
Response to Reviewer 1 Comments 

Manuscript title: Multivariate regression trees as an ‘explainable machine learning’ approach to exploring 

relationships between hydroclimatic characteristics and agricultural and hydrological drought severity 

Author's general response: 

The authors would like to thank the reviewer for the time given to this manuscript and for providing insightful 

and detailed comments to help us to improve this manuscript’s overall scientific quality and readability. Your 

attention to detail has undoubtedly enhanced the overall strength of our study. Notably, we appreciate the 

comments about the missing definition of drought severity and the lack of information on the application of 

MVRT to this particular study. We will apply multiple changes to incorporate the reviewer’s suggestions and 

clearly define the study’s objective. In the following, you will find the answers to the general and specific 

comments. Some of them required a particular action or change in the manuscript. The changes we will apply in 

the Revised Manuscript (RM) are in italics. 

General Comments. 

1. My main concern regards the lack of clarity in the objective of the study. The title fails to mention that it is 

an application to a specific case study. In addition, it is not clear until deep in the “results section” what 

exactly the authors mean with drought severity. For almost the entire paper the readers are left wondering 

what exactly is modelled with the MVRT. Is it the severity of a series of events on the entire basin? Is it the 

spatial distribution of the severity? This should be made clear already in the objective described in the 

introduction, and then detailed in the methodology. 

The authors thank the reviewer for pointing out that the title does not mention that the study is an application to 

a case study. Accordingly, we will update the RM title, including the case of study: 

Multivariate regression trees as an ‘explainable machine learning’ 

approach to exploring relationships between hydroclimatic characteristics and 

agricultural and hydrological drought severity. Case of study Cesar River basin. 

Regarding the second part of the comment, we agree that the introduction needs to include the definition of 

drought severity and how it is represented in this study. In addition, it fails to describe what is modelled by 

applying the MVRT technique. Since both concepts are crucial elements of this study, we will apply two 

changes in the RM. In the introduction, we will include a paragraph presenting the definition of drought’s 

severity and how it is represented using drought indices. In addition, we will update the introduction indicating 



that drought severity categories (moderate, severe and extreme) are the three response variables modeled with 

the MVRT. We present the updated version of the introduction (There are no changes in the first two paragraphs 

of the introduction). 

Projections indicate that drought frequency, severity and duration are 

expected to increase globally in the twenty-first century (UNDRR, 2021). 

Upcoming soil moisture drought scenarios predict statically significant, large-

scale drying, especially in scenarios with strong radiative forcing in Central 

America and tropical South America United States Department of Agriculture 

(Lu et al., 2019). A similar trend is predicted for hydrological drought severity. 

This is expected to increase by the end of the twenty-first century, with regional 

hotspots in central and western Europe and South America, where the frequency 

of hydrological drought may increase by more than 20 % (Prudhomme et al., 

2014). The intensification of drought characteristics (in combination with other 

factors) could force the migration of up to 216 million people by 2050 (The World 

Bank, 2021), increase wildfire risk and tree mortality, and negatively affect 

regional air quality, among other ecosystem impacts (Vicente-Serrano et al., 

2020). 

It is essential that we better understand drought drivers if we are to foster 

preparedness and resilience to projected drought events. Remarkable progress 

has been achieved in understanding drought propagation through the 

hydrological cycle (Van Loon et al., 2012). Drought occurs due to climatic 

extremes, which may be enhanced or alleviated by region characteristics and 

anthropogenic influence (Hao et al., 2022; Seneviratne et al., 2012; Tijdeman et 

al., 2018). Typically, droughts are triggered by atmospheric circulation and 

weather systems that combine to cause lower precipitation and/or higher than 

normal evaporation in a region (Destouni & Verrot, 2014; Sheffield & Wood, 

2011a). Reduced precipitation leads to a decrease in soil moisture, causing 

agricultural drought. When soil moisture depletion is high, it is restored in the 

wet season, thus reducing subsurface flow and groundwater recharge and giving 

rise to hydrological drought (Iglesias et al., 2018). Regional characteristics such 



as soil type, stratigraphy, elevation, slope, vegetation cover, drainage networks, 

water bodies and groundwater systems play a relevant role in response to the 

climate anomalies that affect drought propagation and contribute to different 

levels of agricultural and hydrological drought (Sheffield & Wood, 2011a; 

Zhang et al., 2022). Equally important, human interventions in the hydrological 

cycle (e.g. reservoirs, water diversion, deforestation, over-pumping 

groundwater, overgrazing, urbanisation) can reduce water supplies, triggering 

a drought situation or exacerbating a climate-driven drought (Rangecroft et al., 

2019; Wang et al., 2021). 

Drought planning also uses research progress on drought characterisation. 

Various methodologies for drought characterisation exist, using drought indices 

is widespread (Zargar et al., 2011). Drought indices are computed numerical 

representations of drought severity (Hao & Singh, 2015; Keyantash & Dracup, 

2002). Severity refers to the departure from the normal of an index. Generally, 

severity is divided into different categories (e.g. moderate, severe, extreme), 

providing a qualitative assessment of the drought state in a region during a given 

period. Drought indices (and their categories) are crucial for tracking or 

anticipating drought-related damage and impacts (WMO & GWP, 2016). 

Despite remarkable progress achieved in understanding the drought-

generating process and drought characterisation, there is still a need for studies 

that assess the complex interplay between the different drivers of droughts and 

how their combined effect influences drought characteristics (e.g. duration, 

severity, intensity) (Valiya Veettil & Mishra, 2020). Previous studies focus on the 

influence of one driver (Margariti et al., 2019; Mastrotheodoros et al., 2020; 

Shah et al., 2021; Xu et al., 2019), and some of the methodologies applied cannot 

adequately address the non-linear relationship between climate, basin processes 

and droughts (Peña-Gallardo et al., 2019; Saft et al., 2016; Van Loon, 2015). 

We have found two studies that employ machine learning to analyse the 

non-linear relationship between climate and basin processes and droughts 

(Konapala & Mishra, 2020; Valiya Veettil & Mishra, 2020). Valiya Veettil et al. 



(2020) used a classification and regression tree (CART) to identify the variables 

influencing drought duration. Since CART allows one output variable (drought 

duration), the authors applied the technique three times to evaluate the variables 

influencing short-term, medium-term and long-term drought events. Meanwhile, 

Konapala et al. (2020) used a random forest (RF) algorithm to identify the 

climate and basin parameters influencing the characteristics (duration, 

frequency and intensity) of three different drought regimes (long duration and 

mild intensity, moderate duration and intensity, short duration and high 

intensity). As the core of RF is a decision tree that allows one output variable (in 

this case, each characteristic of each drought regime), the authors repeated the 

procedure for each drought regime and characteristic. Both studies focused on 

drivers of hydrological drought and were developed in the continental United 

States. 

Mentioned research shows the potential of machine learning techniques for 

drought-related analysis; nevertheless, there is still a need for testing a technique 

capable of simultaneously assessing the influence of different drought drivers on 

the individual categories of drought severity. Commonly used in the field of 

ecology to relate independent environmental conditions to populations of 

multiple species, Multivariate Regression Tree (MVRT) arises as a suitable 

technique for this purpose. MVRT is a supervised clustering technique that links 

explanatory variables to multiple response variables while maintaining the 

individual characteristics of the responses. Significantly, the technique does not 

assume a linear relationship between explanatory and response variables. 

Furthermore, it allows for the so-called “interpretable machine learning” 

algorithms that make decisions and predictions understandable to humans 

(Molnar, 2022). MVRT interpretably is a relevant attribute for drought 

researchers and planners since the method allows them to identify the 

parameters influencing severe (or mild) drought conditions. 

To understand the relationship between the drivers of droughts and the 

individual categories of agricultural and hydrological droughts severity, this 



study employs a methodology that consists of three steps. The first is hydrological 

modelling. We used Soil Water Assessment Tool (SWAT) to simulate the 

hydroclimatic parameters required for analysing droughts and applying the 

MVRT approach. The Second is the analysis of droughts. SWAT outputs, soil 

moisture and streamflow, are used to calculate the drought indices Soil Moisture 

Deficit Index (SMDI) and the Standardized Stream Flow Index (SSI). Drought 

indices are utilised to identify the agricultural and hydrological drought events 

during the period of analysis and describe their severity. Finally, the MVRT 

approach is applied to assess the relationship between hydroclimatic 

characteristics (represented by the simulated parameters at each subbasin, see 

Table 2) and droughts severity categories (represented by the observed number 

of months for each drought severity category at each subbasin, see Table 3). The 

analyses for agricultural and hydrological droughts were conducted separately; 

thus, two MVRTs were obtained. A concrete application of this methodology is 

developed in the Cesar River basin (Colombia, South America). 

2. Another related issue of the paper is the lack of specific details of the application of MVRT to the given 

study case. Most of the description is rather generic, and do not answer key questions about the specific 

application. The authors state that one of the advantages of MVRT is the capability to output multiple 

variables, but it is never clarified why this is needed here and how this is exploited. 

The authors agree with the reviewer that the introduction and methodology do not explicitly present the reasons 

for choosing the MVRT approach and how the technique capabilities are exploited in this study. Accordingly, 

two changes will be included in the RM. First, we will update the introduction presenting the MVRT 

capabilities relevant to the study. 

Despite remarkable progress achieved in understanding the drought-

generating process and drought characterisation, there is still a need for studies 

that assess the complex interplay between the different drivers of droughts and 

how their combined effect influences drought characteristics (e.g. duration, 

severity, intensity) (Valiya Veettil & Mishra, 2020). Previous studies focus on the 

influence of one driver (Margariti et al., 2019; Mastrotheodoros et al., 2020; 

Shah et al., 2021; Xu et al., 2019), and some of the methodologies applied cannot 



adequately address the non-linear relationship between climate, basin processes 

and droughts (Peña-Gallardo et al., 2019; Saft et al., 2016; van Loon, 2015).  

We have found two studies that employ machine learning to analyse the 

non-linear relationship between climate and basin processes and droughts. 

Valiya Veettil et al. (2020) used a classification and regression tree (CART) to 

identify the variables influencing drought duration. Since CART allows one 

output variable (drought duration), the authors applied the technique three times 

to evaluate the variables influencing short-term, medium-term and long-term 

drought events. Meanwhile, Konapala et al. (2020) used a random forest (RF) 

algorithm to identify the climate and basin parameters influencing the 

characteristics (duration, frequency and intensity) of three different drought 

regimes (long duration and mild intensity, moderate duration and intensity, short 

duration and high intensity). As the core of RF is a decision tree that allows one 

output variable (in this case, each characteristic of each drought regime), the 

authors repeated the procedure for each drought regime and characteristic. Both 

studies focused on drivers of hydrological drought and were developed in the 

continental United States. 

Mentioned research shows the potential of machine learning techniques for 

drought-related analysis; nevertheless, there is still a need for testing a technique 

capable of simultaneously assessing the influence of drought drivers on the 

individual categories of drought severity. Commonly used in the field of ecology 

to relate independent environmental conditions to populations of multiple 

species, Multivariate Regression Tree (MVRT) arises as a suitable technique for 

this purpose. MVRT is a supervised clustering technique that links explanatory 

variables to multiple response variables while maintaining the individual 

characteristics of the responses. Significantly, the technique does not assume a 

linear relationship between explanatory and response variables. Furthermore, it 

allows for the so-called “interpretable machine learning” algorithms that make 

decisions and predictions understandable to humans (Molnar, 2022). MVRT 

interpretably is a relevant attribute for drought researchers and planners since 



the method allows them to identify the parameters influencing severe (or mild) 

drought conditions. 

Second, in the methodology, we will update the introductory paragraph of Section Multivariate regression tree 

approach for evaluating the relationships between hydroclimatic characteristics and droughts severity and 

include a paragraph describing the reasons for selecting the technique. 

MVRT is an extension of a regression tree (Breiman, 2001), but it differs in 

that it allows for multiple outputs (see De’ath, 2002). It allows the recursive split 

of a quantitative response variable (predictand, output) controlled by a set of 

numerical or categorical explanatory variables (predictors, input). The 

technique approach yields a set of non-linear models, each a piece-wise linear 

regression model (of zero order). An MVRT result is a tree whose terminal 

groups (leaves) of instances (input-output vectors) comprise subsets of instances 

selected to minimise the within-group sums of squares. Each successive split is 

given by a threshold value of the explanatory variables (Borcard et al., 2018). 

MVRT applies to dataset exploration, description and prediction (De’ath, 2002). 

In this study, explanatory variables are the hydroclimatic parameters at each 

subbasin, represented by the average value of each parameter during the 

analysis period (1987 to 2018). The number of months observed at each drought 

severity category (Categories are given by the drought indices) are the response 

variables. The analyses for agricultural and hydrological droughts were 

conducted separately; thus, two MVRTs were obtained. 

Four technique attributes are relevant to this study. First, MVRT can 

capture the non-linear interactions between the parameters influencing droughts 

and their severity. Second, the technique can handle numerical and categorical 

hydroclimatic parameters influencing drought severity (explanatory variables). 

Third, MVRT’s capability to handle multiple outputs allowed us to evaluate the 

influence of the hydroclimatic parameters on moderate, severe and extreme 

drought conditions simultaneously (response variables). The drought indicators 

give these three categories to represent the drought severity. Simultaneous 

analysis of different drought categories provides a comprehensive understanding 



of the drought-generating process and the factors influencing severe (or mild) 

drought conditions. Fourth, MVRT results can be easily visualised and 

interpreted. The resulting tree structure provides a clear representation of the 

relationship between the drivers of droughts and the severity of agricultural and 

hydrological droughts. 

3. A lot more can be said on the “explainable” portion of the study. The authors provide some comments on 

the outcomes of the two MVRTs, but the link between these outputs and a physical interpretation is lacking. 

In both the discussion and the conclusion sections (as well as in the abstract), the authors stress how a main 

finding is the division of the domain in 3 macro regions. However, it is not clear how this conclusion is 

drawn from the outputs of MVRT, and how MVRT are “explained” to derive this conclusion. At the 

moment, it is seems that this conclusion is derived from previous knowledge of the area rather than the 

actual outcomes of the study. 

Regarding the reviewer's concern about dividing the basin into three regions, the authors realized that the 

analysis results should be summarised differently. It is more precise to say that we identify different sets of 

parameters that govern drought severity in the basin. First, severe agricultural and hydrological drought 

conditions are driven by precipitation shortfalls and high potential evapotranspiration. This interaction is 

observed in the upper part of the river valley. Second, severe agricultural and hydrological drought conditions 

are caused by inadequate rainfall partitioning and an unbalanced water cycle favouring water loss through 

percolation and evapotranspiration. According to the results, the middle part of the river valley is affected by the 

interplay of these parameters. Finally, moderate exposure to agricultural and hydrological droughts is related to 

the capacity of the subbasins to retain water, which lowers evapotranspiration losses and promotes percolation. 

Moderate drought severity is observed in the Zapatosa marsh and the Serrania del Perijá foothills. 

To improve the description of our results and ensure readers' clarity, we will not include the reference to the 

three regions in the RM. Following Reviwer's General Comment 4, we will compare the results from the two 

MVRT trees (See answer to General Comment 4). We agree that this is a better way to describe differences and 

similarities between the parameters influencing the severity of agricultural and hydrological droughts and 

present the spatial distribution of the areas experiencing severe and mild drought conditions. In the RM, the 

abstract and the conclusion will be updated accordingly. 

5. Conclusion (Second paragraph) 



Our results provide valuable information on the hydroclimatic parameters 

influencing the drought-generating process in the Cesar River basin. MVRTs 

indicate that severe agricultural and hydrological drought conditions occurred 

in the upper and middle course of the river. Nevertheless, the severe droughts 

were influenced by different hydroclimatic factors. The interaction between 

precipitation shortfalls and high potential evapotranspiration drove severe 

agricultural drought in the headwater. Conversely, severe hydrological drought 

condition was solely caused by limited precipitation. In subbasins in the middle 

course, droughts’ severity was linked to inadequate rainfall partitioning and an 

unbalanced water cycle favouring water loss through evapotranspiration and 

low percolation values. Notably, results suggest that poor soil structure enhances 

severe agricultural drought conditions, and high curve numbers seem to increase 

hydrological drought severity. Subbasins in the basin’s southern part 

experienced moderate agricultural and hydrological drought severity. Mild 

agricultural drought was linked to low evapotranspiration losses and basin 

capacity to retain water in the soil profile, improving percolation. In turn, 

moderate hydrological drought severity relates to the subbasins’ proximity to the 

marsh (which acted as a natural control reducing the water yield) and surface 

runoff contributions to the streamflow. The outcomes of this study demonstrate 

that the combined effect of parameters with low impact can trigger a drought 

situation as severe as the one produced by one or two of the most influential 

hydroclimatic parameters. 

4. In addition, the outcomes of the two MVRTs are rather different, and it would be interesting to discuss the 

analogies and differences between the two (in spatial patterns, explanatory variables, etc.). In the current 

version, the two analyses are almost independent from each other. Is the division in 3 macro regions valid 

for both agricultural and hydrological droughts? Is yes, how it is so given the differences in the trees? 

To improve the description of our results and ensure readers' clarity, we will not include the reference to the 

three regions in the RM. In the RM, we will have a section highlighting similarities and differences between the 

MVRTs. 



4.3 Comparison of the hydroclimatic parameters influencing the severity 

of agricultural and hydrological droughts 

Crucial similarities and differences emerge from contrasting the 

parameters influencing the severity of droughts and the spatial distribution of the 

subbasins experiencing severe and mild drought conditions. MVRTs indicate that 

severe agricultural and hydrological drought conditions occurred in the upper 

and middle course of the river. Nevertheless, the severe droughts were influenced 

by different hydroclimatic factors. Severe agricultural drought in the headwater 

was driven by the interaction between precipitation shortfalls and high potential 

evapotranspiration (Figure 7a). Conversely, severe hydrological drought 

condition was solely driven by limited precipitation. It is worth highlighting that 

the severe hydrological situation extends from the headwater to some subbasins 

in the middle course (Figure 9a). 

Downstream, in subbasins located in the middle course, the agricultural 

and hydrological drought situation was also severe. In this area, droughts’ 

severity was linked to inadequate rainfall partitioning and an unbalanced water 

cycle that favours water loss through evapotranspiration and low percolation 

values (Figure 7d, e, f and g, and Figure 9b, c and d). Significantly, agricultural 

and hydrological droughts in these leaves were more severe than in leaves 

experiencing precipitation deficits (Figure 7a and Figure 9a). Results suggest 

that poor soil structure enhances severe agricultural drought conditions (Figure 

7e), and high curve numbers seem to increase hydrological drought severity 

(Figure 9b). 

MVRTs also showed subbasins experiencing mild agricultural and 

hydrological drought severity. Overall, these subbasins were in the southern part 

of the basin. However, for agricultural drought, a few cases were observed in the 

north of the basin (Figure 7h, i and j). Subbasins presenting mild hydrological 

drought severity allocate upstream of the Zapatosa marsh (Figure 9g). Moderate 

agricultural drought severity was linked to low evapotranspiration losses and 

basin capacity to retain water in the soil profile, improving percolation (Figure 



7j). In turn, moderate hydrological drought severity relates to the subbasins’ 

proximity to the marsh (which acted as a natural control reducing the water 

yield) and surface runoff contributions to the streamflow (Figure 9g). 

Remarkably, some of these subbasins also showed mild agricultural drought 

conditions (Figure 7i). 

5. Finally, given the focus on drought, I would have expected a validation of the model also in term of drought 

quantities, especially low-flow conditions. The validation of the SWAT model should be expanded to 

highlight reasonable performances during drought conditions, and possibly expanded to soil moisture as 

well. 

The authors agree with the referee that given the focus of the study on droughts, it is appropriate to evaluate the 

model performance simulating low-flows. In the RM manuscript, we will include the model performance 

indicators for the dry season. 

Considering the study focus is on droughts, the model performance 

simulating low flows was analysed separately. Performance indicators were 

calculated for the dry season, which lasts from December to March. The 

intermediate period of precipitation decrease from June to July was also 

included in this analysis. Table 5 summarises the calibration and validation 

performance indicators in the dry season. According to the rating guidelines, the 

model performance simulating low flows is satisfactory (Transactions of the 

ASABE (American Society of Agricultural and Biological Engineers), 2018).  

Table 1. SWAT model performance simulating low flows. 

Gauging station 
Calibration Validation 

NSE PBIAS [%] NSE PBIAS [%] 

Puente Salguero 0.65 -19.4 0.53 -21.3 

Puente Carretera 0.67 -15.3 0.53 17.2 

Cantaclaro 0.67 -3.6 0.58 16.3 

Puente Canoas 0.55 -15.7 0.60 -13.5 

 

Regarding the comment about expanding the validation to soil moisture, the authors agree with the reviewer that 

calibration and validation of the model using soil moisture may contribute to reducing the uncertainty for the 

drought analysis; nevertheless, monthly soil moisture data is needed for calibrating and validating the model, 

either in-situ measurements, satellite-derived soil moisture, or reanalysis soil moisture, at subbasin level. There 

are no in-situ soil moisture measurements in the study area, and the spatial resolution of the available datasets of 



satellite-derived soil moisture or reanalysis soil moisture is coarse (0.25°×0.25°). Accordingly, data availability 

constraints that analysis. In the absence of data to conduct that calibration, good performance simulating 

streamflow indicates that the model adequately reproduces the land phase of the water cycle in the basin. 

 

Specific Comments 

1. L12-13. You mention anthropogenic interventions and region’s characteristics, but those are factors that are 

barely included in your analysis. If this is a key point of your study, it should be better reflected in the 

analysis. 

2. L51. “MAY play…” Actually, I have the impression from your results that some of these quantities do not 

play a major role, at least in your study region. 

3. L53-55. Again, you stress the role of human interventions but only marginally included them in the study. 

The authors highlight that “the region’s characteristics” refer to hydroclimatic parameters recognised as 

potential drought drivers. We consider that the region’s characteristics are adequately reflected in the analysis. 

The manuscript’s introduction presents different hydroclimatic parameters that influence the drought-generating 

process and the characteristics of droughts. These parameters include soil type, stratigraphy, elevation, slope, 

vegetation cover, drainage networks, water bodies and groundwater systems. In the methodology section, Table 

2 presents the hydroclimatic parameters used in this study as potential drivers of droughts (percolation, surface 

runoff, groundwater, water yield, sediment yield, curve number, slope and soil type). Comparing the parameters 

presented in the introduction with the parameters in the methodology confirms that both are in good agreement. 

Furthermore, the results and discussion section show that most of the parameters included in the analysis 

influence the drought’s severity. 

The authors agree with the reviewer that hydroclimatic parameters selected at the first split levels have more 

influence on droughts than those at lower levels. However, a relevant outcome of this study is that the combined 

effect of parameters with low impact can trigger a drought situation as severe as the one produced by one or two 

of the most influential parameters. 

Regarding comments 1 and 3, the authors agree that the representation of anthropogenic interventions is limited. 

Land use change (represented by the CN2) is the only anthropogenic intervention included in the analysis. At 

the initial stage of the study, the authors asked local and regional authorities about the available information on 

irrigation systems and groundwater pumping in the area. The authorities confirm that the activities are 

developed in the region, but there was no consolidated information on these systems’ location and operation 



characteristics. Accordingly, it was not possible to represent these interventions in the study and evaluate the 

impact on drought severity. 

Although the influence of anthropogenic activities is not widely analysed in this study (due to the lack of data), 

it is relevent to mention them in the introduction. In that section, we aim to provide an overall picture of all the 

potential drivers of droughts and various studies have demonstrated that human activities can enhance a drought 

situation. 

4. L76. This is the right place to highlight why a multivariate approach may be needed here. 

Indeed, the authors agree with the reviewer that the introduction needs to indicate why a multivariate approach 

is relevant to this study. As shown in answer to General Comment 2, we will improve the introduction to 

explicitly present why we opted for this technique and how its capabilities are used and relevant for this work. 

5. L87. Please better link this line and figure to the rest of the text reported later (description of the 

methodology). 

To improve the structure of the section and better link Figure 1 to the description of the methodology, we will 

apply the following changes in the RM. The section title and subtitles will be updated: Section 2 is Study 

location and methods, and the subsections are: 2.1 Case of study and 2.2 Methods. Section 2.2 includes 2.2.1 

Hydrological modelling, 2.2.3 Agricultural and hydrological drought analysis and 2.2.3 Multivariate regression 

tree approach for evaluating the relationships between hydroclimatic characteristics and droughts severity. 

Figures 1 and 2 are swapped according to the new section’s order. 

2 Study location and methods 

2.1 Case study 

Figure 1 presents the Cesar River basin’s location, topography and land 

use. The basin is located between 72⁰53’W 74⁰04’W and 10⁰52’00’N 7⁰41’00’’N 

latitude (Colombia). It extends for an area of 22,312 km2. The basin’s 

topography is defined in three distinct climatic regions (Universidad del 

Atlantico, 2014). In the north is La Sierra Nevada de Santa Marta. This sector is 

characterised by steeply sloped mountains reaching up to 5,700 meters above 

sea level (masl). The temperature ranges from 3°C to 6°C, and the mean annual 

precipitation is 1,000 mm. In the east is La Serranía del Perijá. This mountainous 

area is an extension of the eastern branch of the Andes range. In this sector, the 

altitude ranges from 1,000 to 2,000 masl. The average temperature is 24°C, and 



the average annual precipitation varies from 1,000 mm to 2,000 mm. Lastly, the 

valley of the Cesar River and the Zapatosa marsh are in the west and south of 

the basin, respectively. The valley is characterised by flat topography and a 

complex system of marshes formed by the Cesar River floodplains and its 

confluence with the Magdalena River. The average temperature is 28°C, and the 

mean annual precipitation is 1,500 mm. At the basin, the annual rainfall pattern 

presents a dry season from December to April, followed by a rainy season from 

April to May. In the intermediate period from June to July, precipitation 

decreases. The main rainfall events occur between August and November. 

The predominant land use is pasture, followed by agriculture (Universidad 

del Atlantico, 2014). The primary land use in La Sierra Nevada foothills is 

pastures for cattle farming. In La Serranía del Perijá, the high altitude areas are 

covered by forests in very good condition; at the lower altitudes, the principal 

land use is agriculture, particularly subsistence crops. The Cesar River valley’s 

soils are rich in nutrients, providing favourable conditions for agriculture. The 

riverbanks are covered by forest with low tree density. 

The Zapatosa marsh is recognised as one of the most important wetlands in 

the country, and considering the relevance of this ecosystem, it was declared a 

Ramsar site in 2018. Nevertheless, the region is threatened by the 

overexploitation of its forest resources and overfishing. In addition, climate 

change projections indicate that the basin’s temperature may increase by 2.7°C, 

and precipitation may reduce by ten percent by 2070 (Universidad del 

Magdalena et al., 2017). Accordingly, multiple initiatives are oriented to 

improve water management and create resilience to hydroclimatic extremes 

(Ministerio de Ambiente y Desarrollo Sostenible (Colombia), 2015). 
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Figure 1 Cesar River basin: a) topography and b) land use. 

2.2 Methods 

Figure 2 illustrates the three steps methodology applied in this study. 

Section 2.2.1 describes the hydrological modelling, and 2.2.2 the drought 

analysis. Section 2.2.3 presents the application of the MVRT technique. 



 

Figure 2 Flow chart of the methodology 

6. L91. Please mark these three sub-regions in the map for the people not familiar with the region. 

See answer to Specific Comment 5, Figure 1a 

7. L105. You mention pasture here, but no “pasture” class is reported in the Figure. Please align the text with 

the figure. 

There was an error in the figure. The category “GRASS” is actually “PASTURE”. The authors apologize for the 

mistake. The figure is corrected in the RM. See answer to Specific Comment 5, Figure 1b. 

8. L115. Reference? 

The reference will be included in the RM. 

Accordingly, multiple initiatives are oriented to improve water 

management and create resilience to hydroclimatic extremes (Ministerio de 

Ambiente y Desarrollo Sostenible (Colombia), 2015). 

9. L121. I would link this sentence to the next. 



The sentence will be link to next in the RM. 

A SWAT model with an ArcSWAT extension was used to develop the Cesar 

River basin model used in this research. SWAT is a continuous-time, semi-

distributed, process-based river watershed-scale model developed by The 

Agricultural Research Service of the United States Department of Agriculture 

(ARS-USDA). The model is designed to simulate the quality and quantity of 

surface and groundwater and predict the environmental impacts of land use, land 

management and climate change (Neitsch et al., 2011). 

10. L142. I assume that CN2 is the initial CN for soil moisture condition 2, since the actual CN is a variable. 

Please clarify. 

The authors apologize for the mistake. Indeed, CN2 is the initial SCS runoff curve number for moisture 

condition II. The CN2 definition will be corrected in the RM. 

CN2 (initial SCS runoff curve number for moisture condition II). 

11. L143. No calibration on the Manning factor? 

The manning factor was used in the calibration of the model. It was not included in the Section Model 

Calibration and Validation by mistake. The parameter will be included in the RM. 

Based on expert judgment and the available literature (Arnold et al., 2012; 

Transactions of the ASABE (American Society of Agricultural and Biological 

Engineers), 2018), the following SWAT parameters were used in the calibration 

and validation process: baseflow alpha factor (ALPHA_BF), effective hydraulic 

conductivity in main channel alluvium (CH_K), Manning’s value for the main 

channel (CH_N2), SCS runoff curve number for moisture condition II (CN2), soil 

evaporation compensation factor (ESCO), groundwater delay (GW_DELAY), 

threshold depth of water in the shallow aquifer required for return flow to occur 

(GWQMN), deep aquifer percolation fraction (RCHRG_DP), threshold depth of 

water in the shallow aquifer for percolation to the deep aquifer to occur 

(REVAPMN) and available water capacity of the soil layer (SOL_AWC). 

12. L152. Since your focus is on hydrological drought, I suggest adding some evaluation metrics focused 

specifically on low flow. It is a well-known issue that NSE may return high values even when low flow 

conditions are not well represented due to a good matching of flood values. Also, given the relevance of soil 



moisture in your study, some kind of validation/evaluation of the performances in terms of soil moisture is 

needed. 

See the answer to General Comment 5. 

13. L162. No details are provided on the soil profile. Is it a single soil layer? How depth? Please clarify.  

More details on the soil profile will be provided in the RM. 

According to the soil profiles and the secondary information used to 

elaborate the soil map, three soil layers were identified in the Cesar River basin. 

The soil layers’ thickness (vertical distance from the surface) varies. The first 

layer reaches up to 350 mm, the second 1000 mm, and the third 1500 mm. 

14. L190. What is the reference period? 1987-2018? Clarify. 

The reference period will be included in the RM 

To this aim, the monthly simulated streamflow at each subbasin in the 

analysis period (1987 to 2018) was fitted to the gamma probability distribution 

function. 

15. L194. This sentence is not clear to me. Does the 30% refer to the total area of the basin, meaning that a 

minimum number of sub-basins (covering at least 30% of the total area) need to be in moderate drought? 

Indeed, the reviewer's description of the sentence is correct. The sentence will be updated in the RM to prevent 

the reader's confusion, 

SMDI and SSI were calculated monthly using the simulated soil water and 

streamflow values at each subbasin. The drought events during the period of 

analysis were then identified. A drought (agricultural or hydrological) event was 

assumed to occur in the basin when a number of subbasins (covering at least 30 

% of the basin's total area) were in a moderate drought state for at least two 

consecutive time steps (i.e. in this study month). According to the spatial and 

temporal thresholds, a drought event began when both conditions were met and 

continued until one of them failed to be met. We set a minimum spatial extension 

threshold because droughts typically extend regionally (Sheffield & Wood, 

2011b). By setting the temporal threshold, we avoided identifying periods of 

water shortage or scarcity as drought events. 



16. L196. You mention short periods, but I do not see any constrains on the duration of an event. Please better 

clarify the definition of drought event used here (i.e. starts when at least 30%...., and end when…). Also, if 

any kind of spatial or temporal pooling is performed please clarify. 

The authors agree with the reviewer that the paragraph fails to adequately describe the temporal threshold used 

to identify droughts (agricultural and hydrological). As indicated in the answer to Comment 15, this paragraph 

will be improved in the RM. 

17. L198. The PCA has a very limited role in this study. I suggest reevaluating the need to include this section 

and this analysis in the study. 

The authors thank the reviewer for questioning the relevance of the PCA results. Before applying the MVRT, 

we used PCA to explore the dataset of explanatory variables. Our goal was to identify the most influential 

parameters of the dataset and discard non-influential parameters. The PCA results showed that all the 

parameters considerably influenced at least one of the PC retained; thus, for the MVRT technique, we used all 

the parameters initially selected. Reviewer’s Specific Comments 17 and 31 make us reevaluate the relevance of 

the PCA results since the method did not produce changes in the set of explanatory variables. We concluded that 

using PCA was a good strategy for explanatory variables exploration, but the outcome of the analysis is not 

relevant to the objective of this study. Accordingly, we will remove the PCA analysis in the RM. 

18. L216-221. This a rather generic description of the methodology. Please contextualize the method to your 

study. This section should answer the questions: What is a predictand (see comment below)? Why are they 

multiple? Why do you need MVRT instead of simple RT? 

In the RM, we will update the paragraph to indicate the response variables explicitly and include a new 

paragraph to contextualize the technique in the study. 

MVRT is an extension of a regression tree (Breiman, 2001), but it differs in 

that it allows for multiple outputs (see De’ath, 2002). It recursively splits a 

quantitative response variable (predictand, output) controlled by a set of 

numerical or categorical explanatory variables (predictors, input). The 

technique approach yields a set of non-linear models, each a piece-wise linear 

regression model (of zero order). An MVRT result is a tree whose terminal 

groups (leaves) of instances (input-output vectors) comprise subsets of samples 

selected to minimise the within-group sums of squares. Each successive split is 

given by a threshold value of the explanatory variables (Borcard et al., 2018). 



MVRT is applied to dataset exploration, description and prediction (De’ath, 

2002). In this study, the explanatory variables are the hydroclimatic parameters 

at each subbasin, represented by the average value of each parameter during the 

analysis period (1987 to 2018). The response variables are the number of months 

observed at each drought severity category (the drought indices give categories). 

The analyses for agricultural and hydrological droughts were conducted 

separately; thus, two MVRTs were obtained. 

Four technique attributes are relevant to this study. First, MVRT can 

capture the non-linear interactions between the parameters influencing droughts 

and their severity. Second, the technique can handle numerical and categorical 

hydroclimatic parameters influencing drought severity (explanatory variables). 

Third, MVRT’s capability to handle multiple outputs allowed us to evaluate the 

influence of the hydroclimatic parameters on moderate, severe and extreme 

drought conditions simultaneously (response variables). The drought indicators 

give these three categories to represent the drought severity. Simultaneous 

analysis of different drought categories provides a comprehensive understanding 

of the drought-generating process and the factors influencing severe (or mild) 

drought conditions. Fourth, MVRT results can be easily visualised and 

interpreted. The resulting tree structure provides a clear representation of the 

relationship between the drivers of droughts and the severity of agricultural and 

hydrological droughts. 

19. L223. The response variables need to be better identified here. The generic “drought severity” used here 

leaves a lot of questions to the readers. Is it a time series of event severity for each sub-basin? A time series 

over the entire basin? Just a single value (average or similar)? This need to be clarified here (and eventually 

detailed later) in order to justify the multivariate dimension of the problem. 

In the RM, we will update the paragraph to indicate the response variables explicitly (Se answer to Specific 

Comment 18). In addition, we will improve the description of the set of response variables. 

Set of response variables 

We used the drought analysis outcomes to define the response variables 

(Table 3). Following the methodology presented in 2.3, we identified the 



agricultural and hydrological drought events during the analysed period. After 

identifying the drought events, we counted the months for each drought severity 

category at each subbasin. The observed months for each one of the three 

drought categories were used as response variables. The analyses for 

agricultural and hydrological droughts were conducted separately; thus, two 

sets of response variables were obtained. 

20. L223-229. Related to the previous point. Here you first give the impression that agrological and 

hydrological drought severities are the two “multivariate” variables. Then, you clarify that the two are 

studied separately, leaving the question on what is the “multivariate” variable then. This can be only 

indirectly inferred from the results section, but it must be clearly stated already here. 

We will update the introduction and methodology in the RM to define the response variables clearly. See the 

answer to General Comment 1 and Specific Comments 18 and 19. 

21. Since section 2.5 is supposed to be the main methodology section, you need to significantly extend this 

section and add all the needed clarifications. Also link to the flow chart should me reported here. 

The following we summarize the changes we will apply to the Section 2.5 (Section 2.2.3 in the RM). 

 We will define the sets of explanatory and response variables. See answer to Specific Comment 18. 

 We will include a new paragraph to properly contextualize the MVRT technique in the study and 

highlight the attributes relevant for this study. See answer to Specific Comment 18. 

 We will improve the description of the set of explanatory variables. See answer to Specific Comment 26. 

 We will improve the description of the set of response variables. See answer to Specific Comment 19. 

22. L234. Again, similarly to the previous section, it is not clear what average means here. Is it a spatial 

average? A temporal average? Do you use time series of spatial-average values for each sub-basin or just a 

single value. This can be indirectly inferred from the results, but it should be made clear here. 

In this study, the explanatory variables are the hydroclimatic parameters at each subbasin, represented by the 

average value of each parameter during the analysis period (1987 to 2018). The introduction and the 

methodology will be updated in the RM to improve the description of the explanatory variables. See answer to 

General Comment 1, and Specific Comments 18 and 26. 

23. L240. Following the previous comment: so, do you have 3 values for each sub-basin as response variables? 

Are then the frequency in the 3 categories the “multivariate”? 



Indeed, the drought severity categories were the multivariate response. We agree with the reviewer that the 

manuscript needed more clarity about the application of the MVRT technique and why the drought severity was 

considered a multivariate output. To improve the description of the methodology, we will apply the changes 

presented in the answers to General Comment 1 and Specific Comments 18 and 19. 

24. L251.Which two groups? 

The sentence will be rewritten in the RM. 

The data partitioning consisted of three steps. First, for each explanatory 

variable were generated all possible partitions of the sites (subbasins) into two 

groups. 

25. L276. This sentence seems to imply that two methods are used to choose the size, which is in contrast with 

the next sentence. Please clarify. 

The authors apologize for the mistake. In the RM, we will update the paragraph to indicate the approach we 

used to choose the tree size. In the RM, we will not include information on the method we did not use. 

To choose the tree size that retained the most descriptive partition, we used 

the approach suggested by De’ath (2002). According to the author, a tree with 

the smallest CVRE offers the best explanatory power and interpretability 

combination. Once the tree was built, the proportion of explained variance (EV) 

was calculated as 1-〖RE〗_tree (tree relative error) (Cannon, 2012). 

26. L294-295. This should be clarified in the methodology and not here. 

In the RM, we will update the methodology description to indicate the explanatory variables explicitly; see the 

answer to Specific Comment 18. In addition, we will improve the description of the set of explanatory variables. 

Set of explanatory variables 

To select the set of explanatory variables, we used the outcomes of previous 

studies on governing drivers of droughts (Sheffield & Wood, 2011a; Zhang et al., 

2022). Table 2 describes the eleven parameters selected as the potential drivers 

of droughts. The used values correspond to the parameters’ average in the 

analysis period (1987 to 2018). The averages were computed using the SWAT 

model outputs at each subbasin. We used the dominant category at each subbasin 

for the curve number, the slope, and the soil type (categorical variables). 



27. I am not 100% sure that the data reported in sections 3.1 and 3.2 are results of the study. They may fit better 

in the “Data and method section”, since they do not bring much to the discussion on the use of MVRT. 

We thank the reviewer for the suggestion but prefer to maintain Sections 3.1 and 3.2 in the results. We consider 

that model calibration results and simulated hydroclimatic parameters are results of this study and fit best the in 

that section. 

28. Section 3.3. It is not clear how these 6 events are derived from the methodology described in section 2.3. 

There, only a minimum fraction of the area in the sub-basin is defined, and nothing is said on 

duration/continuity of an event. Is there any constrain on duration? Did you remove the minor events? 

Please clarify. 

Indeed, the minor events were not included in this analysis. The authors agree with the reviewer that the 

methodology fails to provide details on how the drought events identified during the simulation period were 

derived from the methodology. In the RM, we will adequately describe the temporal threshold used to identify 

droughts (agricultural and hydrological). See answer to Specific Comment 15. 

29. Table 5. There is a typo on event 4 (IV). 

The authors apologize for the mistake. The typo error will be corrected in the RM. 

Table 2. Agricultural and hydrological droughts during the period of analysis 

Event 
Agricultural droughts Hydrological droughts 

Date Duration [months] Date Duration [months] 

I May 1991 – Jun 1992 13 Apr 1991 – May 1992 14 

II Jun 1997 – April 1998 11 Apr 1997 – Feb 1998 11 

III Jun 2001 – Aug 2001 3 May 2001 – Jun 2001 2 

IV Oct 2009 – Jan 2010 4 Sep 2009 – Nov 2009 3 

V Jun 2014 – Aug 2014 3 Jun 2014 – Jul 2014 2 

VI May 2015 – Jul 2016 15 Apr 2015 – Apr 2016 13 

 

30. L310. This should be made clear much sooner in the text, and clearly highlight that the multivariate of the 

MVRT is referring to the 3 categories. 

We improved the description of the response variables in the introduction and the methodology. See answers to 

General Comment 1 and Specific Comments 18 and 19. 

31. 3.4 As a said before, this has very marginal impacts on the analysis. At the end, you included all the 

variables in the MVRT analysis, but some of them where not actually used in the final trees (and some very 

marginally). What does this say on the usefulness of the PCA in this case? I suggest removing this part and 



focus more on analyzing the variables used in the two final MVRTs and the differences between the two 

trees. 

We will not include the PCA analysis in the RM. See answer to Specific Comment 17. 

32. L334-342. Was an analysis on a limited number of explanatory variables also performed? As an example: 

how different are the results if only ET and PREC are used? Are some leaves really necessary? As an 

example, h) and i) are separated only at the end and based on WYLD, but the plots in Fig. 9 are quite 

similar. Are all 12 leaves relevant, considering that you then discuss only 3 macro regions? Some leaves are 

also quite small (just 2 basins for b) and k) for instance); if these are relevant, then they shouldn’t be 

grouped in the 3 macro regions in the discussion and conclusion sections. 

33. The same considerations are true for the results on hydrological drought. 

Answer to Specific Comments 32 and 33 

To build the MVRT, All the explanatory variables are used to recursively generate the partitions resulting in the 

three’s final leaves. We did not perform the analysis using fewer explanatory variables because it may result in 

MVRTs with lower explanatory power. Including multiple explanatory allows the technique to produce the 

partitions that maximize the explanatory power of the three (maximize the proportion of the explained variance). 

In addition, before applying the MVRT technique, we used PCA to explore the dataset of explanatory variables 

(As explained in answer to the Specific Comment 17). Our goal was to identify the most influential parameters 

of the dataset and discard non-influential parameters. The PCA results showed that all the parameters 

considerably influenced at least one PC retained. It indicates that all the parameters included in the set of 

explanatory variables are relevant to this study. Accordingly, for the MVRT technique, we used all the 

parameters initially selected. It is worth mentioning that we chose the threes with the lowest CVRE. According 

to De’ath (2002), these trees offer the best explanatory power and interpretability combination. 

Regarding the importance of all the leaves retained, we consider that all leaves provide relevant information on 

the different hydroclimatic parameters influencing droughts’ severity. Figures 7, 8, 9 and 10 show that the 

severity of doughs (agricultural and hydrological) is different in each leaf and influenced by different 

parameters. 

Regarding the three regions mentioned in the abstract and the conclusion, the authors realized that the statement 

does not properly summarize the study results. It is more precise to say that we identify different sets of 

parameters that govern drought severity in the basin (See answer to General Comment 3). The RM will not 

include the paragraphs referring to these three regions. 



34. L424-426. This should be better supported by some synthetic results, rather than leaving the extraction of 

meaningful information to the readers. 

The reviewer refers to the first paragraph of Section 4.1. In that paragraph, we summarize the information 

presented in Section 3.5.1 and link the tree description (results) with the discussion. In addition, in the following 

paragraphs of Section 4.1, we provide a detailed discussion about the parameters influencing the droughts and 

the severity in each leaf. We consider that the reviewer’s comment may arise from the expression “subbasins 

most exposed to agricultural droughts”. We will update the sentence in the RM to ensure readers' clarity. 

The left branch of the MVRT clusters the subbasins exposed to severe 

agricultural drought (Figure 8a, e, f, g). Conversely, the right branch of the 

MVRT clusters the subbasins experiencing moderate agricultural drought 

severity. The subbasins in leaves h, i and j predominately experienced months in 

the moderate drought category (Figure 8i, j, k). 

35. L514-521. This explanation is a little lacking, since the explanatory variables and the targets are both 

derived from the same modelling framework. I am wondering if some variables that are relevant for the 

hydrological drought were not included in the analysis. 

The authors agree with the reviewer that the three’s explanatory power may also be linked to relevant 

parameters for the hydrological drought not included in the analysis. In the last part of this paragraph, we refer 

to this limitation. 

Conversely, the explanatory power of the tree built for hydrological drought 

is not very high (EV = 0.48). This may be related to the inaccurate representation 

of groundwater contribution to the streamflow. Streams depend significantly on 

groundwater during droughts to maintain flow; nevertheless, groundwater 

contribution to the streamflow was not included as a key drought driver in the 

MVRT, although it was in the list of explanatory variables. It is possible that the 

model’s simplifications for the simulation of groundwater flow and storage did 

not adequately represent the groundwater contribution to the streamflow 

(Molina-Navarro et al., 2019). The lack of adequate information about this 

relevant factor hydrological drought may have compromised the MVRT’s 

accuracy. Unexplained variability may also link to factors that influence 

hydrological drought but were not considered in the dataset of explanatory 



variables (e.g. abstractions such as water for irrigation, industry or human 

consumption). 

In addition, in the limitations of the study we mentioned that parameters influencing droughts were not included 

in this analysis. 

Additionally, there is still a need to better represent anthropogenic 

interventions (and other relevant parameters influencing droughts) in the set of 

explanatory variables (e.g. abstractions such as water for irrigation, industry or 

human consumption, groundwater pumping). 

36. L523-529. Even if 9/11 were included, some have a very limited role and appears only in hydrological 

drought. This discussion needs to be expanded, and a more in-depth comparisons of the two trees need to be 

added. 

Regarding the first part of the comment, the authors considered that the relevance of parameters is not given by 

the number of times it was selected at different split levels in one or both threes. We evaluated a parameter's 

relevance by contrasting the drought's severity in the different leaves. For instance, in the MVRT for 

hydrological droughts, precipitation and water yield are alike for leaves g and h. Surface runoff is selected at the 

third split level, dividing the subbasins into two groups. Figure 10 shows that in the leave g, the median of 

months in the moderate drought category is ten, while at h is eighteen. Furthermore, each leave shows different 

number of months in severe and extreme drought categories. Although surface runoff was used at the third split 

level (and not included in the MVRT for agricultural droughts), results show that the parameter is utilized to 

divide subbasins presenting different agricultural drought severity. Similar analysis can be developed for 

sediment yield (Figure 8 leaves e and f) and curve number (Figure 8 leaves k and l, and Figure 10 leaves b and 

c). 

About the second part of the comment, the comparison of the two trees was included in the RM. See answer to 

General Comment 4. 

37. L542. Is this true also for hydrological drought? 

In the line indicated by the reviewer both types of droughts are mentioned. 

This study applied the MVRT technique, which served as an explanatory 

approach (in the line of ‘explanatory AI’) to assess the relationship between a 

subbasin’s hydroclimatic characteristics (i.e. explanatory variables) and the 

severity categories of agricultural and hydrological drought (i.e. response 



variables). The results show that the machine learning technique successfully 

identified drought severity’s primary drivers and critical thresholds. The MVRT 

also provided valuable information on which parameters can contribute to 

reducing agricultural and hydrological drought severity. 

38. L546-547. This subdivision in three sub-areas is never highlighted in the results, and it is not evident how 

and why these three sub-areas are the same for agricultural and hydrological droughts, given that different 

trees and explanatory variables are identified. 

Agreed. See answer to General Comments 3 and 4. 


