
This paper proposes a novel approach for fire severity, with a focus on the escalating wildfire 1 

activity in southern Australia. By introducing a vegetation-type specific fire severity 2 

classification method applied to satellite imagery, the paper lays the groundwork for more 3 

accurate prediction and assessment of wildfire impacts on ecosystems. The paper is well written 4 

and organized, but there are few items that could be addressed to strengthen the importance of 5 

the work. 6 

Respond: We appreciate the reviewer’s constructive comments on the manuscript to further 7 

improve the quality and the contribution of our work. Below are the authors’ responses on all of 8 

the reviewer’s questions and suggestions. The reviewer’s comments are marked as red, while 9 

our responses are marked as blue. 10 

Introduction 11 

The authors state that no classification scheme for southern Australia exists, however literature 12 

showed works towards this, see for example (Collins et al., 2018; Dixon et al., 2022; Gale et al., 13 

2023; Gibson et al., 2020). There are also accessible datasets on fire severity available from other 14 

sources, for the country, https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severity-15 

mapping-fesm 16 

Respond: We are sorry didn’t state this sentence clearly. While most fire severity classifications 17 

are based on the field assessed index, like Composite Burn Index (CBI), and interpretation from 18 

aerial photographs, which are always labor intensive and time consuming, especially for large 19 

regions. And those prediction models rely on establishing the relationships between satellite-20 

derived index (dNBR) and CBI or appearances from aerial photographs. 21 

Our study tried to propose a more straight dNBR-based fire severity classification scheme based 22 

on the statistical analysis of dNBR for historical wildfire events, without relying on the CBI or 23 

aerial photographs. 24 

From line 63 to line 72 in the revised manuscript: 25 

“The most prevailing fire severity classification scheme mainly rely on the in-situ measurements 26 

of Composite Burn Index (CBI, Key and Benson, 2006; Lutes et al., 2006) and aerial photographs 27 

identification (Collins et al., 2018; Dixon et al., 2022) which are available for certain regions and 28 

for limited vegetation types under certain climate (Eidenshink et al., 2007; Keeley et al., 2009; 29 

Tran et al., 2018). However, obtaining CBI and interpreting aerial photographs are always labor-30 

intensive and time-consuming, especially over large areas, while inferring fire severity levels 31 

directly from satellite-derived dNBR is more efficient for large-scale applications, yet no dNBR-32 

based fire severity classification scheme has been proposed for regions such as the southeast coast 33 

of Australia, which is subject to annual wildfire seasons and varies greatly in  vegetation types 34 

with high richness of endemic plant species adapted to particular fire regimes (Gallagher et al., 35 

2021)” 36 
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 57 

Fire severity: 58 

As the technique for dNBR relies on NIR and SWIR, would it be possible to apply the proposed 59 

methods to other imagery sources, such as Sentinel or the new Landsat missions? If applicable, it 60 

would be beneficial to highlight this point as well for researcher wanting to apply the proposed 61 

approach. 62 

Respond: Yes, this technique is applicable to other imagery source, with the correct band 63 

settings for NIR and SWIR.  64 

From line 105 to line 108 in the revised manuscript, 65 

“NBR can be computed by the Thematic Mapper (TM) and Enhanced Thematic Mapper Plus 66 

(ETM+) sensors on using Band 7 as the short-wave infrared (SWIR) and Band 4 for Landsat 4-7 67 

and Band 5 for Landsat 8 as the near infrared (NIR) reflectance, respectively. While in Sentinel-68 

2, SWIR and NIR are represented by Band 8 and Band 12, respectively.” 69 

And from line 451 to 453 in the revised manuscript: 70 



“The NBR images are derived from the Landsat 5,7 and 8 in this study, while it is also applicable 71 

to other image sources based on the reflectance information form NIR and SWIR, such as the 72 

new launched Landsat 9 and Sentinel-2 (Mallinis et al., 2018; Howe et al. 2022).” 73 

References: 74 
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Topography: 82 

The authors consider the SRTM as main DEM source, and in the discussion, they highlight how 83 

topography appears as an important variable in their model. SRTM however presents limits, 84 

especially in areas covered by vegetation, and in general, its error values have strong correlation 85 

with terrain slope and certain aspect values (See e.g. (Gorokhovich and Voustianiouk, 2006; 86 

Shortridge and Messina, 2011). 87 

For Australia specifically, there is the availability of an upgraded SRTM [SRTM-derived 1 88 

Second -and 3 seconds- Digital Elevation Models Version 1.0, which are an improved DEM 89 

compared to the original SRTM.  Literature also highlighted that COPDEM30, and the 90 

underlying TanDEM-X data, as the most recent and accurate global DEM, and (Hawker et al., 91 

2022) provided a further cleaned version of such a DEM without buildings and Vegetation. Did 92 

the authors consider using this upgraded terrain information for the model? 93 

Respond: Thank you for bringing to attention the limitations of SRTM data, especially in 94 

vegetated areas and terrains with pronounced slopes or certain aspects. The points raised about the 95 

correlation of SRTM error values with terrain characteristics, and the availability of improved 96 

DEM sources such as the upgraded SRTM for Australia and the COPDEM30, are indeed very 97 

pertinent. 98 

We compared the original SRTM used in this study with the upgraded SRTM [SRTM-derived 1 99 

Second Digital Elevation Models Version 1.0] for Australia, over the burn area from 2000 to 2019. 100 

The results, as Figure 1 (a) shown in the response letter, indicate that the original SRTM and the 101 

upgraded SRTM present similar spatial patterns in terms of the elevation over the burn area. We 102 

also calculated the relative differences between the elevation from original SRTM and the 103 

upgraded SRTM to the elevation from the upgraded SRTM, e.g. relative differences = 104 

100*(original SRTM - upgraded SRTM)/ upgraded SRTM and present the result as Figure 1 (b) 105 

in the response letter. We find that most of the difference range from -10 % to 10 %, which is not 106 

the markable difference.  107 



While this study mainly focuses on proposing a vegetation specific classification method to 108 

improve the performance of fire severity prediction model, we acknowledge the potential benefits 109 

of incorporating more refined elevation data to enhance the accuracy of our model, yet did not 110 

utilize the upgraded SRTM or the cleaned version of COPDEM30 in our present analysis. 111 

However, the prospect of applying these more accurate DEM sources is an exciting direction for 112 

our future research endeavors. 113 

  

(a) (b) 

Figure 1. (a) Spatial patterns of elevation from original SRTM and the SRTM-derived 1 Second 
Digital Elevation Models Version 1.0 and (b) the distribution of relative difference between 
DEM from original SRTM and the SRTM-derived 1 Second Digital Elevation Models Version 
1.0, over burn area from 2000 to 2019 in NSW; 

 114 

From line 428 to line 431 in the revised manuscript: 115 

“The advances in DEM technology, as evidenced by the improvements in the SRTM data, such as 116 

SRTM-derived 1 Second -and 3 seconds- Digital Elevation Models Version 1.0 for Australia, and 117 

the introduction of global COPDEM30 and TanDEM-X data [Hawker et al., 2022], offer 118 

opportunities for refining fire-topography relationship analyses and potentially providing more 119 

precise fire severity prediction results.” 120 

 121 

 122 

 123 

 124 

 125 

Weather: 126 



How was the ‘1 day window’ decided to get the weather event? Is there a physical meaning 127 

linked to this choice or was it operationally decided? I am not sure if it is possible, but have the 128 

authors investigated the sensitivity of the results to this window? Literature reported a known 129 

potential limitation of the fire history database as the fact that the date of the fire attribute does 130 

not always represent the exact burn date (Dixon et al., 2022). Dixon for example proposed a 131 

semi-automatic MODIS date-adjustment method to obtain the start and end fire dates: have the 132 

authors considered something similar? 133 

Respond: In this study, the daily FFDI value for the day prior to the start of the wildfires is used 134 

as the input variable in the model. We use daily FFDI because FFDI is typically calculated on a 135 

daily basis, indicated by Australian Bureau of Meteorology (BoM, 136 

http://www.bom.gov.au/climate/maps/averages/ffdi/). This daily calculation allows for the 137 

assessment of fire danger to reflect current weather conditions, including temperature, humidity, 138 

wind speed, and recent rainfall, which are critical for determining the day-to-day fire risk.  139 

We use the daily FFDI for the day prior to the start of the wildfires because we found that 140 

extreme values of the FFDI appeared at times close to the start of the wildfires, as presented by 141 

Figure 22, Figure 26, Figure 30, Figure 34, Figure 43 in Dowdy et al. (2009). The physical 142 

rationale behind this choice is rooted in the understanding that weather conditions can change 143 

rapidly and have immediate effects on fire behavior. Using the most potential extreme FFDI, 144 

indicating the extreme weather conditions, in the period leading up to a wildfire could address 145 

the impact of weather on wildfire risk.  146 

From line 154 to line 158 in the reviser manuscript, 147 

“The daily FFDI and KBDI values for the day prior to the start of the wildfires are used as the 148 

predictors in predicting burn severity, owing to the strong correlation in time between extreme 149 

values of the FFDI and  the start of the wildfires [Dowdy et al., 2009]Using the most potential 150 

extreme FFDI, indicating the extreme weather conditions, in the period leading up to a wildfire 151 

could address the impact of weather on wildfire risk.” 152 

References: 153 
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represented by the McArthur forest fire danger index and the Canadian forest fire weather index 155 
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 157 

Regarding the sensitivity of the results to the selected time window, we have not yet conducted 158 

an extensive sensitivity analysis. Future research could explore varying the window of 159 

observation to assess the impact on model results and address the issue raised by Dixon et al. 160 

(2022). The burn area and the associated burn date data are from NPWS Fire History - Wildfires 161 

and Prescribed Burns Dataset (https://datasets.seed.nsw.gov.au/dataset/fire-history-wildfires-and-162 

prescribed-burns-1e8b6), which we think has good data quality preserved by NSW Department 163 

of Climate Change, Energy, the Environment and Water. 164 

 165 

From line 492 to 494 in the revised manuscript: 166 



 167 

“In addition, the sensitivity analysis of the selected time window to define the fire event and 168 

obtain the associated weather conditions is promoted to improve our understanding of the 169 

relationship between weather conditions and fire occurrences. By adjusting the time window and 170 

possibly integrating more precise burn date data, we can work towards a more accurate and 171 

physically meaningful analysis of fire events and their contributing factors.” 172 

Fire severity classes: 173 

As it is my understanding, the severity is based on the dNBR which ranges from -n to +n. Is 174 

there a meaningful range of this value representing the severity? (I assume the higher in the 175 

positive, the higher the expected impact of the fire -if this is the case, please can you clarify it for 176 

the readers not too familiar with the approach? When selecting the quantiles, does the author use 177 

the full range of dNBR or focus on a selected part of the distribution (would that matter, if that’s 178 

the case?). 179 

Respond: The differenced Normalized Burn Ratio (dNBR) is a metric used to quantify burn 180 

severity by analyzing the difference in the spectral signature of an area before and after a fire 181 

event. The dNBR is calculated by subtracting the post-fire NBR from the pre-fire NBR, resulting 182 

in values that theoretically range from -2 to +2. The scale of dNBR values indeed reflects the 183 

severity of a fire with high positive values indicate severe burn damage where the vegetation has 184 

been completely consumed. Values around zero suggest either unburned areas or areas where the 185 

fire had a very low impact. Negative values can indicate an increase in vegetation, which might 186 

be due to vegetation recovery over time or errors in the analysis. 187 

From line 117 to line 120 in the revised manuscript: 188 

“The dNBR typically ranges from -2 to +2, with high positive values indicate severe burn 189 

damage where the vegetation has been completely consumed. Values around zero suggest either 190 

unburned areas or areas where the fire had a very low impact. Negative values can indicate an 191 

increase in vegetation, which might be due to vegetation recovery over time or errors in the 192 

analysis.” 193 

In selecting the quantiles for analysis, the full range of dNBR values is generally considered to 194 

capture the complete spectrum of burn severity, the results will provide a comprehensive 195 

overview of all fire severities. In the context of our study, we have utilized the full range of 196 

dNBR values to ensure a broad assessment of fire severity across the landscape. This inclusive 197 

approach allows us to capture all degrees of burn severity, from low to extreme, offering a 198 

complete view of the fire's impact. 199 

I find it a bit confusing that the methods describe a threshold selection, but the whole approach is 200 

clarified better in the discussion of the results at chapter 4.2. Would it be possible to restructure a 201 

bit this chapter in the method, to clarify how the selection is done? 202 

Respond: Thanks for the suggestion. We have rewritten the method section to better clarify how 203 

to use the quantile based threshold in burn severity classification. 204 



From line 161 o line 165 in the revised manuscript, 205 

“The dNBR of all burnt pixels for each vegetation type are collected and a set of dNBR values at 206 

the quantiles varying from 5% to 35% representing the threshold for low severity classification, 207 

quantiles varying from 35% to 65% representing the threshold for moderate severity classification, 208 

and quantiles varying from 65% to 95% representing the threshold for high severity classification. 209 

For example, a classified burn severity sample can be obtained using the thresholds for high, 210 

moderate and low severity at 85% quantile, 55% quantile and 25% quantile, respectively.” 211 

Maybe this comes from my misinterpretation of the result chapter, but my understanding is that 212 

the ground truth for the severity is the ‘observed severity’ from Landsat for some specific fires 213 

(Figure 7). If this is the case, and the severity level is defined by a ‘moving’ threshold which in 214 

turn is defined by the best model in the training phase, how do you objectively define if the 215 

severity is ‘under’ or ‘over’ estimated as compared to the reality of the events? The observed 216 

severity is defined using a threshold derived from a ‘training’ of the model. 217 

Would it be possible to compare your severity to some data independent from the threshold 218 

choice? I see for example for Australia some other datasets are available, such as 219 

https://data.gov.au/dataset/ds-nsw-c28a6aa8-a7ce-4181-8ed1-fd221dfcefc8/details?q= 220 

Respond: Thanks for the suggestion. In the revised manuscript, we have used the fire severity 221 

classification maps from the Fire Extent and Severity Mapping (FESM) preserved by NSW 222 

Department of Climate Change, Energy, the Environment and Water as the independent source to 223 

validate the burn severity prediction maps from the model in this study. 224 

From line 318 to line 339 in the revised manuscript: 225 

“Figure 7 displays the fire severity maps for the 2016, 2017, 2018 and 2019 wildfires in NSW 226 

from FESM, along with predictions based on vegetation specific and fixed thresholds. For the 227 

wildfire in 2016, predictions based on vegetation specific thresholds show similar spatial patterns 228 

of fire severity to those from FESM, while predictions based on fixed thresholds significantly 229 

underestimate the fire severity in the high and extreme fire severity areas of the FSEM. Similarly 230 

for the wildfire in 2018, predictions based on fixed thresholds significantly underestimate high and 231 

extreme severity compared to the FESM map, while predictions based on vegetation specific 232 

thresholds slightly underestimate extreme severity. For the wildfire in 2017, both the FESM and 233 

predictions display similar spatial distributions of fire severity level with predictions based on 234 

fixed thresholds presents more low severity compared to FESM map. For the wildfire in 2019, 235 

however, predictions based on fixed thresholds tend to overestimate the fire severity as extreme in 236 

regions found to be high severity in FESM map, while predictions based on vegetation specific 237 

thresholds agreed better with FESM map. 238 



 

Figure 7. Fire severity classification maps from FESM and predictions based on 
vegetation specific and fixed thresholds for wildfires in 2016 to 2019 in NSW. 

 239 

Table 3 shows the confusion matrix for fire severity classification between FESM and predictions 240 

based on vegetation specific and fixed thresholds. It is noted that predictions based on vegetation 241 

specific thresholds exhibit better ability of classing extreme and high severity with accuracy of 242 

0.64 and 0.76, respectively. While the classification accuracy for extreme and high severity of 243 

predictions based on fixed thresholds are 0.21 and 0.39, respectively. Predictions based on 244 

vegetation specific thresholds also have better accuracy of classifying moderate severity with value 245 

of 0.62, compared to those based on fixed thresholds with value of 0.47. Both predictions based 246 

on vegetation specific and fixed thresholds show poor performance in classifying low severity, 247 

with accuracy of 0.24 and 0.26 respectively. The overall classification accuracy for predictions 248 

based on vegetation specific thresholds is 0.57, which is better than predictions based on fixed 249 

specific thresholds with accuracy of 0.36. 250 

Table 3. Confusion matrix for fire severity classification between FESM and predictions based on 251 

vegetation specific and fixed thresholds. 252 



Vegetation specific Fixed 

 Extreme High Moderate Low  Extreme High Moderate Low 

Extreme 4345 2378     6 3 Extreme 1448 2822     2027 435      

High 1490 6947     605 1 High 1430 3561     3358 694      

Moderate 3 5702        9338 5 Moderate 998 4633      7084 2333      

Low 0 172        7125   2372      Low 161 1722      5264 2522      

 253 

  Minor comments 254 

Figure 1: it is a bit hard to visualize the ‘wildfire for cross validation’ in the map: is it underlaid 255 

to the colored burned areas? I assume the burn years refer to the dataset mentioned in the 256 

following page. 257 

NSW National Parks and Wildlife Service 88 (NPWS) Fire History – Wildfire and Prescribed 258 

Burns dataset (https://data.nsw.gov.au/data/dataset/1f694774-49d5-47b8- 89 8dd0-259 

77ca8376eb04 ) 260 

IF so, maybe mention this in the caption. 261 

Also, it appears that the link is not working [I tried and accessed it on 05-feb-2024] 262 

Respond: We have redesigned the Figure to make it clearer to see. We also mentioned the 263 

source for the burn area map and fixed the link (https://datasets.seed.nsw.gov.au/dataset/fire-264 

history-wildfires-and-prescribed-burns-1e8b6 ). 265 

 266 

Figure 1. Locations of study wildfires over New South Wales (NSW), Australia. The burn area is 267 

from NSW National Parks and Wildlife Service (NPWS) Fire History – Wildfire and Prescribed 268 

Burns dataset. 269 



Paragraph from line 206-217: Figure 2 should be Figure 3, Same for the references in the 270 

following chapters, it seems the authors refers to figure 3 as 2 (Eg line 221) 271 

Respond: We have revised them accordingly. 272 

Line 212: typo on the number, should be 6.7% not 6,7% 273 

Respond: We have revised it accordingly. 274 

Figure 3: are the vegetation numbers from n to 16 in figure b referring to the legend in figure a? 275 

if so maybe leave only one legend to avoid confusion on what the number represents, or add the 276 

names of vegetation on the x axis rather than as an additional color bar 277 

Respond: We have redesigned the Figure 3. 278 

   

(a) (b) 

Figure 3. (a) The proportion of burnt area and (b) the distribution of fire severity grouped by vegetation type, over 
NSW from 2000 to 2019 

 279 

  280 

References 281 

Collins, L., Griffioen, P., Newell, G., Mellor, A., 2018. The utility of Random Forests for 282 

wildfire severity mapping. Remote Sensing of Environment 216, 374–384. 283 

https://doi.org/10.1016/j.rse.2018.07.005 284 

aerial photos for validation. Maps produced using the RF classifier in GEE had similar spatial 285 

patterns in fire severity classes as maps produced using time-consuming hand digitisation of 286 

aerial images 287 



Dixon, D.J., Callow, J.N., Duncan, J.M.A., Setterfield, S.A., Pauli, N., 2022. Regional-scale fire 288 

severity mapping of Eucalyptus forests with the Landsat archive. Remote Sensing of 289 

Environment 270, 112863. https://doi.org/10.1016/j.rse.2021.112863 290 

aerial photo observations 291 

Gale, M.G., Cary, G.J., van Dijk, A.I.J.M., Yebra, M., 2023. Untangling fuel, weather and 292 

management effects on fire severity: Insights from large-sample LiDAR remote sensing analysis 293 

of conditions preceding the 2019-20 Australian wildfires. Journal of Environmental Management 294 

348, 119474. https://doi.org/10.1016/j.jenvman.2023.119474 295 

Gibson, R., Danaher, T., Hehir, W., Collins, L., 2020. A remote sensing approach to mapping 296 

fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sensing of 297 

Environment 240, 111702. https://doi.org/10.1016/j.rse.2020.111702 298 

Aerial photo interpretation classification of fire severity 299 

Gorokhovich, Y., Voustianiouk, A., 2006. Accuracy assessment of the processed SRTM-based 300 

elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain 301 

characteristics. Remote Sensing of Environment 104, 409–415. 302 

https://doi.org/10.1016/j.rse.2006.05.012 303 

Hawker, L., Uhe, P., Paulo, L., Sosa, J., Savage, J., Sampson, C., Neal, J., 2022. A 30 m global 304 

map of elevation with forests and buildings removed. Environ. Res. Lett. 17, 024016. 305 

https://doi.org/10.1088/1748-9326/ac4d4f 306 

Shortridge, A., Messina, J., 2011. Spatial structure and landscape associations of SRTM error. 307 

Remote Sensing of Environment 115, 1576–1587. https://doi.org/10.1016/j.rse.2011.02.017 308 

 309 


