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Abstract.  10 

There is a scientific consensus that the Mediterranean Region (MedR) is warming and as the temperature continues 11 
to rise, droughts and heat waves are becoming more frequent, severe, and widespread. Given the detrimental effects 12 
of droughts, it is crucial to accelerate the development of forecasting and early warning systems to minimize their 13 
negative impact. This paper reviews the current state of drought modeling and prediction applied in the MedR, 14 
including statistical, dynamical, and hybrid statistical-dynamical models. By considering the multifaceted nature 15 
of droughts, the study encompasses meteorological, agricultural, and hydrological drought forms and spans a 16 
variety of forecast scales, from weekly to annual timelines. Our objective is to pinpoint the knowledge gaps in 17 
literature and to propose potential research trajectories to improve the prediction of droughts in this region. The 18 
review finds that while each method has its unique strengths and limitations, hybrid statistical-dynamical models 19 
appear to hold the most promising potential for skillful prediction with seasonal to annual lead times. However, 20 
the application of these methods is still challenging due to the lack of high-quality observational data and the 21 
limited computational resources. Finally, the paper concludes by discussing the importance of using a combination 22 
of sophisticated methods such as data assimilation techniques, machine learning models, and copula models and 23 
integrating data from different sources (e.g., remote sensing data, in-situ measurements, and reanalysis) to improve 24 
the accuracy and efficiency of drought forecasting. 25 
Key Words: drought, forecasting, data assimilation, machine learning, Mediterranean, review  26 
1 Introduction  27 

Drought is a recurrent phenomenon in the Mediterranean Region (MedR). Throughout time, adaptation to this kind 28 
of climate event has been an important issue for the development of many countries in the region. Yet, with the 29 
disruptive accelerated impact of global warming, already reflected in more regular and intense droughts around 30 
the Mediterranean in the last few decades, building resilience to extreme weather conditions remains a true 31 
challenge (Satour et al., 2021). For these reasons among others, the region is often described as a hotspot for 32 
climate change (Tuel and Eltahir, 2020). The Intergovernmental Panel on Climate Change (IPCC) pointed out in 33 
the Sixth Assessment Report (AR6) that global warming has been more rapid in the Mediterranean than in the rest 34 
of the world (IPCC, 2021). This report projected an increase in the frequency and/or severity of agricultural and 35 
ecological droughts across the Mediterranean and Western Africa (IPCC, 2021). A global increase of 2 °C is 36 
thought to correspond to a 3 °C increase in the daily maximum temperature in the MedR (Seneviratne et al., 2016; 37 
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Vogel et al., 2021). If this increase in temperature continues at the same pace, MedR is susceptible to experience 38 
fearful desertification by the end of the 21st century, driving an increase in aridity (Carvalho et al., 2022).  39 

This will surely lead to irreversible biodiversity loss and diminish the capability of semi-arid Mediterranean 40 
ecosystems to function as effective carbon sinks in the future (Valentini et al., 2000; Briassoulis, 2017; Zeng et 41 
al., 2021). These conditions exacerbate water stress, which, in turn, enhances the probability of wildfire (Turco et 42 
al., 2017a). A phenomenon already witnessed these two last summers (2021 and 2022) in several Mediterranean 43 
countries (Turkey, Greece, Italy, Algeria, and Morocco), displacing thousands, killing hundreds, and causing 44 
irreparable damage (Rodrigues et al., 2023; Yilmaz et al., 2023; Eberle and Higuera Roa, 2022).  45 

The Mediterranean Sea (MEDS), lying between Africa, Europe, and Asia, serves as a substantial source of 46 
moisture and heat, affecting atmospheric circulation and weather patterns (Mariotti et al., 2008). Its narrow 47 
connection to the Atlantic Ocean via the 14 km wide Strait of Gibraltar and the surrounding varied topography 48 
(Fig. 1), with vegetated areas to the north and desert areas to the south and east, contribute to the region's complex 49 
climate dynamics (Michaelides et al., 2018).  50 

The MedR is characterized by a mid-latitude temperate climate with mild rainy winters and hot, dry summers 51 
(Lionello et al., 2023). Notably, this area is positioned in a transitional band between the midlatitude and 52 
subtropical regions, which makes climate modeling for this region quite challenging (Planton et al., 2012). The 53 
Mediterranean climate exhibits a strong spatial gradient in precipitation, with generally decreasing precipitation 54 
values towards the south and hardly any precipitation during the summer (Lionello, 2012). Such conditions pose 55 
challenges in climate modeling and can lead to severe impacts on water supply and agriculture, especially in 56 
regions relying on rain-fed agriculture (Tramblay et al., 2020). 57 

Water availability is unevenly distributed among the Mediterranean countries with 72% in temperate countries of 58 
the North, against 5% in the South, and 23% in the East (Milano et al., 2013). Accordingly, several countries such 59 
as Algeria, Morocco, Egypt, Libya, Malta, and some countries of southern Europe such as Portugal and Spain are 60 
experiencing a structural water shortage that is likely to increase with the expected population growth (Sanchis-61 
Ibor et al., 2020). This situation is further aggravated when multi-annual droughts hit the region. In this challenging 62 
context, drought forecasting that provides seasonal to annual lead times becomes critically important for proactive 63 
agricultural and water resources management. 64 

Growing concern about the drought phenomenon in the last decades has spurred the development of improved 65 
systems that predict the full cycle of drought (onset, duration, severity, and recovery) via a large number of indices 66 
and models. Common approaches to predicting drought can be subdivided into two categories of models: statistical 67 
models and dynamical models. Statistical models, also named data-driven models, rely on the estimated 68 
correlations between several predictors (large-scale climate variables) and predictands (local climate variables 69 
represented by historical observations). The climatology-based or persistence-based models, like the Ensemble 70 
Streamflow Prediction (ESP) system, form an essential tool in this category, leveraging both historical and near 71 
real-time data to generate a probabilistic forecast of future drought events (AghaKouchak, 2014a; Turco et al., 72 
2017b; Torres-Vázquez et al., 2023). Meanwhile, dynamical drought prediction relies on the use of Global Climate 73 
Models (GCMs) to simulate the dynamical processes that govern hydroclimatic variability. Nevertheless, despite 74 
the usefulness of these models in drought prediction and early warning systems, their forecast accuracy remains 75 
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limited for longer lead times (exceeding one month) (Wood et al., 2015). The post-processing and multi-model 76 
ensemble techniques are usually used to improve prediction skills by avoiding systematic bias related to the coarse 77 
resolution of GCMs (Han and Singh, 2020). Recently, drought prediction has also been tackled by the hybrid 78 
statistical-dynamical models which combine the two approaches mentioned above. These models constitute a 79 
promising tool for long lead-time drought forecasting (Ribeiro and Pires, 2016). 80 

Despite the efforts made to predict drought phenomena, it remains largely little understood due to its multiple 81 
causing mechanisms and contributing factors (Kiem et al., 2016; Hao et al., 2018). The complexity and variability 82 
depicted by many physical mechanisms such as Sea Surface Temperature (SST), North Atlantic Oscillation 83 
(NAO), El Niño—Southern Oscillation (ENSO), Mediterranean Oscillation (MO), and land-atmosphere feedback 84 
are also responsible for the low performance of drought monitoring and forecasting (Ayugi et al., 2022). 85 
Understanding the synoptic conditions leading to the drought phenomenon becomes increasingly important given 86 
the upward trend in temperature in the MedR. Further investigations to assimilate how large-scale teleconnections 87 
affect local weather and climate anomalies, as well as how these later feedback into the larger context, are much 88 
needed in this context.  89 

To address these questions, numerous review papers have sought to consolidate the scientific advances in drought 90 
prediction from different regions of the world (e.g., Mishra and Singh, 2011; Hao et al., 2018; Fung et al., 2019; 91 
Han and Singh, 2020). While these studies provided a comprehensive overview of drought prediction at a global 92 
scale, our paper offers an in-depth analysis of drought prediction methodologies specifically applied to the 93 
Mediterranean context. This is achieved through an examination of the applicability, strengths, and limitations of 94 
statistical, dynamical, and hybrid statistical-dynamical models, in line with the regional specifics of the MedR. 95 
This specificity is vital given that drought, as a phenomenon, is highly region dependent. The unique 96 
meteorological conditions of the MedR necessitate dedicated studies, as solutions developed for other regions may 97 
not be applicable or effective here.  98 

Tramblay et al. (2020) emphasized the urgent need for drought modeling and forecasting methods designed for the 99 
Mediterranean context, particularly as climate change continues to exacerbate drought conditions in this region. 100 
Building on this, our work not only emphasizes the complexities of drought assessment but also conducts a critical 101 
review of recent drought forecasting methodologies applied specifically to the MedR. In addition to shedding light 102 
on the merits and limitations of these methods, our investigation also helps identify underexplored areas that 103 
warrant further research. Detecting these gaps is a crucial aspect of our work, as it directs future research towards 104 
these relatively unexplored realms of drought prediction. 105 

The structure of this paper is as follows: Section 2 highlights the difficulty related to the definition of drought from 106 
different perspectives. The causes of drought in MedR are provided in section 3. Sections 4, 5, and 6 present the 107 
recent advances in drought prediction with statistical, dynamical, and hybrid statistical-dynamical models 108 
respectively. Section 7 discusses the results found in this review, providing insights into the current state of drought 109 
forecasting in the MedR and highlighting potential areas for improvement. The challenges in drought prediction 110 
are reviewed with the prospects in section 8. Finally, the 9th section presents the conclusions of the whole paper. 111 

Figure 1 Topography of the Mediterranean Region (30°N - 46°N in latitude and 10°W - 40°E in longitude). 112 

2 Drought Definitions, Classification, and Indices 113 
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Drought is a compound phenomenon of creeping nature. Establishing an accurate prediction, well describing its 114 
starting date and duration is extremely hard. The multidisciplinary and multiscale nature of drought renders the 115 
understanding of this phenomenon very challenging (AghaKouchak et al., 2021). As a matter of fact, literature 116 
gives numerous definitions for drought.   117 

In the eighties, Wilhite and Glantz (1985) found more than 150 published definitions of drought that can be 118 
categorized into four broad groups: meteorological, agricultural, hydrological, and socioeconomical. This 119 
classification based on both physical and socioeconomic factors is still adopted today. As this classification is 120 
human-centered, some recent works emphasized the need to consider the ecological drought as well, which creates 121 
multiple stresses in natural ecosystems, see for example Crausbay et al. (2017), Vicente-Serrano et al. (2020), 122 
Bradford et al. (2020) and Zhang et al. (2022). Since the aim of this study is to review forecasting drought methods, 123 
we will focus only on the first three categories that provide direct methods to quantify drought as a physical 124 
phenomenon. 125 

In an attempt to associate a mathematical definition with each drought type, several drought indices have emerged. 126 
These indices are typically based upon some hydroclimatic variables or parameters (indicators) such as 127 
temperature, precipitation, soil moisture, streamflow, and snowpack to describe three major characteristics of the 128 
drought event: severity, duration, and frequency. However, the lack of a universal definition of drought is also 129 
apparent in the huge variety of indices (more than 100) that have been developed for drought prediction (Lloyd-130 
Hughes, 2014). Unfortunately, this plethora of indices creates more confusion than clarity (Lloyd-Hughes, 2014) 131 
and makes the choice of the most suitable indices a difficult task.  132 

2.1. Meteorological Drought  133 

The World Meteorological Organization (WMO) characterizes meteorological drought as “a prolonged absence 134 
or marked deficiency of precipitation”. Similarly, the IPCC defines meteorological drought as “a period of 135 
abnormally dry weather in a region over an extended period”. The threshold to distinguish between a dry or wet 136 
period often depends on the average rainfall typical for the specific area under study.  This gives rise to a variety 137 
of meteorological definitions, each tailored to the distinct conditions of diverse regions or countries (Isendahl, 138 
2006). Regarding the MedR, creating a single encompassing definition of meteorological drought is particularly 139 
challenging. This complexity stems from the diverse climate conditions across the region, particularly the 140 
pronounced variability between eastern and western meteorological conditions that contribute to drought. 141 

The Standardized Precipitation Index (SPI) (McKee et al., 1993) and the Standardized Precipitation 142 
Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010a) are two of the most prevalent indicators used to 143 
describe meteorological drought. They owe their popularity to the recommendation of the WMO (Svoboda et al., 144 
2012). The SPI has been extensively used in previous studies for its ease of computation, its probabilistic nature, 145 
and its ability to detect drought at multiple time scales (Madadgar and Moradkhani, 2013; Chen et al., 2013; Li et 146 
al., 2020; Mesbahzadeh et al., 2020; Das et al., 2020). By fitting a probability distribution to observed precipitation 147 
data, the SPI is calculated and subsequently transformed into a standard normal distribution with a mean of 0 and 148 
a standard deviation of 1 (Livada and Assimakopoulos, 2007). Consequently, SPI values can be compared across 149 
various regions and timeframes (e.g., 1, 3, 6, 12, or 24 months). This multiscale nature of SPI enables it to capture 150 
diverse aspects of drought depending on the selected time scale. The shorter time scales (1-3 months) are suitable 151 
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for monitoring agricultural drought, while longer time scales (6-12 months or more) are better suited for evaluating 152 
hydrological drought. However, it should be noted that the SPI considers only precipitation data and neglects the 153 
variability of temperature and potential evapotranspiration (PET), ignoring the effect of warming on droughts. 154 
Indeed, in relatively wet regions, precipitation deficit can constitute an important indicator for drought (Gamelin 155 
et al., 2022). Yet, in midlatitude (or extratropic) regions such as the Mediterranean where the climatological 156 
precipitation is modest or low, precipitation deficit may not be sufficient to measure extreme droughts. 157 
Furthermore, knowing the upward trend in temperature and the influence of high atmospheric evaporative demand 158 
(AED) in increasing severity of recent drought events in the MedR (Tramblay et al., 2020; Mathbout et al., 2021; 159 
Bouabdelli et al., 2022), the choice of drought indices needs to prioritize those including these variables in their 160 
formulation such as SPEI, or Palmer Drought Severity Index (PDSI) (Palmer, 1965) and Reconnaissance Drought 161 
Index (RDI) (Tsakiris and Vangelis, 2005) to mention but a few. 162 

The SPEI was developed by Vicente-Serrano et al. (2010a) using the climatic water balance concept of climatic 163 
water supply and AED. It is based on precipitation and PET and has the advantage of combining the multi-scalar 164 
character of the SPI with the ability to include the effects of temperature variability (Vicente-Serrano et al., 2010a).  165 

A global assessment of drought indices conducted by Vicente-Serrano et al. (2012) found that SPEI provided a 166 
superior capability in capturing drought impacts, particularly during the crucial summer season. Bouabdelli et al. 167 
(2022) used SPI and SPEI indices and copula theory to study the impact of temperature on agricultural drought 168 
characteristics under future climate scenarios over seven vast Algerian plains located in the MedR. The results of 169 
this study confirmed that the frequency of drought events is much higher using SPI while their duration and severity 170 
are more intense using SPEI. Russo et al. (2019) performed drought characterization in MedR using both SPEI and 171 
SPI, considering the period 1980–2014. Their findings indicated that SPEI exhibits a stronger correlation with 172 
drought conditions over a 3-month time scale, while SPI shows a better correlation for a 9-month duration. This 173 
result highlights the ability of SPEI to capture the early shifts in the balance between evapotranspiration and 174 
precipitation more efficiently than SPI (Russo et al., 2019).  175 

Despite the utility of SPEI in drought characterization, it does have a noteworthy limitation. The effectiveness of 176 
SPEI significantly relies on the method used for estimating PET such as the Penman-Monteith equation, the 177 
Thornthwaite method, the Hargreaves method, and the Priestley-Taylor method among others. These estimation 178 
methods can yield varying results, leading to inconsistencies in SPEI values. In essence, the sensitivity of SPEI to 179 
the PET estimation method used could potentially affect the accuracy and reliability of the index in representing 180 
drought conditions (Vicente-Serrano et al., 2010b; Stagge et al., 2014). 181 

The PDSI has also been widely used to quantify the drought characteristics for a given location and time. It includes 182 
precipitation, temperature, and soil moisture data to estimate water supply and demand and to reflect long-term 183 
drought. But it has shown some inconsistencies when used at various locations (Wells et al., 2004). A self-184 
calibrating variant of this index (scPDSI) was proposed by Wells et al. (2004) to automatically calibrates the 185 
behavior of the index by replacing empirical constants in its computation with dynamically estimated values to 186 
account for the variability of precipitation and the climate characteristics between locations (Wells et al., 2004). 187 
Ionita and Nagavciuc (2021) evaluated the drought characteristics at the European level over the period 1901–2019 188 
using SPI, SPEI, and scPDSI. The results based on SPEI and scPDSI show that the increase in mean air temperature 189 
and PET are making central Europe and the MedR dryer, whereas Northern Europe is getting wetter.  While results 190 
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based on SPI using only precipitation data did not reveal this drought variability. This underscores the findings of 191 
Vicente-Serrano et al. (2012), who emphasized the benefits of using more integrative indices like SPEI in 192 
understanding and predicting drought variability more effectively. 193 

The MedPDSI, which is an update of the PDSI formulation in terms of its soil water balance to consider real 194 
evapotranspiration (based on reanalysis data instead of PET) in the MedR, has allowed an earlier identification of 195 
longer and more severe droughts (Paulo et al., 2012). Paulo et al. (2012) compared SPI, SPEI, PDSI, and MedPDSI 196 
in detecting drought characteristics in Portugal for the period 1941 to 2006. They concluded that PDSI and 197 
MedPDSI are likely to identify better the supply-demand dynamics and that they may be of great interest for 198 
drought warning applications, aiming namely at agriculture (Paulo et al., 2012). 199 

2.2. Agricultural Drought   200 

Agriculture is very sensitive to climate variation especially extreme weather. Due to its dependency on water 201 
availability, this sector is strongly impacted by drought events. In the Mediterranean Basin, agricultural practices 202 
span both rain-fed and irrigated systems. Rain-fed agriculture is prevalent, particularly for crops such as wheat and 203 
barley, while crops like olives and citrus fruits, such as oranges, often utilize controlled irrigation systems to 204 
supplement natural precipitation (Rodrigo-Comino et al., 2021). Regardless of the system employed, if 205 
meteorological drought lasts for a prolonged period, it can lead to a reduction in soil moisture to such a level that 206 
it harmfully affects crop production, especially during the active plant growth season (Wilhite and Glantz, 1985; 207 
Mishra and Singh, 2010). At this stage the agricultural drought sets in. 208 

Therefore, in addition to meteorological factors, the agricultural drought definition is also related to the retention 209 
capacity of soil in the crop growth season (Kuśmierek-Tomaszewska and Żarski, 2021) which depends on crop 210 
types, soil characteristics, and soil management. All these indicators can be employed to develop relevant 211 
agricultural drought indices. Among them, we cite Crop Moisture Index (CMI) (Palmer, 1968); Soil Moisture 212 
Deficit Index (SMDI); Evapotranspiration Deficit Index (ETDI) (Narasimhan and Srinivasan, 2005); Normalized 213 
Soil Moisture index (NSMI) (Dutra et al., 2008) and Empirical Standardized Soil Moisture Index (SSMI) (Carrão 214 
et al., 2016).  215 

The formulation of these indices integrates soil moisture data, leveraging a variety of assessment techniques, each 216 
with unique advantages. These include in-situ soil moisture probes, cosmic-ray neutron probes, and physically 217 
driven models such as the ISBA land surface model (Tramblay et al., 2019). Each of these techniques has distinct 218 
advantages and is suitable for different application contexts (Miralles et al., 2010; Martens et al., 2017). However, 219 
when faced with the scarcity of observed soil moisture data, remote sensing comes to the forefront. It furnishes 220 
extensive and frequent measurements of soil moisture characteristics, effectively supplementing areas where 221 
observed data falls short. Yet, it is crucial to be aware of the limitations of these tools. Despite its indispensable 222 
role, remote sensing is constrained by factors such as coarse temporal and spatial resolution, limited penetration 223 
depth, and incompatible governing hydrologic principles (Mohanty et al., 2017; Gruber and Peng, 2022). As an 224 
alternative, hydrological models have been commonly used to simulate and calibrate this variable in the context 225 
of agricultural drought forecasts (Hao et al., 2018). Mimeau et al., (2021) used a modeling framework to estimate 226 
soil moisture sensitivity to changes in precipitation and temperature at 10 plots located in southern France. They 227 
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concluded that the current climate change scenarios may induce longer periods of depleted soil moisture content, 228 
corresponding to agricultural drought conditions.   229 

In general, when soil moisture in the root zone reaches a critical level, farmers resort to irrigation to save crops 230 
(Kang et al., 2000). However, nowadays agriculture consumes approximately 85% of global fresh water for 231 
irrigation (D’Odorico et al., 2019; Tatlhego et al., 2022), which is expected to increase in the years to come by 232 
growing population, increasing food consumption, and rising temperatures that accelerate PET and promote 233 
hydrological stress. 234 

2.3. Hydrological Drought 235 

Unlike agricultural drought which is mainly affected by the depletion of soil moisture after a dry period, a lack of 236 
precipitation impacts many components of the hydrological system in a river basin or watershed (streams, 237 
reservoirs, and lakes). These define water availability that can be used for commercial navigation, generation of 238 
hydroelectric power, irrigation of farmlands, industry, and domestic activities for several months after the 239 
deficiency in precipitation. Consequently, hydrological drought lags behind the occurrence of meteorological and 240 
agricultural droughts. This lag time is a characteristic of the watershed, which is defined based on many physical 241 
drivers such as evapotranspiration capacity, soil properties, vegetation types, snow accumulation/melt, local water 242 
management such as dams’ construction and control, water supply operation rules, and irrigation strategy (Van 243 
Loon and Laaha, 2015).  244 

A hydrological drought is generally proclaimed when the water levels in streamflow, reservoirs, lakes, aquifers, 245 
and other water storage systems fall below a specific threshold. Therefore, the hydrological drought prediction 246 
necessitates the analysis of climate variables such as precipitation and temperature and initial catchment conditions 247 
(e.g., snow cover, and soil moisture) (Hao et al., 2018).   248 

In the Mediterranean Basin, a common tendency for water levels to drop in shallow lakes and aquifers has 249 
motivated many researchers to study the hydrological drought in this region: Greece (Myronidis et al., 2012); 250 
Turkey (Akyuz et al., 2012); Tunisia (Hamdi et al., 2016); Lebanon (Al Sayah et al., 2021); Italy (Di Nunno et al., 251 
2021); Portugal (Mendes et al., 2022); Algeria (Bouabdelli et al., 2022); Syria (Mohammed et al., 2022). The most 252 
common hydrological drought indices include Palmer Hydrologic Drought Index (PHDI) (Palmer, 1965), the 253 
Streamflow drought index (SDI) (Nalbantis, 2008), and Standardized Runoff Index (SRI) (Shukla and Wood, 254 
2008). 255 

As part of the effort made by Palmer in the sixties, the PHDI has been developed by using the same two-layer soil 256 
model as the PDSI, but it applies a stricter criterion for determining the ends of drought to account for long-term 257 
drought events that reduce surface and groundwater supply. Vasiliades and Loukas (2009) tested the Palmer 258 
indices in a Mediterranean basin (in Greece) they concluded that these indices were successful in the identification 259 
of drought severity of historical events, but they were unable to identify drought duration. 260 

The SRI is an index that uses the same computational principles as SPI but uses monthly mean streamflow rather 261 
than precipitation only to account for the hydrologic process that determines seasonal lags in the influence of 262 
climate on streamflow (Shukla and Wood, 2008). Shukla and Wood (2008) compared the SRI and the SPI results 263 
during drought events in a snowmelt region. They concluded that the SRI can be used as a complement to the SPI 264 
for depicting hydrologic aspects of drought. 265 
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The SDI is also a simple index that uses the cumulative monthly streamflow volumes for a given hydrological year 266 
to predict wet and dry periods and identify the severity of a hydrological drought (Nalbantis, 2008). Bouabdelli et 267 
al. (2020) conducted a comparison study of the SPI and SDI, focusing on their characteristics across three 268 
watersheds in northwestern Algeria. Their analysis revealed a substantial similarity between meteorological 269 
drought events (as represented by SPI-12) and hydrological drought events (as indicated by SDI-6). This 270 
correlation emphasizes the sensitive and responsive nature of these basins to dry conditions, further illustrated by 271 
the swift transition from meteorological to hydrological drought events in the studied basins (Bouabdelli et al., 272 
2020). 273 

The application of hydrological drought indices appears to be very valuable. However, the main challenge in 274 
applying these indices lies in the requirement for a long-term series of climatic data. According to the WMO, up 275 
to 30 years of continuous rainfall data may be necessary for accurate drought index calculations (WMO, 1994). 276 
This condition is not always fulfilled which makes the rainfall-runoff transformation a difficult task (De Luca et 277 
al., 2022). Modern hydrological models can offer a valuable counterpart to existing climate-based drought indices 278 
by simulating hydrologic variables such as land surface runoff (Shukla and Wood, 2008). 279 

3 Overview of the physical mechanisms causing drought in the Mediterranean region 280 

It is difficult to determine the physical mechanisms causing droughts in the Mediterranean basin since the region 281 
covers a complex landscape with high topographic and climatic heterogeneity, strong land-sea contrasts, and high 282 
anthropic pressure (De Luca et al., 2022). 283 

Considering the various forms of drought, meteorological droughts, characterized by a deficit in precipitation, are 284 
commonly recognized as marking the onset of drought conditions. This initial stage is intrinsically linked to 285 
precipitation predictability, which is driven by large-scale atmospheric motions such as Walker circulations and 286 
Rossby waves, influenced by factors like SST anomalies, radiative forcing changes (both natural and 287 
anthropogenic), and land surface interactions (Hao et al., 2018; Wood et al., 2015). However, due to the inherently 288 
chaotic nature of atmospheric circulation, predictability, particularly for meteorological droughts, tends to 289 
diminish beyond a one-month lead time. It is crucial to note that the reliability of these predictions can differ when 290 
considering other drought types (such as agricultural or hydrological droughts) or altering the forecast scale, with 291 
seasonal forecasts often displaying more reliability months in advance, while daily forecasts may face limitations 292 
from around two weeks. 293 

The discovery of teleconnections between SST anomalies and hydroclimatic phenomena constitutes a major 294 
advance in drought forecasting and early warning (Wood et al., 2015). Notably, it is widely established within the 295 
scientific community that certain ocean-atmospheric teleconnections, such as ENSO, can profoundly influence the 296 
onset of drought conditions in various regions worldwide, particularly in the tropics (Ropelewski and Halpert, 297 
1987; Shabbar and Skinner, 2004; Hoell et al., 2014; Vicente-Serrano et al., 2017). For instance, during the peak 298 
phase of El Niño or La Niña in the tropical Pacific, a corresponding change in precipitation patterns can be 299 
observed several months later in North American winter climate (Livezey and Smith, 1999; Hoerling and Kumar, 300 
2003). This delayed impact provides a crucial window for predicting potential drought conditions with a long lead 301 
time exceeding one month (Johnson and Xie, 2010). Moreover, this lagged correlation allows for proactive drought 302 
management strategies, with the ability to anticipate and prepare for drought conditions based on forecasted ENSO 303 
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conditions. Nevertheless, drought predictability is seasonally and spatially variable. Typically, the accuracy of 304 
seasonal drought prediction is superior in the tropics, while it still challenging in the extra-tropics (Doblas-Reyes 305 
et al., 2013).  306 

In the MedR, the response of climate to ENSO is complex. It varies over time and depends on the maturity of the 307 
ENSO state, and the co-occurrence with NAO (Kim and Raible, 2021; Brönnimann et al., 2007; Mariotti et al., 308 
2002). Although many authors have found a non-negligible correlation between ENSO and precipitation anomalies 309 
in the MedR, it remains insignificant compared to the tropics (Mariotti et al., 2002).  310 

In contrast, the NAO is commonly identified as a prominent factor influencing Mediterranean climate variability 311 
during the winter season (Ulbrich and Christoph, 1999; Vicente-Serrano et al., 2011; Kahya, 2011; Santos et al., 312 
2014; Cook et al., 2016). It is important to note, however, that while acknowledging the profound impact of the 313 
NAO on the climate dynamics of the MedR, its predictability, especially on seasonal scales, continues to be a 314 
considerable challenge in the field of climate science (Czaja and Frankignoul, 1999; Saunders and Qian, 2002; 315 
Scaife et al., 2014; Dunstone et al., 2016).  316 

During the positive phase of the NAO, below-average precipitation rates are observed over large parts of the 317 
northern and western MedR. While in the negative phase of NAO, the climate is wetter and warmer (Lionello, 318 
2012). Kim and Raible (2021) analyzed the dynamics of multi-year droughts over the western and central 319 
Mediterranean for the period of 850–2099. This analysis suggests Mediterranean droughts from 850-1849 CE were 320 
mainly driven by the internal variability of the climate system, including elements like barotropic high-pressure 321 
systems, positive NAO phases, and La Niña-like conditions. Conversely, external forcing such as volcanic 322 
eruptions were found to be associated with wetter Mediterranean conditions. In the period 1850-2099 CE, however, 323 
anthropogenic influences amplified land-atmosphere feedback, leading to persistent dry conditions in the 324 
Mediterranean (Kim and Raible, 2021).   325 

Paz et al. (2003) analyzed monthly mean Sea Level Pressure anomalies (SLP) from the 1958–1997 record over 326 
the Mediterranean Basin. They identified a significant anomalous SLP oscillation between North Africa (NA) and 327 
West Asia (WA) and concluded that the regional trend of the NAWA index could explain increased drought 328 
processes in the eastern Mediterranean after the late ’70s, in relation to northern hemispheric circulation. 329 

The climate heterogeneity in the Mediterranean area may also be explained by the regional Mediterranean 330 
Oscillation (MO) characterized by the opposite precipitation patterns between the eastern and western regions 331 
(Dünkeloh and Jacobeit, 2003). More recently Redolat et al. (2019) proposed a new version of MO that uses areas 332 
instead of observatories or isolated points. The new index which is referred to as the Upper-Level Mediterranean 333 
Oscillation index (ULMOi) is based on the differences in geopotential height at 500 hPa to improve the 334 
predictability of seasonal anomalies in the Mediterranean climate (Redolat et al., 2019). According to this study, 335 
ULMOi has reported higher confidence than the MO index for rainfall predictability (Redolat et al., 2019). Other 336 
teleconnections influencing the climate of MedR can be found in the reviews done by Paz et al. (2003) and Lionello 337 
(2012). Recent works have also shed light on the impact of Madden Julian Oscillation (MJO) on water availability 338 
in the region, especially during heavy rainy episodes, see for example (Chaqdid et al., 2023) 339 
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In conclusion, several complex factors that influence the predictability of drought are not yet fully understood, 340 
especially those related to climate change. Therefore, more research on the physical mechanisms causing drought 341 
in the MedR is needed to improve the predictability of drought forecasts.  342 

Expanding our grasp of the physical factors causing drought in MedR, we will now delve into drought forecasting 343 
models. By leveraging insights from these mechanisms, scientists have developed numerous approaches and 344 
techniques including statistical, dynamical, and hybrid statistical-dynamical models to boost the accuracy and 345 
trustworthiness of drought predictions. 346 

4 Statistical Drought Prediction Methods  347 

Once the major sources of predictability are identified, the task of the statistical models is to uncover the spatial 348 
and/or temporal relationship between a set of these potential predictors and the predictand. When a large number 349 
of predictors are identified within the same region, dimension reduction techniques like Principal Component 350 
Analysis (PCA) or Linear Discriminant Analysis (LDA) can improve model accuracy and efficiency by reducing 351 
the number of dimensions while preserving essential information. On the other hand, feature selection methods 352 
such as decision trees or Random Forests can help eliminate irrelevant predictors. These approaches can prevent 353 
overfitting, leading to enhanced model performance and interpretability (Hao et al., 2018; Ribeiro and Pires, 2016). 354 

The next sections will present the frequently used data-driven models and how they were employed to predict 355 
different types of droughts at different spatiotemporal resolutions in the MedR.  356 

4.1. Time Series models  357 

During the last few decades, several methods have been developed to analyze the stochastic characteristics of 358 
hydrologic time series (Morid et al., 2007; Rafiei-Sardooi et al., 2018; Band et al., 2022; Zarei and Mahmoudi, 359 
2020). Moving average (MA), Autoregressive (AR), and Autoregressive Integrated Moving Average (ARIMA) 360 
are all linear models that analyze past observations of the same variable to predict its future values. Normality and 361 
stationarity of observations are two of the basic assumptions of these time-series models. Therefore, if some trends 362 
or seasonality are detected in observations, they should be removed before the modeling to avoid any drift in the 363 
concepts to be captured.  364 

ARIMA is the most frequently used time-series model (Zhang et al., 2003). The popularity of this model is related 365 
to its ability to search systematically for an adequate model at each step of the model building (identification, 366 
parameter approximation, and diagnostic check). This method is based on the concept that nonstationary data could 367 
be made stationary by “differencing” the series (Box et al., 2015). The approach involved considering a value Y 368 
at time point t and adding/subtracting based on the Y values at previous time points and adding/subtracting error 369 
terms from previous time points. The formula can be written as: 370 

 𝑌! = 𝑐 + 𝜑"𝑌!#" +⋯+𝜑$𝑌!#$ + 𝜃"𝑒!#" +⋯+ 𝜃%𝑒!#% + 𝑒!, (1) 

where: 371 

𝑌! is the value of the variable at time t; c is a constant term; p and q are the orders of AR and MA models, 372 

respectively; 𝜑& and 𝜃& 	are model parameters; 𝑒!#"… . 𝑒! are the error terms.  373 
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The AR component captures the impact of past values on the current value, the I component handles any non-374 
stationarity in the data (i.e., changes in the mean or variance over time) by “differencing” the time series, and the 375 
MA component captures the impact of random shocks or errors in the data. 376 

The ARIMA model is generally expressed with the three terms p, d, and q. The order of differencing in the I 377 
component is denoted by the value of (d) in the ARIMA(p,d,q) notation. It represents the number of times that the 378 
data must be “differenced” to produce a stationary signal. The lag order (p) represents the number of prior 379 
observations having a strong correlation with the current observation. While (q) is the size of the moving window 380 
and is identified by determining the number of lag errors that have a significant impact on the current observation. 381 

The SARIMA is a more specific version of ARIMA that includes a seasonal component, which takes into account 382 
the repeating patterns that occur at regular intervals (e.g., daily, weekly, monthly) in the data. This makes it more 383 
appropriate for forecasting seasonal time series data.  384 

Bouznad et al. (2021) conducted a comparative analysis of ARIMA and SARIMA models using precipitation, 385 
temperature, and evapotranspiration data to assess seasonal drought conditions in the Algerian highlands. These 386 
models were compared based on their ability to replicate and forecast the data series accurately. The SARIMA 387 
model emerged as the better choice as it exhibited significant p-values for all variables under study. This implies 388 
that the model was statistically significant in predicting the variables and thus outperformed the ARIMA model in 389 
this specific context. In the same country, Achite et al. (2022) investigated the meteorological and hydrological 390 
drought in the Wadi Ouahrane Basin using ARIMA and SARIMA models applied to SPI and SRI indices. A 391 
validation based on R² revealed high accuracy for SPI and SRI of 0.96 and 0.97 respectively, at 1-month lag. 392 
Additional examples of the use of the time-series model in drought forecasting in MedR can be found in Table 1. 393 

Although time series models have shown good predictability of drought characteristics, these methods present 394 
certain limitations as they are based solely on the persistence of some drought indicators (trend, seasonality) 395 
without worrying about their interactions. 396 

Table 1 Main studies using the Time series model to forecast drought in the MedR. 397 

4.2. Regression analysis 398 

Regression models are commonly applied in drought forecasting due to their straightforwardness, interpretability, 399 
and proficiency in revealing potential connections between hydroclimatic variables. These models use various 400 
predictors (independent variables), including precipitation, temperature, and other relevant climate indices, to 401 
approximate drought indices or related target variables (dependent variables).  402 

Simple and multivariate linear regression (MLR) models have been broadly applied for projecting extreme 403 
hydrological phenomena such as droughts (Sharma et al., 2018). These models shed light on the linear connections 404 
between various predictors and predictands, offering a valuable method to understand the primary factors of 405 
drought conditions and their interactions (Mishra et al., 2011).  406 

An MLR model that predicts drought from multiple drought predictors 𝑋", 𝑋', …𝑋( can be formulated as: 407 

 𝑌 = 𝛽) + 𝛽"𝑋"+𝛽'𝑋' +⋯+𝛽(𝑋( + 𝜀 (2) 
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Where: 408 

𝛽) is the y-intercept or the constant term,  409 

𝛽&(&+",',…,()	are the regression coefficient for each independent variable 𝑋&(&+",',…,(),  410 

𝜀 is the model’s error term. 411 

On the other hand, when drought forecasts have a binary or dichotomous nature, such as drought vs. no drought, 412 
logistic regression models can be particularly useful. In these cases, the dependent variable (drought) is expressed 413 
as a probability or likelihood of occurrence. The main goal of logistic regression is to estimate the relationship 414 
between a set of predictors and the probability of the binary outcome (Rahali et al., 2021; Hosmer et al., 2013). 415 

Some of the applications of regression analysis for drought forecasting in the MedR are discussed below and 416 
summarized in (Table 2). 417 

Table 2 Main studies using regression analysis to forecast drought in the MedR. 418 

Sousa et al. (2011) analyzed the spatiotemporal evolution of drought conditions across the MedR during the 20th 419 
century using monthly precipitations, NAO, and SST as independent variables and scPDSI as a dependent variable. 420 
Their study successfully developed a robust stepwise regression model capable of predicting summer drought 421 
conditions six months in advance with a high correlation of 0.79 between simulated and observed scPDSI time 422 
series, thus demonstrating its utility in forecasting future drought conditions in the region. Tigkas and Tsakiris 423 
(2015) used the MLR model with variables that include the minimum temperature and RDI as the main 424 
independent variable for the assessment of drought effects on wheat yield in two rural areas of Greece. The results 425 
of this analysis showed a high correlation between RDI and the wheat yield during the winter months which proves 426 
that satisfactory prediction of the drought impacts on wheat yields 2 to 3 months before the harvest can be achieved 427 
using the MLR model. Martínez-Fernández et al. (2016) conducted a study in the REMEDHUS (Soil Moisture 428 
Measurement Stations Network) area in Spain, aiming to monitor agricultural drought on a weekly time scale and 429 
provide early warning to farmers for adapting irrigation strategies. They computed a specific agricultural drought 430 
index (SWDI) using data from the SMOS satellite. Within this study, various computation approaches were 431 
analyzed, and the ones that yielded the most promising results were those directly based on soil attributes or 432 
parameters extracted from pedo-transfer function (PTF). These approaches utilized a multiple regression analysis, 433 
with soil water parameters as dependent variables and incorporated other relevant soil characteristics such as 434 
texture, bulk density, and porosity. 435 

Although regression models have been valuable in drought forecasting, they exhibit certain limitations such as the 436 
linearity assumption, limited interactions between variables, sensitivity to overfitting and multicollinearity (Rafiei-437 
Sardooi et al., 2018). Consequently, their ability to accurately represent complex real-world phenomena is often 438 
insufficient (Zhang, 2003). To address these shortcomings, more advanced models capable of capturing non-linear 439 
relationships and interactions are required, ultimately improving the forecasting of complex hydroclimatic events 440 

such as droughts. 441 
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4.3. Machine Learning and Hybrid Models 442 

One of the big challenges in drought prediction is the random and nonlinear nature of the hydroclimatic variables 443 
(Agana and Homaifar, 2017). Over the last two decades, intelligent techniques such as Artificial Neural networks 444 
(ANN), Support Vector Machines (SVM), and Fuzzy Logic (FL) have proven to be very promising tools for 445 
modeling nonlinear and dynamic time series (Mokhtarzad et al., 2017; Dikshit et al., 2022; Prodhan et al., 2022). 446 
These algorithms have thus garnered significant interest in the realms of drought modeling and forecasting 447 
(Prodhan et al., 2022). In the context of modeling, they are used to develop mathematical representations of 448 
complex drought systems, capturing the interplay of various atmospheric, hydrological, and land surface processes 449 
that lead to these phenomena. In forecasting, the models derived from these algorithms are employed to anticipate 450 
future drought conditions, assisting in risk assessment and mitigation strategies. Table 3 highlights key studies that 451 
utilize machine learning models for drought prediction in the MedR.  452 

Prodhan et al. (2022) stated in their review of machine learning methods for drought hazard monitoring and 453 
forecasting on a global scale that the ANN was the most popular model in peer-reviewed literature, and they 454 
suggested that higher use of the ANN model is anticipated because it has non-linear properties that make it more 455 
robust for identifying all possible interactions between predictors. 456 

ANN is a mathematical model inspired by biological brain neural networks. It consists of an interconnected group 457 
of nodes (artificial neurons) and processes information using a connectionist computation (Fig. 2). In the case of 458 
drought forecasting, ANN architecture is usually made of three layers: an input layer which consists of the drought 459 
predictors, hidden layer(s) which comprises a function that applies weights to the input variables and passes them 460 
using a non-linear activation function, and an output layer that consists of the drought target variable or drought 461 
index (Han and Singh, 2020).  462 

Figure 2 Drought forecasting based on a simple ANN architecture. 463 

For the proper functioning of a neural network, the optimization of network weights (known as the learning or 464 
training process) is an essential step (Dikshit et al., 2022). Back-propagation, Feed Forward, Gradient Descent, 465 
Stochastic Gradient Descent, Adam and Levenberg–Marquardt are among the common training algorithms 466 
(Bergou et al., 2020).  The role of these algorithms is to minimize the difference between predicted and observed 467 
values by adjusting the network weights and biases of the model. 468 

Di Nunno et al. (2021) used a non-linear AutoRegressive with eXogenous inputs (NARX) neural network (a 469 
particular type of recurrent dynamic ANNs) to predict spring flows in the Umbria region (Italy). The results of this 470 
study show a good performance of the NARX model in predicting spring discharges for both short (1 month: 471 
R2 = 0.90–0.98, RAE = 0.09–0.25) and long-term lag time (12 months: R2 = 0.90–0.98, RAE = 0.09–0.24).  472 
Achour et al. (2020) also confirmed the performance of the ANN model with multi-layer perceptron networks 473 
architecture and Levenberg–Marquardt calibration algorithm in predicting drought in seven plains located in 474 
northwestern Algeria with 2 months lead time (R²=0.81, RMSE< 0.41 and MAE <0.23). 475 

SVM is also a robust supervised learning model that investigates data for classification and regression analysis. It 476 
designates the best separating line to classify the data with more safety margins. Besides, the good performance in 477 
solving linear problems, SVM could also transfer a non-linear classification to a linear one using the kernel 478 
function and be able to solve high-dimensional problems (El Aissaoui et al., 2021).  479 



14 
 

In the context of drought studies, SVM is particularly beneficial due to its ability to handle many inputs, use a 480 
small dataset for training, and its resistance to overfitting compared to ANN (Hao et al., 2018). These features 481 
make SVM less sensitive to data sample size, enhancing the robustness of the drought model. On the forecasting 482 
aspect, SVM employs a kernel function to map predictors in a high-dimensional hidden space, subsequently 483 
transforming the predictand to the output space (El Aissaoui et al., 2021). This process allows the SVM model to 484 
generate effective and accurate forecasts about potential future drought events, given the input variables.  485 

El Aissaoui et al. (2021) used the Support Vector Regression (SVR) model with three kernel functions (linear, 486 
sigmoid, polynomial, and radial basis function [RBF]) for the prediction of drought in the region of Upper 487 
Moulouya (Morocco) through the SPI and SPEI indices. Their research underscores the SVR model's effectiveness, 488 
particularly with the RBF kernel function, in forecasting drought indices SPI (R = 0.92) and SPEI (R = 0.89). 489 
Mohammed et al. (2022) evaluated the applicability of 4 Machine Learning algorithms namely bagging (BG), 490 
random subspace (RSS), random tree (RT), and random forest (RF) in predicting agricultural and hydrological 491 
drought events in the eastern MedR based on SPI. The results of this study revealed that hydrological drought 492 
(SPI-12, −24) was more severe over the study area and BG was the best model in the validation stage with RMSE 493 
≈ 0.62–0.83 and r ≈ 0.58–0.79. 494 

To further improve the prediction accuracy of AI models, preprocessing of data using wavelet decomposition 495 
(WD), PCA, or empirical mode decomposition (EMD) is recommended. These techniques known as hybrid models 496 
have gained attention due to their potential to improve prediction accuracy and better capture complex 497 
relationships in the data (Yoo et al., 2015; Liu et al., 2020). The preprocessing techniques are used to extract and 498 
represent the essential features and patterns within the data and statistical methods, such as ANN, SVM, or RF, 499 
model the relationship between the input variables and the target drought index. El Ibrahimi and Baali (2018) 500 
explored the prediction of short-term (SPI-3) and long-term (SPI-12) drought conditions using 6 models: SVR, 501 
ANN-MLP, Adaptive Neuro-Fuzzy Inference Systems (ANFIS), WA-SVR, WA-MLP, and WAANFIS in the 502 
Saïss Plain (Morocco). They argued that ANN models were more efficient than SVR models and that the use of 503 
wavelet analysis has enhanced the prediction skill of ANN models which is probably due to their capacity in 504 
detecting local discontinuities and non-stationary characteristics of the data.  505 

Table 3 Main studies using Artificial Intelligence Models to forecast drought in the MedR. 506 

Özger et al. (2020) evaluated the effect of using EMD and WD for decomposing time series data on drought 507 
prediction using the self-calibrated Palmer Drought Severity Index (sc-PDSI) and machine learning models ANN 508 
and SVM. They found that the accuracy of standalone machine learning models in midterm sc-PDSI predictions 509 
was unsatisfactory, but it significantly improved when EMD and WD techniques were introduced, particularly for 510 
hybrid wavelet models. 511 

In summary, machine learning and hybrid models, which combine preprocessing techniques with statistical 512 
methods, have demonstrated their efficiency in drought forecasting, as they can effectively handle intricate, 513 
nonlinear relationships and adjust to a diverse range of input data characteristics. However, the applicability of 514 
these models may be challenging when input variables exhibit strong dependence on each other. This dependency 515 
can lead to several issues such as multicollinearity, overfitting, and diminishing returns (Maloney et al., 2012). To 516 
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address these limitations and improve drought forecasting performance, it is essential to consider joint probability 517 
models (Madadgar et al., 2014; Hao et al., 2018).  518 

4.4. Joint Probability Models 519 

The probabilistic analysis of drought events plays a significant role in the planning and management of water 520 
resource systems, particularly in arid or semi-arid Mediterranean regions known for low annual and seasonal 521 
precipitation. Drought return periods, which estimate the frequency of drought events, can provide valuable 522 
information for responsible water management during drought conditions. The univariate frequency analysis is a 523 
common method for analyzing drought events. As mentioned above, drought is usually characterized by its 524 
severity, duration, and frequency which can be extracted using the theory of runs introduced by Yevjevich (1967). 525 
These characteristics present a dependence structure that can be ignored by the univariate approach, resulting in 526 
an under/overestimation of drought risks. As such, several joint probability theories have been recently 527 
incorporated into drought risk analysis including two or more variables. One of the most important joint probability 528 
models that have garnered increasing attention in the hydrologic community over the last decade is the copula 529 
model (Jehanzaib et al., 2021; Pontes Filho et al., 2020; Das et al., 2020; Zellou and Rahali, 2019; Mortuza et al., 530 
2019; Ozga-Zielinski et al., 2016; Xu et al., 2015; AghaKouchak, 2014b; Madadgar and Moradkhani, 2013; Chen 531 
et al., 2013). 532 

There are numerous copula families and classes, such as elliptic, Archimedean (Clayton, Frank, Gumbel, Joe), 533 
extreme value, and Bayesian to cite but a few. The choice of the most suitable copula family depends on the 534 
specific modeling goals and the structure of the data being modeled (Genest and Favre, 2007 ; Joe, 2014).  535 

A brief overview of the bivariate copula theory is given here to initiate readers about their concept and application. 536 
However, for additional details on the theory and concepts of the copula, readers may refer to the monographs by 537 
Joe (1997) and Nelsen (2007). Furthermore, comprehensive methodological understanding of constructing high-538 
dimensional copulas, such as Pair Copula Construction (PCC) and Nested Archimedean Construction (NAC), can 539 
be garnered from the works of Aas and Berg (2009) and Savu and Trede (2010). 540 

Let F be a 2-dimensional distribution function, with univariate margins F"and F'	for random variables U and V, 541 

respectively. According to Sklar’s theorem (Sklar, 1959), there exists a copula C such that: 542 

 F(U, V) = C6F"(U), F'(𝑉)8	U, V ∈ 𝘙 (3) 

with 𝐶 unique when F"(U)	 and F'(V)	are continuous marginal distributions, so that  543 

𝐶:	[0,1]²	 → 	 [0,1] that satisfies the boundary conditions 𝐶(𝑢, 0) 	= 	𝐶(0, 𝑣) 	= 	0  544 

and 𝐶(𝑢, 1) 	= 	𝐶(1, 𝑢) 	= 	𝑢	(Uniform margins) for any 𝑢 ∈ [0,1] and the so-called 2-increasing property 545 
(Papaioannou et al., 2016). 546 

The main advantage of the copula over the traditional multivariate distributions is its ability to model the nonlinear 547 
dependence structure between variables independently from the choice of their marginal distributions (Salvadori 548 
and De Michele, 2004). This concept simplifies the joint probability analysis and its application in high dimensions 549 
(with a large number of variables or predictors) becomes possible.  550 
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Serinaldi et al. (2009) constructed a four-dimensional joint distribution using the copula approach and SPI to model 551 
the stochastic structure of drought variables in Sicily (Italy). Drought return periods were next computed as mean 552 
interarrival time, taking into account two drought characteristics at a time by means of the corresponding bivariate 553 
marginals of the fitted four-dimensional distribution. Bouabdelli et al. (2020) investigated the joint probability and 554 
joint return period of drought severity and duration using copula theory to assess the hydrological drought risk in 555 
the reference period and its probability of occurrence in the future under two climate change scenarios in three 556 
basins located in northern Algeria. Bonaccorso et al. (2015) evaluated the conditional probability of future SPI 557 
classes under the hypothesis of multivariate normal distribution of NAO and SPI series in Sicily (Italy). The results 558 
of this study indicated that transition probabilities toward equal or worse drought conditions increase as NAO 559 
tends toward extremely positive values. Table 4 displays additional examples of the application of the Joint 560 
Probability Models to forecast drought in the MedR. 561 

Table 4 Main studies using Joint Probability Models to forecast drought in the MedR. 562 

All the above-mentioned studies confirm that copulas can accurately capture the joint distribution and dependence 563 
structure between multiple drought predictors without making strong assumptions about their marginal 564 
distributions. By combining the strengths of machine learning models with the flexibility of copulas, researchers 565 
can develop more accurate and reliable hybrid methods that better represent the intricacies of hydrological 566 
processes and climatic variables, even in the presence of strong dependence among the input variables (Jiang et 567 
al., 2023; Li et al., 2022; Wu et al., 2022; Zhu et al., 2020). 568 

4.5. Ensemble Streamflow Prediction  569 

The ESP method, a commonly used technique in hydrological forecasting, was primarily intended for medium to 570 
long-term streamflow prediction (Day, 1985). However, its utility extends to the prediction of hydrological 571 
droughts, characterized by low streamflows (KyungHwan and DegHyo, 2015 ; Sutanto et al., 2020 ; Troin et al., 572 
2021). 573 

ESP operates on the principle of employing historical data to generate an ensemble of possible future climate 574 
conditions (Turco et al., 2017b). The process begins by determining the current state of the system, considering 575 
parameters such as current streamflow, soil moisture levels, and reservoir levels which serves as the initial 576 

conditions for the forecast (Wood et al., 2016). The generation of the ensemble involves choosing a historical 577 

record at each time (day, week or month) of forecast that will provide the meteorological inputs (Day, 1985). By 578 
repeating this process for every time in the historical record, an ensemble of forecasts is produced, each member 579 
representing a potential future scenario. The hydrological model is run for each ensemble member, using the 580 
chosen meteorological inputs and initial conditions to generate a range of potential future states of the system 581 
(Harrigan et al., 2018). The ensemble of forecasts is then analyzed to derive probabilistic predictions.  582 

As new data becomes available, forecasts can be updated by re-initializing the system's state and generating a new 583 
ensemble of forecasts. A significant advantage of this method is that it enables the uncertainty prediction by 584 
producing a variety of potential future streamflow forecast scenarios which can increase the confidence of this 585 
approach, specifically for its operational use in water management (Troin et al., 2021). 586 
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 However, the limitations of the ESP method must be noted. For instance, it presupposes that future behavior will 587 
mirror past behavior, a concept that may not hold under changing climatic conditions (Wood et al., 2016). 588 
Furthermore, the method's performance is heavily reliant on the quality and duration of the historical 589 
meteorological records used in the ensemble generation process (Turco et al., 2017b). 590 

ESP is frequently employed as a benchmark for comparison with more sophisticated forecasting methods, such as 591 
dynamical climate models or hybrid statistical-dynamical models (AghaKouchak, 2014a; Turco et al., 2017b; 592 
Torres-Vázquez et al., 2023). Although these more complex methods can outperform ESP in some instances, the 593 
computationally efficient ESP method often exhibits comparable performance, particularly when forecasting a few 594 
months ahead (Turco et al., 2017b; Torres-Vázquez et al., 2023).  595 

4.6. Markov Chain Models 596 

Markov chains are effective tools to understand the stochastic characteristics of drought events and their temporal 597 
dependency. These models assume that future states depend only on the current state. 598 

Mathematically, Markov chain is a stochastic process 𝑋, such as at any time t, 𝑋!/" is conditionally independent 599 

from 𝑋), 𝑋", 𝑋', ..., 𝑋!#", given 𝑋!; the probability that 𝑋!/" takes a particular value j depends on the past only 600 

through its most recent value 𝑋!: 601 

 𝑃{𝑋!/" = 𝑗|𝑋), 𝑋", … . . , 𝑋!	} = 𝑃{𝑋!/" = 𝑗|𝑋! = 𝑖	}∀𝑖, 𝑗	𝜖	𝑆, 𝑡 ∈ 𝑇 (4) 

A Markov chain is characterized by a set of states,	𝑆, and by the transition probability, 𝑃&0, between states. The 602 

transition probability 𝑃&0 is the probability that the Markov chain is at the next time point in state 𝑗, given that it is 603 

at the present time point in state 𝑖. 604 

The drought prediction using this concept can be expressed as the transition from wet or normal state to dry state 605 
(or the other way around) or the transition from one drought severity state to another (e.g., no drought, mild 606 
drought, moderate drought, extreme drought). Habibi et al. (2018) studied meteorological drought in North 607 
Algeria's Chéliff–Zahrez basin, employing both localized and spatially distributed probabilities for temporal 608 
transitions using Markov Chains, and recurrence probabilities using an optimal time series model, the APARCH 609 
approach. Paulo and Pereira (2007) used Markov chains, incorporating homogeneous and non-homogeneous 610 
formulations, to predict drought transitions up to three months ahead, based on the SPI derived from 67 years of 611 
data in Southern Portugal. The non-homogeneous Markov model outperformed its counterpart by considering the 612 
initial month and seasonal rainfall variations. Table 5 lists additional studies that apply Markov chain models for 613 
MedR drought forecasting. 614 

Table 5 Main studies using Markov Chains Model to forecast drought in the MedR. 615 

These studies generally support the effectiveness of Markov chain models in providing valuable drought insights. 616 
However, it is essential to consider the challenges associated with applying Markov chains within the MedR, as 617 
the region’s complex topography, considerable interannual climate fluctuations, limited data availability, and the 618 
non-stationarity resulting from climate change can adversely affect the models' core assumptions and constrain 619 
their long-term forecasting accuracy. Addressing these challenges calls for the adoption of more sophisticated 620 
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techniques that encompass both stochastic and physically based approaches, ultimately enhancing the accuracy 621 
and reliability of drought predictions in this region (Paulo and Pereira, 2007).  622 

5 Dynamical Drought Prediction Methods  623 

Dynamical drought prediction methods are generally based on the use of seasonal climate forecasts derived from 624 
comprehensive GCMs. The European Centre for Medium-Range Weather Forecasts (ECMWF)’s System 4 625 
(SYS4), the Hadley Centre’s Global Environmental Model (HadGEM), the Community Earth System Model 626 
(CESM), and the National Centers for Environmental Prediction (NCEP)’s Climate Forecast System (CFS) are 627 
some widely recognized examples. Designed to emulate physical processes across the atmosphere, ocean, and land 628 
surface, these GCMs can produce near-term forecasts for various climatic factors such as precipitation, 629 
temperature, surface pressure, and winds. However, these models typically provide a global overview and possess 630 
a relatively coarse resolution, which spans from 150 km to 300 km horizontally, encompassing 10 to 20 vertical 631 
atmospheric layers and up to 30 oceanic layers. This level of detail may not offer the specificity necessary for 632 
local-scale impact assessments. To counter this, post-processing steps, encompassing downscaling and bias 633 
correction, are crucial when employing GCM forecasts (Tuel et al., 2021; Gumus et al., 2023). The main objective 634 
here is to refine the global, coarse-grained GCM data into higher-resolution forecasts. These refined forecasts are 635 
far more pertinent for predicting seasonal drought events at a regional and local scale within the MedR.  636 

The most common approaches to downscale GCM forecasts include statistical models, dynamic or nested models, 637 
and hybrid statistical–dynamical models (Wilby et al., 2004). In statistical downscaling, large-scale variables are 638 
used as the predictors and desired near-surface climate variables are the predictands (Gutiérrez et al., 2019). The 639 
role of statistical models is then to measure the correlations between predictors and predictands. Whereas 640 
dynamical downscaling refers to the use of high-resolution regional simulations to dynamically extrapolate the 641 
effects of large-scale climate processes to regional or local scales based on a nesting approach between GCMs and 642 
Regional Climate Models (RCMs) (Giorgi and Gutowski, 2015). However, it is known that GCMs contain 643 
significant systematic biases that may propagate into RCMs through the lateral and lower boundary conditions 644 
and thus degrade the dynamically downscaled simulations and lead to large uncertainties (Maraun, 2016). Besides, 645 
climate predictions from a single climate model simulation are sensitive to initial oceanic and atmospheric states 646 
and can represent only one of the possible pathways the climate system might follow. 647 

5.1. Multi-Model Ensemble  648 

To allow probabilistic estimates of climate variables with uncertainties in quantification, it is necessary to carry 649 
out an ensemble of simulations with different initial conditions from each model and to combine various models 650 
as ensemble members. The frequently used Multi-Model Ensemble (MME) and bias correction methods include 651 
quantile mapping (Wood et al., 2002) and Bayesian Model Averaging (Krishnamurti et al., 1999; Seifi et al., 2022). 652 
These methods proceed by adjusting the modeled mean, variance, and/or higher moments of the distribution of 653 
climate variables, to match the observations. However, such MME simulations can be very computationally 654 
demanding. Therefore, some international dynamical downscaling intercomparison projects were carried out such 655 
as the Coordinated Regional Downscaling Experiment (CORDEX, Wilby et al., 1998) and its Mediterranean 656 
initiative MEdCORDEX (Ruti et al., 2016) to provide present and future climate simulations with a high spatial 657 
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resolution (~12 km). In a study conducted by Turco et al. (2017b), the accuracy and reliability of ECMWF's System 658 
4 (SYS4) in forecasting drought conditions, characterized by a six-month SPEI6, across Europe from 1981 to 2010 659 
was evaluated. They found that the SYS4 model effectively projected the spatial patterns of SPEI6 and various 660 
drought conditions (ranging from extreme to normal) with a reasonable degree of precision up to a lead time of 2 661 
months. In the same geographical context, Ceglar et al. (2017) demonstrate the power of dynamical models in the 662 
agricultural sector by investigating the relationship between large-scale atmospheric circulation and crop yields in 663 
Europe. Their research highlights the significant potential of such models in developing effective seasonal crop 664 
yield forecasting, and consequently, in advancing dynamic adaptation strategies to climate variability and change. 665 

All these studies confirmed the good performance of MME methods in providing probabilistic drought forecasts 666 
for 1 to 2 months of lead time and improving drought onset detectability. However, much effort should be made 667 
in selecting the most skilled GCM ensembles in reproducing the large and synoptic scale atmospheric and land-668 
surface conditions associated with drought development in the MedR. By prioritizing ensembles that adequately 669 
capture the region's distinct climate characteristics, spatial-temporal variability, and land-atmosphere interactions, 670 
the MME forecasts can mitigate biases related to key meteorological variables such as temperature or precipitation 671 
and significantly improve the precision and reliability of drought predictions (Li et al., 2023; Ahmed et al., 2019). 672 

5.2. Coupled hydrological models. 673 

On the other hand, GCMs often struggle to accurately represent some complex elements of the hydrological cycle, 674 
such as soil moisture, streamflow, groundwater level, and PET. The inherent complexities of these variables and 675 
the broad spatial scale of GCMs make it challenging to fully capture their behavior. This gap can limit the 676 
effectiveness of GCMs in drought prediction and modelling (Balting et al., 2021). Consequently, to dynamically 677 
forecast agricultural and hydrological droughts, the water balance should be correctly simulated by hydrological 678 
models forced by climate forecasts (Wanders and Wood, 2016). Among the most used models to forecast 679 
hydrological drought, we cite, the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998), the Variable 680 
Infiltration Capacity (VIC) (Liang et al., 1994), and the Community Land Model (CLM) (Oleson et al., 2004). 681 
These models can incorporate data on soil moisture, vegetation, snow water equivalent, groundwater level, and 682 
other initial hydrologic conditions with climate forecasts to simulate the movement of water through the 683 
hydrological cycle, including the processes of precipitation, evaporation, infiltration, and runoff. Crop growth 684 
models can also be coupled with hydrological models to make an accurate prediction of agricultural drought and 685 
its impact on crop yields (Narasimhan and Srinivasan, 2005; Abhishek et al., 2021).  686 

Coupled hydroclimatic models can improve drought forecasting by allowing for the consideration of feedback 687 
between the hydrological and climatological components of the Earth system. Indeed, drought conditions can 688 
affect the availability of water for evapotranspiration, which in turn can affect the amount of moisture in the 689 
atmosphere and the likelihood of precipitation. By incorporating this feedback into the model, it is possible to 690 
produce more accurate forecasts of drought conditions. 691 

In a recent study, Brouziyne et al. (2020) combined meteorological and hydrological drought indices (SPI and 692 
SDI) with a SWAT model forced by bias-corrected CNRM-CM5 data to predict future droughts under two RCPs 693 
(4.5 & 8.5) in Bouregreg watershed, Morocco. They confirmed that using multiple drought indices and a 694 
comprehensive water budget indicator such as Total Water Yield provided a valid approach to evaluate drought 695 
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conditions in a Mediterranean context. Marx et al. (2018) analyzed a multi-model ensemble of 45 hydrological 696 
simulations based on three RCPs (2.6, 6.0, and 8.5), five GCMs (CMIP5), and three state-of-the-art hydrological 697 
models (mHM, Noah-MP, and PCR-GLOBWB) to investigate how hydrological low flows are affected under 698 
different levels of future global warming. Based on the analysis of the results, the authors recommended using 699 
multiple hydrological models in climate impact studies and to embrace uncertain information on the multi-model 700 
ensemble as well as its single members in the adaptation process.  701 

5.3. Long-term drought projection under climate change. 702 

As climate change continues to influence drought events in the MedR, it is vital to integrate long-term climate 703 
projections into drought forecasting strategies (Tramblay et al., 2020). In this regard, GCMs are essential for 704 
projecting future climate changes under varying scenarios, such as Representative Concentration Pathways (RCPs) 705 
or Shared Socioeconomic Pathways (SSPs1). Coupled with downscaling techniques, these models offer region-706 
specific projections of critical climate variables including precipitation, temperature, surface pressure, and winds. 707 
These projections are instrumental in estimating long-term drought events, facilitating a more comprehensive risk 708 
assessment for stakeholders and decision makers. Baronetti et al. (2022) analyzed the expected characteristics of 709 
drought episodes in the near (2021–2050) and far (2071–2100) future compared to the baseline conditions (1971–710 
2000) for northern Italy using EURO-CORDEX and MedCORDEX GCMs/RCMs pairs at a spatial resolution of 711 
0.11 degrees for the RCPs (4.5 and 8.5) scenarios. The results indicated that the GCM/RCM pairs performed 712 
generally well, while in complex environments such as coastal areas and mountain regions, the simulations were 713 
affected by considerable uncertainty. Dubrovský et al. (2014) used an ensemble of 16 GCMs to map future drought 714 
and climate variability in the MedR. Bağçaci et al. (2021) compared the capacity of the latest release Coupled 715 
Model Intercomparison Project Phase 6 (CMIP6) model ensembles in representing near-surface temperature and 716 
precipitation of Turkey in comparison with its predecessor CMIP5 to better understand the vulnerability degree of 717 
the country to climate change. In a study conducted by Cos et al. (2022), the authors compared climate projections 718 
from CMIP5 and CMIP6 models to assess the impacts of climate change in the MedR. The findings reveal a robust 719 
and significant warming trend across all seasons, with CMIP6 models projecting stronger warming compared to 720 
CMIP5. While precipitation changes show greater uncertainties, a robust and significant decline is projected over 721 
large parts of the region during summer by the end of the century, particularly under high emission scenarios. 722 
(Seker and Gumus, 2022) uses 22 global circulation models from CMIP6 to project future precipitation and 723 
temperature changes in the MedR. The MMEs outperform individual GCMs in simulating historical data, and the 724 
projections indicate a decrease in precipitation by 15% for SSP2–4.5 and 20% for SSP5–8.5. Table 6 shows the 725 
main studies using dynamical models to forecast drought in MedR.  726 

Table 6 Main studies using dynamical models to forecast drought in the MedR. 727 

In summary, recent advancements in seasonal drought forecasting with dynamical models encompass increased 728 
climate resolution, improved representation of physical processes, improved initialization methods using data 729 
assimilation techniques (Zhou et al., 2022), use of multi-model ensembles (Wanders and Wood, 2016; Seker and 730 
Gumus, 2022), coupled modeling approaches (Guion et al., 2022), and the development of sub-seasonal to seasonal 731 

 
1 SSPs are the latest climate change scenarios used in CMIP6. They not only incorporate greenhouse gas emissions scenarios like their predecessor, 
RCPs from CMIP5, but also integrate socioeconomic factors, such as population growth, economic development, and technological progress. 
Essentially, SSPs provide a more holistic view of possible future climate scenarios by considering both environmental and societal changes. 
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predictions (Zhou et al., 2021). These steps have contributed to more accurate and reliable drought predictions. 732 
However, even with these improvements, predicting drought months in advance remains a significant challenge 733 
due to the inherent complexity and chaos of the climate system. 734 

6 Hybrid Statistical-Dynamic Methods  735 

While statistical models, when appropriately fine-tuned, can effectively predict seasonal drought events, a 736 
significant limitation arises from the non-stationary relationship between the predictors and predictands used in 737 
the forecasting process (AghaKouchak et al., 2022). This can limit their ability to accurately predict unprecedented 738 
drought events, which fall beyond the scope of their historical training data (Hao et al., 2018). On the other hand, 739 
dynamical models are proficient at capturing the nonlinear interactions among the atmosphere, land, and ocean, 740 
enhancing their ability to detect the onset of droughts (Turco et al., 2017b; Ceglar et al., 2017). However, despite 741 

their advanced capabilities, their forecast proficiency is generally constrained to a few months of lead time (Turco 742 
et al., 2017b). To address the shortcomings associated with seasonal forecasting skills, hybrid models employ 743 
statistical or machine learning methods to merge a broad variety of forecasts from statistical and dynamical models 744 
into a final probabilistic prediction product (Slater et al., 2022). The frequently used merging methods include the 745 
regression analysis, BMA, and Bayesian post-processing method (Hao et al., 2018; Strazzo et al., 2019; Han and 746 
Singh, 2020; Xu et al., 2018).  The BMA method involves the estimation of the posterior probability density 747 
function (PDF) of model parameters based on the observed data and using this PDF to weight each individual 748 
model forecast (Tian et al., 2023). The hybrid forecast is then generated as the weighted average of the individual 749 
forecasts from statistical and dynamical models. The BMA weights estimation with simultaneous model 750 
uncertainty quantification can also be used in selecting the best-performing ensemble members to reduce the cost 751 
of running large ensembles (Raftery et al., 2005). There is also an opportunity to enhance the probabilistic seasonal 752 
forecast skill through Bayesian post-processing methods such as the Calibration, Bridging, and Merging (CBaM) 753 
technique (Schepen et al., 2014; Schepen et al., 2016; Strazzo et al., 2019). The calibration step consists in 754 
optimizing the dynamical forecasts from multiple GCMs by analyzing their correlation to observed data through 755 
a statistical model. In the bridging step, the dynamical forecasts from GCMs are calibrated using some large-scale 756 
climate indices (e.g., ENSO, NAO, PDO, AO), and finally, the merging component combines the forecasts of the 757 
two previous steps. 758 

These hybrid statistical-dynamical models combine the strengths of both modeling approaches and offer several 759 
advantages compared to either statistical or dynamical models alone. Thereby, seasonal drought forecasting using 760 
hybrid models has recently become an active area of research (Madadgar et al., 2016; Strazzo et al., 2019; 761 
AghaKouchak et al., 2022). On global scale, Yan and Wood (2013) analyzed the capability of seasonal forecasting 762 
of global drought onset and found that despite climate models increasing drought detection, a significant proportion 763 
of onset events are still missed. Their findings underscore the urgent need for implementing reliable, skillful 764 
probabilistic forecasting methods to better manage the inherent uncertainties and potentially improve drought 765 
predictability.  Dutra et al. (2014) confirmed that the uncertainty in long lead time forecasts suggested that drought 766 
onset might fundamentally be a stochastic problem. Mo and Lyon (2015) also found that improvements in near-767 
real-time global precipitation observations could yield the most substantial advances in global meteorological 768 
drought prediction in the near term. This reinforces the notion that the effectiveness of dynamical models is 769 
fundamentally associated to the quality of initial data and the inherent stochastic nature of drought onset.  770 
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In line with these findings, a unique approach was undertaken by Ribeiro and Pires (2016) in the MedR. They 771 
proposed a hybrid scheme that combines dynamical forecasts from the UK Met Office (UKMO) operational 772 
forecasting system with past observations as predictors in a statistical downscaling approach based on MLR model 773 
for long-range drought forecasting in Portugal (Table 7). They concluded that hybridization improves drought 774 
forecasting skills in comparison to dynamical forecasts.  775 

Table 7 Main studies using hybrid statistical-dynamical models to forecast drought in the MedR. 776 

Leveraging these advantages of hybrid statistical-dynamical models, the prediction of flash droughts has become 777 
possible. Indeed, these events can develop rapidly by a quick decline in soil moisture and streamflow that may 778 
cause devastating economic and ecological impacts in a short period (from a few days to 1–2 months) (Mo and 779 
Lettenmaier, 2015) which makes them, particularly challenging to forecast. By providing a more nuanced 780 
understanding of the drought contributing factors, hybrid statistical-dynamical models help to identify potential 781 
warning signs of an imminent drought event, improve drought early warning systems, and reduce false alarm rate 782 
of drought onset (Xu et al., 2018), thus tackling some of the limitations and challenges highlighted in the earlier 783 
studies. 784 

7 Discussion  785 

7.1. Drought types and indices 786 

The indices adopted by the surveyed studies were grouped according to three distinct drought categories: 787 
meteorological, agricultural, and hydrological. Figure 3 illustrates the percentage of usage for each index by 788 
category. Meteorological droughts were the most common, appearing in 63.00% of the examined studies, followed 789 
by agricultural droughts with approximately 22.20%, whereas hydrological droughts were the least prevalent, 790 
making up only 14.80%.  791 

The SPI was the primary indicator, used in 70.59% of meteorological drought studies. But it also served as an 792 
indicator for hydrological and agricultural droughts, with usage rates of around 25.00% and 8.33%, respectively. 793 

Despite the apparent versatility of the SPI, its reliance on precipitation data limits its ability to account for other 794 
influential factors such as evapotranspiration, soil moisture, land usage, and water management practices. 795 
Consequently, an overemphasis on the SPI could potentially constrain our comprehension of drought phenomena 796 
in the MedR. To enrich this understanding, it is recommended to incorporate a broader range of indicators and 797 
models that include a more diverse set of variables. Using multivariate drought indices such as the SPEI, PDSI, or 798 
sc-PDSI, or alternatively, a combination of multiple indices, can contribute to a more comprehensive view by 799 
including regional feedback mechanisms in the forecast process. This approach also enhances our capacity to 800 
evaluate the impacts of global warming on drought severity and intensity in the MedR (see Marcos-Garcia et al., 801 
2017; Gouveia et al., 2017). 802 

Figure 3 Pie chart showing the proportion of use of indices in the surveyed studies in MedR for different drought types. 803 

On the other hand, SDI was the most applied index in hydrological drought studies in the MedR (37.50%). It is 804 
calculated by comparing the current streamflow to the long-term average or median streamflow for a specific 805 
location and time of year (Nalbantis & Tsakiris, 2009). Despite its usefulness, there are some limits to using SDI 806 
in MedR. Indeed, this region is known for highly variable climates with strong seasonality (wet winters and dry 807 
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summers) and the presence of transient streams or intermittent rivers that flow only during and after rainfall events, 808 
especially in sub-humid and semi-arid areas. Groundwater recharge principally occurs during the wet season, when 809 
precipitation infiltrates the soil and replenishes aquifers (Scanlon et al., 2002). In these regions, the SDI may not 810 
provide an accurate representation of the hydrological drought as it relies solely on streamflow data. Therefore, 811 
the use of SDI should be done in combination with other drought indices that consider variables such as 812 
groundwater, soil moisture, runoff, and regional variations in precipitation and streamflow patterns for accurate 813 
hydrological drought assessment. 814 

One can notice from Fig. 3 that the agricultural drought studies are characterized by more diversity of indices. This 815 
diversity can be explained by the varied range of agro-climatic conditions that characterize the MedR, including a 816 
wide range of soil types, topography, and vegetation cover. These diverse conditions can result in varying impacts 817 
of drought on agricultural production, which require different drought indices to accurately capture the extent and 818 
severity of the drought. In addition, the MedR is also home to a diverse range of crops, each with different 819 
sensitivities to drought (Fereres & Soriano, 2007). This diversity of crops can require different indices to assess 820 
the impact of drought on each crop.  821 

Overall, a suitable index should be able to capture the impacts of drought, detect changes over time, and 822 
differentiate between different levels of severity, while also being accurate and easily interpretable by stakeholders.  823 

7.2. Drought forecasting accuracy  824 

Key obstacles in drought modeling include the absence of a one-size-fits-all model, choosing suitable inputs, 825 
determining an index that accurately represents drought tracking in various regions, and the uneven geographical 826 
influence that leads to discrepancies in model accuracy (Mishra & Desai, 2005; IPCC, 2012). Consequently, 827 
contrasting different methodologies is crucial for developing a reliable prediction model. 828 

The accuracy of drought prediction depends on various factors such as the quality and availability of data, spatial 829 
and temporal scales, prediction lead time, and model complexity, to cite but a few (Wilhite et al., 2014; Mishra & 830 
Singh, 2010). For consistency, this analysis only includes studies that use R² as evaluation criteria of the forecast 831 
with a lead time of 1 month. Joint probability models were excluded from this analysis since the accuracy 832 
evaluation criteria were different. Moreover, the concept of lead time is not addressed in most of the surveyed 833 
studies. It is also important to note that this analysis does not include hybrid statistical-dynamical models, as the 834 
number of studies applying this approach in the MedR was quite limited. Consequently, the available research is 835 
insufficient to offer a comprehensive understanding of the applicability and effectiveness of these models in the 836 
region. 837 

Figure 4 Box and whiskers plot to show the performance of drought prediction models denoted by the coefficient of 838 
determination (R²) for the surveyed studies in MedR. The lower box shows the 25th percentile, the upper box shows the 839 
75 percentile and the median (50th percentile) is represented by the black line inside the box. The whiskers show the 840 
extent to the minimum and maximum values within 1.5 times the interquartile range (IQR) from the box. 841 

Figure 4 shows a box and whisker plot of drought forecasting model accuracy based on R² in the surveyed studies 842 
in the MedR (see table1 in Appendix). According to the graph, hybrid models appear to be the most accurate and 843 
consistent, with the highest median and shortest box height. Markov chains and AI models also have relatively 844 
short box heights, indicating high agreement and accuracy across studies. Meanwhile, dynamical and regression 845 
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models exhibit moderate to high accuracy (both have median equal to 0.79), but the height of the dynamical model 846 
box is shorter than that of the regression models, suggesting greater consistency. Time series models also show 847 
moderate to high accuracy, with a median equal to 0.82.  848 

Nonetheless, Fig. 4 provides valuable information about the relative performance of different models across 849 
multiple studies in the MedR. The consistently high median of hybrid models suggests that they are particularly 850 
effective for drought forecasting in the region. Similarly, the consistent performance of the AI and Markov chain 851 
models, suggests that these models also show promise. The variability in the performance of the regression, and 852 
the time series, as indicated by their taller boxplots, suggests that there may be more variability in the effectiveness 853 
of these models across different studies and regions. The results also show that dynamical models can provide 854 
valuable insights into drought conditions. However, the high variability in their performance, suggests that there 855 
may be room for improvement in the development and implementation of these models in MedR. 856 

This analysis concludes that simple statistical models such as Markov chains, regression, and time series can still 857 
be useful in some situations and are generally more transparent and easier to interpret. For example, when focusing 858 
on a single variable to forecast drought (e.g., precipitation using SPI), simple models like ARIMA can effectively 859 
capture the temporal patterns and provide reasonable forecasts. Or, when drought conditions can be effectively 860 
represented by discrete states or categories, Markov chains can be employed to model the transition probabilities 861 
between these states and forecast future drought conditions (Habibi et al., 2018; Nalbantis and Tsakiris, 2009; 862 
Paulo and Pereira, 2007).  Also, when working with a limited number of variables and moderate interactions, 863 
simple regression models like linear or logistic regression can provide adequate predictions of drought conditions 864 
(Sharma et al., 2017). The effectiveness of simple models in these situations depends on the specific context and 865 
the data quality and quantity. When more complex relationships or high-dimensional data are involved, it may be 866 
necessary to employ more advanced models like dynamical models or combine simple models with techniques 867 
like machine learning, copulas, or hybrid approaches to improve forecasting performance. Hybrid statistical-868 
dynamical models present a promising avenue for enhancing forecast accuracy, particularly for extended lead 869 
times and in situations where intricate processes and interactions are critical (AghaKouchak et al., 2021; Mehran 870 
et al., 2020; Madadgar et al., 2016). The relatively nascent emergence of these hybrid techniques has resulted in a 871 
limited number of studies applying them in the MedR. This can be ascribed to factors such as data constraints, 872 
computational complexity, and model uncertainty. Moreover, proficiency in both statistical and dynamical 873 
modeling is needed, and interdisciplinary cooperation is frequently deficient. Notwithstanding these challenges, 874 
there is an increasing interest not only in enhancing traditional dynamical models but also in the development and 875 
utilization of hybrid models. As research progresses and resources become more accessible, these hybrid models 876 
may see wider adoption for their potential to improve predictive accuracy. 877 

7.3. Spatial and Temporal Scales of Drought 878 

Figure 5 displays the spatial and temporal scales of drought forecasting studies in the MedR with a pie chart 879 
indicating the percentage of use of drought forecasting method: statistical, dynamical, and hybrid statistical models 880 
for each spatiotemporal scale. This figure shows that the number of droughts forecasting studies tends to decrease 881 
as the spatial scale increases and increases as the time scale increases. We can also notice from this figure that the 882 
majority of studies in the MedR focused on the local scales (e.g., city or catchment), particularly at annual and 883 
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seasonal time scales. In contrast, very few studies were conducted at the MedR scale, and only a few studies were 884 
conducted at the country scale.   885 

Figure 5 Spatial and temporal scales of drought forecasting studies in the Mediterranean region with a pie chart 886 
indicating the percentage of use of drought forecasting method: statistical, dynamical, and hybrid statistical models for 887 
each spatiotemporal scale. 888 

When considering the spatial scale, drought forecasting becomes more challenging at larger scales due to various 889 
factors. One of the major challenges is the complexity of the interactions between different factors that contribute 890 
to droughts, such as precipitation, temperature, soil moisture, and vegetation cover (Sheffield & Wood, 2011). 891 
These interactions are nonlinear and difficult to capture accurately, especially at larger scales where there are more 892 
variability and heterogeneity (AghaKouchak et al., 2015). For instance, at the country scale, there could be 893 
different microclimates, topography, and land use practices that affect these factors differently (Vicente-Serrano 894 
et al., 2010a). This heterogeneity tends to increase as the spatial scale increases, making it harder to calibrate and 895 
validate drought forecasting models. On the other hand, the small number of studies that focused on large 896 
geographic areas is probably due to the challenge of data availability and homogeneity, which arises due to 897 
limitations in data collection and standardization, particularly at larger spatial scales (Dai, 2011). This can lead to 898 
incomplete or inconsistent datasets, which in turn can impact the accuracy of drought forecasting models. Remote 899 
sensing technologies can provide a solution to this problem by allowing for the collection of large-scale, high-900 
resolution data that can improve the accuracy of forecasting models (Gouveia et al., 2017). The role of remote 901 
sensing data in improving drought prediction will be further discussed in sect. 8.2. 902 

When considering the time scale, the number of droughts forecasting studies tends to increase as the scale 903 
increases. Drought research often emphasizes seasonal, annual, or decadal scales due to various factors. The slow-904 
onset nature of droughts necessitates studying their progression and recovery over extended periods (Mishra & 905 
Singh, 2010). Investigating longer time scales also allows researchers to analyze the impact of large-scale climate 906 
drivers, such as ENSO or NAO, on drought events (Dai, 2011). Moreover, focusing on these time scales enables 907 
a better assessment of drought consequences on water resources, agriculture, and ecosystems, which are more 908 
pronounced over extended periods (Wilhite & Pulwarty, 2017). Additionally, data availability and reliability tend 909 
to be higher for longer time scales, facilitating more robust analyses. Long-term trends and climate change impacts 910 
on droughts can also be better understood at longer time scales (Trenberth et al., 2014).  911 

Notably, only one study focused on the weekly time scale. Drought forecasting at small scales or weekly time 912 
scales offers several advantages, including early warning and improved water management (Pulwarty & 913 
Sivakumar, 2014), quick response to flash droughts (Mo & Lettenmaier, 2015), support for agricultural decision-914 
making (Hansen et al., 2011), improved accuracy of longer-term forecasts (Yuan et al., 2015), and model 915 
improvement and validation (Wood et al., 2016). However, drought forecasting at such a small scale may be more 916 
challenging due to the chaotic nature of the atmosphere, making it difficult to accurately model complex 917 
interactions between atmospheric conditions, land surface characteristics, and water management practices over 918 
short periods (Lorenz, 1963; Seneviratne et al., 2012).  919 

On the other hand, the most commonly used forecasting methods were statistical and hybrid statistical models, 920 
with only a few studies applying dynamical models and the percentage of studies applying this last approach 921 
increases with an increase in the temporal scale. There could be several reasons for these findings. Dynamical 922 
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models require large amounts of high-quality input data, which may not be readily available for the MedR due to 923 
limitations in historical data and spatial coverage (Giorgi & Lionello, 2008). Statistical and hybrid statistical 924 
models often have lower data requirements and are generally computationally more efficient than dynamical 925 
models, making them more suitable for regions with limited data availability and computational constraints. 926 
Furthermore, the percentage of studies applying dynamical models increases with an increase in the temporal scale 927 
because these models are better suited for capturing long-term climate variability and the influence of large-scale 928 
climate drivers (Dai, 2011; Sheffield et al., 2012). Statistical and hybrid statistical models, conversely, are more 929 
effective at capturing short-term variability and local-scale processes, which are often more relevant for drought 930 
forecasting in the MedR (Mehran et al., 2014). Lastly, data availability at shorter temporal scales can be a limiting 931 
factor for developing and validating dynamical models (Shah et al., 2018). 932 

In summary, while increasing the spatial scale can decrease the accuracy of drought forecasting studies, increasing 933 
the time scale can improve the accuracy by allowing for a more comprehensive understanding of the various factors 934 
that contribute to drought conditions. It is essential to consider both spatial and temporal scales when conducting 935 
drought forecasting studies to ensure the most accurate predictions possible.  936 

8 Challenges and Future Prospects 937 

In the earlier discussion, we analyzed drought indices, factors affecting the accuracy of drought forecasts, and the 938 
significance of spatial and temporal scales in drought predictions within the MedR context. Building on this 939 
understanding, the following sections will focus on the challenges and prospects within the realm of drought 940 
forecasting, which will help to pinpoint potential avenues for progress and innovation in this area. 941 

8.1. Data Assimilation 942 

The lack of in-situ measurement networks and coarse global seasonal forecast skills 943 
has hindered drought forecasting facilities, especially in data-poor regions (Pozzi et al., 944 
2013; Haile et al. 2020). In this regard, Data Assimilation (DA) provides a powerful approach to enhancing drought 945 
forecasting accuracy by incorporating different observations and climate forecasts into a hydrologic model to 946 
generate more precise initial conditions (Hao et al., 2018; Tang et al., 2016). Therefore, many studies have referred 947 
to this method to better forecast hydroclimatic variables (e.g., Bazrkar and Chu, 2021; Peng, 2021; Xu et al., 2020; 948 
Liu et al., 2019; Steiger et al., 2018; Steiger and Smerdon, 2017). The ensemble Kalman Filter (EnKF) (Evensen, 949 
1994) algorithm is one of the most popular DA techniques applied by the hydrologic community. However, this 950 
assimilation method is subject to some inherent drawbacks especially in nonlinear dynamic systems thus resulting 951 
in suboptimal performance and violation of water balance (Abbaszadeh et al., 2018). Given these limitations, 952 
emphasis should be placed on the development of improved DA algorithms better adapted to hydrologic models, 953 
which allow the modeling of different temporal and spatial scales and the improvement of water balance. This can 954 
be achieved by modifying the standard approaches such as the ensemble Kalman filter or variational algorithms 955 
so that, accurate predictions can be obtained at a reasonable computational cost. These include among others hybrid 956 
EnKF-Var methods (Bannister, 2017; Bergou et al., 2016; Mandel et al., 2016) and AI algorithms for ensemble 957 
post-processing (Grönquist et al., 2021). One recent advance in data assimilation techniques for drought 958 
forecasting is the use of machine learning algorithms to improve the accuracy of predictions. For example, 959 
researchers have used machine learning techniques to develop models that can analyze large amounts of data from 960 
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a variety of sources and generate more accurate forecasts of drought conditions (Aghelpour et al., 2020; Rhee and 961 
Im, 2017; Feng et al., 2019). These models can also be updated in real time as new data becomes available, 962 
allowing for more accurate and up-to-date forecasts. Another advance in data assimilation techniques for drought 963 
forecasting is the use of remote sensing data and reanalysis to improve the accuracy of predictions, which may be 964 
particularly beneficial in areas where ground-based observations are limited (Shahzaman et al., 2021b; Shi et al., 965 
2011). 966 

8.2. Remote Sensing and Reanalysis  967 

Various challenges in drought modeling in the MedR are related to data availability. The lack of climatic and 968 
hydrological observations in ungauged catchments, low station density, short data records, data gaps, and limited 969 
data access in some Mediterranean countries. All these challenges can limit the accuracy and reliability of drought 970 
predictions. Although many efforts are being deployed by developing new complete datasets in the MEDR (Tuel 971 
and El Moçayd, 2023), finding alternative data sources and modeling techniques is essential to tackle these 972 
challenges. 973 

Remote sensing data can provide real-time information about the Earth's surface facilitating effective drought 974 
forecasting, monitoring, and early warning (Zhang et al., 2016). Agricultural drought can be assessed by analyzing 975 
changes in vegetation cover over time. Indeed, drought can lead to marked changes in the health and vigor of 976 
vegetation, and these changes can be detected using remote sensing data (Belal et al., 2014). By analyzing changes 977 
in vegetation greenness over time, it is possible to identify areas that are experiencing or are at risk of experiencing 978 
drought stress. Moreover, drought conditions related to vegetation or evapotranspiration can also be monitored 979 
with drought indices from remote sensing products, such as NDVI or Evaporation Stress Index (ESI) (Shahzaman 980 
et al., 2021a). Microwave satellite data can also be used to estimate soil moisture levels during crop growing 981 
season, which can be used to predict and monitor potential agricultural droughts (Le Page and Zribi, 2019; Yuan 982 
et al., 2015).  983 

In addition, satellite observations of precipitation and soil moisture such as IMERG (Huffman et al., 2015), 984 
PERSIANN-CCS (Sadeghi et al., 2021), CHIRPS (Funk et al., 2015), SMAP (Entekhabi et al., 2010), MSWEP 985 
V2 (Beck et al., 2019), GLEAM v3 (Martens et al., 2017), and DROP (Turco et al., 2020) can be used in 986 
conjunction with the in-situ observations and ground-based radar observations data to fill observational gaps.  987 

Moreover, data from numerical weather forecasting reanalysis such as ERA5-land were used instead or along with 988 
direct observations to forecast drought in many studies (Babre et al., 2020; Junqueira et al., 2022; Parker et al., 989 
2021). ERA5-land is a state-of-the-art global reanalysis dataset that can provide a consistent view of the evolution 990 
of land variables (e.g., precipitation, temperature) over several decades at an enhanced resolution (~10 km). This 991 
product obtained by assimilating observations through a 4D-VAR data assimilation technique can be used as 992 
ground truth in data-poor regions. For example, ERA5-land can be used to calibrate and validate climate forecasts 993 
and to choose an ensemble of the most skilled GCMs in reproducing the actual observed climate in a specific 994 
region.  995 

Similarly, SAFRAN, a high-resolution meteorological reanalysis, has shown its utility in regions with sparse 996 
observational data. Tramblay et al. (2019) used SAFRAN to generate a high-resolution (5 km) gridded daily 997 
precipitation datasets for Tunisia between 1979 and 2015. Their study, which combined data from 960 rain gauges 998 
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with the SAFRAN analysis, demonstrated that SAFRAN surpassed other standard interpolation methods like 999 
Inverse Distance, Nearest Neighbors, Ordinary Kriging, or Residual Kriging with altitude. The outcome was a 1000 
highly accurate gridded precipitation dataset that could be instrumental for climate studies, model evaluation, and 1001 
hydrological modeling to support the planning and management of surface water resources.  1002 

Finally, remote sensing data and reanalysis remain valuable tools for drought forecasting and monitoring, as it 1003 
provides timely land surface information that can fill the observational gaps, help to identify areas at risk of 1004 
potential drought conditions and to monitor the progression of drought over time.  1005 

8.3. Uncertainty analysis in drought forecasting 1006 

In spite of the large number of studies that have been carried out on the probabilistic characterization of drought, 1007 
the quantification of uncertainty of these forecasts is still ignored in major studies. Uncertainty analysis is an 1008 
important aspect of probabilistic drought forecast, as it allows users to understand the degree of confidence 1009 
associated with the forecasted probabilities (Hao et al., 2016; Dehghani et al., 2014). Therefore, more efforts 1010 
should focus on quantifying the uncertainty beyond just an ensemble of model simulations (AghaKouchak et al., 1011 
2022). 1012 

Drought forecasting is subject to epistemic and aleatory uncertainties. The first one arises from incomplete 1013 
knowledge of drought processes and can be reduced with improved understanding, more data, and good models’ 1014 
calibration and validation. The second one is related to the inherent variability and randomness in natural systems 1015 
and is often difficult to reduce (Pappenberger & Beven, 2006). In addition, uncertainties in drought forecasting 1016 
can vary by region, spatial scale, and temporal scale. As we discussed in sect. 7.3, even well calibrated and 1017 
validated, the drought forecasting model will not necessarily perform equally well in all periods or locations. By 1018 
considering the uncertainty of the drought model as a nonstationary process in space and time, researchers can 1019 
gain new insights into the variability of uncertainty and its underlying causes (AghaKouchak et al., 2022). This 1020 
perspective can help identify regions or periods where the uncertainties are particularly high, which can guide 1021 
further research, data collection, and model development efforts. Additionally, understanding the space-time 1022 
variability of uncertainty can inform the development of more robust and reliable forecasting and decision-making 1023 
approaches that account for the changing nature of uncertainty. 1024 

Various techniques can be employed to quantify drought forecast uncertainty, including ensemble forecasting 1025 
(Palmer et al., 2004), Bayesian methods (Vrugt et al., 2008), sensitivity analysis (Saltelli et al., 2008) and 1026 
probabilistic forecasting (Gneiting et al., 2005). Probabilistic drought prediction can also involve the use of data 1027 
assimilation techniques to integrate different data sources, including remote sensing data, ground-based 1028 
observations, and output from meteorological and hydrological models. Lately, hybrid statistical-dynamical 1029 
models have shown their potential in reducing uncertainties associated with both statistical and dynamical methods 1030 
(Yuan et al., 2015; Madadgar et al., 2016). For example, shortcomings in dynamical model physics or data can be 1031 
counterbalanced by the empirical associations in statistical models. While, uncertainties in statistical models 1032 
resulting from shifting climate conditions can be tackled by the physically based dynamical models (Yuan et al., 1033 
2015). 1034 

In summary, probabilistic drought prediction with uncertainty analysis can be useful tools for decision makers, as 1035 
they provide a more comprehensive view of the potential impacts of drought and allow for more informed risk 1036 
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management decisions. However, what is missing in the current drought forecasting models is not just the 1037 
uncertainty quantification, but also a lack of awareness of it (AghaKouchak et al., 2022). 1038 

8.4. Drought Information Systems  1039 

A critical component of proactive approaches to drought preparedness is providing timely and 1040 
reliable climate information, including seasonal forecasts, that helps decision makers prepare 1041 
management policies (Manatsa et al., 2017). Identifying drought risk timely depends on our 1042 
ability to monitor and forecast its physical causing mechanisms at the relevant spatiotemporal 1043 
scale. An integrated national drought monitoring and early warning system has been 1044 
implemented in many regions and countries such as the United States, New Zealand, South Asia, India, and Europe 1045 
(Prabhakar and Rama, 2022) but has not taken place until recently in developing countries (e.g., the Southern and 1046 
Eastern Mediterranean countries). This is probably due to the lack of a drought information system, the sparse 1047 
observation networks, and the low predictability of seasonal precipitation in these countries. To overcome these 1048 
limitations, there is a need for developing a Drought Information System with a complete approach allowing data 1049 
collection and preprocessing, accurate probabilistic drought risk prediction using a combination of ensemble 1050 
climate seasonal forecasts, ground-based observations, reanalysis, conventional and remote-sensing observations, 1051 
artificial intelligence, data assimilation and hydrological models and drought information dissemination through a 1052 
web-based Drought Early Warning System (DEWS).  1053 

9 Conclusions  1054 

This study reviewed the recent statistical, dynamical, and hybrid statistical-dynamical methods used to forecast 1055 
droughts and their application on the MedR. Drought definitions, classification, indices, and causative physical 1056 
mechanisms were also presented in the context of the MedR. The main conclusions of this review are: 1057 

1. There are only a few studies on the analysis of physical mechanisms causing droughts in the MedR. The 1058 
review of these studies confirmed that seasonal drought predictability skills are still very limited over the 1059 
region due to its relatively poor teleconnection with ENSO compared to the tropical and subtropical regions. 1060 
Besides, MedR is strongly influenced by other climate patterns, such as the NAO, regional MO, ULMOi, 1061 
and NAWA which can also affect the region's weather and climate but their relationship to drought onset 1062 
is rather weak and could not explain major droughts in the region. Land surface memory can also contribute 1063 
to the predictability of seasonal and sub-seasonal droughts. Thereby, an accurate representation of these 1064 
land-atmosphere processes is needed to improve drought forecasting skills in mid-latitude regions such as 1065 
the Mediterranean. 1066 

2. Statistical models were largely used to forecast droughts in the MedR. One of the major limitations of these 1067 
models is that they often assume a stationary relationship between the predictors and the predictands which 1068 
can lead to potentially inaccurate forecasts. In this regard, AI models such as SVR, SVM, and ANN have 1069 
proven good capacity in detecting local discontinuities and non-stationary characteristics of the data and 1070 
show satisfactory forecasting skills at less than 6 months lead time. Moreover, sophisticated statistical 1071 
models, incorporating a data pre-processing technique such as wavelet analysis, EMD, or PCA with AI 1072 
models have proven to be more efficient than using a single model and can extend the lead time of the 1073 
drought forecast up to 12 months. The copulas can also provide valuable insights into the complex 1074 
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relationships between different drought predictors. The use of copulas enables a more in-depth analysis of 1075 
the nonlinear dependencies between variables such as temperature, precipitation, and soil moisture, yielding 1076 
a more comprehensive understanding of the factors that contribute to drought risk in a specific region. This 1077 
leads to a more sophisticated and reliable forecast of drought probability. Thus, copulas are a highly useful 1078 
resource in the ongoing effort to understand and manage the consequences of drought. 1079 

3. Dynamical models, given their ability to capture nonlinear interactions across the atmosphere, land, 1080 

and ocean, offer considerable potential for more accurate and reliable seasonal drought predictions. 1081 

However, the inherent chaotic nature of the atmosphere restricts their forecast skill to a few months in 1082 

advance. The dynamical drought forecasting has seen notable advancements, such as enhanced climate 1083 

model resolution, refined representation of physical processes, improved initialization methods, the 1084 

application of multi-model ensembles, and the development of coupled modeling approaches. These 1085 

developments have indeed bolstered the accuracy and reliability of drought predictions. Nevertheless, 1086 

the implementation of these models in the MedR is constrained by challenges such as limited data 1087 

availability, computational complexity, and inherent model uncertainties.   1088 

4. Hybrid statistical-dynamical models can be promising tools to potentially enhance the accuracy and 1089 
reliability of drought forecasting in the MedR. By merging a broad variety of forecasts from statistical and 1090 
dynamical models into a final probabilistic prediction, hybrid models benefit from the strengths of both 1091 
modeling approaches and improve the forecast skill compared to an individual model. But their 1092 
applicability remains challenging due to several constraints. Indeed, the hybrid model may require careful 1093 
calibration and validation to ensure that they are performing optimally which can be time-consuming, 1094 
requiring a large amount of data, specialized expertise, and high computational resources. 1095 

5. One of the major challenges in drought forecasting in the MedR is the lack of long-term, high-quality 1096 
hydroclimatic observations to convey the nonstationary patterns and the variability of the climate. In 1097 
addition, hydrologic model predictions are often poor, due to model initialization, parametrization, and 1098 
physical errors. To address these challenges, it is important to improve the availability and quality of data 1099 
for drought forecasting in this region. This could involve implementing better monitoring systems and 1100 
increasing the number of weather stations in the region. In addition, efforts should be made to improve the 1101 
performance of drought forecasting models by using more advanced data assimilation and machine learning 1102 
techniques and to incorporate data from other sources such as state-of-art satellite observations and 1103 
reanalysis with relatively high spatiotemporal analysis to provide a superior hydrologic and climate states 1104 
estimate and consequently a skillful agricultural and hydrological drought forecasting. 1105 

6. Drought mapping is the final stage in which drought risk information is disseminated and communicated 1106 
to end users. Major studies in the MedR analyze drought risk using some drought indices without applying 1107 
a visualization via maps or presenting the risk on a single map showing the overall risk situation. An 1108 
informative visualization of results via probabilistic drought risk maps is recommended, whereby color 1109 
gradations or contouring are used to effectively illustrate the range of probabilities. Ensuring cartographic 1110 
rigor, such maps should maintain spatial accuracy, use appropriate scaling, and include a clearly defined 1111 
legend to decrypt different probability levels. Uncertainties related to drought modeling and prediction also 1112 
need to be perspicuously defined, discussed and communicated to increase the intelligibility and 1113 
comprehensibility of decision makers, farmers, and other end users. 1114 
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7. Finally, much effort should be done to improve the communication and dissemination of drought forecasts 1115 
which can help in extending their lead time by ensuring that decision makers and stakeholders have access 1116 
to the most up-to-date information. 1117 

Index of Acronyms  1118 

Adaptive neuro-fuzzy inference systems 
(ANFIS)  
Akaike’s Information Criterion (AIC)  
Anderson-Darling (AD)  
Artificial neural network of multilayered 
perceptron (ANN-MLP)  
Asymmetric Power Autoregressive 
Conditional Heteroskedasticity (APARCH) 
Atmospheric water deficit (AWD) 
Automated Statistical Downscaling (ASD)  
AutoRegressive (AR)  
Autoregressive Conditional 
Heteroskedasticity time series of order 1 
(ARCH) 
Autoregressive integrated moving average 
(ARIMA)  
Autoregressive moving average (ARMA)  
Autoregressive moving average time series of 
order (11) (ARMA) 
Autoregressive moving average time series of 
order 1 (MA1) 
Autoregressive moving average time series of 
order 2 (MA2) 
Autoregressive time series of order 1 (AR1) 
Autoregressive time series of order 2 (AR2)  
Bagging (BG)  
Bagnouls-Gaussen aridity index (BGI) 
Bayesian Information Criterion (BIC)  
Breaks for Additive Season and Trend 
(BFAST) 
Coefficient of efficiency (CE) 
Convolutional neural network long short-term 
memory (CNN-LSTM)  
Co-ordinated regional climate downscaling 
experiment for the Mediterranean area 
(MedCORDEX) 
Corrected and unbiased trend-free-pre-
whitening (TFPWcu) 
Coupled Model Intercomparison Project 
(CMIP) 
Cramers-von Mises (CvM) 
Crop moisture index (CMI) 
Drought class transition probabilities (DCTP) 
Empirical Mode Decomposition (EMD)  
Exponential General Autoregressive 
Conditional Heteroskedasticity time series of 
order (11)) (EGARCH) 
False alarm ratio (FAR) 
Frequency bias (FB) 
Generalized Autoregressive Conditional 
Heteroskedasticity time series of order (11) 
(GARCH) 
Geometric Brownian Motion (GMB) 

Geometric Brownian Motion time series 
model with asymmetric Jumps (GBMAJ)  
Global Historical Climatology Network-
Monthly (GHCN) 
Global Land Data Assimilation System 
(GLDAS) 
Groundwater Resource Index (GRI)  
Growing season minimum and maximum 
values (gsmm) 
Hadley Centre Coupled Model version 
3(HadCM3) 
Kolmogorov-Smirnov (K-S)  
Land Surface Temperature (LST) 
Maximum likelihood methods (MLIKE) 
Mean absolute error (MAE) 
Mean error (ME)  
Model output statistics (MOS) 
Moderate Resolution Imaging 
Spectroradiometer (MODIS)  
Modified Fournier Index (MFI)  
Monthly average relative humidity (MARH) 
Monthly mean solar radiation (MMSR) 
Moving average (MA) 
Multiple Linear Regression (MLR) 
National Center for Atmospheric Research 
(NCAR) 
National Centers for Atmospheric Prediction 
(NCEP)  
National Oceanic and Atmospheric 
Administration (NOAA) 
NDVI anomaly index (NDVIA) 
Non-linear AutoRegressive with eXogenous 
inputs (NARX)  
Normalized Difference Vegetation Index 
(NDVI) 
Normalized Difference Water Index (NDWI) 
North Atlantic Oscillation (NAO) 
Pedotransfer functions (PTF) 
Periodic autoregressive (PAR)  
Periodic autoregressive moving average 
(PARMA)  
Principal component analysis (PCA) 
Probability of detection (POD)  
Probability of false detection (POFD)  
Proportion of correct predictions (PC) 
Random forest (RF) 
Random subspace (RSS)  
Random tree (RT)  
Reconnaissance Drought Index (RDI) 
Root mean squared error (RMSE)  
Sea Surface Temperature (SST) 
Seasonal-ARIMA (SARIMA) 
Soil and Terrain Database (SOTER) 



32 
 

Soil Moisture (SM) 
Soil Moisture Agricultural Drought Index 
(SMADI)  
Soil Moisture and Ocean Salinity (SMOS) 
Soil moisture anomaly index (SMAI) 
Soil Moisture Deficit Index (SMDI)  
Soil moisture percentiles (Wp) 
Soil Water Deficit Index (SWDI) 
Soil Wetness Deficit Index (SWetDI) 
Standardized Water-Level Index (SWI) 

Streamflow drought index (SDI) 
Support vector Regression (SVR) 
Temperature Condition Index (TCI) 
The Second Generation of Canadian Coupled 
General Circulation Model (CGCM2) 
Vegetation Condition Index (VCI) 
Vegetation Health Index (VHI) 
Wavelet Analysis (WA) 
Wavelet decomposition (WD)

1119 
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Table 1 Main studies using the Time series model to forecast drought in the MedR. 1852 
Reference  Inputs Outputs  Methods  Time 

scale  
Study 
area  

Drought type Study period 

(Bouznad et 
al., 2021) 

Precipitation, 
temperature, 
and ET 

Aridity 
index, 
SPI, 
NDVI 

ARIMA, 
SARIMA 

Monthly, 
annual  

Algeria Meteorological  Baseline 
1985–2014 
Future 
2015–2024 

(Achite et 
al., 2022) 

Monthly 
precipitation 

SPI12, 
SRI12 

ARIMA, 
SARIMA 

Annual Algeria Meteorological, 
hydrological  

1972–2018 

(Al Sayah et 
al., 2021) 

LANDSAT 
imageries at a 
3-year interval, 
and 
meteorological 
indicators 

MFI, 
BGI, 

VHI, 
VCI, 
TCI, 
NDWI, 
NDVI 

ARIMA/SA
RIMA 

Annual  Lebanon Meteorological, 
hydrological 
and agricultural  

1990–2018 

(Tatli, 2015) IPCC observed 
precipitation 

PDSI Hurst 
exponent, 
Mann -
Kendall test 

Monthly Turkey Meteorological 1966–2010 

(Pablos et 
al., 2017) 

LST, NDVI 

Satellite SM 
data (SMOS 
BEC L4 and 
MODIS SR) 
and In Situ SM 
Data 

SWDI, 
SMADI, 
SMDI, 
SWetDI, 
AWD 
CMI 

POD; 
POFD; 
FAR; FB 

Weekly Spain Agricultural  2010- 2016 

(Hadri et al., 
2021) 

NDVI ; Rainfall  SPI, 
SWI 

The Mann-
Kendall and 
Sen’s slope  

Seasonal  Morocc
o 

Meteorological, 
agricultural  

2008-2017 

(Ben 
Abdelmalek 
and Nouiri, 
2020) 

Monthly 
rainfall series in 
16 main 
meteorological 
stations 

SPI, 
RDI, 
Annual 
PET 

Mann -
Kendall test, 
Weighted 
Inverse 
Distance 
interpolation 

Annual Tunisia  Meteorological, 
agricultural  

1973–2016  

 (Karabulut, 
2015) 

Precipitation  SPI Cumulative 
Deviation 
Curve 

Monthly, 
seasonal, 
annual 

Turkey Meteorological 1975–2010 

(Jiménez-
Donaire et 
al., 2020) 

Rainfall, soil 
moisture, and 
vegetation 
(NDVI) 

SPI, 
NDVIA 

SMAI 

Combined 
Drought 
Indicator 

 

Monthly, 
seasonal, 
annual 

Spain Agricultural 2003–2013 

(Ben 
Mhenni et 
al., 2021) 

SM (SOTER); 
MedCORDEX 
daily grided 
reanalysis of 
meteorological 
data; NOAA 
weekly NDVI 

SPI, 
SPEI, 
PDSI, 
and Wp 

Lag-
correlation 
analysis 

Seasonal, 
annual   

Tunisia Meteorological, 
agricultural 

1982–2011 

(Derdous et 
al., 2021) 

Rainfall  SPI the Mann–
Kendal, 
Sen’s slope 
estimator, 
and the 
Pettitt test; 

Monthly, 
seasonal, 
annual 

Algeria  Meteorological 1936 –2008 
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(Mendes et 
al., 2022) 

Precipitation, 
water level in 
reservoirs 

SPI14 BFAST Seasonal  Portugal Hydrological  1978-2020 

 1853 

Table 2 Main studies using regression analysis to forecast drought in the MedR 1854 

Reference  Inputs Outputs  Methods  Time 
scale  

Study 
area  

Drought type Study period 

(Sousa et al., 
2011) 
 

Monthly 
rainfall 

SST, NAO 

PDSI, 
scPDSI 

 

Calibrated 
Stepwise 
Regression  

Monthly, 
seasonal, 
annual 

MedR Meteorological 1901–2000 

(Papadopoulos 
et al., 2021) 

Monthly 
precipitation 

SPI, RDI Fuzzy linear 
regression 
analysis 
 

Monthly, 
seasonal, 
annual 

Greece Meteorological 1996–2016 

(Martínez-
Fernández et 
al., 2016) 

In situ hourly 
SM, daily 
rainfall, 
daily PET, 
and SMOS 
data 

SWDI PTF; linear 
regression  

Weekly, 
Seasonal 

Spain Agricultural 2010–2014 

(Tigkas and 
Tsakiris, 
2015) 

Monthly 
rainfall; 
average 
monthly 
mean, max, 
and min 
temperature 

PET, 
RDI 

Multiple 
regression 
models 

Monthly, 
seasonal, 
annual 

Greece  Agricultural 47-50 years 

 1855 

Table 3 Main studies using Artificial Intelligence Models to forecast drought in the MedR. 1856 

Reference  Inputs Outputs  Methods  Time 
scale  

Study 
area  

Drought type Study 
period  

(Mohammed 
et al., 2022) 

Precipitation SPI BG, RSS, 
RT, and RF 

Monthly, 
seasonal, 
annual 

Syria Agricultural, 
Hydrological 

1946-2005 

(Di Nunno et 
al., 2021) 

Precipitation 
and discharge 

 NARX neural 
networks 

Seasonal  Italy Hydrological 1997-2020 

(El Aissaoui 
et al., 2021) 

Monthly 
average 
precipitation; 
Monthly 
min/max air 
temperature; 
MARH; 
MMSR  

SPI, 
SPEI 

SVR1: linear; 
SVR2: 
Polynomial; 
SVR3: RBF; 
SVR4: 
sigmoid  

Monthly Morocco Meteorological  1979–2013 

(Achour et 
al., 2020) 
 

Monthly 
rainfall data 

SPI  TFPWcu; 
ANN 

Monthly, 
seasonal 
and annual 

Algeria  Meteorological  
 

 

1960–2010 
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 1857 

Table 4 Main studies using Joint Probability Models to forecast drought in the MedR. 1858 

Reference  Inputs Outputs Methods  Time 
scale 

Study 
area  

Drought type Study 
period  

(Bouabdelli 
et al., 2020) 

Monthly 
precipitation, 
temperature   
9 GCMs of 
CMIP5  

SPI12, 
SDI6 

Copula 
theory,  
Hydrological 
modeling 
using GR2M  

Seasonal, 
annual  

Algeria Meteorological, 
Hydrological  

Baseline:  
1941–2011, 
Future:  
2021–2100 
 

(Bonaccorso 
et al., 2015) 

NAO; areal 
monthly 
precipitation 
series;  

SPI DCTP (SPI, 
NAO)   

Monthly, 
seasonal 

Sicily, 
Italy 

Meteorological  1921–2008 

(Serinaldi et 
al., 2009) 

Mean areal 
precipitation, 
aggregated 
at 6 months 

SPI; joint 
return 
periods of 
drought  

Probabilistic 
analysis of 
drought 
characteristics 
using Copula  

Seasonal  Italy Meteorological  1921–2003 

(Hamdi et 
al., 2016) 

Daily 
streamflow 
data,  

The joint 
probabilities 
and 
bivariate 

Two-
dimensional 
copula model; 

Annual Tunisia  Hydrological  1966–2008 

(El Alaoui El 
Fels et al., 
2020) 

Monthly 
rainfall 
amount 

SPI PCA, 
Frequency 
analysis, 
ANN 

Monthly, 
annual  

Morocco Meteorological  1970–2017 

(El Ibrahimi 
and Baali, 
2018) 

Observed SPI  Predicted 
SPI  

ANFIS; ANN-
MLP;  
SVR, ANN, 
WA-ANFIS 
WA-SVR,  
WA-ANN-
MLP 

Monthly, 
seasonal, 
annual 

Morocco Meteorological  1978–2014 

(Djerbouai 
and Souag-
Gamane, 
2016) 

Historical 
monthly 
rainfall 

SPI ARIMA, 
SARIMA, 
WA-ANN 

Monthly, 
seasonal, 
annual 

Algeria Meteorological 1936–2008 

(Myronidis et 
al., 2012) 

Monthly 
precipitation 
Monthly in-
situ 
measurements 
of water lake 
levels 

SPI ARIMA-
ANN  

Annual 
and 
seasonal  

Greece  Meteorological   1973–2008 

(Danandeh 
Mehr et al., 
2022) 

Rainfall and 
temperature 
time series  

SPEI-3 
and 
SPEI-6 

CNN-LSTM, 
genetic 
programming, 
ANN, LSTM 
and CNN  

Monthly   Turkey Meteorological  1971–2016 

(Başakın et 
al., 2021) 

Monthly sc-
PDSI 

Predicted 
sc-PDSI 

ANFIS, 
EMD-ANFIS 

Monthly, 
seasonal,  

Turkey Meteorological 1900–2016 

(Özger et al., 
2020) 

Monthly sc-
PDSI 

Predicted 
sc-PDSI 

EMD, WD, 
ANFIS, 
SVM, WD-
ANFIS, 
EMD-
ANFIS, WD-
SVM,  

Monthly,  
seasonal 

Turkey Meteorological 1900–2016 
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return 
periods  

the threshold 
level method 

(Esit and 
YUCE, 
2022) 

Monthly 
precipitation  

SPI Two-
dimensional 
copula model 

Seasonal Turkey Meteorological  1963–2016 

(Tosunoglu 
and Can, 
2016) 

Monthly 
rainfall 
series 

SPI; 
probabilistic 
properties 
of droughts 

Two-
dimensional 
copula model 

Monthly Turkey Meteorological  1966–2006 

 1859 

Table 5 Main studies using Markov Chains Model to forecast drought in the MedR. 1860 

Reference  Inputs Outputs Methods  Time 
scale 

Study 
area  

Drought type Study 
period  

(Habibi et 
al., 2018) 

Annual 
precipitation 
from 65 
meteorological 
stations 

SPI Markov chain 
models, DI and 11 
time series models 
(GMB, GBMAJ, 
APARCH, AR1, 
AR2, ARCH, 
ARMA, 
EGARCH, 
GARCH, MA1, 
MA2)  

Annual Algeria Meteorological 1960–
2010 

(Paulo and 
Pereira, 
2007) 

67-year 
averages of 
monthly 
precipitation 

SPI Non-
homogeneous and 
homogeneous 
Markovian 
modeling  

Monthly, 
seasonal, 
annual  

Portugal  Meteorological  1931/32 
–
1998/99 

(Lazri et al., 
2015) 

Annual 
precipitation 
maps from 
meteorological 
satellite data; 
219 rain 
gauges and 
radar 
precipitation 

SPI Markov chain 
model; Transition 
probability matrix 

Annual Algeria Meteorological  2005–
2010 

(Nalbantis 
and 
Tsakiris, 
2009) 

Monthly 
Precipitation, 
monthly 
streamflow  

SPI, SDI Non-stationary 
Markov chain 

Monthly, 
seasonal, 
annual  

Greece Hydrological  1970–71 
to 1999–
2000. 

(Akyuz et 
al., 2012) 

Observed 
annual 
streamflow 

Probabilities 
and return 
periods of 
droughts  

First-order 
Markov chain 
model, second-
order Markov 
chain model 

Annual Turkey, 
New 
work, 
Sweden  

Hydrological 1938–
2005 

(Cancelliere 
et al., 2007) 

Monthly 
Precipitation 
in 43 
precipitation 
stations 

SPI Markov chain 
model  

Seasonal, 
annual  

Sicily, 
Italy 

Meteorological  1921–
2003 

 1861 

Table 6 Main studies using dynamical models to forecast drought in the MedR. 1862 

Reference  Inputs Outputs Methods  Time 
scale 

Study area  Drought type Study 
period  
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(Elkharrim 
and Bahi, 
2014) 

Historical 
precipitation; 
HadCM3(month
ly precipitation 
and 
temperature); 
Observed 
GHCN v3; 
NCEP and 
NCAR 
reanalysis 

SPI ASD Seasonal 
and 
annual   

Morocco Meteorological  Baselin
e 
1961-
2010       
Future 
2014-
2099 

(Marx et al., 
2018) 

GCMs: GFDL-
ESM2M, 
HadGEM2-ES, 
IPSL-CM5A-
LR, MIROC-
ESM-CHEM, 
NorESM1-M 

 Hydrologica
l models: 
mHM, 
Noah-MP, 
and PCR-
GLOBWB 

Annual Europe Meteorological 
and hydrological 

Baselin
e 
1971–
2000 

(Vasiliades 
and Loukas, 
2009) 

Observed runoff  PDSI, 
Weighted 
PDSI, PHDI 
and the 
moisture 
anomaly Z-
index; runoff 
and soil 
moisture  

monthly 
UTHBAL 
conceptual 
water 
balance 
model 

Monthly Greece Meteorological 
and hydrological 

1960–
2002 

(Brouziyne 
et al., 2020) 

CNRM-CM5 
(RCP4.5, 
RCP8.5); 
GLDAS 25 km 
reanalysis data; 
Observed daily 
rainfall and 
temperature 
(max and min) 
series 

SPI-12;  
SDI-12; 
Monthly 
runoff, 
rainfall; 
Future water 
yield. 

Hydrologica
l model 
SWAT; 

Annual Morocco Meteorological, 
Hydrological  

Baselin
e 
1985-
2005; 
Future 
2030–
2050 
and 
2080–
2100 

(Mendicino 
et al., 2008) 

Monthly 
precipitation, 
temperature, 
SPI, NDVI 

GRI A water 
balance 
model 

Seasonal
, annual  

Italy Meteorological 
and  
Hydrological 

1959–
2006 

(Dubrovský 
et al., 2014) 

Monthly and 
daily 
precipitation 
and temperature 
outputs from 16 
GCMs 
simulations 
(IPCC-AR4) 

PDSI, Z-
index 

Multi-GCM 
forecast 

Seasonal MedR Meteorological  Baselin
e 
1961–
1990; 
Future 
2070–
2100 

(Ruffault et 
al., 2014) 

Daily 
precipitation, 
temperature and 
global radiation 
from ARPEGE-
Climate model 
Version 4; 
Historical 
observations 
from SAFRAN 
dataset  

Maps of 
summer 
precipitations
, number of 
wet days in 
summer and 
drought 
intensity 

Water 
balance 
model, 
quantile 
mapping/ 
anomaly 
method 
 

Annual 
seasonal 

France  Agricultural, 
Hydrological  

Baselin
e 
1961–
1990 
Future 
2071–
2100 

 1863 
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Table 7 Main studies using hybrid statistical-dynamical models to forecast drought in the MedR. 1864 

Reference  Inputs Outputs Methods  Time 
scale 

Study 
area  

Drought type Study 
period  

(Ribeiro 
and Pires, 
2016) 

UKMO 
operational 
forecasting 
system 

SPI3 MLR Seasonal, 
annual  

Portugal Meteorological, 
agricultural, 
and 
hydrological  

1987–
2003 

 1865 

 1866 
Figure 1 Topography of the Mediterranean Region (30°N - 46°N in latitude and 10°W - 40°E in longitude). 1867 

 1868 

 1869 

 1870 

 1871 

 1872 

 1873 

 1874 

 1875 

 1876 

 1877 

 1878 

 1879 

 1880 

 1881 

 1882 

Back-propagation 

Input layer Output layer Hidden layer 

Drought 
predictors 
(precipitation, 
temperature, 
soil moisture, 
…)  

Drought 
target 
variable or 
drought 
index 

Feed Forward 

Figure 2 Drought forecasting based on a simple ANN architecture. 
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 1883 

 1884 

Figure 3 Pie chart showing the proportion of use of indices in the surveyed studies in MedR (Tables 1-7) for different 1885 
drought types. 1886 
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 1887 

Figure 4 Box and whiskers plot showing the performance of drought prediction models denoted by the coefficient of 1888 
determination (R²) for the surveyed studies in MedR. The lower box shows the 25th percentile, the upper box shows the 1889 
75 percentile and the median (50th percentile) is represented by the black line inside the box. The whiskers show the 1890 
extent to the minimum and maximum values within 1.5 times the interquartile range (IQR) from the box. 1891 

 1892 
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Figure 5 Spatial and temporal scales of drought forecasting studies in the MedR with pie chart indicating the percentage 1893 
of use of drought forecasting method: statistical, dynamical and hybrid-statistical models for each spatio-temporal scale. 1894 


