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Abstract 

The possibility of increased landslide activity as a result of climate change has often been suggested, but few studies 

quantify this connection. Here, we present and utilize a workflow for the first time using solely publicly available 10 
data to assess the impact of future changes in landslide dynamic conditioning factors on landslide movement. In our 

case we apply the workflow to three slow-moving coastal landslides at Vejle, presenting the first study of its kind on 

Danish landslides. We examine modelled Water Table Depth (WTD) as a dynamic conditioning factor using the 

DK-HIP-model (Danish Hydrology Information and Prognosis system) that simulates historic and future WTD. The 

data shows a clear correlation with landslide movement as recorded by Interferometric Synthetic-Aperture Radar 15 
(InSAR) time series, for the period 2015 to 2019. Movement of up to 84 mm/y occurs during wet winter months 

when normalized WTD exceeds +0.5 m. During dry winters no, or very little, seasonal landslide movement is 

observed. The DK-HIP-model predicts an increase of up to 0.7 m in WTD at the study area by 2100 AD under the 

RCP8.5 scenario (95% confidence) which exceeds the levels this area has experienced in recent decades (mean 

increase of 0.2 m with standard deviation of 0.25 m). This is likely to result in increased landslide activity and 20 
acceleration of movement. In a previous episode of increased landslide activity linked to extreme precipitation in the 

early 1980’ies, one of the examined landslides accelerated, causing damage to infrastructure and buildings. Our 

study clearly shows that these landslides are sensitive to climate change and furthermore highlights the potential of 

utilizing high-quality, publicly available data to address these complex scientific questions. The quality and quantity 

of such data is ever increasing and so is the potential of this kind of approach. 25 

1 Introduction 

Landslides can have devastating impacts on infrastructure and human lives in areas with pronounced topography 

(Froude and Petley, 2018; Mateos et al., 2020). To mitigate these consequences, it is crucial to understand the 

temporal occurrence and (re-)activation of landslide movement (Pollock and Wartman, 2020). Some studies have 

shown an increase in landslide activitys as a consequence of climate change (Gariano and Guzzetti, 2016; Crozier, 30 
2010) while others show a reduced activity (Malet et al., 2005; Coe, 2012; Zieher et al., 2023). However, the topic 

has never been studied in Denmark and never using solely publicly available data. 
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Conditioning factors for landslides can be divided into static conditioning factors: those that do not change in time, 

such as lithology and the structural setting, and dynamic conditioning factors; those that change the stability of the 

slope (preparing factors) and control the timing (triggering factors) of slope failures (Hermanns et al., 2006). Long 35 
time series of fluctuations in dynamic conditioning factors, coupled with data on landslide movement, are powerful 

indicators to examine thresholds in e.g. critical WTD for when slow moving landslides may accelerate. Dynamic 

conditioning factors may include measured or modeled fluctuations in precipitation (Coe et al., 2004; Kashyap et al., 

2021; Handwerger et al., 2022; Dixon and Brook, 2007), water table depth (WTD) (van Asch et al., 2009), 

permafrost conditions in polar-(Svennevig et al., 2022, 2023)  and alpine regions (Magnin et al., 2017, 2019; Penna 40 
et al., 2023), snow melt (Moreiras et al., 2012), earthquakes (Saba et al., 2010), landslide toe erosion (Alberti et al., 

2022), and changes in land cover (Van Beek and Van Asch, 2004). Movement can be constrained in a number of 

ways, based both on ground and in-situ measurements (Uhlemann et al., 2016), or remote sensing observations 

(Scaioni et al., 2014). However, the data used in these studies have often been limited in scope and public 

availability.  45 

 

Precipitation can be a dynamic conditioning factor for the (re-)activation of landslides when water infiltrates into the 

ground and raises the ground water table (Handwerger et al., 2019). A relationship between landslide movements 

and precipitation/WTD has been observed in several studies where precipitation has been found to be the main 

factor controlling seasonal activity in deeper slow-moving landslides (van Asch and Buma, 1997; van Asch et al., 50 
1999; Iverson, 2000; Corominas et al., 2005; Handwerger et al., 2019; Luna and Korup, 2022). This is due to 

rainwater infiltrating the ground and raising the WTD (Iverson, 2000). As a result, the effective normal stress is 

lowered and the frictional strength of the hillslope is reduced (Terzaghi, 1950). Hydrological drivers of landslide 

movement are controlled by irregular peak rainfall events and more regular seasonal patterns during wet seasons 

(Bennett et al., 2016). An increase in temperature due to climate change raises the evapotranspiration, leading to an 55 
intensification of the hydrological cycle and a more dynamic shallow water table depth (Collison et al., 2000). 

Future changes in seasonal precipitation regimes raisng the groundwater table will lead to more frequent attainment 

of critical water content during rainfall events (Gariano and Guzzetti, 2016). However, it is difficult to constrain 

general landslide sensitivity to precipitation due to diverse, site-specific conditioning factors (Handwerger et al., 

2022).  60 

The amount of publicly available geodata is ever increasing (Vitousek et al., 2023). In recent years, space-born 

InSAR time series have proven to be a strong tool for covering large areas with high temporal resolution, and the 

European Ground Motion Service (EGMS) has made such data freely available for most of Europe (Costantini et al., 

2022). Moreover, forward modeling of dynamic conditioning factors is increasingly being conducted for local sites 

(Magnin et al., 2017; Peres and Cancelliere, 2018). Nationwide freely available datasets such as high resolution 65 
water table depth modeling are also becoming more widely available (Henriksen et al., 2020).  
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With this increasing availability of new public data in mind, we set out to answer the question: How will large 

coastal landslides respond to future climate change? And how far can we get towards answering this question using 

freely and publicly available data? 

Compared to many other European countries, relatively little quantitative research has been conducted on landslides 70 
in Denmark (Herrera et al., 2018; Mateos et al., 2020; Svennevig and Keiding, 2020; Svennevig et al., 2020). 

However, a recent study found 3202 landslides in Denmark (Luetzenburg et al., 2022), some of which are in close 

proximity to developed areas and may pose a threat to infrastructure and livelihoods (Svennevig et al., 2020). One 

such area is at Mørkholt, a site in Vejle Municipality in eastern Jutland where three large coastal landslides with 

houses and infrastructure on top were identified. These landsldies have appropiate InSAR reflectors and are covered 75 
by the freely availble national water resources model of Denmark, the DK-model. It is thus a good site to address the 

above research question. 

In this study we for the first time quantify the impact of climate change on landslide activity in danish landslides, 

focusing on slow-moving coastal landslides in Vejle. We do this applying a novel workflow, utilizing publicly 

available data to model the dynamic conditioning factor of water table depth (WTD). The research identifies an 80 
empirical threshold for landslide movement and this is applied for climate projections for 2071–2100 under different  

Representative Concentration Pathway (RCP) scenarios. The research advances our understanding of the complex 

relationship between climate change and landslides and offers insights into future risks for these sites while 

highligting tha potential of utilizing publicly available data for such analyses. 

The paper is organized as follows: We first go through the methods and data applied in the paper in section 2 “Data 85 
and methods”. We then present the results on the movement pattern of the landslides and the climate modelling and 

the correlation of these in section 3. This is followed by discussions of the implications and limitations in section 4 

and the summing up of key finding in the conclusion in section 5. 
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Figure 1. [2 columns] Setting. a) overview map of Denmark showing position of b). b) Regional map of the pre-90 
quaternary geology (Håkansson and Pedersen, 1992) overlain by a shaded Digital Elevation Model (DEM) 

(Geodatastyrelsen 2023) and mapped landslides from (Luetzenburg et al., 2022) showing position of c) and d). c) 

orthophoto from 2021 (Geodatastyrelsen 2023) and d) DEM and hillshade from 2018 of the field area 

(Geodatastyrelsen 2023). The dashed line off the coast of the Svinget landslide is a dark lineament on the seabed 
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from uplifted black clay. The positions of photos in Fig. 4 are indicated on d) along with the positions of the 95 
geothermal well DGUnr 125. 2169 (marked with X).  

 

1.1 Geographic and geological setting 

The physiography and near surface geology of Denmark is shaped by several Quaternary glaciations and interglacial 

periods. The landscape in eastern Jutland consists of sub- and proglacial landforms modified by postglacial fluvial 100 
and coastal processes as well as human activity.  

The detailed subsurface geology at the Mørkholt field site is poorly known. (Heilmann-Clausen et al., 1985; 

Rasmussen et al., 2010) describe clays of the Upper Oligocene – Lower Miocene Vejle Fjord Formation from the 

area. This conforms with the 1:500 000 scale pre-Quaternary bedrock map of Denmark (Håkansson and Pedersen, 

1992) indicating the lower part of Miocene at Mørkholt (Fig 1b). In the national drill hole database Jupiter a 105 
geothermal well (DGUnr 125. 2169) has been logged in the central part of the field area (Fig 1d). This shows a 

succession of more than 84 m of marly mudstone, 14 m of black clay topped by 2 m of fine silty sand (Jupiter 

database drill log, 2023). 

Denmark is in the North Temperate Climate Zone and monthly mean temperature ranges between 1°C in January 

and February and 17°C in July (DMI Weather archive Vejle, 2024).  Mean annual precipitation in Vejle is 766 110 
mm/y which is distributed across the year. Largest rainfall takes typically place in fall and early winter.. Snowfall 

and snowmelt are sporadic in Denmark and thereby not substantially modulating hydrological processes. 

 

1.2 Landslide setting 

Three landslides, with combined 47 houses on top, have been mapped on the east facing coastal slope at the 115 
Mørkholt field site (Fig. 1c, d): the Mørkholt landslide (27 houses), the Svinget landslide (14 houses) and the 

Gimlegrunden landslide (six houses). The overall morphological mapping is based on identification of steep (35°–

50°) arcuate backscarps in a Digital Elevation Model (DEM) and derived hillshade from 2018 supplemented with 

mapping of internal morphologies and field validation. Additional landslides are mapped in the areas north-west and 

south of the three landslides we focus on. These are relict landslides with no indication of recent activity such as 120 
smooth morphology and no observed structural damage and deformed trees.. 

The Mørkholt landslide is the largest of the three sites: 510 m wide (north – south), stretching 130 m inland from the 

coast, covering 58 000 m² onshore, with an unknown extent into sea. The backscarp is clearly defined by an up to 8 

m high arcuate 40° steep inland escarpment. The scarp is highest in the central part and decreases to 5 m to the north 

and south. The Svinget landslide is morphologically not as well defined as the Mørkholt landslide and a clear single 125 
backscarp cannot be identified. The area of the landslide is constrained by a series of 30°–60° steep, up to 6 m high 

escarpments, which extend 470 m from north to south and reach 90 m inland from the shore. It encompasses an 

onshore area of 22 000 m². A dark lineament is visible on the seabed 35 m from the shore which could correspond to 

the toe of the landslide giving it a total width of 125 m. The Gimlegrunden landslide is well defined in the hillshade 
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as a 115 by 55 m arcuate depression in the coastal slope encompassing an onshore area of 6 000 m². It is delimited 130 
by an up to 4.5 m high and a 55° sloping backscarp. Based on the descriptions above, we classify the three 

landslides as rotational clay slides with failure surfaces extending below the adjacent seafloor (“soil slump” sensu 

(Hungr et al., 2014).  

 

2 Data and methods 135 
The workflow presented in Fig. 2 enables climate forecasting of landslides based on publicly available data 

summarized in Table 1. The workflow diagram shows all the steps from identification of landslides and assessment 

of landslide activity (step 1) over analysis of potential thresholds in dynamic conditioning factors (step 2) to climate 

forecasting of landslide activity (step 3). Step 1 is by now a relatively standard procedure (Herrera et al., 2018; 

Luetzenburg et al., 2022) while step 2 and 3 applied to open data and applied in Denmark are novel and the focus of 140 
this paper. We have used general terms to describe the input data to make the flowchart applicable to cases where 

other types of displacement data and dynamic conditioning factors are at play. The flowchart is thus intended as a 

blueprint for the near future when publicly available data applicable for assessing the climatic thresholds for 

increase in landslide activity will increase in quality and quantity. 

In step 1A which is the initial step into the workflow the landslide is identified, usually in a DEM or DTM 145 
(Svennevig et al., 2020). In step 1B it is determined whether the landslide is active or inactive. This is done badsed 

on remote displacement data but can also be the objective of an initial field validation. In step 2 time series data of 

landslide displacement and dynamic preconditioning factors are analysed. In our case this is based on InSAR time 

series and modelled WTD and precipitation. In step 3 future landslide movement is forecasted by applying 

forecasted WTD models. This used to examine if future thresholds for landslide stability may be breached. 150 
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Figure 2. [two columns] Generalized workflow for identifying landslides and estimating climatic thresholds. The 

focus of this paper is steps 2 and 3. We have used general terms to describe the input data to make the flowchart 

applicable to cases where other types of displacement data and dynamic conditioning factors are at play. The 155 
specific data used in the present paper is shown in green brackets and in Table 1. DOD stands for Digital Elevation 

Model of Difference. 

 

Name/type Spatial 

resolution 

Temporal 

resolution 

Workflow 

step (Fig. 2) 

Application Data availability 

 

SDFI 2014 

DEM 

0.4 cm N/A 1B DOD (SDFI, 2020) 

SDFI 2018 

DEM 

0.4 cm N/A 1A Morphological 

mapping and 

DOD 

(SDFI, 2020) 

2014-2018 

DOD 

0.4 cm 4 years 1B Detection of 

landslide 

activity: vertical 

movement 

Produced from the above 
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Field 

observations 

N/A N/A 1A,B Field validation  

Historical 

accounts 

  1B,2,3 Understanding 

of a potential 

“worst case” 

development  

 

EGMS 

InSAR 

N/A 6 days 

From 

2015 to 

2021 

1B,2 Movement time 

series, where 

reflectors are 

available 

(European Ground Motion Service — 

Copernicus Land Monitoring Service, 

2024) 

DK-model 

(HIP – 

model)  

100 m Daily 

hindcast: 

1990 to 

2019 

Daily 

forecast: 

2071-

2100 

2,3 WTD time 

series 

(Hydrologisk Informations- og 

Prognosesystem, 2024) 

DMI Gridded 

precipitation 

data 

10 km Daily 

sum: 

1989 to 

2021 

2 Precipitation 

time series 

Available through DMI’s api. (DMI 

Weather archive Vejle, 2024) 

Table 1 overview of data used for this study in the workflow presented in Fig 2. 

 160 

2.1 Lidar DEM and DEM of Difference (DoD) 

The Danish Digital Elevation Model (DEM) is provided by the Danish Agency for Data Supply and Infrastructure 

(SDFI) (Geodatastyrelsen 2023). The dataset is produced from airborne laser (SDFI, 2020). For the area around 

Mørkholt, the data was acquired in April and May 2018. The product used is delivered with processed to a spatial 

resolution of 40 cm and with vegetation and buildings removed. The 2018 DEM, and a derived hillshade model, is 165 
the basis for the morphological mapping in step 1A of the workflow (Fig. 2) to initially identify the landslides and 

their extent. This mapping was assisted by orthophotos with a resolution of 12.5 cm also available from SDFI 

(Luetzenburg et al., 2022). 

A nationwide Lidar DEM like the one from 2018 was also produced in 2014 (Table 1). By subtracting the two, a 

DEM of Difference (DoD) was produced enabling us to evaluate the vertical change in elevation (subsidence, 170 
erosion and deposition) between the two acquisitions. Slope parallel transport in the landslides is thus not resolved 

by this method. It can however be quantified to some degree if the raw laser point files used to produce the DEM’s 
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are used (Pfeiffer et al., 2018), however this is beyond the scope of the present paper. Automatic registering was 

applied to the two DEM’s, to account for minor discrepancies between the two datasets (Nuth and Kääb, 2011). Data 

was processed in the open source GIS platform QGIS. The result is a 40 cm DoD showing change in elevation down 175 
to a vertical  accuracy of 1.4 cm between the two acquisition dates. This enables us to effectively detect the spatial 

extent of vertical changes between the two datasets of down to c. 25 mm/y and thus establish landslide activity in the 

examined period (step 1B in fig. 2). The spatial resolution is much higher than the Persistent Scatter (PS) point data 

obtained from InSAR, and the DoD can thus be used to compare whether the InSAR anomalies (PS points showing 

consistent movement) are indeed representing landslide movement. 180 

 

2.2 InSAR product 

Observations of terrain movement are freely available from the European Ground Motion Service (European 

Ground Motion Service — Copernicus Land Monitoring Service, 2024) (Costantini et al., 2022). The EGMS uses 

freely available raw data from the Sentinel-1 satellites of the EU Copernicus Earth Observation Program. The 185 
satellite emits pulses of radar energy that are scattered and reflected by Earth’s surface and recorded back at the 

satellite. This means that measurements are only obtained where objects at the Earth’s surface provide stable 

reflections of the radar signal, such as bedrock outcrops, houses, and other infrastructure. Vegetated areas or areas 

with large surface change typically have little or no stable reflectors. Furthermore, very fast or non-linear terrain 

movements will prevent correlation of the reflected radar signal between acquisitions. In practice for our field area 190 
at Mørkholt this means that only houses moving by less than c. 100 mm/y  provide good reflectors. The data are 

provided as PS points and are initially used to screen for a spatial scan for landslide movement in step 1B of the 

workflow (Fig. 2). In step 2 the time series stored in each individual spatial point is used for a correlation analysis 

with the dynamic conditioning factor (WTD), see section 2.6. The terrain movements are calculated using 

Interferometric Synthetic Aperture Radar (InSAR), a technique that uses radar measurements of the Earth’s surface 195 
from polar orbiting satellites (Crosetto et al., 2016; Rosen et al., 2000; Ferretti et al., 2001; Crosetto et al., 2020). For 

our study area, at the time of writing, it covers the period from 2015 to 2020. The terrain movements are measured 

in line-of-sight (LOS) to the satellites; hence the measurements do not provide the absolute vector of movement, but 

only the part of the movement that projects into the LOS direction. Here, we use data from ascending, i.e., north-

going tracks 44 and 117. The ascending satellites look towards ENE, which means that negative movements in LOS 200 
indicate movement toward east and down (Fig. 3). By assuming a movement direction of 70°–80° (ENE) and a slope 

parallel dip of 30°–40°, the LOS records 90%–100% of the actual movement of the landslides. Thus, the ascending 

satellite geometry is very well suited to study landslide movement at the Mørkholt coast, and we can assume that the 

movement rates obtained from this method is the actual movement. The movement is reported both as a mean LOS 

velocity (Fig. 3) and a time series of each InSAR data point (e.g. Fig. 6). In order to reduce the noise of the raw LOS 205 
data and to account for the low frequency observations, the time series data are smoothed using a rolling median 

with a window size of 90 days similar to (Handwerger et al., 2022). This window was chosen because it resulted in a 

visually satisfying result without any sudden unrealistic uplift caused by noisy data. Data are lacking for 
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Gimlegrunden and Svinget landslides in the winter 2015/2016 due to an acquisition error observed in all 117A 

tracks across northern Europe. We have made a linear interpolation across this time period thus providing minimum 210 
movement rates in this period.  

 

2.3 Field visits and historical accounts 

Field visits were carried out during a two-day inspection in June 2021 to verify remotely sensed observations of the 

landslide extent and examine potential signs of landslide activity in step 1A and 1B of the workflow (Fig. 2). These 215 
observations are presented in the result section as photos and descriptions of geomorphological expressions of 

landslide activity. Accounts from residents and the local history archive have been gathered to constrain an earlier 

episode of fast landslide development. These include photos, eyewitness accounts and contemporaneous news items. 

 

2.4 Groundwater modelling 220 
Modelled (hindcast) Water Table Depth (WTD) is analysed as a potential dynamic conditioning factor for the 

landslides by correlation analysis with InSAR movement data (step 2 in Fig. 2). Forecasted WTD is used to examine 

the climate sensitivity of the landslide in step 3 of the workflow.  

In Denmark, the national water resources model of Denmark, the DK-model, has been continuously developed for 

the past 25 years by the Geological Survey of Denmark and Greenland (Henriksen et al., 2003; Højberg et al., 2013). 225 
The model represents physically-based descriptions of groundwater flow, surface water dynamics and groundwater-

surface water interactions, integrating water demands for e.g. irrigation and domestic (household) use. The model is 

build using the MIKE SHE model code (Abbott et al., 1986) and it is spatially distributed in a 100 m grid. For our 

study, we are utilizing the simulation data openly available on  the Danish Hydrological Information and Prognosis 

system (DK-HIP) (Henriksen et al., 2020). We are primarilaly focusingon simlated water tabel depth (WTD), 230 
defined as the depth below terrain to the uppermost water table  All simulated WTD data presented in this paper are 

publicly available via the DK-HIP-model data portal(Hydrologisk Informations- og Prognosesystem, 2024). The 

national simulations were subsetted to match the domain of the study area. We have analysed historical and future 

simulations. . The historical WTD simulations are at 100 m resolution at daily time step from 1990 to 2019. The data 

is used to analyse the temporal WTD dynamics for the study area for the period 2015 to 2019, overlapping with the 235 
period of InSAR ground movement. Furthermore, long-term average summer and winter WTD maps at 10 m 

resolution (Koch et al., 2021) are used to screen the study site for areas with a distinct WTD seasonality. Climate 

change impact simulations for WTD are analysed for Representative Concentration Pathway (RCP)4.5 and RCP8.5 

scenarios at 500 m spatial resolution that quantify the changes of WTD for the end of the 21st century. RCP4.5 is the 

pathway of low to moderate emission throughout the 21st century as defined by IPCC while RCP8.5 is the scenario 240 
of very high future emission towards the year 2100 as defined by IPCC.  

The WTD simulations, obtained from the DK-HIP-model data portal, underwent a number of processing steps prior 

to the final analysis. A single WTD timeseries at monthly timestep, representing the mean aggregated groundwater 
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dynamics for the entire study area, has been derived from daily WTD simulation results from 16 selected 100 by 100 

m grids (Fig. 5). DK-HIP-model simulations are subject to uncertainty, with a  mean error below 1 m for the 245 
validation dataset. The model was validated against groundwater head data from a period independent to calibration 

dataset. The model was not intended to be used at at individual 100 m grids but instead at a more aggregated level to 

asses catchment scale hydrology. In order to mitigate this, we have first normalize the simulation result by mean 

division and then aggregate in space and time to obtain a robust  timeseries of WTD dynamics for the study area. 

Simulated WTD can fluctuate and vary sustainably when investigating single grids due to the 3D hydrogeological 250 
layer model and boundary conditions which a normalization can take care of.  The grids were selected based on two 

criteria. First, they had to be situated close to the coast in areas collocated with the mapped landslides. Second, the 

standard deviation of the simulated WTD dynamics may not exceed 2 m, which constrains the analysis to a robust 

groundwater simulation without drying out of simulation cells resulting in a water table that jumps between 

computational layers. The first computational layer has a thickness of 2 m and in several cases the WTD jumps from 255 
the top layer to deeper computational layers. Further, the 16 WTD timeseries were grid-wise normalized (division 

by mean) to represent the deviation around mean in order to obtain anomaly timeseries that are comparable with 

each other. Lastly, the timeseries were aggregated to monthly timescale using the mean function and the monthly 

variability was calculated by the standard deviation across all grids. The climate change impact was obtained based 

on simulations at five selected 500 m by 500 m grids (Fig. 5) and the projected change in WTD was calculated as 260 
the average across the selected grids on monthly basis. The uncertainty associated to the climate change impact 

simulations was estimated as the mean climate model ensemble standard deviation. The climate change impact was 

simulated for both, RCP4.5 and RCP8.5, for a far-future situation representing 2071– 2100. The near future situation 

representing 2041 to 2070 is also modelled in the DK-HIP model, however, precipitation increases most severely in 

the far future period (Pasten-Zapata et al., 2019), which makes far future more relevant to study with respect to 265 
landslide impacts. The WTD seasonality, i.e., amplitude representing the difference between dry summer and wet 

winter, was calculated based on the 10 m summer and winter WTD maps. 

 

2.5 Precipitation data 

We use precipitation data as an auxiliary variable in the analysis to investigate linkages between precipitation and 270 
landslide movement (step 2 in Fig. 3). The data originates from the 10 km by 10 km gridded precipitation dataset 

from the Danish Meteorological Institute (DMI) (Scharling, 1999). Data was extracted for a single 10 km grid cell 

which fully encompasses the study site. Data are available via DMI’s free data API (DMI Weather archive Vejle, 

2024). For the analysis we aggregated the daily precipitation timeseries to weekly values using the sum function.  

 275 

2.6 Correlation analysis 

Correlation analysis between movement data of the three landslides, WTD and precipitation was carried out in the R 

software package (A language and environment for statistical computing, 2023). Spearman's rank correlation 

coefficient (ρ) was calculated to investigate the extent of correlation between the WTD and the weekly LOS 
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movement of each landslide. Positive LOS movement rates were considered outliers and removed before the 280 
analysis. Spearman’s rank correlation assesses the monotonicity of the relation between two variables which we 

favoured over Pearson correlation because of the expected non-linearity between WTD and InSAR landslide 

movement. 

3 Results 

 285 

Figure 3. [1 column] Landslide activity at the three landslides. DoD showing difference in elevation between 2014 

and 2018 overlain with a hillshade model. InSAR points from tracks 44 and 117 are shown as points colored 
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according to their mean LOS velocities during 2015–2020. The numbered InSAR points marked with arrows refer to 

the timeseries shown in Fig. 6. The extent of the map is the same as Fig. 1c and d  

 290 

3.1 Spatial movement patterns of the landslides 

For the Mørkholt landslide, the DoD shows subsidence along the backscarp and at the coast with a vertical 

component of up to 2.6 m over four years (equivalent to an average subsidence of 650 mm/y. InSAR reflectors are 

present in the northern part of the landslide, but are absent in the central and southern part where large DoD 

anomalies are evident. The largest recorded InSAR movement is observed near the eastern row of houses with 5–10 295 
mm/y. Field evidence of active deformation are ubiquitous across the landslide and include structural damage to 

fences and buildings, an open fracture with up to 30 cm vertical offset, an uplifted surface of black clay at the beach, 

rotated landslide blocks (Fig. 4), and springs (Fig. 1c, d).  
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 300 

Figure 4 [1 column] a) Field photo of a large beech tree (Fagus sylvatica) on the Mørkholt landslide. The tree has 

been tilted by progressive landslide activity as shown by the upward changing dip of the trunk demonstrating the 

progressive and long-lived nature of the landslide. A minor scarp and the backscarp of the Mørkholt landslide are 

seen to the left of the tree. See Fig. 1d for location of photo. b) Photo taken in March 1981 at the head of the Svinget 

landslide after a month of accelerated landslide activity. The photographer is standing on the southern part of the 305 
gravel road, the central part of which has subsided by 4–6 m over a month creating the present backscarp of the 

Svinget Landslide. See Fig. 1d for location of photo. Photo courtesy of Lars Hansen 

 

For the Svinget landslide, the DoD shows heterogenous movement across the landslide. Maximum average 

subsidence of c. 70 mm/y are found in the northern part. Rotated landslide blocks bounded by steeper slopes of 310 
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around 40° inside the central and northern part of the landslide show a relative uplift in the DoD. The Svinget 

landslide has few  persistent scatter points in the central part of the landslide, close to the coast, with movement of 

up to 25 mm/y. InSAR points in the southern part of the landslide show no or little movement. Only few signs of 

active deformation were observed during June 2021 fieldwork, however, a brick-and-mortar house built across the 

backscarp in the northern part of the landslide was observed to be severely damaged. A local house owner explained 315 
that he re-levels his house every two to five years with a jack as landslide activity is tilting it, and that fractures 

appear in lawns and paths the same place every spring; near where InSAR data show highest movement rates 

(InSAR point ID “3WC5v2Vewp” in Fig. 3).  

Historical records and information provided by local house owners informed us that the central part of the Svinget 

landslide had a period of rapid movement in the early 1980'ies mainly focused around February and March 1981. 320 
The landslide movement continued for a couple of years with one of the houses close to the backscarp moving by a 

total of 18 m, and 40 m of the road going through the landslide were damaged and had to be abandoned (Fig. 4b). 

Today this scarp is outlined by the 120 m wide slope centrally in the Svinget landslide. In association with this 

landslide activity, a coast parallel bar of clay emerged in the sea c. 30 m from the shore indicating that the seabed 

where the basal surface of rupture daylights was uplifted during the event. This feature was removed by wave 325 
erosion after some years, but a dark lineament on the seabed is still apparent in orthophotos (Fig. 1c). 1980 and 1981 

were both extremely wet years with annual precipitation for both years being 100 mm above the Danish 1981–2010 

normal (Cappelen, 2019). March of 1981 is the fourth wettest March on record in Denmark with total precipitation 

of 91 mm (Cappelen, 2019) . 

The DoD does not show subsidence in the Gimlegrunden landslide. A DoD anomaly in the northern part of the 330 
landslide is probably due to excavation work. InSAR points are available throughout the landslide with movements 

of up to 10 mm/y. Movement is more pronounced near the coast. No clear signs of active deformation could be 

observed in the field. 

 

3.2 Temporal movement and dynamic conditioning factor pattern - InSAR movement and groundwater 335 
modelling results 

The average WTD seasonality expressed as the difference between long-term average winter and summer WTD 

(1991 - 2020), varied between circa 0 m and 2 m for the study site (Fig. 5). Fig. 6a depicts the average WTD 

seasonality over the three landslides for a five-year period. The dynamics are characterized by shallow groundwater 

levels during winter and deep groundwater levels during summer. Depending on precipitation and 340 
evapotranspiration during a year, the seasonality can vary between less than 1 m in 2017 to approximately 2 m in 

2016 and 2018 (Fig. 6a). The highest WTD is simulated for the winters 2015/2016, 2017/18 and 2019/20 whereas 

the winters 2016/17 and 2018/19 have relatively deep normalized WTD. The WTD uncertainty for the study site 

also varies seasonally, with the highest variability found in months with the highest and lowest groundwater levels. 

More specifically the standard deviation can vary between approximately 0.1 m (December 2016) and 0.5 m 345 
(January 2016). Comparing the WTD seasonality shown in Fig. 5 and Fig. 6a underlines that a distinct variability in 
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space (Fig. 5) as well as in time (Fig. 6a) exists. The WTD timeseries shown in Fig. 6a is averaged over 16 

simulation grids (shown in Fig. 5) and aggregated from daily to monthly timescale.  

 

Figure 5 [1 column] Danish Hydrology Information and Prognosis system (DK-HIP-model). Map showing the 350 
difference between the modelled summer and winter water table depth (WTD) in the study area for the period 1991 

to 2020 downscaled following (Koch et al., 2021). The small 100 m grid cells highlighted in black (n=16) are used 

to calculate the WTD in Fig. 6a. Larger (500 m) grid cells (n=5) are used to analyse the climate change impact on 

WTD in Fig 7. The map is overlain by a hillshade. Mapped landslide backscarps are shown with black dashed lines. 

Springs observed during fieldwork in June 2021 are indicated with blue dots. Note that the map extent is slightly 355 
larger than that in Fig. 1c and d to show the 500 m grid cells. 

 

Movement is observed exclusively in the winter seasons in the Mørkholt and Gimlegrunden landslides. For the 

Mørkholt landslide particularly large movements of 48 –72 mm/y are seen in the winters 2015/16, 2017/18 and 

2019/20 (Fig. 6a). Our WTD time series does not include the entire 2019/20 season as the model only runs to 360 
December 2019. However, that winter was the wettest on record in Denmark. For the Svinget landslide, movement 
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occurs throughout the year but at various rates, with the fastest movement of up to 84 mm/y in winter and early 

spring (Fig. 6a).  

The WTD shows a strong negative correlation (ρ ranges between -0.54 and -0.67) with movement for all three 

landslides (Fig. 6b); when the water table is high, the weekly movement is also high and when the water table is low 365 
the weekly movement is also low. No correlation was found between the accumulated weekly precipitation and the 

InSAR movement of any of the three landslides. 

 

 

Figure 6 [1 column]. a) Mean normalized WTD for the 16 selected 100 m grids (see Fig. 5) at monthly timescale 370 
and InSAR displacement data for three InSAR points within each landslide (see Fig. 3). Also shown is the weekly 

precipitation for the period. InSAR outliers disregarded for the running average calculation are coloured grey. 

Winter months (December, January, February) are shown as shaded grey bars to aid readability. b) Spearman's 
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rank correlation coefficient (ρ) derived from the WTD and the weekly movement for each of the three landslides. 

Blue indicates positive and red negative correlations with p < 0.01. 375 
 

3.3 Climate modelling 

To understand how climate change may impact future landslide activity, simulated groundwater levels for the study 

area were examined for the historic period 1990–2019 and for two climate scenarios RCP4.5 and RCP8.5 for the 

period 2071–2100. Fig. 7a depicts the long-term average and standard deviation of the historic WTD at monthly 380 
timescale for the 16 selected simulation grids shown in Fig. 5. The climate change impacts in Fig. 7b and c are 

averaged for the five 500 m simulation grids also shown in Fig. 5. WTD is expected to rise for all months towards 

end of the 21st century. The rise in WTD is more pronounced for RCP8.5 than for RCP4.5. The rise in WTD in the 

period 2071–2100 is most distinct during the winter months showing that we can expect wetter winters with a WTD 

in December up to 0.7 m higher relative to today following for the RCP8.5 (95% confidence interval) (red asterisk in 385 
Fig. 7c). The similar value for RCP4.5 (95% confidence interval) is 0.3 m (blue asterisk in Fig. 7b). These values are 

calculated by adding 2 * standard deviation to the mean.   

 

 

Figure 7 [1 column]. Climate change scenarios. a) Monthly climatology for the historic period 1990–2019 for the 390 
normalized WTD 16 selected 100 m grids (Fig. 5). The mean +/- 68% and 95% confidence intervals are shown, 
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which represent the spatial variability across the study site. The red and blue asterisks indicate the maximum WTD 

values within RCP4.5 and 8.5 within 95% confidence interval, also shown in b and c. b) Simulated change in WTD 

for the period 2071–2100 based on RCP4.5 with respect to the historic reference. The blue asterisk is the maximum 

expected WTD of up to 0.3 m mentioned in the text using this RCP scenario. c) Simulated change in WTD for the 395 
period 2071–2100 based on RCP8.5 with respect to the historic reference. The red asterisk is the maximum expected 

WTD of up to 0.7 m mentioned in the text using this RCP scenario. The confidence intervals in b) and c) represent 

the variability origination from using an ensemble of climate models in the impact simulation. Dotted and dashed 

lines in b) and c) represent the ensemble mean and are added to the historic climatology in a).  

 400 

4 Discussion 

4.1 WTD seasonality and landslide movement pattern 

The observed landslide movement varies across and between seasons but is generally observed in the wet season 

(winter to early spring) with relatively shallow WTD (Fig. 6a). There is a clear correlation, for the whole timeseries 

examined, between WTD and landslide movement (Fig. 6b) whereas it is not possible to establish a correlation 405 
between weekly precipitation and landslide movement. This is because the dynamics in WTD are a result of 

multiple hydrological processes taking place, such as, precipitation, evapotranspiration, recharge and runoff, which 

are all accounted for in the DK-HIP model (Henriksen et al., 2020). The DK-HIP model is based on a coupled 

surface-subsurface hydrological model that integrates national databases of borehole information, geophysics and 

observations of river discharge and groundwater head. Our correlation analysis (Fig. 6b) shows that these processes 410 
need to be considered when studying landslide movement either by on site monitoring or, as in our case, by 

modelling and remote sensing. This is at least valid for the temperate climate conditions of Denmark where rainfall 

is often evenly distributed over the year (see fig. 6a) and WTD dynamics are modulated by the seasonality of air 

temperature and thereby potential evapotranspiration. Under different climate conditions, e.g., where precipitation 

has a more distinct seasonality the correlation between terrain movement and precipitation may be higher 415 
(Handwerger et al., 2022; Cohen-Waeber et al., 2018; Wistuba et al., 2021). 

In relatively dry winter/early spring seasons of 2016/2017 and 2018/2019, where the normalized WTD is generally 

below +0.5 m, seasonal movement is not observed for the three landslides. In the winter seasons of 2015/16, 

2017/18 and 2019/20 the mean normalized WTD exceeded c. +0.5 m and landslide movement is observed. We thus 

estimate an empirical threshold for landslide movement for the three landslides is at c. +0.5 m normalized WTD. A 420 
more detailed investigation, preferable with in-situ measurements would be required to properly constrain a critical 

WTD threshold for seasonal landslide movement.  

 

4.2 Climate projections and landslide evolution 

We can quantify an overall increase in mean WTD by 2071–2100 for both RCP4.5 and RCP8.5 (Figs. 7b, c). For 425 
RCP8.5, the increase in WTD is predicted to be up to 0.7 m (95 % confidence interval), mainly focussed in the 
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winter season (red asterisk in Fig. 7c). This trend will lead to wetter initial conditions meaning that less precipitation 

in an event will be required to achieve critical WTD levels and increased weight of the landslide body leading to 

decrease of the basal shear strength (Crozier, 2010). This will overall lead to increased seasonal landslide activity.  

If 0.7 m of WTD increase is applied to the dry seasons of 2016/17 and 2018/19, where normalized WTD in the 430 
winter season under current conditions does not exceed +0.5 m, then the landslides would experience a WTD similar 

to the one evident for the seasons 2015/16, 2017/18 and 2019/20 that are some of the wettest seasons (by 

precipitation) on record in Denmark to date (Cappelen, 2019). 

The wet seasons of 2015/16, 2017/18 and 2019/20, exhibiting a normalized WTD above +0.5 m, would with 

increase in WTD of 0.7 m experience values that fall beyond the 95% confidence interval in Fig. 7a (red asterisk). 435 
WTD would thus exceed what this area has likely experienced in the modelled historical period 1990–2019.  

The wet seasons of 2015/16, 2017/18, and 2019/20, with a normalized WTD greater than +0.5 m, would result in an 

elevated WTD of 0.7 m, exceeding the 2-standard deviation interval depicted in Fig. 7a (represented by a red 

asterisk) and surpassing historical modelled values from the period 1990–2019. 

RCP4.5 predicts up to 0.3 m increase in normalized WTD in the winters at the end of this century (95 % confidence 440 
interval, Fig. 7b). This will potentially elevate WTD of dry winters such as 2016/17 and 2018/19 up to above the 

+0.5 m threshold making them wetter than average WTD for the historic period (Fig. 7a). In wet years such as 

2015/16, 2017/18 and 2019/20, WTD will potentially increase to within the 95% confidence interval of historic 

WTD levels (Fig. 7a) also surpassing most modelled historical WTD levels. Thus, the RCP4.5 scenario also points 

towards increasing landslide activity and likelihood of thresholds being breached.  445 

The response of the landslides to such a potential breach of thresholds may be similar to the historical case of 

extreme sliding that occurred in the Svinget landslide in 1981. Here individual houses moved by 18 m over a year 

mainly focused on February and March (>1500 mm/month average over the year) leading to structural damages on 

roads and buildings. This occurred during the, at that time, wettest winter in Denmark only to be surpassed in recent 

decades (Cappelen, 2019). This demonstrates that these landslides can accelerate from slow to moderate velocities 450 
warranting evacuation (sensu (Hungr et al., 2014) during extreme events, which we show are likely to increase in 

frequency. This is however a hypothetical conclusion without knowing the WTD at the time of this historic landslide 

activity. 

Other dynamic conditioning factors for landslide movement such as increased coastal erosion caused by higher sea 

level and storm wave activity along with a projected increase in extreme rainfall events (Crozier, 2010) are not 455 
included in our present analysis. However, these are also projected to change (DMI Klimaatlas, 2023) in a direction 

that is expected to accelerate landslide movement. Thus, all the main natural dynamic conditioning factors 

controlling landslide activity are shifting towards increasing landslide activity. In an area with many similar 

landslides of low activity such as Denmark (Herrera et al., 2018; Mateos et al., 2020; Svennevig et al., 2020) the net 

result is likely to be an increased landslide activity both as an increase in landslide movement as well as potential 460 
expansion of currently active landslides and development of new coastal landslides. This will pose new challenges 
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to authorities, landowners and decision makers that have little or no experience in dealing with the consequences of 

landslides. 

The impact of climate change on landslides has been investigated in several studies, with varying results. For 

example, (Dixon and Brook, 2007) found that the instability threshold of examined landslides could decrease under 465 
the medium-high climate change scenario, while (Collison et al., 2000) found no significant change in the frequency 

of large landslides in SE England due to the projected increased rainfall being matched by increases in 

evapotranspiration. In contrast, (Lin et al., 2022) discovered that the extent of landslide-susceptible terrain and the 

frequency of landslide-triggering rainfall will increase under climate change in China, but noted a spatially 

heterogeneous pattern.(Peres and Cancelliere, 2018) found a general tendency for a decrease in landslide hazard due 470 
to progressive climate change in a site in Italy. The differing outcomes of these and other studies along with our 

present contribution highlight the site and region-specific impacts of climate change on landslides.  

 

4.3 Limitations and benefits of using free and publicly available data 

The empirical threshold of +0.5 m WTD for landslide activation is not universal and can vary depending on site-475 
specific factors, such as topography, geology, and climate. However, the workflow outlined in Fig. 2 can be applied 

widely as larger datasets on dynamic conditioning become available. Our study is based on a limited dataset, and 

longer time periods would increase the robustness of our correlation analysis. InSAR data from EGMS are freely 

available for all of Europe, with periodic updates planned to provide longer movement time series for analysis. 

Furthermore, the WTD model used here is planned to be rerun up to the present and future predictions refined, 480 
which will no doubt nuance our current findings. 

Although this workflow based solely on remotely sensed and modelling data (Fig. 2) is not a substitute for on-site 

monitoring, it can serve as an initial screening process to inexpensively screen landslides for sensitivity to projected 

climate change in areas where remote data on dynamic conditioning factors along with movement data are available. 

This information can help prioritize resources for further investigations and monitoring. However, in-depth studies 485 
on landslides, e.g., linking WTD and landslide movement, should preferably use local groundwater models 

calibrated with in situ measurements, as they can better incorporate local hydrogeology. Moreover, the DK-HIP-

model was calibrated to average WTD conditions, so we recommend that local groundwater models be calibrated to 

better represent extreme wet conditions, with a focus on the effects of high-intensity precipitation events on WTD, 

as landslide movement is sensitive to extreme WTD. 490 

When it comes to transferring our approach to other case studies more limitations may arise. These may be due to 

data variable data availability and quality. Namely the availability of high quality DEM’s and sufficient quality data 

on dynamic preconditioning factors. Site specific InSAR limitations regarding geometry and LOS issues, vegetation, 

snow-cover, displacement rates exceeding wavelength associated thresholds should also be considered.  

Integrating DoD and InSAR PS datasets has a huge potential and the two methods are highly supplementary. DoD 495 
anomalies are confident in areas where there are no natural InSAR reflectors and where LOS displacement rates 
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exceed wavelength associated thresholds. At Mørkholt only houses moving by less than c. 100 mm/y provide good 

InSAR reflectors. By integrating the two datasets, as demonstrated here, we can infer PS time series to represent 

movement in a landslide area outlined by a DoD anomaly. Similarly, deformation rates (LOS for PS and vertical 

subsidence for DOD) can be compared and discussed against each other. However it should be stressed that these 500 
numbers do not represent the same direction and time resolution.  

5 Conclusions 

Seasonal activity in three large slow-moving coastal landslides in Denmark correlates with modelled changes in 

water table depth (WTD). When normalized WTD exceeds +0.5 m in the winter season in wet years seasonal 

movement commences. Weekly precipitation data shows no correlation with landslide movement.  505 

WTD is projected to increase by up to 0.7 m towards 2100 AD (RCP8.5, 95% confidence interval) in this area. 

These WTD values exceed what this area has experienced in the past decades (1990–2019) and this is likely to result 

in increasing landslide activity as the landslides equilibrates to the changing conditions. The RCP4.5 scenario also 

points to increased activity in the landslides. 

A historic case from 1981 of accelerated landslide movement resulting in serious structural damage may serve as an 510 
example of an extreme event we will see more of in the future as a direct result of elevated WTD caused by climate 

change. 

Our study highlights the potential of utilizing high-quality publicly available data to address complex scientific 

questions and presents a workflow for doing this. The quality and quantity of such data is ever increasing and so is 

the potential of such approach. 515 
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