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Abstract 

The typical drivers of drought events are lower than normal precipitation and/or higher than normal evaporation. The region’s 

characteristics may enhance or alleviate the severity of these events. Evaluating the combined effect of the multiple factors 

influencing droughts requires innovative approaches. This study applies hydrological modelling and a machine learning tool 15 

to assess the relationship between hydroclimatic characteristics and the severity of agricultural and hydrological droughts. The 

Soil Water Assessment Tool (SWAT) is used for hydrological modelling. Model outputs, soil moisture and streamflow, are 

used to calculate two drought indices, namely the Soil Moisture Deficit Index and the Standardized Stream Flow Index. Then, 

drought indices are utilised to identify the agricultural and hydrological drought events during the analysis period, and the 

indices categories are employed to describe their severity. Finally, the Multivariate regression tree technique is applied to 20 

assess the relationship between hydroclimatic characteristics and the severity of agricultural and hydrological droughts. 

 

Our research indicates that multiple parameters influence the severity of agricultural and hydrological droughts in the Cesar 

River Basin. The upper part of the river valley is very susceptible to agricultural and hydrological drought. Precipitation 

shortfalls and high potential evapotranspiration drive severe agricultural drought, whereas limited precipitation influences 25 

severe hydrological drought. In the middle part of the river, inadequate rainfall partitioning and an unbalanced water cycle that 

favours water loss through evapotranspiration and limits percolation cause severe agricultural and hydrological drought 

conditions. Finally, droughts are moderate in the basin’s southern part (Zapatosa marsh and the Serrania del Perijá foothills). 

Moderate sensitivity to agricultural and hydrological droughts is related to the capacity of the subbasins to retain water, which 

lowers evapotranspiration losses and promotes percolation. Results show that the presented methodology, combining 30 
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hydrological modelling and a machine learning tool, provides valuable information about the interplay between the 

hydroclimatic factors that influence drought severity in the Cesar River basin. 

1 Introduction 

Projections indicate that drought frequency, severity and duration are expected to increase globally in the twenty-first century 

(UNDRR, 2021). Upcoming soil moisture drought scenarios predict statically significant large-scale drying, especially in 35 

scenarios with strong radiative forcing in Central America and tropical South America (Lu et al., 2019). A similar trend is 

predicted for hydrological drought severity, which is expected to increase by the end of the twenty-first century, with regional 

hotspots in central and western Europe and South America, where the frequency of hydrological drought may increase by more 

than 20 % (Prudhomme et al., 2014). The intensification of drought characteristics (in combination with other factors) could 

force the migration of up to 216 million people by 2050 (The World Bank, 2021), increase wildfire risk and tree mortality, and 40 

negatively affect regional air quality, among other ecosystem impacts (Vicente-Serrano et al., 2020). 

 

It is essential that we better understand drought drivers if we are to foster preparedness and resilience to projected drought 

events. Remarkable progress has been achieved in understanding drought propagation through the hydrological cycle (Van 

Loon et al., 2012). Drought occurs due to climatic extremes, which may be enhanced or alleviated by region characteristics 45 

and anthropogenic influence (Hao et al., 2022; Seneviratne et al., 2012; Tijdeman et al., 2018). Typically, droughts are 

triggered by atmospheric circulation and weather systems that combine to cause lower-than-normal precipitation and/or higher-

than-normalevaporation in a region (Destouni & Verrot, 2014; Sheffield & Wood, 2011a). Reduced precipitation leads to a 

decrease in soil moisture, causing agricultural drought. When soil moisture depletion is high, it is restored in the wet season, 

thus reducing subsurface flow and groundwater recharge and giving rise to hydrological drought (Iglesias et al., 2018). 50 

Regional characteristics such as soil type, elevation, slope, vegetation cover, drainage networks, water bodies and groundwater 

systems play a relevant role in response to the climate anomalies that affect drought propagation and contribute to different 

levels of agricultural and hydrological drought (Sheffield & Wood, 2011a; Zhang et al., 2022). Equally important, human 

interventions in the hydrological cycle (e.g. reservoirs, water diversion, deforestation, over-pumping groundwater, 

overgrazing, urbanisation) can reduce water supplies, triggering a drought situation or exacerbating a climate-driven drought 55 

(Rangecroft et al., 2019; Wang et al., 2021). 

 

Drought planning also uses research progress on drought characterisation. Using drought indices is a widespread methodology 

for drought characterisation. (Zargar et al., 2011). Drought indices are computed numerical representations of drought severity 

(Hao & Singh, 2015; Keyantash & Dracup, 2002). Severity refers to the drought strength, also described as the deficit degree 60 

(Cavus & Aksoy, 2020), soil moisture deficit in the case of agricultural droughts and streamflow deficit in the case of 

hydrological droughts. Generally, severity is divided into different categories (e.g. moderate, severe, extreme), providing a 
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qualitative assessment of the drought state in a region during a given period. Drought indices (and their categories) are crucial 

for tracking or anticipating drought-related damage and impacts (WMO & GWP, 2016). 

 65 

Despite remarkable progress achieved in understanding the drought-generating process and drought characterisation, there is 

still a need for studies that assess the complex interplay between the different drivers of droughts and how their combined 

effect influences drought characteristics (e.g. duration, severity, intensity) (Valiya Veettil & Mishra, 2020). Previous studies 

focus on the influence of one driver (Margariti et al., 2019; Mastrotheodoros et al., 2020; Shah et al., 2021; Xu et al., 2019), 

and some of the methodologies applied cannot adequately address the non-linear relationship between climate, basin processes 70 

and droughts characteristics (Peña-Gallardo et al., 2019; Saft et al., 2016; Van Loon, 2015). 

 

We have found two studies employing machine learning to assess the non-linear relationship between climate and basin 

processes and droughts (Konapala & Mishra, 2020; Valiya Veettil & Mishra, 2020). The studies reported relevant findings on 

the parameters driving droughts; however, the selected techniques showed a limitation for the drought analysis since they 75 

allow only one output variable. In both cases, it was necessary to apply the chosen technique multiple times to find the 

relationships between hydroclimatic parameters and the different categories of the evaluated drought characteristics. For 

example, Valiya Veettil et al. (2020) used a classification and regression tree (CART) to identify the variables influencing 

drought duration. CART allows one output variable; then, the authors applied the approach three times to evaluate the variables 

influencing short-term, medium-term and long-term drought events. Meanwhile, Konapala et al. (2020) used a random forest 80 

(RF) algorithm to identify the climate and basin parameters influencing the characteristics (duration, frequency and intensity) 

of three different drought regimes (long duration and mild intensity, moderate duration and intensity, short duration and high 

intensity). As the core of RF is a decision tree that allows one output variable (in this case, each characteristic of each drought 

regime), the authors repeated the procedure nine times, one for each drought regime and characteristic. 

 85 

The aforementioned research shows the potential of machine learning techniques for drought-related analysis; nevertheless, it 

also suggests that assessing the parameters driving drought characteristics requires techniques capable of simultaneously 

handling the different categories of drought characteristics. Commonly used in ecology to relate independent environmental 

conditions to populations of multiple species, the Multivariate Regression Tree (MVRT) arises as a suitable technique for this 

purpose. MVRT is a constrained clustering technique that links explanatory variables to multiple response variables while 90 

maintaining the individual characteristics of the responses. Significantly, the technique does not assume a linear relationship 

between explanatory and response variables. Furthermore, it allows for the so-called “interpretable machine learning” 

algorithms that make decisions and predictions understandable to humans (Molnar, 2022). MVRT interpretably is a relevant 

attribute for drought researchers and planners since it allows them to identify the parameters influencing severe (or mild) 

drought conditions. 95 
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To understand the relationship between the drivers of droughts and the individual categories of agricultural and hydrological 

droughts severity, this study employs a three-step methodology. The first is hydrological modelling. We used SWAT to 

simulate the hydroclimatic parameters required for analysing droughts and applying the MVRT approach. The second is the 

analysis of droughts. SWAT outputs, soil moisture and streamflow, are used to calculate the drought indices, i.e., the Soil 100 

Moisture Deficit Index (SMDI) and the Standardized Stream Flow Index (SSI). Drought indices are utilised to identify the 

agricultural and hydrological drought events in the analysis period. Then, we calculate the months for each drought severity 

category during the observed droughts. Finally, the MVRT approach is applied to assess the relationship between hydroclimatic 

characteristics (represented by the simulated parameters in each subbasin) and drought severity categories (represented by the 

total number of months for each drought severity category in each subbasin). The analyses for agricultural and hydrological 105 

droughts were conducted separately; thus, two MVRTs were obtained. A concrete application of this methodology is developed 

in the Cesar River basin (Colombia, South America). 

2 Study location and methods 

2.1 Case study 

Figure 1 presents the Cesar River basin’s location, topography (Fig. 1a) and land use (Fig. 1b). The basin is located between 110 

72⁰53’W 74⁰04’W longitude and 10⁰52’00’N 7⁰41’00’’N latitude (Colombia). It extends for an area of 22,312 km2. The basin’s 

topography defines three distinct climatic regions (Universidad del Atlantico, 2014). In the north is La Sierra Nevada de Santa 

Marta. This sector is characterised by steeply sloped mountains reaching up to 5,700 meters above sea level (masl). The 

temperature ranges from 3°C to 6°C, and the mean annual precipitation is 1,000 mm. In the east is La Serranía del Perijá. This 

mountainous area is an extension of the eastern branch of the Andes range. In this sector, the altitude ranges from 1,000 to 115 

2,000 masl. The average temperature is 24°C, and the average annual precipitation varies from 1,000 mm to 2,000 mm. Lastly, 

the valley of the Cesar River and the Zapatosa marsh are in the west and south of the basin, respectively. The valley is 

characterised by flat topography and a complex system of marshes formed by the Cesar River floodplains and its confluence 

with the Magdalena River. The average temperature is 28°C, and the mean annual precipitation is 1,500 mm. The basin’s 

annual rainfall pattern is bimodal. The dry season occurs from December to April, followed by a rainy season from April to 120 

May. From June to July, precipitation decreases, and the main rainfall events occur between August and November. 

 

The predominant land use is pasture, followed by agriculture (Universidad del Atlantico, 2014). The primary land use in La 

Sierra Nevada foothills is pastures for cattle farming. In La Serranía del Perijá, the high-altitude areas are covered by forests 

in very good condition; at the lower altitudes, the principal land use is agriculture, particularly subsistence crops. The Cesar 125 

River valley’s soils are rich in nutrients, providing favourable conditions for agriculture. The riverbanks are covered by forests 

with low tree density. 
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The Zapatosa marsh is recognised as one of the most important wetlands in the country, and considering the relevance of this 

ecosystem, it was declared a Ramsar site in 2018 (Ramsar sites are wetlands of international importance for containing rare or 

unique wetland types or for their relevance in conserving biological diversity). Nevertheless, the region is threatened by high 130 

water demand of monocrops and the overexploitation of forest resources. In addition, climate change projections indicate that 

by 2070, the basin’s temperature may increase by 2.7°C, and precipitation may reduce by 10 % compared to the reference 

period 1971-2000 (Universidad del Magdalena et al., 2017). Accordingly, multiple initiatives are oriented to improve water 

management and create resilience to hydroclimatic extremes (Ministerio de Ambiente y Desarrollo Sostenible (Colombia), 

2015). 135 

 

 a) b) 

 

 
 

Figure 1 Cesar River basin: a) topography and b) land use. 

2.2 Methods 

Figure 2 illustrates the three-step methodology applied in this study. Section 2.2.1 describes the hydrological modelling, and 

2.2.2 the drought analysis. Section 2.2.3 presents the description of the MVRT technique. 140 
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Figure 2 Flow chart of the methodology. 

2.2.1 Hydrological modelling 

The SWAT model with an ArcSWAT extension was used to simulate the hydrological balance of the Cesar River. SWAT is a 

continuous-time, semi-distributed and process-based river watershed scale model developed by The Agricultural Research 145 

Service of the United States Department of Agriculture (ARS-USDA). The model is designed to simulate the quality and 
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quantity of surface and groundwater and predict the environmental impacts of land management and climate change (Neitsch 

et al., 2011). SWAT divides the basin area up to the outlet point into several subbasins. Each subbasin is further split into 

multiple Hydrological Response Units (HRU), which are areas within the subbasin with common combinations of land cover, 

soil type and slope (Arnold et al., 2012). 150 

Model setup 

The model was built for the period from 1987 to 2018. The Cesar River basin was divided into 313 subbasins with a median 

area of 70 km2. Four slope classes were set for the HRUs generation: flat (0–2%), gentle (2–10%), steep (10–35%) and 

considerably steep (>36%) (GEF et al., 2020, 2021). The following methods were used to model the principal hydrological 

processes: the soil conservation service-curve number (SCS-CN) was used to simulate surface runoff; potential 155 

evapotranspiration was estimated using the Hargreaves method; and water was routed through the channel network using the 

variable storage routing method. The details and sources of the SWAT model input data are presented in Table 1. 

 

Table 1. SWAT model input data 

Data type Details Source 

Digital elevation model 25 × 25 m 
Dataset ALOS PALSAR L1.0, Cartography 1:25000 Geographic 

Institute Agustín Codazzi (IGAC), Colombia 

Soil map 300 × 300 m 
Soil profiles Project GEF Magdalena–Cauca VIVE, GEF, BID, 

Fundación Natura, Colombia 

Land use map 25 × 25 m 
Land use map Geographic Institute Agustin Codazzi (IGAC), 

Colombia 

Daily precipitation and daily minimum 

and maximum temperature  

Period 1985–2018 

(34 years) 

Institute of Hydrology, Meteorology and Environmental Studies 

(IDEAM), Colombia 

Model calibration and validation 160 

We used the SWAT-CUP software package with Sequential Uncertainty Fitting version 2 (SUFI-2) for automatic model 

calibration and validation. SUFI-2 operates by performing several iterations. The calibration parameters are sampled in each 

iteration using the Latin hypercube technique against the objective function values (Abbaspour et al., 2018). 

 

Based on expert judgment and the available literature (Arnold et al., 2012; ASABE, 2017), the following SWAT parameters 165 

were used in the calibration and validation process: baseflow alpha factor (ALPHA_BF), effective hydraulic conductivity in 

main channel alluvium (CH_K), Manning’s value for the main channel (CH_N2), SCS runoff curve number for moisture 

condition II (CN2), soil evaporation compensation factor (ESCO), groundwater delay (GW_DELAY), threshold depth of water 

in the shallow aquifer required for return flow to occur (GWQMN), deep aquifer percolation fraction (RCHRG_DP), threshold 
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depth of water in the shallow aquifer for percolation to the deep aquifer to occur (REVAPMN) and available water capacity 170 

of the soil layer (SOL_AWC). In the calibration process, a physically meaningful range is set for each parameter in each 

iteration. Then, a new parameter value (within the range) is selected and applied at each HRU or subbasin. 

 

The model was calibrated from 1985 to 2002 and validated from 2003 to 2018 using the streamflow series from four stream 

gauges (Fig. 1a). The source of the discharge data is the Institute of Hydrology, Meteorology and Environmental Studies 175 

(IDEAM), Colombia. The first two years were used as a warming-up period in both cases. Thus, performance indicators were 

calculated for 1987 to 2002 (calibration) and 2005 to 2018 (validation). The model’s performance for simulating streamflow 

was evaluated using the Nash-Sutcliffe Efficiency (NSE) and percent bias (PBIAS), represented by Eq. 1 and Eq. 2, 

respectively: 

 180 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑁
𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑁
𝑖=1
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𝑃𝐵𝐼𝐴𝑆 =
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𝑖=1

∑ 𝑂𝑖
𝑁
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2 

where 𝑂𝑖  is the observed data, 𝑃𝑖  the predicted data, 𝑂 ̅the mean of the observed data and 𝑁 the number of observations during 

the simulation period. 

 

The NSE is a dimensionless indicator ranging from -∞ to 1, with 1 representing a perfect match between the observed and 

simulated values (Moriasi et al., 2007). The PBIAS measures the average tendency of the simulated values to be larger or 185 

smaller than the observed values. The ideal PBIAS is 0, with low-magnitude values indicating accurate model simulation 

(Moriasi et al., 2007). 

2.2.2 Agricultural and hydrological drought analysis 

The present study used the soil moisture deficit index (SMDI) to analyse agricultural droughts. We chose this index since it 

was developed to use simulated soil moisture as the input parameter (Narasimhan & Srinivasan, 2005). SWAT calculates the 190 

soil water content of the entire soil profile. Three soil layers were identified in the Cesar River basin. The first layer thickness 

(vertical distance from the surface) reaches up to 350 mm, the second 1000 mm, and the third 1500 mm. 

 

The computation procedure to determine the soil moisture deficit used the long-term soil moisture characteristics and the soil 

moisture conditions during the drought period. The indicator was scaled between -4 and 4 to allow the spatial comparison of 195 

the drought index, regardless of climatic characteristics (Narasimhan & Srinivasan, 2005). Negative values of SMDI indicate 
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dry periods, while positive values indicate wet periods (compared to the region’s normal conditions). Per the SMDI, 

agricultural drought severity was divided into three categories: moderate drought (SMDI -2.0 to -2.99), severe drought (SMDI 

-3.0 to -3.99) and extreme drought (SMDI -4). The following procedure was applied to compute the SMDI at each subbasin: 

 200 

𝑆𝐷𝑖𝑗 =
𝑆𝑊𝑖𝑗 − 𝑀𝑆𝑊𝑗

𝑀𝑆𝑊𝑗 − 𝑚𝑖𝑛𝑆𝑊𝑗
× 100, 𝑖𝑓 𝑆𝑊𝑖𝑗 ≤ 𝑀𝑆𝑊𝑗 

 

3 

𝑆𝐷𝑖𝑗 =
𝑆𝑊𝑖𝑗 − 𝑀𝑆𝑊𝑗

𝑚𝑎𝑥𝑆𝑊𝑗 − 𝑀𝑆𝑊𝑗
× 100, 𝑖𝑓 𝑆𝑊𝑖𝑗 > 𝑀𝑆𝑊𝑗  

4 

 

where 𝑆𝐷𝑗  is the soil moisture deficit (%), 𝑆𝑊𝑗 is the monthly soil water available in the soil profile (mm) and 𝑀𝑆𝑊𝑗 is the 

long-term median available soil water in the soil profile (mm), 𝑚𝑎𝑥𝑆𝑊𝑗  and 𝑚𝑖𝑛𝑆𝑊𝑗 are long-term median, maximum and 

minimum soil water available in the soil profile (mm), respectively, (𝑖 = 1987 − 2018 𝑎𝑛𝑑 𝑗 = 1 − 12). 

 205 

The 𝑆𝑀𝐷𝐼𝑗 of any given month was calculated using Eq. 5: 

 

𝑆𝑀𝐷𝐼𝑗 = 0.5 × 𝑆𝑀𝐷𝐼𝑗−1 +
𝑆𝐷𝑗

50
 

5 

 

where 𝑆𝑀𝐷𝐼𝑗−1 is the SMDI from the previous month. 

 210 

SMDI was not calculated for the subbasins that correspond to the Zapatosa marsh. In these subbasins, the predominant land 

cover is water. See Fig. 5. 

 

We used a standardised streamflow index (SSI) to represent hydrological droughts. The indicator was introduced by Modarres 

(2007) and further investigated by Vicente-Serrano et al. (2011). The index is statically analogous to the commonly used 215 

standardised precipitation index (SPI) introduced by Mckee et al. (1993). SSI values mainly range from -2.0 (extremely dry) 

to 2.0 (extremely wet), and hydrological drought severity is divided into three categories: moderate drought (SSI -1.0 to -1.49), 

severe drought (SSI -1.5 to -1.99) and extreme drought (SSI -2.0 or less). The procedure to calculate SSI consists of converting 

streamflow values to standardised anomalies (i.e. z-scores). To this aim, the monthly simulated streamflow at each subbasin 

in the analysis period (1987 to 2018) was fitted to the gamma probability distribution function. 220 

 

SMDI and SSI were calculated monthly using the simulated soil water and streamflow values at each subbasin. The drought 

events during the period of analysis were then identified. A drought (agricultural or hydrological) event was assumed to occur 

in the basin when a number of subbasins (covering at least 30 % of the basin's total area) were in a drought state (moderate, 
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severe or extreme) for at least two consecutive time steps (i.e. in this study month). According to the spatial and temporal 225 

thresholds, a drought event began when both conditions were met and continued until one of them failed to be met. It is worth 

highlighting that the minimal extension of a drought is not defined, but it is accepted that droughts typically occur on a large 

scale (Sheffield & Wood, 2011b). Setting a spatial threshold is a common practice to maintain a minimum drought-affected 

and prevent identifying isolated areas experiencing dry spells as drought events (Brunner et al., 2021). The temporal threshold, 

it was used to avoid including short-term droughts (i.e., daily or weekly) in the analysis (Li et al., 2020). 230 

2.2.3 Multivariate regression tree approach for evaluating the relationships between hydroclimatic characteristics and 

droughts severity 

MVRT is an extension of the popular regression tree (Breiman, 2001), but it differs in that it allows for multiple outputs (see 

De’ath (2002)). It recursively splits a quantitative response variable (predictand, output) controlled by a set of numerical or 

categorical explanatory variables (predictors, input). The approach yields a set of non-linear models, each a piece-wise linear 235 

regression model (of zero order). An MVRT result is a tree whose terminal groups (leaves) of instances (input-output vectors) 

comprise subsets of samples selected to minimise the within-group sums of squares. Each successive split is given by a 

threshold value of the explanatory variables (Borcard et al., 2018). MVRT is applied to dataset exploration, description and 

prediction (De’ath, 2002). In this study, the explanatory variables are the hydroclimatic parameters at each subbasin, 

represented by the average value of each parameter during the analysis period (1987 to 2018). The multivariate response is the 240 

number of months observed in the three drought severity categories (moderate, severe and extreme) at each subbasin. The 

analyses for agricultural and hydrological droughts were conducted separately; thus, two MVRTs were obtained. 

 

The following MVRT attributes are relevant for this study. First, MVRT can capture the non-linear interactions between the 

parameters influencing droughts and their severity. Second, the technique can handle numerical and categorical hydroclimatic 245 

parameters influencing drought severity (explanatory variables). Third, MVRT’s capability to handle multiple outputs allowed 

us to evaluate the influence of the hydroclimatic parameters on moderate, severe and extreme drought conditions 

simultaneously (response variables). Simultaneous analysis of different drought categories provides a comprehensive 

understanding of the drought-generating process and the factors influencing severe (or mild) drought conditions. Fourth, 

MVRT results can be easily visualised and interpreted. The resulting tree structure provides a clear representation of the 250 

relationship between the drivers of droughts and the severity of agricultural and hydrological droughts. 

 

For building the MVRT, R software was used, namely, package mvpart. Before the analysis, the sets of explanatory and 

response variables were transformed to compare the descriptors measured in different units and to modify the variables’ 

weights. The matrix of explanatory variables was standardised to a mean of zero and a standard deviation of one. The matrix 255 

of response variables was standardised by the column maximum, then again by the row total (Wisconsin double 

standardisation).  
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Datasets 

Set of explanatory variables 

To select the set of explanatory variables, we used the outcomes of previous studies on governing drivers of droughts (Sheffield 260 

& Wood, 2011a; Zhang et al., 2022). Table 2 describes the eleven parameters selected as the potential drivers of droughts. The 

used values correspond to the parameters’ average in the analysis period (1987 to 2018). The averages were computed using 

the SWAT model results at each subbasin. We used the dominant category at each subbasin for the curve number, the slope, 

and the soil type (categorical variables). 

 265 

Table 2. Explanatory variables used in MVRT 

Hydroclimatic parameter Abbreviation Unit Definition 

Precipitation PRECP mm Average precipitation at each subbasin 

Potential evapotranspiration PET mm Average potential evapotranspiration at each subbasin 

Evapotranspiration ET mm Average actual evapotranspiration at each subbasin 

Percolation PERC mm Average percolation past the root zone 

Surface runoff SURFQ mm Average surface contribution to the streamflow at each subbasin 

Groundwater  GRWQ mm Average groundwater contribution to the streamflow at each subbasin 

Water yield WYLD mm 
Average amount of water that leaves the subbasin and contributes to 

the streamflow at each subbasin 

Sediment yield SYLD 
metric 

tons/ha 
Average sediment from the subbasin transported into the reach 

Curve number CN – Dominant curve number at each subbasin 

Slope SLP – Dominant slope at each subbasin 

Hydrologic soil group STY – 

Dominant hydrologic soil group (A, B, C, and D) at each subbasin. 

The soil hydrologic groups refer to the soil’s infiltration 

characteristics. Properties of each soil type can be found in USDA 

(2007) 

Set of response variables 

We used the drought analysis outcomes to define the response variables (Table 3). Following the methodology presented in 

2.2.2, we identified the agricultural and hydrological drought events during the analysed period. After identifying the drought 

events, we counted the months for each drought severity category at each subbasin. The observed months for each one of the 270 

three drought categories were used as response variables. The analyses for agricultural and hydrological droughts were 

conducted separately; thus, two sets of response variables were obtained. 
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Table 3. Response variables used in MVRT 

Drought category Abbreviation Unit Definition 

Moderate agricultural/hydrological 

drought 
MOD month 

Number of months in the moderate agricultural drought category 

during the drought events identified in the simulation period at each 

subbasin 

Severe agricultural/hydrological 

drought 
SEV month 

Number of months in the severe agricultural drought category 

during the drought events identified in the simulation period at each 

subbasin 

Extreme agricultural/hydrological 

drought 
EXT month 

Number of months in the extreme agricultural drought category 

during the drought events identified in the simulation period at each 

subbasin 

Building the MVRT: Constrained partitioning of the data and cross-validation 275 

Building the MVRT consisted of two processes: (1) the constrained partitioning of the data and (2) the cross-validation of the 

results. The mvpart package runs both processes in parallel. The two procedures are briefly explained below, and a more 

detailed description can be found in Borcard et al. (2018). 

 

The data partitioning consisted of three steps. First, for each explanatory variable were generated all possible partitions of the 280 

sites (subbasins) into two groups. Second, for each partition, it was calculated the resulting sum of within-group sums of 

squared distances to the group means for the response data (within-group SS). Within-group SS is equivalent to standard 

deviation. Lastly, the partition into two groups to minimise the within-group SS and the threshold value/level of the explanatory 

variable was retained. These steps were repeated within the two previously established subgroups until all the objects formed 

their own groups. For each tree that was computed, the relative error was calculated as the sum of the within-group SS of all 285 

leaves divided by the overall SS of the data. This procedure for MVRT is equivalent to the one originally proposed by Breiman 

(2001) for his regression tree technique. 

 

A cross–validation procedure was used to prune the tree and identify the optimal tree size (Kuhn & Johnson, 2013; Legendre 

& Legendre, 2012). The cross-validation procedure was performed automatically using mvpart. Per this procedure, the data 290 

was randomly divided into roughly equal-sized test groups. Each test group was held out in turn while the tree was fitted using 

the remaining groups. The distances between the centroids of the objects at tree leaves and each object of the test group were 

then calculated. Finally, the objects of the test group were allocated to the closest leaf of the constructed tree. An overall 

relative error statistic (relative cross-validation error, CVRE) was calculated for each group using all n objects, per Eq. 6: 

 295 
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𝐶𝑉𝑅𝐸(𝑘) =
∑ ∑ (𝑦𝑖𝑗(𝑘) − �̂�𝑗(𝑘))

2𝑝
𝑗=1

𝑛
𝑖=1

∑ ∑ (𝑦𝑖𝑗 − �̅�𝑗)
2𝑝

𝑗=1
𝑛
𝑖=1

 
6 

 

where 𝑦𝑖𝑗(𝑘) is the value of variable 𝑗 for object 𝑖 belonging to test group 𝑘, �̂�𝑗(𝑘) is the value of that same variable at the 

centroid of the leaf closest to object 𝑖, and the denominator is the overall sum of squares of the response data. 

 

This cross-validation process was repeated several times for consecutive and independent divisions of the data into test groups. 300 

For each group, the mean and standard deviation of all CVRE were computed. The CVRE varied from 0 for perfect predictors 

to close to 1 for poor predictors (as error increases, CVRE increases indefinitely). Among the mvpart function arguments, we 

used ten cross-validation groups (function argument, xval = 10) and 100 iterations (function argument xmult = 100). The tree 

was selected using interactive cross-validation (function argument xv = ‘pick’). 

 305 

To choose the size of the tree that retained the most descriptive partition, we used the approach suggested by De’ath (2002). 

According to the author the tree with the smallest CVRE offers the best combination of explanatory power and interpretability. 

Once the tree was built, the proportion of explained variance (EV) was calculated as 1 − 𝑅𝐸𝑡𝑟𝑒𝑒  (tree relative error) (Cannon, 

2012). 

3 Results 310 

3.1 SWAT model calibration and validation 

Table 4 summarises the calibration and validation performance indicators for the SWAT model at each gauging station. The 

calibration and validation models simulated monthly stream flows with NSE values equal to or greater than 0.50 and relatively 

low PBIAS values (GEF et al., 2020, 2021). According to the performance ratings for calibrating and validating hydrological 

models, NSE and PBIAS values indicated that the model was appropriate for simulating streamflow (Moriasi et al., 2007). 315 

Figure 3 presents the model hydrographs at each gauging station for the calibration and validation periods. The locations of 

the stations can be found in Fig 1. 

 

Table 4. SWAT model performance simulating streamflow 

Gauging station 
Calibration Validation 

NSE PBIAS [%] NSE PBIAS [%] 

Puente Salguero 0.61 4.28 0.52 -8.3 

Puente Carretera 0.50 -5.34 0.52 7.6 

Cantaclaro 0.58 -11.30 0.50 -11.7 

Puente Canoas 0.70 -1.34 0.57 10.64 

 320 
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a)

 

b)

 
c)

 

d)

 
  

Figure 3 Monthly calibration and validation for streamflow at: a) Puente Salguero, b) Puente Carretera, c) Cantaclaro and d) Puente Canoas. 

 

Since the study focuses on droughts, the model performance simulating streamflow in the dry season was analysed separately. 

Performance indicators were calculated for the period corresponding to the basin’s dry season (December to March). The 

intermediate period of precipitation decrease from June to July was also included in this analysis. Table 5 summarises the 325 

calibration and validation performance indicators in the dry season. According to the rating guidelines, the model performance 

simulating streamflow in the dry season is satisfactory (ASABE, 2017). 

 

Table 5. SWAT model performance simulating flows in the dry season. 

Gauging station 
Calibration Validation 

NSE PBIAS [%] NSE PBIAS [%] 

Puente Salguero 0.65 -19.4 0.53 -21.3 

Puente Carretera 0.67 -15.3 0.53 17.2 

Cantaclaro 0.67 -3.6 0.58 16.3 

Puente Canoas 0.55 -15.7 0.60 -13.5 

 330 
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3.2 Hydroclimatic drivers of droughts 

Figure 4 presents the numerical and categorical hydroclimatic parameters used as potential drivers of droughts. Figures 4a to 

h present the multi-annual average of the numerical hydroclimatic drivers of droughts at each subbasin. The average was 

calculated using the hydrological model’s results during the simulation period (1987 to 2018). Figures 4i to k present the 

categorical drivers: the curve number, slope and soil type. The dominant category at each subbasin is shown in Figs. 4i to k. 335 

The dataset of explanatory variables was created from the values presented in Fig.4. 

 

a)  b)  c)  

   

d)  e)  f)  

   

g)  h)  i)  
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j)  k)  

Figure 4 Average value of hydroclimatic parameters during the simulation period at each subbasin: a) precipitation in mm, b) potential 

evapotranspiration in mm, c) actual evapotranspiration in mm, d) percolation in mm, e) surface runoff in mm, f) groundwater contribution 

to streamflow in mm, g) water yield in mm, h) sediment yield in metric tons/ha, i) curve number, j) slope and k) soil type, the soil hydrologic 340 

groups A, B, C and D refer to the soil’s infiltration characteristics. 

3.3 Drought events during the simulation period and their duration 

We identified the drought events and estimated their duration following the definition of droughts presented in 2.2.2. A month 

was summed to the duration of an event when a number of subbasins, covering at least 30 % of the basin's total area, were in 

a drought state (moderate, severe or extreme). The identified droughts in the simulation period were in good agreement with 345 

the chronology of drought events in Colombia described at the National Study of Water (Instituto de Hidrología, 2019). Table 

6 shows the dates and durations of the drought events. 

 
Table 6. Agricultural and hydrological droughts during the period of analysis 

Event 
Agricultural droughts Hydrological droughts 

Date Duration [months] Date Duration [months] 

I May 1991 – Jun 1992 13 Apr 1991 – May 1992 14 

II Jun 1997 – April 1998 11 Apr 1997 – Feb 1998 11 

III Jun 2001 – Aug 2001 3 May 2001 – Jun 2001 2 

IV Oct 2009 – Jan 2010 4 Sep 2009 – Nov 2009 3 

V Jun 2014 – Aug 2014 3 Jun 2014 – Jul 2014 2 

VI May 2015 – Jul 2016 15 Apr 2015 – Apr 2016 13 

 350 

After identifying the agricultural and hydrological drought events, it was possible to determine the number of months for each 

drought category in each subbasin, as represented in Figs. 5 and 6. The results presented in Figs. 5 and 6 are the response 

variables for the MVRT technique. 
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a)  
 

b)  c)  

 

Figure 5 Months in each agricultural drought category: a) moderate, b) severe and c) extreme. SMDI was not calculated in the wetland 355 

subbasins (i.e. hatched area). 

a)  b)  c)  

 

Figure 6 Months in each hydrological drought category: a) moderate, b) severe and c) extreme. 

3.4 Multivariate regression tree 

In this section, we describe the results of the MVRT technique applied to identify the governing drivers of agricultural and 

hydrological drought severity and their critical thresholds. 360 

3.4.1 Drivers of agricultural drought 

Figure 7 presents the tree generated by R software, the number of subbasins clustered at each terminal group (variable “n”), 

and the spatial distribution of these subbasins. The tree consists of five levels of split and twelve leaves. The minimum value 

of the cross-validation error (CVRE = 0.46) was used to select the tree size. The relative error of the MVRT was 0.19, and the 
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EV was 0.81. 8 hpresents the tree’s numerical output: namely, the number of months for each drought category. The scattering 365 

of the outputs in each leaf allows us to identify the most susceptible subbasins to agricultural droughts. 

 

The MVRT indicated that actual evapotranspiration was a strong driver of agricultural droughts; it appeared three times at 

different tree levels of split (Fig.7). The subbasins were split at the first level according to ET (924 mm). At the second level 

of split, precipitation (1,318 mm) was used for the left branch of the tree and percolation (271 mm) for the right branch. Then, 370 

the left branch was recursively split as follows: at the third level, according to potential evapotranspiration (1,888 mm) and 

evapotranspiration (1,191 mm); at the fourth level, according to evapotranspiration (1,064 mm) and percolation (111 mm); 

and at the fifth level, according to sediment yield (101 tons/ha). The left branch accounts for seven out of the tree’s twelve 

leaves. Regarding the right branch, splitting was done according to evapotranspiration (729 mm) and the curve number (67) at 

the third level and according to the water yield (352 mm) at the last level. In the following, we describe agricultural drought 375 

MVRT terminal groups. 

 

Leaf a clusters seven subbasins in the north part of the basin. In this area, actual evapotranspiration and potential 

evapotranspiration were above the basin average, while precipitation was below average (Figs. 4c, b and a, respectively). 

Figure 8a shows that these subbasins experienced the highest number of months in extreme agricultural drought and a median 380 

of fifteen months in severe agricultural drought. Leaf b clusters two subbasins in the western part of the basin. In this leaf, 

there are no months in the extreme drought category. The median of months in the moderate and severe agricultural drought 

categories is ten months, one of the lowest among the terminal groups (Fig. 8b). 

 

Leaves c and d cluster twenty-four and nineteen subbasins, respectively. Leaf c groups subbasins located in the upper part of 385 

the river course and the basin east. Precipitation was slightly below the basin average in the subbasins located in the north and 

close to the average in subbasins in the east (Fig. 4a). Leaf d groups subbasins located in the upper course of the river and in 

the basin’s western part. The actual evapotranspiration threshold to split leaves c and d is 1,064 mm, value above the basin 

average (Fig. 4c). For subbasins with actual evapotranspiration below the threshold, leaf c, the median of months in the severe 

drought category is below ten (Fig. 8c). For subbasins with actual evapotranspiration above the threshold, leaf d, the median 390 

of months in the severe drought category is sixteen, one of the highest among the terminal groups (Fig. 8d). 

 

Leaves e, f and g cluster twenty-four, six and twelve subbasins, respectively. Subbasins are located in the river valley and the 

basin’s western part. In these subbasins, precipitation was below the basin average (Fig. 4a), and actual evapotranspiration was 

above the average (Fig. 4c). The percolation threshold to split leaves e and f from leaf g is 111 mm, a value considerably below 395 

the basin average (Fig. 4d). At the fifth level of split, the sediment yield threshold to split leaves e and f is 101 metric tons/ha, 

a value close to the average in the basin (Fig. 4h). Figures 8e, f and g show that subbasins clustered in these leaves are prone 
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to agricultural droughts. The median of months in the moderate drought category was above twenty months; the severe category 

was above ten months; and the three leaves exhibited months in the extreme drought category. 

 400 

Leaves h, i and j cluster twenty-six, fifty-two and fifty-six subbasins, respectively. Subbasins are mainly located in the wetland 

surroundings, La Serranía (leaf i), and some outliers are located in the basin’s north (leaves h and j). Percolation in leaves h, i 

and j was close to the basin average (Fig. 4d). Actual evapotranspiration in terminal groups h and i was relatively close to the 

basin average (Fig. 4c). The water yield threshold to split clusters h and i is 352 mm. Overall, subbasins clustered at leaves h, 

i and j presented low susceptibility to severe and extreme agricultural drought conditions. The median of months in the 405 

moderate drought category was slightly higher than ten; the median for months in the severe category was the lowest for the 

study area and showed no months in the extreme drought category (Figs. 8h, I and j). 

 

Leaves k and l cluster two and six subbasins, respectively. Subbasins are located towards the basin’s north, and one outlier is 

observed in the subbasin east (leaf l). In these subbasins, percolation was lower than 271 mm, value relatively low compared 410 

to other basin areas (Fig. 4d). In leaf k, the curve number was lower than sixty-seven, while in leaf l, it was higher. In leaf k, 

the median of months for the moderate category is ten, and for the severe category, it is 14. In leaf l, the median of months in 

the moderate category is above ten, and the subbasins experienced some months in severe drought. Leaves k and l show no 

months in the extreme drought category (Figs. 8k and l). 

 415 

Figure 7 MVRT of hydroclimatic drivers of agricultural droughts at the Cesar River basin and spatial distribution of the subbasins clustered 

at each leaf. Tree leaves are named from a to l, and n indicates the number of subbasins clustered at each leaf. The wetland subbasins are 

not included in the analysis for agricultural drought. 
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 420 

Figure 8 Number of months in agricultural drought categories (moderate, severe, extreme) at each leaf. Tree leaves are named from a to l. 

3.5.2 Drivers of hydrological drought 

Figure 9 presents the hydrological drought MVRT, the number of subbasins clustered at each terminal group (variable “n”) 

and the spatial distribution of these subbasins. The tree consists of four levels of split and eight leaves. The minimum value of 

the cross-validation error (CVRE = 0.67) was used to select the tree size. The relative error of the MVRT was 0.52, and the 425 

EV was 0.48. Figure 10 presents the tree’s numerical output: namely, the number of months for each drought category. This 

information allowed us to identify the clusters of subbasins prone to hydrological droughts. 

 

The MVRT demonstrated that precipitation was a primary driver of hydrological drought; it appeared two times at different 

levels of split. The subbasins were separated at the first split level according to precipitation (1632 mm). At the second split 430 

level, precipitation (1398 mm) was used as the left branch of the tree, and water yield was used as the right branch (29 mm). 

The left branch was then further divided according to percolation (153 mm) at the third level and according to curve number 

(51) at the fourth level. At the third level, the right branch was split according to evapotranspiration (833 mm) and surface 

runoff (0.5 mm). The MVRT terminal groups were then examined in detail. 

 435 

Leaf a clusters twenty-eight subbasins in the upper basin and one outlier located in the western part of the subbasin (Fig. 9a). 

In these subbasins, precipitation was considerably below the basin average (Fig. 4a). Figure 10a shows that the subbasins in 

this terminal group repeatedly experienced moderate, severe and extreme hydrological drought. 

 

Leaves b and c cluster thirty-seven and thirteen subbasins, respectively. Subbasins clustered at leaf b are relatively distant; 440 

most are towards the eastern part of the basin, and the rest are in the north and west of the basin. Subbasins in leaf c are located 

in the river’s middle course towards the western part of the basin and some outliers in the north. Precipitation and percolation 

were slightly above the basin average in subbasins clustered at leaves b and c (Figs. 4a and d). The curve number threshold to 
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split leaves c and d is 51. Subbasins with a curve number above the threshold, leaf b, experience months in extreme drought 

and present one of the highest median of months for severe drought (Fig. 10b). For subbasins with curve number below the 445 

threshold, leaf c, the median of months at moderate drought is almost 20 and experience months at severe and extreme category 

(Fig. 10c). 

 

Leaf d clusters twenty-nine subbasins in the river’s middle course and the basin’s eastern part. Figure 10d indicates that in this 

terminal group, the subbasins experienced fewer months in the severe and extreme drought categories than the other clusters 450 

in the tree’s left branch; however, subbasins experienced one of the highest median of months at moderate drought.  

 

In leaves, e (n = 72) and f (n = 23), precipitation exceeded the basin average and water yield was considerably high in the 

subbasins in La Serranía del Perijá (Figs. 4a and g). The actual evapotranspiration threshold to split leaves e and f is 833 mm, 

value below the basin average (Fig. 4c). Both terminal groups describe moderate exposure to hydrological drought. At leaf e, 455 

the median of months in the severe and extreme drought categories is below ten, while the median of months in the moderate 

drought category is twenty (Fig. 10e). The hydrological drought exposure of the subbasins clustered at leaf f is also mild. In 

these subbasins, actual evapotranspiration is above the threshold and close to the basin average. These subbasins present the 

lowest median of months for all drought categories (Fig. 10f). Notably, the Zapatosa marsh and upstream subbasins are 

clustered in this terminal group (Fig. 9f). 460 

 

Leaves g and h cluster seventy-one and forty subbasins, respectively. Subbasins clustered at these leaves are located upstream 

of the Zapatosa marsh. The surface runoff threshold to split the leaves g and h is 0.5 mm. Figure 10g shows that the subbasins 

grouped at leaf g present the low suceptibility to hydrological drought. The median of months for all categories is the lowest 

in the basin. In leaf h, the surface runoff was lower than 0.5 mm. In these subbasins, the medians of months in the severe and 465 

extreme categories are relatively low, while the median of months in the moderate category is eighteen (Fig. 10h). 
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Figure 9 MVRT of hydroclimatic drivers of hydrological drought at the Cesar River basin and spatial distribution of the subbasins clustered 

at each leaf. Tree leaves are named from a to h, and n indicates the number of subbasins clustered at each leaf. 470 

 

 
Figure 10 Months in hydrological drought categories (moderate, severe, extreme) at each leaf. Tree leaves are named from a to h. 
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4. Discussion 

4.1 Hydroclimatic drivers of agricultural drought 475 

The left branch of the MVRT clusters the subbasins susceptible to severe agricultural drought (Figs. 8a, d, e, f and g). 

Conversely, the right branch of the MVRT clusters the subbasins experiencing moderate agricultural drought severity. The 

subbasins in leaves h, i and j predominately experienced months in the moderate drought category (Figs. 8h, i, and j). 

 

Interestingly, agricultural drought severity in leaves a, e, f and g was comparable but governed by different parameters. For 480 

instance, leaf a presented the highest median of months for severe and extreme agricultural drought (Fig. 8a). The drought 

drivers in this terminal group, namely precipitation and potential evapotranspiration, indicate that agricultural drought results 

from an imbalance between the soil moisture supply (i.e. precipitation relatively close to the minimum value at the basin) and 

soil moisture demand (i.e. moderately high potential evapotranspiration). Leaves b, c, and d corroborate the significant 

influence of evapotranspiration on agricultural drought severity. A comparison of clusters a and b, and c and d indicates that 485 

the leaves with higher evapotranspiration are more prone to experience severe drought. It is interesting to notice that in clusters 

c and d, the actual evapotranspiration threshold causes a notable difference in drought severity. While the leaf c, clustering 

subbasins with actual evapotranspiration below 1064 mm presents the lowest median of months at severe category at the left 

branch of the tree, leaf d shows the highest median of months at the same category in the tree. 

 490 

This finding aligns well with studies demonstrating that potential evapotranspiration considerably enhances the severity of 

agricultural droughts in water-limited areas (Ding et al., 2021; Manning et al., 2018; Teuling et al., 2013). According to such 

studies, potential evapotranspiration influence on agricultural drought severity may be explained by the significant increase in 

net radiation during droughts, as the lack of rainfall usually concurs with decreased cloud cover. 

 495 

In contrast, the MVRT outcomes suggest that a lack of precipitation is not a primary driver of agricultural drought in the 

subbasins clustered at leaves e, f and g. Particularly, leaf e grouped the subbasins that experienced the most severe agricultural 

drought in the analysis period. The median of months in the moderate drought category was above twenty; the severe category 

was above ten; and subbasin experienced months in extreme category (Fig. 8e). The observed evapotranspiration and 

percolation thresholds might indicate poor precipitation partitioning and a disturbed water regime that favours water lost by 500 

runoff and evapotranspiration. Furthermore, the sediment yield threshold (notably above the median) may be linked to poor 

soil structure, thus compromising soil water retention capacity and enhancing drought severity. 

 

The results from leaf e show that a higher sediment yield slightly increases the occurrence of extreme droughts (Fig. 8e), as 

compared to the results from leaf f. This agrees with earlier findings concluding that soil degradation enhances agricultural 505 

drought characteristics (Masroor et al., 2022; Santra & Santra Mitra, 2020; Trnka et al., 2016). Further, our results are 
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consistent with previous studies that indicate the incidence of droughts is not only caused by extreme weather events but also 

by the inefficient soil–water management associated with land and soil degradation (Cornelis et al., 2019; Wildemeersch et 

al., 2015). 

 510 

The right branch of the tree provides valuable information on the hydroclimatic parameters that reduce the severity of 

agricultural droughts. Moderate drought susceptibility in leaves h, i and j is linked to relatively low evapotranspiration 

thresholds; accordingly, it may be asserted that evapotranspiration controlling measures (e.g. surface cover, crop rotation, 

agroforestry, intercropping) are relevant interventions for building resistance to agricultural drought. At terminal groups h and 

i, water yield was found to influence the severity of agricultural drought. Notably, the subbasins at leaf i were slightly more 515 

resistant to drought (Fig. 8i); this indicates that measures aimed at increasing the subbasins’ water storage capacity (e.g. 

rainwater and floodwater harvesting techniques) are suitable interventions to reduce the severity of agricultural drought. 

 

Some of the subbasins grouped at leaf i showed high exposure to hydrological drought (Figs. 10b and c). Contrasting exposure 

to agricultural and hydrological droughts suggests that the water retention capacity in these subbasins reduces the severity of 520 

agricultural drought events but limits the contribution of surface runoff, lateral flow and groundwater to the streamflow, thus 

exacerbates the water deficit and hydrological drought severity. Therefore, drought management interventions require the prior 

assessment of the potential effects on both types of droughts. 

4.2 Hydroclimatic drivers of hydrological droughts 

The subbasins clustered on the left branch of the tree were prone to hydrological drought (Figs. 10a, b, c, d). Leaf a presented 525 

the highest median for months in the severe and extreme hydrological categories. The analysis results confirmed that 

precipitation deficits caused the severe hydrological drought conditions in the upper part of the basin. 

 

Conversely, the MVRT also showed that in terminal groups b, c and d, hydrological drought severity was linked to the 

inefficient partition of precipitation. Selected drivers (precipitation, percolation and curve number representing land use) are 530 

widely recognised as predominant drivers of hydrological droughts (Iglesias et al., 2018; Stoelzle et al., 2014; van Lanen et 

al., 2013; van Loon, 2015). The difference observed between the precipitation and percolation thresholds suggests that a large 

part of rainwater was lost either by evapotranspiration or surface runoff (or other water abstractions, e.g., human consumption, 

agriculture). Low percolation values limited the groundwater contribution to the streamflow, enhancing the streamflow deficit 

during drought periods. 535 

 

Interestingly, the curve number was selected as a driver of hydrological drought for leaves b and c (Figs. 9b and c). The 

subbasins in leaf b presented higher curve numbers than those in leaf c and higher exposure to hydrological drought. High 

curve number values are commonly the result of anthropogenic changes in land cover, which modifies evapotranspiration and 
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the division of precipitation into evapotranspiration and streamflow. The present selection of the curve number at the third 540 

level of split is consistent with previous studies, which established that hydroclimatic parameters and human activities 

influence hydrological droughts; however, the influence of both drivers is uneven. Results indicate that hydroclimatic 

parameters are more influential (Jehanzaib et al., 2020; Saidi et al., 2018). 

 

The right branch of the MVRT grouped subbasins with moderate and intermediate exposure to hydrological drought. The 545 

hydroclimatic parameters and the thresholds used to define leaves e and f (precipitation, water yield and evapotranspiration) 

demonstrate that in these subbasins, precipitation values compensated for the water abstraction by evapotranspiration. When 

we compare the severity of the hydrological droughts observed in leaves e and f, we find that lower evapotranspiration values 

reduce exposure to severe and extreme hydrological drought but increase the incidence of moderate hydrological drought. 

 550 

The subbasins in terminal group g experienced the lowest median number of months for all hydrological drought categories 

(Fig. 10g). The water yield threshold indicates good water retention capacity in these subbasins. It can be explained by the 

proximity of the subbasins to the marsh (which acted as a natural control), the low slope in the area (which reduced streamflow 

velocity) and the presence of water bodies (which collected and stored runoff during the rainy season). The runoff threshold 

indicates that part of rainwater reaches the streamflow; nevertheless, the subbasins in cluster g have one of the lowest runoff 555 

potentials in the basin (Fig. 4e). On the contrary, in these subbasins, percolation is considerably high (Fig. 4d). This seems to 

confirm that low susceptibility to hydrological droughts is linked to subbasins water retention capacity. The present findings 

suggest that the water storage capacity of the Zapatosa marsh can compensate for the increased evaporation that occurs during 

drought events, thereby alleviating hydrological drought severity upstream. Our results concur with previous analyses 

concluding that wetlands (located in different climatic regions) significantly alleviate hydrological drought severity when 560 

direct evaporation from the water body does not significantly reduce water storage (Wu et al., 2023). 

 

The hydrological drought conditions in the subbasins clustered at leaf h were mild, despite water yield values below 29 mm 

(Fig. 10h). Negligible surface runoff values indicated that in leaf h, rainfall is stored in the soil profile, lost by 

evapotranspiration or percolates in an area of minimal baseflow contribution to streamflow. This limits the amount of water 565 

reaching the streamflow and enhances the severity of hydrological droughts, compared to leaf g. 

4.3 Comparison of the hydroclimatic parameters influencing the severity of agricultural and hydrological droughts 

Crucial similarities and differences emerge from contrasting the parameters influencing the severity of droughts and the spatial 

distribution of the subbasins experiencing severe and mild drought conditions. MVRTs indicate that severe agricultural and 

hydrological drought conditions occurred in the upper and middle course of the river. Nevertheless, the severe droughts were 570 

influenced by different hydroclimatic factors. Severe agricultural drought in the headwater was driven by the interaction 

between precipitation shortfalls and high potential evapotranspiration (Fig.7a). Conversely, severe hydrological drought 
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condition was solely driven by limited precipitation. It is worth highlighting that the severe hydrological situation extends from 

the headwater to the subbasins in the middle course (Fig. 9a). 

 575 

Downstream, in subbasins located in the middle course, the agricultural and hydrological drought situation was also severe. In 

this area, drought severity was linked to inadequate rainfall partitioning and an unbalanced water cycle that favours water loss 

through evapotranspiration and low percolation values (Figs.7d, e, f and g, and Figs. 9b, c and d). Significantly, agricultural 

and hydrological droughts in these leaves were more severe than in leaves experiencing precipitation deficits (Fig.7a and Fig. 

9a). Results also suggest that poor soil structure enhanced severe agricultural drought conditions (Fig.7e), and high curve 580 

numbers seem to increase hydrological drought severity (Fig. 9b). 

 

MVRTs also showed subbasins experiencing mild agricultural and hydrological drought severity. Overall, these subbasins 

were located in the southern part of the basin. However, for agricultural drought, a few cases were observed in the north of the 

basin (Figs.7h, i and j). Subbasins presenting mild hydrological drought severity are allocated upstream of the Zapatosa marsh 585 

(Fig. 9g). Moderate agricultural drought severity was linked to low evapotranspiration losses and the subbasins’ capacity to 

retain water in the soil profile, improving percolation (Fig.7j). In turn, moderate hydrological drought severity related to the 

subbasins’ proximity to the marsh (which acted as a natural control reducing the water yield) and surface runoff contributions 

to the streamflow (Fig. 9g). Remarkably, some of these subbasins also showed mild agricultural drought conditions (Fig.7i). 

4.4 Accuracy of the MVRTs 590 

The high EV (0.81) value indicates the good explanatory power of the tree built for agricultural drought. This confirms that 

the selected explanatory variables significantly influence the severity of agricultural drought. Nevertheless, two potential 

disadvantages of the tree are identified. First, clusters h and i are very similar. Drought severity is alike in these leaves, and 

the parameters influencing droughts are the same. This suggests that these two clusters can be merged into one. Second, leaves 

b and k cluster only two subbasins. Accordingly, the distribution presented in the boxplots must be interpreted cautiously. 595 

Neither of these disadvantages compromises the study’s main findings; however, further analysis is recommended to determine 

the size of the tree (number of clusters) that better fits the assessment of the hydroclimatic drivers of droughts. 

 

Conversely, the explanatory power of the tree built for hydrological drought is not very high (EV = 0.48). This may be related 

to the inaccurate representation of groundwater contribution to the streamflow. Streams depend significantly on groundwater 600 

during droughts to maintain flow; nevertheless, groundwater contribution to the streamflow was not included as a key drought 

driver in the MVRT, although it was in the list of explanatory variables. It is possible that the model’s simplifications for the 

simulation of groundwater flow and storage did not adequately represent the groundwater contribution to the streamflow 

(Molina-Navarro et al., 2019). The lack of adequate information about this relevant factor hydrological drought may have 

compromised the MVRT’s accuracy. Unexplained variability may also link to factors that influence hydrological drought but 605 
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were not considered in the dataset of explanatory variables (e.g. abstractions such as water for irrigation, industry or human 

consumption). 

5. Conclusions 

In this study, a machine learning technique, namely multivariate regression tree (MVRT), was applied. The main aim was to 

build an ‘explanatory AI’ model to explicitly identify relationships between a subbasin’s hydroclimatic characteristics (i.e. 610 

explanatory variables) and the severity categories of agricultural and hydrological drought (i.e. response variables). The results 

show that the machine learning technique identifies drought severity’s primary drivers and critical thresholds reasonably well. 

Notably, the MVRT built for agricultural drought shows a good explanatory power. The MVRT also identifies parameters 

which can contribute to reducing agricultural and hydrological drought severity. 

 615 

The outcomes of the MVRT provide valuable information on the hydroclimatic parameters influencing the drought-generating 

process in the Cesar River basin. MVRTs indicate that severe agricultural and hydrological drought conditions observed in the 

upper and middle course of the river are influenced by different hydroclimatic factors. The interaction between precipitation 

shortfalls and high potential evapotranspiration drives severe agricultural drought in the headwater. Conversely, severe 

hydrological drought condition is mostly caused by limited precipitation. In subbasins in the middle course, drought severity 620 

is linked to inadequate rainfall partitioning and an unbalanced water cycle, favouring water loss through evapotranspiration 

and low percolation values. Notably, results suggest that poor soil structure enhances severe agricultural drought conditions, 

and high curve numbers seem to increase hydrological drought severity. In the southern region, subbasins experience moderate 

agricultural and hydrological drought severity. Mild agricultural drought is linked to low evapotranspiration losses and 

subbasins’ capacity to retain water in the soil profile, improving percolation. In turn, moderate hydrological drought severity 625 

relates to the subbasins’ proximity to the marsh (which acted as a natural control reducing the water yield) and surface runoff 

contributions to the streamflow. The outcomes of this study also demonstrate that the combined effect of parameters with low 

impact can trigger a drought situation as severe as the one produced by one or two of the most influential parameters. It is 

worth mentioning that the study outcomes indicate that the slope and the soil type do not influence the severity of agricultural 

and hydrological droughts in the Cesar River Basin. 630 

 

It can also be concluded that the MVRT (and other machine learning techniques that generate ‘explainable AI’ models based 

on progressive tree-like data partitioning and simplified models in leaves) is a relevant tool for defining drought management 

strategies. The tool helps to identify drought-prone areas and design management strategies that contribute to maintaining the 

hydrological parameters influencing droughts above (or below) the thresholds that trigger severe and extreme drought 635 

conditions. 
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This study is not without limitations. First, we used a simplified approach to modelling a complex phenomenon using SWAT 

software (e.g. representing the groundwater components that impact hydrological drought conditions). Second, only a single 

ML technique was employed to build explainable models. Further extensions of this research may address these limitations. 

For example, candidate ML techniques could include M5 model trees (rather than regression trees), which have shown their 640 

effectiveness in solving water-related problems (see Solomatine & Dulal, 2004; Solomatine & Xue, 2004). These result in 

linear models in tree leaves rather than constants like in regression trees. Additionally, there is still a need to better represent 

anthropogenic interventions (and other relevant parameters influencing droughts) in the set of explanatory variables, e.g. 

abstractions such as water for irrigation, industry or human consumption, groundwater pumping. 

 645 

The issue of combining human and artificial intelligence (and knowledge of physics with machine learning) is currently a point 

of great interest (see Jiang et al., (2020) on ‘physics-aware deep learning models’, Moreido et al., (2021) and Bertels et al, 

(2023), on the role of experts in constraining machine-learning and hydrological models). However, the mentioned approaches 

directly incorporate physical knowledge into ML models, and domain experts still see the resulting models as “black boxes”. 

This study can be seen as the one that contributes to developing and testing tools to better incorporate ‘explanatory’ ML, 650 

leading to models that can be overviewed and analysed by experts and hence have better potential for inclusion into existing 

modelling and management practices. 
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