

1 This paper proposes a novel approach for fire severity, with a focus on the escalating wildfire
2 activity in southern Australia. By introducing a vegetation-type specific fire severity
3 classification method applied to satellite imagery, the paper lays the groundwork for more
4 accurate prediction and assessment of wildfire impacts on ecosystems. The paper is well written
5 and organized, but there are few items that could be addressed to strengthen the importance of
6 the work.

7 **Respond:** We appreciate the reviewer's constructive comments on the manuscript to further
8 improve the quality and the contribution of our work. Below are the authors' responses on all of
9 the reviewer's questions and suggestions. The reviewer's comments are marked as **red**, while
10 our responses are marked as **blue**.

11 Introduction

12 The authors state that no classification scheme for southern Australia exists, however literature
13 showed works towards this, see for example (Collins et al., 2018; Dixon et al., 2022; Gale et al.,
14 2023; Gibson et al., 2020). There are also accessible datasets on fire severity available from other
15 sources, for the country, [https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severity-
16 mapping-fesm](https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severity-mapping-fesm)

17 **Respond:** We are sorry didn't state this sentence clearly. While most fire severity classifications
18 are based on the field assessed index, like Composite Burn Index (CBI), and interpretation from
19 aerial photographs, which are always labor intensive and time consuming, especially for large
20 regions. And those prediction models rely on establishing the relationships between satellite-
21 derived index (dNBR) and CBI or appearances from aerial photographs.

22 Our study tried to propose a more straight dNBR-based fire severity classification scheme based
23 on the statistical analysis of dNBR for historical wildfire events, without relying on the CBI or
24 aerial photographs.

25 From line 63 to line 72 in the revised manuscript:

26 "The most prevailing fire severity classification scheme mainly rely on the in-situ measurements
27 of Composite Burn Index (CBI, Key and Benson, 2006; Lutes et al., 2006) and aerial photographs
28 identification (Collins et al., 2018; Dixon et al., 2022) which are available for certain regions and
29 for limited vegetation types under certain climate (Eidenshink et al., 2007; Keeley et al., 2009;
30 Tran et al., 2018). However, obtaining CBI and interpreting aerial photographs are always labor-
31 intensive and time-consuming, especially over large areas, while inferring fire severity levels
32 directly from satellite-derived dNBR is more efficient for large-scale applications, yet no dNBR-
33 based fire severity classification scheme has been proposed for regions such as the southeast coast
34 of Australia, which is subject to annual wildfire seasons and varies greatly in vegetation types
35 with high richness of endemic plant species adapted to particular fire regimes (Gallagher et al.,
36 2021)"

37 References:

38 Key, C.H. and Benson, N.C., 2006. Landscape assessment (LA). FIREMON: Fire effects
39 monitoring and inventory system, 164, pp.LA-1.

40 Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S. and Gangi, L.J.,
41 2006. FIREMON: Fire effects monitoring and inventory system. Gen. Tech. Rep. RMRS-GTR-
42 164. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research
43 Station. 1 CD., 164.

44 Collins, L., Griffioen, P., Newell, G., Mellor, A., 2018. The utility of Random Forests for wildfire
45 severity mapping. *Remote Sensing of Environment* 216, 374–384.
46 <https://doi.org/10.1016/j.rse.2018.07.005>

47 Dixon, D.J., Callow, J.N., Duncan, J.M.A., Setterfield, S.A., Pauli, N., 2022. Regional-scale fire
48 severity mapping of Eucalyptus forests with the Landsat archive. *Remote Sensing of Environment*
49 270, 112863. <https://doi.org/10.1016/j.rse.2021.112863>

50 Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z.L., Quayle, B. and Howard, S., 2007. A project
51 for monitoring trends in burn severity. *Fire ecology*, 3(1), pp.3-21.

52 Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: a brief review and suggested
53 usage. *International journal of wildland fire*, 18(1), 116-126.

54 Tran, B.N., Tanase, M.A., Bennett, L.T. and Aponte, C., 2018. Evaluation of spectral indices for
55 assessing fire severity in Australian temperate forests. *Remote sensing*, 10(11), p.1680.

56

57

58 **Fire severity:**

59 As the technique for dNBR relies on NIR and SWIR, would it be possible to apply the proposed
60 methods to other imagery sources, such as Sentinel or the new Landsat missions? If applicable, it
61 would be beneficial to highlight this point as well for researcher wanting to apply the proposed
62 approach.

63 **Respond:** Yes, this technique is applicable to other imagery source, with the correct band
64 settings for NIR and SWIR.

65 From line 105 to line 108 in the revised manuscript,

66 “NBR can be computed by the Thematic Mapper (TM) and Enhanced Thematic Mapper Plus
67 (ETM+) sensors on using Band 7 as the short-wave infrared (SWIR) and Band 4 for Landsat 4-7
68 and Band 5 for Landsat 8 as the near infrared (NIR) reflectance, respectively. While in Sentinel-
69 2, SWIR and NIR are represented by Band 8 and Band 12, respectively.”

70 And from line 451 to 453 in the revised manuscript:

71 "The NBR images are derived from the Landsat 5,7 and 8 in this study, while it is also applicable
72 to other image sources based on the reflectance information from NIR and SWIR, such as the
73 new launched Landsat 9 and Sentinel-2 (Mallinis et al., 2018; Howe et al. 2022)."

74 References:

75 Mallinis, G., Mitsopoulos, I. and Chrysafi, I. Evaluating and comparing Sentinel 2A and
76 Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a
77 Mediterranean pine ecosystem of Greece. *GIsci Remote Sens*, 55(1), 1-18,
78 <https://doi.org/10.1080/15481603.2017.1354803>, 2018.

79 Howe, A.A., Parks, S.A., Harvey, B.J., Saberi, S.J., Lutz, J.A. and Yocom, L.L. Comparing
80 Sentinel-2 and Landsat 8 for burn severity mapping in Western North America. *Remote Sensing*,
81 14(20), 5249, <https://doi.org/10.3390/rs14205249>, 2022.

82 Topography:

83 The authors consider the SRTM as main DEM source, and in the discussion, they highlight how
84 topography appears as an important variable in their model. SRTM however presents limits,
85 especially in areas covered by vegetation, and in general, its error values have strong correlation
86 with terrain slope and certain aspect values (See e.g. (Gorokhovich and Voustianiouk, 2006;
87 Shortridge and Messina, 2011).

88 For Australia specifically, there is the availability of an upgraded SRTM [SRTM-derived 1
89 Second -and 3 seconds- Digital Elevation Models Version 1.0, which are an improved DEM
90 compared to the original SRTM. Literature also highlighted that COPDEM30, and the
91 underlying TanDEM-X data, as the most recent and accurate global DEM, and (Hawker et al.,
92 2022) provided a further cleaned version of such a DEM without buildings and Vegetation. Did
93 the authors consider using this upgraded terrain information for the model?

94 **Respond:** Thank you for bringing to attention the limitations of SRTM data, especially in
95 vegetated areas and terrains with pronounced slopes or certain aspects. The points raised about the
96 correlation of SRTM error values with terrain characteristics, and the availability of improved
97 DEM sources such as the upgraded SRTM for Australia and the COPDEM30, are indeed very
98 pertinent.

99 We compared the original SRTM used in this study with the upgraded SRTM [SRTM-derived 1
100 Second Digital Elevation Models Version 1.0] for Australia, over the burn area from 2000 to 2019.
101 The results, as Figure 1 (a) shown in the response letter, indicate that the original SRTM and the
102 upgraded SRTM present similar spatial patterns in terms of the elevation over the burn area. We
103 also calculated the relative differences between the elevation from original SRTM and the
104 upgraded SRTM to the elevation from the upgraded SRTM, e.g. relative differences =
105 $100 * (\text{original SRTM} - \text{upgraded SRTM}) / \text{upgraded SRTM}$ and present the result as Figure 1 (b)
106 in the response letter. We find that most of the difference range from -10 % to 10 %, which is not
107 the markable difference.

108 While this study mainly focuses on proposing a vegetation specific classification method to
109 improve the performance of fire severity prediction model, we acknowledge the potential benefits
110 of incorporating more refined elevation data to enhance the accuracy of our model, yet did not
111 utilize the upgraded SRTM or the cleaned version of COPDEM30 in our present analysis.
112 However, the prospect of applying these more accurate DEM sources is an exciting direction for
113 our future research endeavors.

Figure 1. (a) Spatial patterns of elevation from original SRTM and the SRTM-derived 1 Second Digital Elevation Models Version 1.0 and (b) the distribution of relative difference between DEM from original SRTM and the SRTM-derived 1 Second Digital Elevation Models Version 1.0, over burn area from 2000 to 2019 in NSW;

114

115 From line 428 to line 431 in the revised manuscript:

116 “The advances in DEM technology, as evidenced by the improvements in the SRTM data, such as
117 SRTM-derived 1 Second -and 3 seconds- Digital Elevation Models Version 1.0 for Australia, and
118 the introduction of global COPDEM30 and TanDEM-X data [Hawker et al., 2022], offer
119 opportunities for refining fire-topography relationship analyses and potentially providing more
120 precise fire severity prediction results.”

121

122

123

124

125

126 **Weather:**

127 How was the '1 day window' decided to get the weather event? Is there a physical meaning
128 linked to this choice or was it operationally decided? I am not sure if it is possible, but have the
129 authors investigated the sensitivity of the results to this window? Literature reported a known
130 potential limitation of the fire history database as the fact that the date of the fire attribute does
131 not always represent the exact burn date (Dixon et al., 2022). Dixon for example proposed a
132 semi-automatic MODIS date-adjustment method to obtain the start and end fire dates: have the
133 authors considered something similar?

134 **Respond:** In this study, the daily FFDI value for the day prior to the start of the wildfires is used
135 as the input variable in the model. We use daily FFDI because FFDI is typically calculated on a
136 daily basis, indicated by Australian Bureau of Meteorology (BoM,
137 <http://www.bom.gov.au/climate/maps/averages/ffdi/>). This daily calculation allows for the
138 assessment of fire danger to reflect current weather conditions, including temperature, humidity,
139 wind speed, and recent rainfall, which are critical for determining the day-to-day fire risk.

140 We use the daily FFDI for the day prior to the start of the wildfires because we found that
141 extreme values of the FFDI appeared at times close to the start of the wildfires, as presented by
142 Figure 22, Figure 26, Figure 30, Figure 34, Figure 43 in Dowdy et al. (2009). The physical
143 rationale behind this choice is rooted in the understanding that weather conditions can change
144 rapidly and have immediate effects on fire behavior. Using the most potential extreme FFDI,
145 indicating the extreme weather conditions, in the period leading up to a wildfire could address
146 the impact of weather on wildfire risk.

147 From line 154 to line 158 in the reviser manuscript,

148 "The daily FFDI and KBDI values for the day prior to the start of the wildfires are used as the
149 predictors in predicting burn severity, owing to the strong correlation in time between extreme
150 values of the FFDI and the start of the wildfires [Dowdy et al., 2009]Using the most potential
151 extreme FFDI, indicating the extreme weather conditions, in the period leading up to a wildfire
152 could address the impact of weather on wildfire risk."

153 References:

154 Dowdy, A.J., Mills, G.A., Finkle, K. and De Groot, W., 2009. Australian fire weather as
155 represented by the McArthur forest fire danger index and the Canadian forest fire weather index
156 (p. 91). Melbourne: Centre for Australian Weather and Climate Research.

157

158 Regarding the sensitivity of the results to the selected time window, we have not yet conducted
159 an extensive sensitivity analysis. Future research could explore varying the window of
160 observation to assess the impact on model results and address the issue raised by Dixon et al.
161 (2022). The burn area and the associated burn date data are from NPWS Fire History - Wildfires
162 and Prescribed Burns Dataset (<https://datasets.seed.nsw.gov.au/dataset/fire-history-wildfires-and-prescribed-burns-1e8b6>), which we think has good data quality preserved by NSW Department
163 of Climate Change, Energy, the Environment and Water.

165

166 From line 492 to 494 in the revised manuscript:

167

168 “In addition, the sensitivity analysis of the selected time window to define the fire event and
169 obtain the associated weather conditions is promoted to improve our understanding of the
170 relationship between weather conditions and fire occurrences. By adjusting the time window and
171 possibly integrating more precise burn date data, we can work towards a more accurate and
172 physically meaningful analysis of fire events and their contributing factors.”

173 Fire severity classes:

174 As it is my understanding, the severity is based on the dNBR which ranges from -n to +n. Is
175 there a meaningful range of this value representing the severity? (I assume the higher in the
176 positive, the higher the expected impact of the fire -if this is the case, please can you clarify it for
177 the readers not too familiar with the approach? When selecting the quantiles, does the author use
178 the full range of dNBR or focus on a selected part of the distribution (would that matter, if that's
179 the case?).

180 **Respond:** The differenced Normalized Burn Ratio (dNBR) is a metric used to quantify burn
181 severity by analyzing the difference in the spectral signature of an area before and after a fire
182 event. The dNBR is calculated by subtracting the post-fire NBR from the pre-fire NBR, resulting
183 in values that theoretically range from -2 to +2. The scale of dNBR values indeed reflects the
184 severity of a fire with high positive values indicate severe burn damage where the vegetation has
185 been completely consumed. Values around zero suggest either unburned areas or areas where the
186 fire had a very low impact. Negative values can indicate an increase in vegetation, which might
187 be due to vegetation recovery over time or errors in the analysis.

188 From line 117 to line 120 in the revised manuscript:

189 “The dNBR typically ranges from -2 to +2, with high positive values indicate severe burn
190 damage where the vegetation has been completely consumed. Values around zero suggest either
191 unburned areas or areas where the fire had a very low impact. Negative values can indicate an
192 increase in vegetation, which might be due to vegetation recovery over time or errors in the
193 analysis.”

194 In selecting the quantiles for analysis, the full range of dNBR values is generally considered to
195 capture the complete spectrum of burn severity, the results will provide a comprehensive
196 overview of all fire severities. In the context of our study, we have utilized the full range of
197 dNBR values to ensure a broad assessment of fire severity across the landscape. This inclusive
198 approach allows us to capture all degrees of burn severity, from low to extreme, offering a
199 complete view of the fire's impact.

200 I find it a bit confusing that the methods describe a threshold selection, but the whole approach is
201 clarified better in the discussion of the results at chapter 4.2. Would it be possible to restructure a
202 bit this chapter in the method, to clarify how the selection is done?

203 **Respond:** Thanks for the suggestion. We have rewritten the method section to better clarify how
204 to use the quantile based threshold in burn severity classification.

205 From line 161 o line 165 in the revised manuscript,

206 “The dNBR of all burnt pixels for each vegetation type are collected and a set of dNBR values at
207 the quantiles varying from 5% to 35% representing the threshold for low severity classification,
208 quantiles varying from 35% to 65% representing the threshold for moderate severity classification,
209 and quantiles varying from 65% to 95% representing the threshold for high severity classification.
210 For example, a classified burn severity sample can be obtained using the thresholds for high,
211 moderate and low severity at 85% quantile, 55% quantile and 25% quantile, respectively.”

212 Maybe this comes from my misinterpretation of the result chapter, but my understanding is that
213 the ground truth for the severity is the ‘observed severity’ from Landsat for some specific fires
214 (Figure 7). If this is the case, and the severity level is defined by a ‘moving’ threshold which in
215 turn is defined by the best model in the training phase, how do you objectively define if the
216 severity is ‘under’ or ‘over’ estimated as compared to the reality of the events? The observed
217 severity is defined using a threshold derived from a ‘training’ of the model.

218 Would it be possible to compare your severity to some data independent from the threshold
219 choice? I see for example for Australia some other datasets are available, such as

220 <https://data.gov.au/dataset/ds-nsw-c28a6aa8-a7ce-4181-8ed1-fd221dfcefc8/details?q=>

221 **Respond:** Thanks for the suggestion. In the revised manuscript, we have used the fire severity
222 classification maps from the Fire Extent and Severity Mapping (FESM) preserved by NSW
223 Department of Climate Change, Energy, the Environment and Water as the independent source to
224 validate the burn severity prediction maps from the model in this study.

225 From line 318 to line 339 in the revised manuscript:

226 ‘Figure 7 displays the fire severity maps for the 2016, 2017, 2018 and 2019 wildfires in NSW
227 from FESM, along with predictions based on vegetation specific and fixed thresholds. For the
228 wildfire in 2016, predictions based on vegetation specific thresholds show similar spatial patterns
229 of fire severity to those from FESM, while predictions based on fixed thresholds significantly
230 underestimate the fire severity in the high and extreme fire severity areas of the FESM. Similarly
231 for the wildfire in 2018, predictions based on fixed thresholds significantly underestimate high and
232 extreme severity compared to the FESM map, while predictions based on vegetation specific
233 thresholds slightly underestimate extreme severity. For the wildfire in 2017, both the FESM and
234 predictions display similar spatial distributions of fire severity level with predictions based on
235 fixed thresholds presents more low severity compared to FESM map. For the wildfire in 2019,
236 however, predictions based on fixed thresholds tend to overestimate the fire severity as extreme in
237 regions found to be high severity in FESM map, while predictions based on vegetation specific
238 thresholds agreed better with FESM map.

Figure 7. Fire severity classification maps from FESM and predictions based on vegetation specific and fixed thresholds for wildfires in 2016 to 2019 in NSW.

239

240 Table 3 shows the confusion matrix for fire severity classification between FESM and predictions
 241 based on vegetation specific and fixed thresholds. It is noted that predictions based on vegetation
 242 specific thresholds exhibit better ability of classing extreme and high severity with accuracy of
 243 0.64 and 0.76, respectively. While the classification accuracy for extreme and high severity of
 244 predictions based on fixed thresholds are 0.21 and 0.39, respectively. Predictions based on
 245 vegetation specific thresholds also have better accuracy of classifying moderate severity with value
 246 of 0.62, compared to those based on fixed thresholds with value of 0.47. Both predictions based
 247 on vegetation specific and fixed thresholds show poor performance in classifying low severity,
 248 with accuracy of 0.24 and 0.26 respectively. The overall classification accuracy for predictions
 249 based on vegetation specific thresholds is 0.57, which is better than predictions based on fixed
 250 specific thresholds with accuracy of 0.36.

251 Table 3. Confusion matrix for fire severity classification between FESM and predictions based on
 252 vegetation specific and fixed thresholds.

Vegetation specific					Fixed				
	Extreme	High	Moderate	Low		Extreme	High	Moderate	Low
Extreme	4345	2378	6	3	Extreme	1448	2822	2027	435
High	1490	6947	605	1	High	1430	3561	3358	694
Moderate	3	5702	9338	5	Moderate	998	4633	7084	2333
Low	0	172	7125	2372	Low	161	1722	5264	2522

253

254 Minor comments

255 Figure 1: it is a bit hard to visualize the ‘wildfire for cross validation’ in the map: is it underlaid
 256 to the colored burned areas? I assume the burn years refer to the dataset mentioned in the
 257 following page.

258 NSW National Parks and Wildlife Service 88 (NPWS) Fire History – Wildfire and Prescribed
 259 Burns dataset (<https://data.nsw.gov.au/data/dataset/1f694774-49d5-47b8-898dd0-77ca8376eb04>)

261 IF so, maybe mention this in the caption.

262 Also, it appears that the link is not working [I tried and accessed it on 05-feb-2024]

263 **Respond:** We have redesigned the Figure to make it clearer to see. We also mentioned the
 264 source for the burn area map and fixed the link (<https://datasets.seed.nsw.gov.au/dataset/fire-history-wildfires-and-prescribed-burns-1e8b6>).

266

267 Figure 1. Locations of study wildfires over New South Wales (NSW), Australia. The burn area is
 268 from NSW National Parks and Wildlife Service (NPWS) Fire History – Wildfire and Prescribed
 269 Burns dataset.

270 Paragraph from line 206-217: Figure 2 should be Figure 3, Same for the references in the
271 following chapters, it seems the authors refers to figure 3 as 2 (Eg line 221)

272 **Respond:** We have revised them accordingly.

273 Line 212: typo on the number, should be 6.7% not 6,7%

274 **Respond:** We have revised it accordingly.

275 Figure 3: are the vegetation numbers from n to 16 in figure b referring to the legend in figure a?
276 if so maybe leave only one legend to avoid confusion on what the number represents, or add the
277 names of vegetation on the x axis rather than as an additional color bar

278 **Respond:** We have redesigned the Figure 3.

Figure 3. (a) The proportion of burnt area and (b) the distribution of fire severity grouped by vegetation type, over NSW from 2000 to 2019

279

280

281 **References**

282 Collins, L., Griffioen, P., Newell, G., Mellor, A., 2018. The utility of Random Forests for
283 wildfire severity mapping. *Remote Sensing of Environment* 216, 374–384.
284 <https://doi.org/10.1016/j.rse.2018.07.005>

285 aerial photos for validation. Maps produced using the RF classifier in GEE had similar spatial
286 patterns in fire severity classes as maps produced using time-consuming hand digitisation of
287 aerial images

288 Dixon, D.J., Callow, J.N., Duncan, J.M.A., Setterfield, S.A., Pauli, N., 2022. Regional-scale fire
289 severity mapping of Eucalyptus forests with the Landsat archive. *Remote Sensing of*
290 *Environment* 270, 112863. <https://doi.org/10.1016/j.rse.2021.112863>

291 aerial photo observations

292 Gale, M.G., Cary, G.J., van Dijk, A.I.J.M., Yebra, M., 2023. Untangling fuel, weather and
293 management effects on fire severity: Insights from large-sample LiDAR remote sensing analysis
294 of conditions preceding the 2019-20 Australian wildfires. *Journal of Environmental Management*
295 348, 119474. <https://doi.org/10.1016/j.jenvman.2023.119474>

296 Gibson, R., Danaher, T., Hehir, W., Collins, L., 2020. A remote sensing approach to mapping
297 fire severity in south-eastern Australia using sentinel 2 and random forest. *Remote Sensing of*
298 *Environment* 240, 111702. <https://doi.org/10.1016/j.rse.2020.111702>

299 Aerial photo interpretation classification of fire severity

300 Gorokhovich, Y., Voustianiouk, A., 2006. Accuracy assessment of the processed SRTM-based
301 elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain
302 characteristics. *Remote Sensing of Environment* 104, 409–415.
303 <https://doi.org/10.1016/j.rse.2006.05.012>

304 Hawker, L., Uhe, P., Paulo, L., Sosa, J., Savage, J., Sampson, C., Neal, J., 2022. A 30 m global
305 map of elevation with forests and buildings removed. *Environ. Res. Lett.* 17, 024016.
306 <https://doi.org/10.1088/1748-9326/ac4d4f>

307 Shorridge, A., Messina, J., 2011. Spatial structure and landscape associations of SRTM error.
308 *Remote Sensing of Environment* 115, 1576–1587. <https://doi.org/10.1016/j.rse.2011.02.017>

309