; Gomez et al., 2015). In recent decades, wildfires have affected extensive areas in forests 26 

and woodlands across the globe, including those in Australia where over 10 million hectares were burned in the 2019-2020 27 

fire season (Gallagher et al. 2021). These fires are considered unprecedented in contemporary Australian fire history (Nolan 28 

et al., 2020; Shine, 2020), and more severe fires are expected in the future due to the impacts of climate change on fire-weather 29 

and dynamics (Hennessy et al., 2005). Changes in fire conditions are also anticipated globally (Abatzoglou et al. 2019). 30 

Therefore, predicting fire characteristics – such as severity – will be essential for evaluating current and future impact of 31 

wildfires on ecosystems worldwide. 32 
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Fire severity, defined here as the magnitude of change in vegetation associated with fire, is routinely used to describe the 33 

impact of wildfires on vegetation, soil and wildlife (Lentile et al. 2006; Keeley 2009). Field survey and remote sensing-based 34 

evaluations of burn severity are commonly used by fire scientists and managers. Field survey-based evaluations involve 35 

assessing the amount of biomass consumed (Keeley, 2009), measuring the changes in vegetation height (Wang and Glenn, 36 

2009) or surface fuel consumption (Boby et al., 2010; Hudak et al., 2013). By contrast, remotely sensed evaluations of burn 37 

severity use satellite imagery to quantify the magnitude of vegetation changes between pre-fire and post-fire conditions, in 38 

terms of the changes in surface reflectance (Holden et al., 2009; Miller et al., 2009; Soverel et al., 2010) (e.g. the difference 39 

between pre- and post-fire Normalized Burn Ratio (dNBR)).  40 

Statistical approaches, which incorporate factors such as topography, weather and water availability provide insight into 41 

possible drivers of fire severity (Morgan et al., 2014). For instance, Bradstock et al. (2010) investigated the effects of weather, 42 

fuel and terrain on fire severity in south-eastern Australia. They found weather was the predominant influence on fire severity 43 

while the influence of terrain was stronger under moderate conditions. Similarly, a study by Collins et al. (2013) examined the 44 

relationships between environmental variables (i.e., fire weather, topography and fuel age) and fire severity in south-eastern 45 

Australia and whether it can be modified by increasing mean annual precipitation. They concluded that the relationships 46 

between crown fire and weather, topography and fuel age were largely unaltered across the precipitation gradient. Collins et 47 

al. (2019) also examined the relative effect of fire weather, drought severity and landscape features (i.e., topography, fuel age, 48 

vegetation type) on the occurrence of fire refugia in south-eastern Australia. They found that the fire weather and drought 49 

severity were the primary drivers of the occurrence of fire refugia, moderating the effect of landscape attributes. Furthermore, 50 

Clarke et al. (2014) investigated fire severity control factors, including landscape/vegetation or weather, providing evidence 51 

that even though strong weather controls, fire history, terrain and vegetation shape the immediate effect. In addition, Bowman 52 

et al. (2021) demonstrated that overwhelming dominance of fire weather in driving complete scorch or consumption of forest 53 

canopies in natural and plantation forests in the 2019-20 megafires.  54 

Despite the emerging evidence that statistical modelling with multiple biophysical and environmental predictor variables can 55 

provide high accuracy estimates of fire severity, this technique is not widely adopted in major areas of known fire risk. One 56 

such region is the southeast coast of Australia which is subject to annual fire seasons vary in extent and severity and has a high 57 

richness of endemic plant species adapted to particular fire regimes (Gallagher et al., 2021). Besides, an accurate representation 58 

of fire severity levels is important for managing and mitigating the effects of wildfires, both in terms of emergency response 59 

and long-term ecological recovery. The most prevailing dNBR-based classification scheme, which rely on establishing the 60 

relationship between in-situ measured Composite Burn Index (Key and Benson, 2006; Lutes et al., 2006) and satellite derived 61 

dNBR, is designed only for certain regions and for limited vegetation types under certain climate (Eidenshink et al., 2007; 62 

Keeley et al., 2009; Tran et al., 2018). While for the southeast coast of Australia, which is subject to annual wildfire seasons 63 

and varies greatly in  vegetation types with high richness of endemic plant species adapted to particular fire regimes (Gallagher 64 

et al., 2021), no fire severity classification scheme exists.  65 

https://doi.org/10.5194/nhess-2023-69
Preprint. Discussion started: 10 May 2023
c© Author(s) 2023. CC BY 4.0 License.



3 
 

Understanding current and predicting future fire severity in eastern Australia is critical for evaluating the potential for increased 66 

extinction risk due to recurrent high severity fires (Enright et al. 2015) and is important for supporting ecologically informed 67 

fire management (Clarke et al. 2019). Therefore, the predictor variables involved in the fire severity model should be accessible 68 

for both historical events and projected future events (e.g. seasonal, climate). 69 

In this study, we newly propose a vegetation specific fire severity classification scheme for predicting fire severity and 70 

demonstrate its performance across the Australian state of New South Wales (NSW). Using drought conditions, vegetation 71 

type, and fire weather conditions during the fire season as input, our modelling approach applies the Random Forest (RF) 72 

classification method to predict the dNBR – an indicator of burn severity derived from Landsat imagery. We demonstrate 73 

model performance based on 20 years of wildfire data from NSW through a leave-one-year-out cross-validation experiment. 74 

2 Study area 75 

New South Wales (NSW) in south-eastern Australia (Figure 1) occupies a subtropical-temperate climate region with relatively 76 

mild weather and distinctive seasons (e.g., hot summers and cold winters) (Speer et al., 2009). Mean annual and extreme 77 

temperatures are highest in the northwest of the state whereas average maximum temperatures in coastal areas range from 78 

26 °C to 16 °C, while the average minimum temperature falls between 19 ° and 7 °C. There is a strong precipitation gradient 79 

from east to west across the state, with annual precipitation on the eastern coast ranging between 600 mm/year and 1200 80 

mm/year decreasing to generally less than 180 mm/year in the north west of the state                   81 

Vegetation across the study region is predominantly wet and dry sclerophyll forests, although is interspersed with areas of 82 

rainforest, woodlands and coastal heath (Keith 2004). 83 

 
Figure 1. Locations of study wildfires over New South Wales, Australia 
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3 Data and method 84 

3.1 Model Input and output 85 

3.1.1 Fire extent 86 

The spatial extent of annual fires between 2000 to 2019 is accessed from the NSW National Parks and Wildlife Service 87 

(NPWS) Fire History – Wildfire and Prescribed Burns dataset (https://data.nsw.gov.au/data/dataset/1f694774-49d5-47b8-88 

8dd0-77ca8376eb04 ), produced by the Department of Planning, Industry and Environment. The NPWS Fire History is a 89 

spatial polygon layer, with each polygon recording the boundary, start date, end date, and burn area. We use the NPWS 90 

polygons whose burn areas are greater than 1 km2 as the mask to include only the fire impacted areas. While this dataset is 91 

unlikely to be a complete record of all fire events, it represents the largest single repository of fire extent data in NSW. 92 

3.1.2 Fire severity 93 

As a widely used fire severity index, the dNBR is calculated by subtracting the post-fire NBR raster from the pre-fire NBR 94 

raster as in Eq (1): 95 

𝑑𝑁𝐵𝑅 𝑃𝑟𝑒𝑓𝑖𝑟𝑒𝑁𝐵𝑅 𝑃𝑜𝑠𝑡𝑓𝑖𝑟𝑒𝑁𝐵𝑅                                                      (1) 96 

The formula of NBR is similar to the normalized difference vegetation index (NDVI), except that it uses near-infrared (NIR) 97 

and shortwave-infrared (SWIR) bands, as written in Eq (2) (García and Caselles, 1991; Key and Benson, 2006). NBR can be 98 

computed by the Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors on using Band 7 as the short-99 

wave infrared (SWIR) and Band 4 for Landsat 4-7 and Band 5 for Landsat 8 as the near infrared (NIR) reflectance, respectively. 100 

𝑁𝐵𝑅                                                         (2) 101 

We calculate the dNBR within the fire boundaries from Landsat archive imagery, using the start date and end date to determine 102 

the pre-fire and post-fire dates. In this study, the pre-fire NBR (preNBR), is used as a proxy of the initial condition of 103 

vegetation. 104 

 105 

3.1.3 Vegetation 106 

Vegetation composition and structure are expected to influence fire propagation and severity (Collins et al., 2007) and the 107 

vegetation type is also used as a proxy for vegetation structure (Hammill et al., 2006). The dominant vegetation over NSW is 108 

wet and dry sclerophyll forests (Keith 2004). Wet sclerophyll forests can be divided into two subgroups (the shrubby sub-109 

formation and the grassy sub-formation), which have a tall canopies dominated by Eucalyptus  and a monophyllous understory 110 

(https://www.environment.nsw.gov.au/threatenedSpeciesApp/VegFormation.aspx?formationName=Wet+sclerophyll+forests111 

+(grassy+sub-formation) ). Two sub-formations of dry sclerophyll forests also occur: shrub/grass and shrubby. This study 112 

focuses on burn severity for the dominant sclerophyll forests (Figure 1). The vegetation map is intersected with NPWS 113 
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polygons to identify the areas where sclerophyll forests have previously burned. The preNBR is derived from Landsat and 114 

Sentinel-2 imageries. 115 

3.1.3 Topography 116 

Prior studies report strong control of topography on burn severity, by influencing fire behavior, fuel moisture, and water 117 

balances (Fang et al., 2018, Harris and Taylor, 2015, Holden et al., 2009). Therefore, , we include three topographic measures 118 

from Shuttle Radar Topography (SRTM, https://www2.jpl.nasa.gov/srtm/world.htm ) DEM, elevation (DEM), slope (Slope), 119 

and exposure (Exposure). Exposure represents the maximum amount of sunlight received at a grid based on topography, which 120 

influences the moisture content of fuels and may influence the growth of vegetation. Exposure is calculated using the solar 121 

radiation function in ArcMap 10.8. 122 

3.1.3 Weather 123 

Besides fuel and topography, weather is another important component of a wildfire environment. The McArthur Forest Fire 124 

Danger Index (FFDI, McArthur 1967) is an empirical relationship comprising the short-term meteorological conditions and 125 

the long-term drought factor (Dowdy et al. 2009). The FFDI is currently used operationally by the Australian Bureau of 126 

Meteorology (BoM) to produce fire weather warnings to authorities, which is defined as: 127 

𝐹𝐹𝐷𝐼 2 𝑒 . . . . .                                              (3) 128 

where DF is the drought factor; and     RH, T and V represent the relative humidity, surface air temperature and wind velocity, 129 

respectively. In this study, we extract daily temperature, relative humidity and wind speed data from the ERA5-Land global 130 

dataset over the burn areas (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form ). 131 

The DF is estimated using the Keetch–Byram Drought Index (KBDI, Keetch and Byram 1968). KBDI is a continuous reference 132 

scale describing the dryness of the soil and duff layers. The index increases for each day without rain and decreases when it 133 

rains. KBDI is world widely used for drought monitoring for national weather forecast, wildfire prevention. KBDI over burnt 134 

areas can be accessed in Takeuchi et al. (2015). The daily FFDI and KBDI values one day before the wildfires start are used 135 

as the predictors in predicting burn severity.  136 

3.2 Method 137 

We newly propose an alternative way to determine the optimal thresholds in fire severity classification for different vegetation 138 

types. The dNBR of all burnt pixels for each vegetation type are collected and a set of dNBR values at the quantiles from 0.05 139 

to 0.95 are used as candidates of thresholds for fire severity classification. Secondly, a fire severity prediction model is 140 

developed for each severity category based on the fire severity classification results, to provide the numeric prediction of 141 

dNBR. 142 
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3.2.1 Fire severity classification by RF 143 

Random Forest is developed as an extension of the classification and regression tree (CART) to improve the accuracy and 144 

stability of the CART model (Breiman 2001). The steps of the RF algorithm are briefly summarized as: (i) randomly generate 145 

ntree bootstrap samples of the original data. The elements not selected are referred to as ‘out of bag’ (OOB) samples. (ii) for 146 

each split, randomly select m_try predictors of the original predictors and choose the best predictor among the m_try predictors 147 

to partition the data. (iii) predict new data (OOB elements) by averaging predictions of the ntree trees; and (iv) the OOB 148 

samples are used to estimate the prediction error. The RF can also provide a measurement of variable importance. One of the 149 

approaches is to look at the increase in the OOB estimate error when the specific predictor variable is randomly permuted and 150 

other predictors are constant. The more the error increases, the more important the variable is. These variable importance 151 

values are used to rank the predictors in terms of their relative contribution to the model. The RF model was generated using 152 

the package randomforest in R (https://cran.r-project.org/web/packages/randomForest/ ). 153 

 154 

3.2.2 Fire severity prediction by XGboost 155 

For the regression model, we implement the Extreme Gradient Boosting (XGBoost) algorithm, one of the most popular 156 

supervised machine learning algorithms proposed by Chen et al. (2015). XGBoost employs a gradient boosting framework 157 

that iteratively trains a sequence of weak prediction models and combines them into a strong model. In addition to gradient 158 

boosting, XGBoost implements several advanced features, including regularization techniques to prevent overfitting, parallel 159 

processing to speed up training, and built-in support for missing data (Chen and Guestrin, 2016 ). In the XGBoost algorithm, 160 

complex interactions are modeled, and other complexities such as missing values in the predictors are managed without almost 161 

any loss of information. Selection of features is performed by a combination of parameters (e.g., number of iterations, learning 162 

rate) and the unique combinations of each attribute in the training data set. The XGBoost model is generated using the package 163 

xgboost in R (https://cran.r-project.org/web/packages/xgboost/ ). 164 

 165 

3.2.3 Calibration and validation 166 

To evaluate the model’s performance, we use  “leave -one group-out” for training and validation. The fire samples from 2000 167 

to 2019 are firstly divided into 20 subsets depending on the year the fire occurred, and this holdout method is repeated 20 168 

times. Secondly, at each time, one of the 20 subsets is used as the testing set, and the remaining 19 subsets are put together to 169 

form the training set. Thirdly, the average error across all 20 trials is computed. The advantage of this cross-validation method 170 

is that it gives us an indication of how well the model would do when making new predictions for data it has not already seen. 171 

For performance evaluation of multiclass event classification based on QWD, accuracy is expressed as the proportion of 172 

correctly predicted events over all predicted events, which is calculated as Eq (4): 173 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦     

   
                                                            (4) 174 
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While precision is expressed as the proportion of events correctly predicted as label X (low, moderate, or high) over all events 175 

predicted as label X (Eq (5)). 176 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛   

  
                                                                (5) 177 

in which True Positive represents the situation both observation and prediction are labelled as X, False Positive represents 178 

observation is not labelled as X but prediction as label X. 179 

Recall is calculated as: 180 

𝑅𝑒𝑐𝑎𝑙𝑙   

  
                                                                   (6) 181 

in which False Negative represents the situation observation is label X but prediction is not label X. 182 

Combining metrics of Precision and Recall, the F1 Score is the harmonic mean of Precision and Recall. The F1 Score gives 183 

equal weight to Precision and Recall. A maximized F1 Score could create a balanced classification model, and is calculated as 184 

follows: 185 

𝐹1 𝑠𝑐𝑜𝑟𝑒 2 ∗  ∗
                                                                         (7) 186 

 187 

The coefficient of determination (𝑅 ) is used to measure how well the prediction agreed with the actual values. The formula 188 

of 𝑅  is described as: 189 

𝑅 ∑
∑ ∑

                                                                             (8) 190 

Where 𝑜  and 𝑝  represent the actual and predicted values for sample i; n is the total number of samples. The higher 𝑅  indicates 191 

better fit of the model predictions to the actual values with best value of 1. 192 

The mean absolute error (MAE) the mean relative error, the lower MAE is, the better the model performed. 193 

𝑀𝐴𝐸
∑ | |

                                                                                                (9) 194 

The root mean square error (RMSE) is used to quantify the random component of the error. The lower RMSE indicates better 195 

model performance. 196 

𝑅𝑀𝑆𝐸
∑

                                                                                            (10) 197 

 198 

4 Results 199 

4.1 Fire severity of burnt vegetation 200 

Over the past 20 years, wildfire history databases managed by government agencies indicate that approximately 112,590 km2 201 

have been recorded as affected by fires in NSW, of which, almost 53,830 km2 burned during the 2019-20 megafires (Figure 202 
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2). This dataset indicates that the annual burn area is typically below 5,000 km2, but in exceptional years such as 2002 and 203 

2003, the affected area can reach more than 10,000 km2.The affected area from the 2019-20 fires is approximately 10 times 204 

larger than those in other years from 2004 to 2018. 205 

 

Figure 2. Annual burnt area (km2) across New South Wales, in south-eastern Australia. 

 

Among the burnt area, the fractions of vegetation types are shown in Figure 2 (a). The dry sclerophyll forests (shrubby 206 

subformation) accounted for the largest proportion of the burnt area (32.1%), followed by the dry sclerophyll forests 207 

(shrub/grass subformation) which account for 16%. The wet sclerophyll forests (grassy subformation) occupy 14.2% of the 208 

burnt area, while for the wet sclerophyll forests (shrubby subformation) the proportion is 11%. Specifically, the cleared area 209 

accounted for 11.3% of the burnt area, approximately equal to those of the wet sclerophyll forests (shrubby subformation). 210 

Other vegetation types largely affected by the wildfires are grassy woodlands, rainforest and heathlands, the proportion of 211 

which are 6,7%, 2.5% and 2%, respectively. The distribution of fire severity indicated by dNBR for each vegetation type is 212 

displayed as Figure 2 (b). These boxplots in Figure 2 (b) show that the fire severity varies significantly with vegetation type, 213 

demonstrating that the vegetation specific thresholds should be applied in fire severity classification. For example, the fire 214 

severity of cleared areas is overall the smallest while the fire severity of heathland shows the overall largest. The fire severity 215 

varies even for the major vegetation type with different subgroups, for instance, the fire severity of dry sclerophyll forests with 216 

shrubby subformation is larger than the fire severity of dry sclerophyll forests with shrub/grass subformation. 217 

 218 
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(a) (b) 

Figure 3. (a) The proportion of burnt area and (b) the distribution of fire severity grouped by vegetation type, over NSW from 

2000 to 2019 

 219 

4.2 Threshold determination for fire severity classification 220 

Given the variability shown in Figure 2, we proposed an alternative way to determine the optimal thresholds in fire severity 221 

classification for different vegetation types. To determine these thresholds thedNBR of all burnt pixels for the vegetation type 222 

werecollected and a set of dNBR values at the quantiles from 0.05 to 0.95 are used as the candidates of thresholds for the fire 223 

severity classification. 224 

The classified samples using the threshold of dNBR at the quantiles are imported as the training set in RF models and the OOB 225 

estimate of error rate is recorded for the training samples. Figure 4 (a), (b), (c) and (d) show the variations of OOB estimate of 226 

error rate changes with thresholds of dNBR at the quantiles varying from 5% to 35% (low severity threshold)/35% to 65% 227 

(moderate severity threshold), when the high severity threshold are set as the dNBR values at the 65%, 75%, 85% and 95% 228 

quantiles, respectively. The optimal thresholds are determined when the lowest OOB estimate of error rate is found. For 229 

example, for dry sclerophyll forests (shrubby subformation), the thresholds for high, moderate and low severity classification 230 

are 0.55 (85% quantile), 0.38 (55%) and 0.20 (25%), respectively. Note that the classification step is merely used to improve 231 

the consecutive regression accuracy, rather than the final severity categorization result. The choice of threshold in this step 232 

therefore will not affect severity categorization. The categorization will be solely based on predicted severity value, using user 233 

defined thresholds.  234 
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(a) (b) 

  
(c) (d) 

Figure 4. Variations of OOB estimate of error rate changes with thresholds of dNBR at the quantiles varying from 5% to 35% 

(low severity threshold)/35% to 65% (moderate severity threshold), when the high severity threshold are set as the dNBR values 

at the (a) 65%, (b) 75%, (c) 85% and (d) 95% quantiles. 

 235 

The thresholds of dNBR for fire severity classification for different vegetation types are determined by the proposed method 236 

and the results are presented in Table 1. It is shown that the thresholds vary significantly with vegetation type. For example, 237 

for rainforests when dNBR of burnt area is around 0.20, this area should be classified as high severity. However, the burnt 238 

area with the same dNBR (0.20) would be classified as moderate severity when wildfire burns over other vegetation types. 239 

This difference is also found in the major vegetation type within different subgroups. A burn area with dNBR around 0.53 is 240 

classified as extreme high severity when fire burns over wet sclerophyll forests (grassy subformation), while this burn area is 241 

classified as high severity when fire burns over wet sclerophyll forests (shrubby subformation). The differences in 242 

classification thresholds are more significant between dry sclerophyll forests with shrub/grass subformation and shrubby 243 

subformation. The thresholds for high severity classification are 0.44 and 0.55 for burnt area over dry sclerophyll forests 244 

(shrub/grass subformation) and dry sclerophyll forests (shrubby subformation), respectively. These results indicate that using 245 

the vegetation specific thresholds would obtain more reasonable fire severity classification results, while a lot of mis-246 
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classifications are found when applying fixed thresholds in fire severity classification without considering the variations in 247 

vegetation cover. 248 

 249 

Table 1. Thresholds of dNBR for fire severity classification by vegetation type. 250 

Vegetation Low Moderate High Extreme 

Rainforests < 0.05 (25%) 0.05 - 0.18 (25%-45%) 0.18 – 0.41 (45%-75%) > 0.41 (75%) 
Wet sclerophyll forests (Shrubby subformation) < 0.15 (35%) 0.15 - 0.34 (35%-55%) 0.34 - 0.56 (55%-85%) > 0.56 (85%) 
Wet sclerophyll forests (Grassy subformation) < 0.17 (35%) 0.17 - 0.34 (35%-55%) 0.34 - 0.52 (55%-85%) > 0.52 (85%) 
Grassy woodlands < 0.15 (35%) 0.15 - 0.36 (35%-55%) 0.36 - 0.55 (55%-85%) > 0.55 (85%) 
Dry sclerophyll forests (Shrub/grass subformation) < 0.12 (15%) 0.12 - 0.26 (15%-45%) 0.26 - 0.44 (45%-75%) > 0.44 (75%) 
Dry sclerophyll forests (Shrubby subformation) < 0.20 (25%) 0.20 – 0.38 (25%-55%) 0.38 – 0.55 (55%-85%) > 0.55 (85%) 
Heathlands < 0.26 (35%) 0.26 – 0.40 (35%-55%) 0.40 – 0.57 (55%-75%) > 0.57 (75%) 

 251 

4.3 Fire severity prediction results 252 

The performance of vegetation specific thresholds and the importance of vegetation type are validated by the cross-validation 253 

in the RF model. Figure 5 (a) and (b) show the relative importance of variables in the MF based on samples classified by 254 

vegetation specific thresholds and fixed thresholds, respectively. The error bar represents the standard deviation (sd) of relative 255 

importance in RF models in the cross-validation experiments. The preNBR is the most influential variable with relative 256 

importance around 28% and sd around 7%. The FFDI also plays an important role in the model with relative importance and 257 

sd of 21% and 6%, respectively. The KBDI shows close relative importance to those of FFDI, the values of mean relative 258 

importance and sd are 19% and 5% respectively. While for vegetation type, the relative importance (13%) is higher than those 259 

of topographic variables when the vegetation specific thresholds are applied. The sd of vegetation type is the largest (9%), 260 

owing to the differences in vegetation diversity in the training samples. 261 
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(a) (b) 

Figure 5. Relative importance of variables in RF models based on samples classified by (a) vegetation specific thresholds and (b) 

fixed thresholds. 

 262 

The confusion matrix of the fire severity classification results is shown in Table 2. More samples are classified into extreme 263 

high severity classification when applying vegetation specific thresholds than those using fixed thresholds. Similarly, more 264 

samples are classified into low severity while implementing fixed thresholds than vegetation specific thresholds. This indicates 265 

that using fixed thresholds without considering the vegetation type tends to underestimate the fire severity levels. While for 266 

the performance of fire severity prediction, most events of extreme high severity are correctly identified by the RF model 267 

trained by samples classified by vegetation specific thresholds while more misclassified extreme high severity and high 268 

severity events are predicted by the RF model trained by samples classified by fixed thresholds.  269 

 270 

Table 2. Confusion matrix of prediction results based on RF model trained by samples classified by vegetation specific and 271 

fixed thresholds. 272 

Vegetation specific Fixed 

 Extreme High Moderate Low  Extreme High Moderate Low 

Extreme 52680 22782 813 9 Extreme 36573 24573 1755 30 

High 4749 94899 17265 171 High 3930 64740 21498 471 

Moderate 501 20487 103536 3948 Moderate 852 19794 94857 8739 

Low 147 1422 22239 36897 Low 357 2754 31299 70347 

 273 
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The overall classification accuracy calculated by equation (4) is 0.75 and 0.69, for RF models trained by samples classified by 274 

vegetation specific and fixed thresholds, respectively. Figure 6 (a), (b) and (c) show the Precision, Recall and F1 score of event 275 

severity classification results for each class label calculated by equations (5) – (7). The Accuracy, Precision, Recall results and 276 

F1 Score close to 1 indicate accurate classification results. For the classification metrics of each class label, the high severity 277 

events class exhibit the best Precision (0.85) relative to the moderate (0.76) and extreme high severity event classes (0.68), 278 

while the Recall and F1 score for high severity events class are 0.64 and 0.73, respectively. The extreme high severity events 279 

class exhibit the best Recall (0.89) relative to the other two classes, and the Precision and F1 score are 0.68 and 0.77, 280 

respectively. The performances of fire severity classification are worse for the RF model trained by samples classified by the 281 

fixed thresholds, with lower precision, recall and F1 score. 282 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 6. The results of Precision for predictions based on (a) vegetation specific thresholds and (b) fixed thresholds; The results 

of Recall for predictions based on (c) vegetation specific thresholds and (d) fixed thresholds; The results of F1 score for predictions 

based on (e) vegetation specific thresholds and (f) fixed thresholds; 

 283 

Figure 7 displays the fire severity map for the 2002, 2008, 2011 and 2019 wildfires in NSW based on the vegetation specific 284 

thresholds and fixed thresholds. It is obvious that the results using the fixed thresholds tend to underestimate the severity levels 285 

compared to the results using the vegetation specific thresholds, especially for the 2002 and 2011 wildfires. While the predicted 286 

severity using the vegetation specific thresholds could better capture the spatial patterns of fire severity which demonstrate the 287 

benefits of applying fixed thresholds to different vegetation in fire severity predictions. 288 
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Figure 7. Fire severity classification map based on vegetation specific thresholds and fixed thresholds. 

 289 

To evaluate the model’s performance in fire severity prediction, we apply the leave-one-year-out cross-validation method. We 290 

validate the fire severity predictions against the observed burn severity derived from Landsat images and compare the 291 

predictions based on the RF model with (and without) severity classification method. Figures 8 (a), (b) and (c) display the 292 

scatterplots of fire severity prediction against fire severity observations based on RF model without severity classification, 293 

with severity classification using the fixed threshold and using the vegetation-specific threshold, respectively. Arguably, the 294 

predictions without severity classification show strong underestimation of high fire severity events and overestimation of low 295 

burn severity events, with 𝑅  value of 0.62, RMSE and MAE are 0.14 and 0.11, respectively. The distributions of predictions 296 

with severity classification using the fixed threshold do not agree well with observations, though showing higher 𝑅   (0.79), 297 

lower RMSE and MAE values of 0.11 and 0.08, respectively. Predictions with severity classification using the vegetation-298 
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specific threshold exhibit better fire severity prediction results for high-, moderate- and low-severity events with improved R2, 299 

RMSE and MAE, which are 0.89, 0.07 and 0.05, respectively. 300 

  

(a) (b) 

 

 

(c)  
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Figure 8. Scatterplots of fire severity prediction against observations based on XGBoost model (a) without severity 
classification; (b) with severity classification using the fixed threshold; and (c) with severity classification using the 
vegetation-specific threshold. 

 301 

We also evaluate the model’s ability of capturing the fire severity dynamics and magnitude in terms of mean fire severity for 302 

the selected wildfires. Figure 9 (a) displays the dynamics of predicted fire severity based on RF model with and without severity 303 

classification, while Figures 9 (b), (c) and (d) show the dynamics of associated performances of R2, RMSE and MAE, 304 

respectively. The predictions without severity classification are unable to capture the dynamics of mean fire severity, having 305 

the lowest R2 and highest RMSE and MAE values. While the dynamics of the predicted fire severity with severity classification 306 

has better correlation with the observed ones compared to those without severity classification, especially the results with 307 

severity classification using the vegetation-specific threshold, which exhibit the best performance of predicting fire severity 308 

magnitude with the largest R2 and lowest RMSE and MAE values. These results indicate that severity classification is an 309 

important process to improve the performance of fire severity prediction models. 310 

  

(a) (b) 

  

(c) (d) 

Figure 9. Time series of (a) mean fire severity, (b) R2, (b) RMSE and (c) MAE from 2000 to 2019 based on XGBoost 
models without severity classification and with severity classification using the fixed and vegetation-specific threshold. 

 311 
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Figure 10 depicts a summary plot of estimated SHAP values coloured by the feature values, ranked from top to bottom by their 312 

importance. It is shown that preNBR is the most important feature in the model, followed by FFDI. The KBDI is also crucial 313 

in the model. The topographic factors are also contributing to the model. We can find that having a high preNBR is associated 314 

with high and positive values on the model output, indicating the larger preNBR is the prerequisite of more severe wildfire. 315 

Similar to the effect of preNBR on the model output, a high FFDI is always associated with high and positive SHAP values, 316 

which means the more severe fire weather could lead to more destructive wildfires. Though some high KBDI is found to be 317 

associated with negative SHAP values, the KBDI still shows strong positive effect on the model output, reflecting the fact that 318 

the dry condition could favour the fire behaviour. Regarding the topography, the large slope and TPI tend to have positive 319 

SHAP values, meaning the more severe fire tends to occur in steeper and higher position. 320 

 321 

 

Figure 10. The SHAP values for variables predicting fire severity based on XGBoost model. 

 322 

Fig. 11 displays the partial dependence plot (PDP) for each feature in the model. From Figure 11, it can be shown that the 323 

preNBR has a strong positive association with the dNBR, implying that dNBR increases with the preNBR rapidly. The FFDI 324 

shows a non-monotonic relationship with dNBR, with a decreasing trend observed when it is less than 30, a steady increasing 325 

trend between 30 to 65 and significant increasing after it exceeds 65, suggesting that the fire weather dependence is more 326 

complex. The weak correlation between KBDI and dNBR, within the range of KBDI lower than 400, indicates that KBDI has 327 

nearly no influence when it is below 400. While the positive correlation between KBDI and dNBR, within the range of 400 to 328 

600, suggest that the dry condition would intensify the fire severity. However, a declining trend of KBDI is found when it 329 
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exceeds 600, meaning the impact of KBDI on dNBR becomes weaker. Regarding the slope, a negative association with dNBR 330 

is observed when it is below 3, while a positive relationship is found when it exceeds 3. The TPI shows an overall positive 331 

association with dNBR. These findings demonstrate that fire severity tends to be higher on steeper slopes and in hilltops. 332 

 333 

 

Figure 11. The variation of SHAP values as variables change. 

5 Discussion 334 

This study shows that the proposed predictive technique is capable of providing robust fire severity prediction information, 335 

which can be used for forecasting seasonal fire severity and, subsequently, impacts on biodiversity and ecosystems under 336 

future projected climate conditions.  337 

We find that the RF method is effective in classifying fire events into different levels of fire severity and XGBoost method is 338 

a useful method to characterise the relationships between fire severity and explanatory variables (e.g., preNBR, FFDI, KBDI, 339 

slope and TPI). Fire severity is a complex function of explanatory variables gradients and these relationships may vary in 340 

different vegetation type and severity levels. The preNBR, an approximation of the pre-fire vegetation condition, plays an 341 

important role in classification and prediction, as the change in NBR pre- and post-fire, i.e. dNBR, will be dependent on both 342 

the condition of the vegetation before the fire and the degree of change to vegetation after the fire. The preNBR, indicating the 343 

pre-fire vegetation condition, might be related to the pre-fire drought. For example, drought reduces the water content of 344 

foliage (Choat et al. 2018), thus reducing preNBR, so the maximum absolute change in NBR (dNBR) possible might be smaller 345 
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during a drought year than a non-drought year. The FFDI is found to be important in fire severity classification and prediction. 346 

The meteorological conditions are proven to be the most influential predictors in determining the magnitude of fire severity 347 

(Clarke et al., 2014; Bowman et al., 2021). The FFDI is the index of fire weather severity during the fire season thus is workable 348 

in determining the potential burn severity level. KBDI is another important variable in fire severity classification. It is known 349 

that drought can create conditions that favour severe fires (Abram et al. 2021) and that the combined effects of fire and drought 350 

can contribute to plant population declines (Gallagher et al. 2022; Nolan et al. 2021) and ecosystem transformation (Keith et 351 

al. 2022). Severe drought conditions also directly contribute to forest flammability (Nolan et al. 2020). More importantly, the 352 

frequency, intensity and duration of drought conditions are   projected to shift under future climates (Ukkola et al. 2020). These 353 

changes in drought regimes will likely be associated with increases in the size, frequency and severity of fires (Abram et al. 354 

2021). TPI and slope, as important topographic factors, also have considerable influence on low fire severity. For example, 355 

Bradstock et al. (2010) found burn severity is lower in valleys, probably due to effects of wind protection and higher fuel 356 

moisture in moderating fire behaviour. Barker et al. (2018) found that the probability of low severity increased with slope. In 357 

this study, we find that fire severity tends to be higher on steeper slopes and higher position, this might be that steep slopes 358 

can intensify fire behaviour by creating a chimney effect that draws in air and accelerates the fire (Andrews and Bradshaw, 359 

2012; Jolly et al., 2015; Seginer and Brandl, 2007.). Besides, higher elevations generally have lower air pressure and reduced 360 

humidity, which helps fire burn more intensely (Abatzoglou and Kolden, 2011; Holden et al., 2018). Additionally, vegetation 361 

on steep slopes can be thicker and more continuous, providing more fuel for the fire (Collins et al., 2009; Pausas and Fernández-362 

Muñoz, 2012). 363 

The introduction of vegetation specific thresholds is proven to be beneficial for fire severity classification. The range of dNBR 364 

varies significantly with vegetation types, and thus applying a fixed threshold in dNBR would lead to a large amount of 365 

misclassification in fire severity levels. This kind of mis-classification error is mitigated by using vegetation specific thresholds 366 

in dNBR. The vegetation type also plays an important role in the RF model. The relative influence of vegetation type is larger 367 

than the topographic factors while the deviation of vegetation type is the largest in the meantime. The relative influence of 368 

vegetation type and the deviation changes with the number of vegetation types and its fractions in the fire event. For example, 369 

five vegetation types were affected in the2002 wildfire, and the fractions of vegetation types are: dry sclerophyll forests 370 

(shrubby subformation) (30%), grassy woodlands (31 %), wet sclerophyll forests (grassy subformation) (23%), dry sclerophyll 371 

forests (Shrub/grass subformation) (14%) and grasslands (2%). While in the 2019 wildfire, seven vegetation types were 372 

affected, dry sclerophyll forests (shrubby subformation) accounts for 92% of the burn area. The relative influence of vegetation 373 

type in the 2002 wildfire is around 10% while only 5% in the 2019 wildfire. This could also explain why no significant 374 

differences are found between fire severity maps using vegetation specific thresholds and fixed thresholds in the 2019 wildfire. 375 

Since more than 90% of the burn area in the 2019 wildfire is covered by dry sclerophyll forests (shrubby subformation) and 376 

the fixed thresholds are adopted from the thresholds of dry sclerophyll forests (shrubby subformation), the fire severity 377 

classification for 2019 wildfire is almost equal to the fire severity classification for dry sclerophyll forests (shrubby 378 

subformation). 379 
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This study develops a predictive technique which is capable of providing robust fire severity classification and prediction 380 

information for historical events, which also has the potential to forecast the seasonal fire severity. The input variables to  the 381 

model could be obtained from other forecast models: fire weather related variables can be extracted from the Weather Research 382 

and Forecasting (WRF) model. The preNBR has the seasonality characteristics, which can be predicted based on the historical 383 

preNBR time series. The vegetation type and topographic factors are static variables, while the variables for calculating FFDI 384 

and KBDI, e.g., wind speed, relative humidity, precipitation, air temperature, are available from WRF outputs. Quick 385 

assessment of fire severity for wildfires are accessible based on the proposed predictive technique, once the burn area are 386 

derived from the burn area prediction models (Alkhatib, 2014: Castelli et al., 2015) or monitoring products (e.g., MODIS 387 

Burned Area Product, MCD64A1) 388 

6 Conclusions 389 

This study introduces the vegetation specific thresholds in fire severity classification for wildfires over NSW, Australia. We 390 

use the pre-fire season drought conditions, topography, and the fire season meteorological conditions as input to build the 391 

predictive model and the performances are validated by EXtreme Gradient Boosting (XGBoost) to predict the fire severity, 392 

proxied by dNBR.  393 

Using the vegetation specific thresholds we could improve the classification accuracy in fire severity levels. Specifically, using 394 

a leave-one-out cross-validation, the severity classification results showed an improved classification accuracy of 0.75 based 395 

on the proposed vegetation specific thresholds, compared to those based on fixed thresholds (0.69). The predictive performance 396 

of XGBoost model is improved as well based on the classification results, with determination coefficient (𝑅 ), mean absolute 397 

error (MPE) and root mean square error (RMSE) values of 0.89, 0.05, and 0.07, respectively. We show that the preNBR is the 398 

most important variable in fire severity classification and prediction, followed by FFDI and KBDI. The PDP of FFDI and 399 

KBDI indicate that the likelihood of high severity increases when weather and drought conditions become more severe. From 400 

the responses of dNBR to topographic factors, the probability of high severity increases with slope and elevation. The role of 401 

vegetation type in fire severity prediction becomes more important for large fires where more diverse vegetation is affected.  402 

The results demonstrate that the prediction technique performs well predicting fire severity of historic fires (2000-2019) in the 403 

Australian state of NSW, while it also shows the potential to be applicable for seasonal fire severity forecasts, owing to the 404 

availability of the predictor variables in seasonal forecasting outputs. With the expected increase in wind speed, temperature 405 

and drought conditions exhibited in future climate projections, this prediction technique can also be used to evaluate the 406 

variation of fire severity under climate change. 407 
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