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Abstract: In recent years, several catastrophic landslide events have been observed throughout the globe, 14 

significantly affecting the loss of lives, infrastructure, everyday life and livelihood. To minimize the impact 15 

of landslides and issue early warnings, landslide susceptibility maps (LSM) are essential. Aim to improve the 16 

accuracy of LSM, this study applied a random selection of non-landslide samples and low accuracy of 17 

individual classifiers using machine learning (ML) techniques, coupled with ensemble learning and ML, for 18 

LSM. China's Zigui-Badong section of the Three Gorges Reservoir area (TGRA) was considered a case study. 19 

Twelve influencing factors were selected as inputs for modelling, and the relationship between each causal 20 

factor and landslide spatial development was quantitatively analyzed. A total of 179 landslides were identified 21 

in the present study. About 70% of the landslide pixels were randomly considered for training, and the 22 

remaining 30% were used for validation. The Logistic Regression model (LR) was applied to produce an 23 

initial susceptibility map, and the non-landslide samples were selected within the classified low-susceptibility 24 

area. Subsequently, two ML classifiers – the Classification and Regression Tree (CART), and the Multi-Layer 25 

Perceptron (MLP), and four coupling models – the CART-Bagging, CART-Boosting, MLP-Bagging, and 26 

MLP-Boosting, were utilized for LSM. Finally, the receiver operating characteristics (ROC) curve and 27 

statistical analysis were applied for accuracy assessment. The results show that elevation and distance to 28 

rivers were the main causal factors of landslide development in the study area. The modeling accuracy of 29 

LR-MLP was calculated approx. 0.901, which is higher than the LR-CART (0.889). The LR-MLP-Boosting 30 

performed the best with an accuracy of 0.986 followed by the LR-CART-Bagging (0.973), LR-CART-31 

Boosting (0.981), and LR-MLP-Bagging (0.978). The accuracy has been improved compared with the NO-32 
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CART, NO-MLP, NO-CART-Bagging, NO-CART-Boosting, NO-MLP-Bagging, and NO-MLP-Boosting 33 

models. Four ensemble models outperformed their corresponding classifiers, while Boosting outperforms 34 

Bagging. Overall, the combination of ensemble learning and ML effectively improved the accuracy of LSM. 35 

The LR model can effectively constrain the selection range of non-landslide samples and enhance the quality 36 

of sample selection. Our results show promise to map susceptible landslides locations which will help to 37 

monitor for an early warning of the landside. 38 

Keywords: Reservoir landslide; susceptibility mapping; non-landslide sampling; ensemble learning; 39 

machine learning; Three Gorges Reservoir Area 40 

1 Introduction 41 

Landslides are severe, sudden, and frequent geological disasters that occur throughout the globe, 42 

significantly affecting the loss of life, infrastructure, and economic conditions. The Ministry of Natural 43 

Resources of China reported that 4,810 landslide disasters occurred in 2020, resulting in 139 deaths and 730 44 

million US dollars in direct economic losses. The Three Gorges Reservoir area (TGRA) is a highly landslide-45 

prone area, with more than 5,000 landslide occurrences recorded (Yin et al, 2022). During the first 46 

impoundment of the TGRA in July 2003, the Qianjiangping landslide caused a death toll of 24 and an 47 

economic loss of about 11.6 million US dollars (Tang et al., 2019). Landslide risk assessment has been widely 48 

used as a vital means of disaster prevention and mitigation (Xie et al., 2019). It is the foundation for 49 

quantitative risk assessment and the final land-use map and planning map. However, due to the nonlinear 50 

relationship between landslide occurrence and their influencing factors, accurate landslide susceptibility 51 

modeling (LSM) is challenging for geoscientists and engineers.  52 

Over the past few decades, LSM methods have been developed for qualitative and quantitative 53 

evaluation of landslide-prone areas (Sabokbar et al., 2014; Zhou et al., 2015). In the qualitative method, the 54 

weight of various controlling parameters is determined by experts based on past experience. This method 55 

requires landslide-vulnerable areas based on past landslide events, geology, and slope. The qualitative 56 

methods include expert scoring and analytic hierarchy methods based on numerous controlling landslide 57 

parameters (Kayastha et al., 2013; Yu et al., 2022; Meena et al., 2022; Roy et al., 2023). The quantitative 58 

method is divided based on data and physical driven parameters. With the development of earth observation 59 

techniques, data quality, such as landslide catalogues and topographic landforms, has been significantly 60 

improved, making the data-driven method popular in LSM. The machine learning (ML) technique has a 61 

strong nonlinear fitting ability and has been applied in various fields. The ML methods include support vector 62 
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machines (Huang and Zhao, 2018; Huang et al., 2018; Chen et al., 2017), decision trees (Yang et al., 2019), 63 

and neural networks (Zhou et al., 2018; Huang et al., 2016; Huang et al., 2017). Machine learning methods 64 

are reported to outperform traditional methods in LSM (Lin et al., 2020; Zheng et al., 2020; Chen et al., 2020; 65 

Bui et al., 2019).  66 

For the unbalanced sample composed of a large proportion of non-landslides and small landslides, there 67 

are problems with having LSM. The single ML classifier cannot perform satisfactorily when dealing with 68 

unbalanced samples (Tanyu et al., 2021; Long et al., 2021; Yan et al., 2022). Ensemble learning is an effective 69 

method to solve the classification problem of sample imbalance. This technique strategically creates multiple 70 

models and combines them to produce improved performance. After introducing this method, the ensemble 71 

learning techniques (Pham et al. 2019) gained much attention from the research community for natural hazard 72 

modeling. Recently, ensemble learning has been applied in LSM, and some impressive results have been 73 

achieved (Zhou et al., 2020; Di Napoli et al., 2020; Pham et al., 2020; Fang et al., 2021; Lv et al., 2022). 74 

However, we have not agreed on the modeling framework applying ML and ensemble learning coupled 75 

techniques for LSM. 76 

The selection of machine learning training samples is vital to the accuracy of LSM. Since the number 77 

of non-landslide samples is much larger than that of landslide samples, the accurate LSM is the selection of 78 

effective training samples under unbalanced dataset conditions (Fang et al., 2021). However, most existing 79 

studies subjectively and/or randomly select the non-landslide samples from whole landslide-free areas 80 

(Huang et al., 2020). Therefore, the geological condition of selected non-landslide samples using this method 81 

may be similar to the landslide development area, which would affect the accuracy of LSM. At present, 82 

establishing an effective non-landslide sample selection method to ensure that the selected non-landslide 83 

samples have low susceptibility is still an urgent problem to be solved in ML-based LSM.  84 

The Zigui-Badong geological section is located at the head area of the TGRA (Fig. 1). In the present 85 

study, we have considered this section for the detailed landslide susceptibility study. In the recent two decades, 86 

the precipitation and the periodic water level fluctuations in the reservoir have caused numerous landslides.  87 

Twelve controlling landslide factors are statistically analyzed and selected as inputs for modeling. An initial 88 

landslide susceptibility map is produced using Logical Regression (LR), and the non-landslide training 89 

samples are selected in the low susceptibility area. Two single models, namely Classification and Regression 90 

Tree (CART), Multi-Layer Perceptron (MLP), and four coupling models (CART-Bagging, CART-Boosting, 91 

MLP-Bagging, and MLP-Boosting) were utilized for LSM. Finally, the modeling performance is compared 92 
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by Receiver Operating Characteristic (ROC) Curve and statistical analysis method. Our results encourage 93 

establishing a high-accurate susceptibility model for reservoir landslides in the TGRA. 94 

2 Study area  95 

The study area is located in the first section of the Three Gorges Reservoir, spanning Zigui and Badong 96 

counties. The longitude and latitude ranges are 30°51’-31°4’ N, 100°17’-100°52’ E, and the total area is about 97 

656 km2 (Fig. 1). It is a high-prone area for landslide disasters with an altitude range of 80 - 2, 020 m. The 98 

geological structure in the study area is complex, with developed faults and fragmented rock mass. Triassic 99 

and Jurassic dominate the stratum, and the lithology is mostly carbonate, sand shale, marlstone, and mudstone, 100 

which is sensitive to landslide development. Quaternary is widely exposed in the study area and accumulates 101 

on the terraces and slope surfaces. In addition, the study area has excessive rainfall, with an average annual 102 

rainfall of 1,250 mm, mainly during  May-September. 103 

 104 

Fig. 1: (a) Map of China, (b) Map of the Three Gorges Reservoir area, and (c) Topography and landslide 105 

distribution in the study area. The background maps are collected from ArcGIS Online. 106 

In 2003, the TGRA was first impounded up to 135 m. After September 2008, the reservoir water level 107 

https://doi.org/10.5194/nhess-2023-44
Preprint. Discussion started: 13 April 2023
c© Author(s) 2023. CC BY 4.0 License.



 

5 

 

periodically fluctuates between 145 m - 175 m per year, significantly changing the bank slope's 108 

hydrogeological conditions (Zhou et al., 2016; Ye et al., 2021; Yin et al, 2021). The reservoir water level 109 

fluctuation significantly affected the bank slope's original balance. It induced the deformation or failure of a 110 

large number of reservoir landslides, such as the Qianjiangping landslide (Wang et al., 2008), the Muyubao 111 

landslide (Zhou et al., 2020), and the Shuping landslide (Zhou et al., 2018).  112 

3 Methodology  113 

3.1 Procedure for LSM 114 

The LSM procedure includes four parts: influencing factor selection and landslide pixel sampling, non-115 

landslide pixel sampling, model construction, and accuracy evaluation (Fig. 2). a).  We have considered the 116 

influencing factors for LSM; 70% of the landslide pixels were selected as the training data, while the 117 

remaining 30% was applied for validation; b) We produce a preliminary susceptibility map using LR and 118 

non-landslide pixels with an equal number of landslide pixels are randomly selected in the low susceptibility 119 

area; c) Two single models (CART and MLP) and four coupling models (CART-bagging, CART-boosting, 120 

MLP-bagging, and MLP-boosting,) are applied for LSM; d) We use statistical analysis method and ROC 121 

curves to evaluate the partitioning results and model performance. 122 
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 123 

Fig. 2 The flowchart of the landslide susceptibility mapping. 124 

3.2 Information value method  125 

Information value is a statistical method based on information theory, which can calculate the impact of 126 

different factors on the occurrence of landslides. In LSM, the formula of information value can be given as 127 

follows: 128 

 𝐼𝑖 = ∑ 𝐿𝑛
𝑆𝑖/𝑆

𝐴𝑖/𝐴

𝑛
𝑖=1                                                                (1) 129 
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Where 𝐼𝑖 is the information value of the i-th influencing factor; Si is the number of landslide pixels within the 130 

i-th influencing factor; S is the total number of landslide pixels; Ai is the number of pixels for the i-th 131 

influencing factor; A is the total number of pixels in the study area; n is the number of influencing factors 132 

(Zhou et al., 2018). When the information value is greater than 0, the factor promotes the occurrence of 133 

landslides. Conversely, when the value is less than 0, it indicates that the factor inhibits the occurrence of 134 

landslides. Moreover, the larger the absolute information value, the stronger the effect. 135 

3.3 Classifier 136 

3.3.1 Multi-Layer Perceptron  137 

Multi-Layer Perceptron (MLP) is a feed-forward artificial neural network widely used in many fields. 138 

It consists of three layers: input layer, hidden layer, and output layer (Fig. 3). MLP with a sufficient number 139 

of hidden layer neurons can realize any nonlinear mapping from n-dimensional to m-dimensional (Gardner 140 

and Dorling, 1998). During the calculation process, the input layer neurons receive sample data, and the 141 

hidden layer and the output layer neurons deal with the inputs according to the weight value. To build a better 142 

model, MPL modifies the weight value through backpropagation. The learning process of MPL models is 143 

constantly adjusting the parameters. The training of the MPL model is the process of constantly adjusting 144 

network parameters. 145 

 146 

Fig. 3 MLP neural network structure. 147 

3.3.2 Classification and Regression Tree 148 

Classification and Regression Tree (CART) is a simple but powerful approach to forecasting an event 149 

(Breiman, 1984). This method is easy to understand and implement for LSM. During modeling, CART does 150 

not need to presuppose a relationship between the predictor and target variables. The child nodes are obtained 151 

to form a binary tree by recursively dividing the data set. The child nodes are continuously expanded to 152 

generate a complete decision tree and perform the necessary pruning to prevent overfitting. The Gini index 153 

minimization criterion determines the optimal segmentation point, and the smaller the Gini index is, the better 154 

the effect of tree division. The Gini index represents the classification error rate for the binary classification 155 
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problem. For example, if the sample set D contains k categories, the Gini coefficient of the sample set can be 156 

expressed as: 157 

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ (
𝐶𝑖

𝐷
)2    𝑘

𝑖=1                                                       (2) 158 

where Ci is a subset of class i samples in D. 159 

3.3.3 Logical Regression 160 

The logical regression (LR) model is a statistical analysis model suitable for binomial categorical 161 

dependent variables. It is widely used in landslide prediction due to its simple operation and relatively 162 

accurate (Youssef et al., 2016). Training testing on known landslide events establishes the nonlinear 163 

relationship between the dependent variable and multiple independent variables. Therefore, the occurrence 164 

probability of future landslides can be predicted or evaluated using the established formula. The method takes 165 

the landslide influencing factor as the independent variable and the occurrence probability of landslides as 166 

the dependent variable (landslide is 1, the non-landslide is 0). The independent variable can be continuous or 167 

discrete. Assuming that the probability of landslide occurrence is P, the regression equation can be written 168 

as follows: 169 

P =
1

1+𝑒−(𝑏0+𝑏1𝑥1+𝑏2𝑥2+...+𝑏𝑛𝑥𝑛)                                               (3) 170 

where b0 is a constant, n is the number of independent variables, x1, x2,..., xn is the landslide influencing 171 

factors, and b1, b2,..., bn are the coefficients of LR. 172 

3.4 Ensemble learning  173 

3.4.1 Boosting 174 

Boosting algorithm is a process of enhancing a simple weak classification algorithm to reduce variance 175 

and bias through iterative training and improve the ability to classify model data (Youssefa et al., 2016). 176 

Boosting algorithm generates a classifier combination through multiple iterations. Each iteration constructs 177 

a new training set from a sample returned to the total dataset. And each iteration will adjust the weight of the 178 

sample so that the error samples get higher weight values at the next iteration. After T iterations, the updated 179 

weak classifiers are weighted and superimposed to obtain the strong classifier (Fig. 4). 180 
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 181 

Fig. 4 Schematic diagram of Boosting ensemble algorithm. 182 

3.4.2 Bagging 183 

The Bagging algorithm is an ensemble learning method proposed in 1996 (Breiman et al., 1996). Its 184 

core idea is to repeat the input training sets by Bootstrap sampling to obtain n subsets and build a weak 185 

classifier for each subset. The voting method integrates the weak (n) classifiers to form a strong classifier. 186 

The Bagging algorithm can observe small changes in the training data, effectively improving the accuracy 187 

and stability of the model prediction results, especially for models susceptible to sample disturbances (Fig.5). 188 

 189 

Fig. 5 Flowchart showing the Bagging ensemble algorithm. 190 

4 Modelling and results 191 

4.1 Landslide inventory and data preparation 192 

Accurate and reliable landslide inventory data is essential for LSM. This study prepared the landslide 193 

inventory using field data, historical landslide inventory, and high-resolution remote sensing images. The 194 

data source of this study includes: (a) a topographic map (1:10,000) for extraction of topography, landscape, 195 

and rivers; (b) a geological map (1:50,000) for extraction of lithology, geologic structure, faults, and so on; 196 

(c) field investigation data; and (d) the historical landslide inventory. A total of 179 landslides are identified 197 

in the study area, distributed in spots or bands along the Yangtze River (Fig. 1). The total area of the identified 198 

landslides is 22.14 km2. In contrast, the area of individual landslides ranges from 0.13 km2 to 1.80 km2. There 199 

are four typical reservoir landslides: Baijiabao landslide, Shuping landslide, Bazimen landslide, and 200 

Muyubao landslide (Fig. 6). 201 
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 202 
Fig. 6 Typical reservoir landslides in the Three Gorges Reservoir area. The locations are shown in Fig. 1. 203 

4.2 Landslide influencing factors  204 

Different influencing factors cause landslide occurrence in various regions due to the diverse geological 205 

environments. With the consideration of the regional geological conditions, landslide inventory, and earlier 206 

studies (Yu et al., 2016; Li et al., 2020; Yu et al., 2021), twelve influencing factors were prepared initially for 207 

LSM, namely altitude, slope, aspect, terrain roughness index (TRI), topographic relief, slope geometry, slope 208 

structure, lithology, topographic wetness index (TWI), land use, distance to rivers, and distance to faults. 209 

According to the Technical requirement for the geo-hazard survey (1:50,000) of China Geological Survey, 210 

the raster of 30 m×30 m is adopted as the basic unit for LSM. All layers of twelve influencing factors are 211 

extracted in ArcGIS 10.2. 212 

4.2.1 Altitude 213 

Many activities, roads, bridges, and infrastructures occur at low altitudes in the study area. With such 214 

activities, the stability of natural slopes is easily damaged; with the excessive rainfall in landslide-prone areas, 215 

slope failure often causes landslides. The altitude of this study area varies 145~2,020 m, which is divided 216 

into five classes: [145 ~ 240), [240 ~ 450), [450 ~ 650), [650 ~ 1200), [1200 ~ 2020) (Fig. 7a). As suggested 217 

in Table 1, landslides in this study area mainly occurred in the altitude range of 145~240 m, the information 218 

value of which is the highest of 1.49. No landslide occurred in the region with an altitude of more than 1200 219 

m since the slope is not disturbed. 220 
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Table 1 Statistics between causal factors and landslides occurrence. 221 

Causal factor Category IV Causal factor Category IV 

Slope (°) 

 

0~9 -0.90 Aspect flat -1.93 

9~18 0.37 north 0.47 

18~27 0.42 northeast 0.23 

27~36 -0.28 east -0.27 

>36 -1.63 southeast -0.31 

TRI 1~1.1 0.37 south 0.43 

1.1~1.2 -0.04 southwest -0.29 

1.2~1.3 -0.88 west -0.71 

1.3~1.4 -1.9 northwest -0.03 

1.4~1.5 -2.48 Distance to 

faults (m) 

0-500 -0.04 

>1.5 -2.49 500-1,000 0.08 

Distance to 

rivers (m) 

0~300 0.92 1,000-1,500 0.24 

300~600 0.29 1,500-2,000 0.23 

600~900 -0.57 > 2,000 -0.22 

900~1,200 -1.7 Altitude (m) <240 1.49 

>1,200 -2.95 240-450 0.54 

Lithology L1 -3.94 450-650 -1.36 

L2 -0.3 650-1,200 -3.84 

L3 0.17 >1,200 -∞ 

L4 -0.34 Slope geometry X/X 0.16 

L5 0.42 X/V -0.96 

TWI 1.37~3 -2.49 X/GE -1.45 

3~4.5 -0.37 V/X 0.04 

4.5~6 -0.20 V/V -1.74 

6~7.5 0.47 V/GE -1.19 

7.5~9 0.72 GR/X 0.01 

>9 0.02 GR/V -1.02 

Topographic 

relief (m) 

0-14 -0.63 GR/GE -1.46 

14-35 0.47 Slope structure B1 -∞ 

35-42 0.08 B2 0.14 

42-49 -0.47 B4 0.13 

>49 -1.70 B5 0.08 

Land use Mountain land -0.59 B6 -0.17 

Farmland  0.12 B7 -0.34 

Waterbody  0.43 B8 -0.67 

Construction land 0.85    

Note: IV refers to Information Value; The meaning of the lithology, slope structure, and slope type 222 
abbreviation of the formation is shown in Tables 2, 3 and 4.  223 

4.2.2 Slope 224 

The slope affects the stress distribution, materials accumulation, and surface runoff. It can be divided 225 

into five classes: very gentle [0, 9°], gentle (9°, 18°], moderate (18°, 27°], steep (27°, 36°], and very steep 226 

(36°, 90] (Fig. 7b). Landslides generally occur in the gentle slope, whose information value is 0.42. When 227 

the slope is more than 36°, the occurrence of a landslide is significantly inhibited, and the information value 228 

is the lowest of -1.63. 229 

4.2.3 Aspect 230 

Rainfall and sunlight exposure varies with aspect. It leads to the differences in physical and mechanical 231 

properties of sliding masses, which leads to differences in landslide stability. (Pham et al., 2021). The aspect 232 
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in this study was divided into nine categories. The landslides with north and northeast aspects are the easiest 233 

to occur; their information value is 0.47 and 0.23, respectively (Fig. 7c). 234 

4.2.4 Topographic relief 235 

The relief shows the relative height difference within the study area. The calculation formula of the 236 

relief factor is shown as follows (Liu et al., 2009): 237 

𝐷 = 𝐻𝑚𝑎𝑥 − 𝐻𝑚𝑖𝑛                                                                                                (4) 238 

Where, 𝐷 is the relief factor; Hmax is the highest altitude value; Hmin is the lowest altitude value. The 239 

topographic relief in this study is divided into five classes: [0 ~ 14 m), [14 ~ 35 m), [35 ~ 42 m), ≥ 49 m 240 

(Fig. 7d). The information values are -0.63, 0.47, 0.08, -0.47 and -1.70, respectively. 241 

4.2.5 Slope geometry 242 

Slope curvature is the microscopic performance of the earth's surface landforms, divided into plane 243 

curvature and profile curvature. It reflects the concavity of the slope along the aspect, which controls the flow 244 

speed of surface material and rainfall confluence (Abdo et al., 2022). We classify the plane and profile 245 

curvatures into three categories respectively. The nine slope geometries are defined with the combination of 246 

plane and profile curvatures (Table 2, Fig. 7e).  In this study area, landslides mainly occur in the slope type 247 

of X/X, with the highest value of 0.16. 248 

Table 2 Definition for slope geometry classification.  249 

                Plan curvature 

Profile curvature 
Outward slope (X) Inward slope (V)  Straight slope (GR) 

Convex slope (X)  X/X V/X GE/X 

Concave slope ( V ) X/V V/V GE/V 

Straight slope ( GE ) X/GR V/GR GE/GR 

4.2.6 Terrain Roughness Index 250 

The terrain roughness index (TRI) reflects the degree of surface fluctuation and erosion. The calculation 251 

formula is shown as follows (Moore et al., 1991): 252 

𝑇𝑅𝐼 = √𝐴𝑏𝑠(𝑚𝑎𝑥2 − 𝑚𝑖𝑛2)                                                                   (5) 253 

The TRI is divided into six classes: [1~1.1), [1.1~1.2), [1.2~1.3), [1.3~1.4), [1.4~1.5), and ≥1.5 (Fig. 254 

7f). The information values are 0.37, -0.04, -0.88, -1.90, -2.48, and -2.49, respectively (Table 1). 255 

4.2.6 Land use 256 

Land use and landslide development are closely related to the triggering of landslides due to the changes 257 

in the slope. In our study area, land use is divided into four categories, namely water bodies, construction 258 

land, farmland, and mountain land (Fig. 7g). In the foothills and mountainous areas, land use and land cover 259 

are changing, affecting the slope that causes the triggering of the landslides.  Further, the construction land 260 

is mainly concentrated in the gentle river terraces on both sides of the Yangtze River. A large number of 261 
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excavations, slope cutting, and other activities in the construction of houses and roads directly impact the 262 

slope's stability, and the information value is the highest of 0.85. 263 

4.2.8 Slope structure 264 

Slope structure indicates the intersection relationship between strata and slope, which determines the 265 

direction of the sedimentary stack on the slope. The slope structure in this study is divided according to Table 266 

3 (Fig. 7h). In this study area, landslides mainly occurred in the B2 region. 35.06% of the total pixels are 267 

distributed in this category, whose information value is 0.42. 268 

Table 3 Classification of slope structure (Zhou et al., 2018). 269 

Category Definition (slope: θ, aspect: σ, bed dip angle: α, bed dip direction: β) 

B1 a< 10° 

B2 ((|α-β|∈ (0,30°)||(|α-β|∈(330°,360°)))&&(α>10°)&&(θ>α) 

B3 ((|α-β|∈(0,30°])|| (|α-β|∈(330°,360°)))&&(α>10°)&&(θ=α) 

B4 ((|α-β|∈(0,30°)||(|α-β|∈[330°,360°)))&&(α>10°)&&(θ<α) 

B5 (|α-β|∈[30°,60°)|| (|α-β|∈(330°,360°)) 

B6 (|α-β|∈(60°,120°)||(|α-β|∈[240°,300°)) 

B7 (|α-β|∈[90°, 150°))||(|α-β|∈(210°,240°)) 

B8 (|α-β|∈[120°, 180°))||(|α-β|∈[180°,210°)) 

4.2.9 Lithology 270 

We divide the lithology in the study area into five categories (Table 4 and Fig. 7i). In the stratiform 271 

structure containing weak strata, especially in the stratified clastic rocks and the carbonate rocks developed 272 

on the weak bedrock, the large and medium-sized landslides more formed, and its information value is 0.42. 273 

On the other hand, few landslides developed in the hard rocks, such as granite and diorite, with the 274 

information value being the lowest of -3.94. 275 

Table 4 Lithological classification in this study area. 276 

Category Geologic group Main Lithology 

L1 δ2-1, Pt Granite and diorite 

L2 Z, ε1, ε2+3, O, T1j, T2b3 Limestone, Shale, Malmstone 

L3 T1d, T2b4+5, J1x, J2s, J3s Marl mudstone 

L4 S, J2x Shale, Mudstone and Shi Ying Sandstone, Muddy Siltstone, etc. 

L5 T3s, J1-2n, J3p 
Malmstone (Feldspar sandstone, Shi Ying Sandstone, etc.) with 

coal seam 

4.2.10 Topographic Wetness Index 277 

Topographic Wetness Index (TWI) reflects topography's influence on soil water saturation (Alnajjar et 278 

al., 1991). It can be calculated using the following formula: 279 

𝑇𝑊𝐼 = 𝑙𝑛(
𝐴𝑠

𝑡𝑎𝑛𝛽
)                                                                   (6) 280 

Where, AS is the upstream gathering area and β is the slope. The TWI is divided into six categories: 281 
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[1.37, 3), [3, 4.5), [4.5, 6), [6, 7.5), [7.5, 9), and (9,-∞] (Fig. 7j). When the TWI value is within the range of 282 

[7.5~9), it shows the most substantial positive influence on landslide occurrence, whose information value is 283 

the highest of 0.72. 284 

4.2.11 Distance to rivers 285 

This study area is obviously affected by the hydrogeological environment, whose main river system is 286 

the Yangtze River and its tributaries (Fig. 1). After the impoundment of the TGRA, the stability of the bank 287 

slopes is influenced by the periodical fluctuation of reservoir water level, river erosion, and softening effect. 288 

The factor of distance to rivers represents the intensity of its influence. We divide the distance to rivers into 289 

four classes, namely [0~300 m), [300 m~900 m), [900 m~1,200 m), and ≥1,200 m (Fig. 7k). The maximum 290 

information value is 0.92 within the distance range of 300 m. With the distance increasing, the influence of 291 

the river system on landslides gradually weakened, and the information value decreased. 292 

4.2.12 Distance to faults 293 

Due to the severely broken rock mass, the area with intense tectonic movement is prone to landslide 294 

disasters. Minor faults are developed in the study area, and the distance to the faults represents the intensity 295 

of their influence. We divide the distance to faults into four categories, namely [0~500 m), [500~1,000 m), 296 

[1,000~1,500 m), [1,500~2,000 m), and ≥2,000 m (Fig. 7l). Their information values are -0.04, 0.08, 0.24, 297 

0.23, and -0.22, respectively.  298 

 299 

 300 
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 301 

 302 

 303 

 304 
Fig.7 Shows various landslide factors: (a) Altitude, (b) Slope, (c) Aspect, (d) TRI, (e) Topographic relief, (f) Slope geometry, 305 

(g) Slope structure, (h) Land use, (I) Lithology, (j) TWI, (k) Distance to rivers, and (l) Distance to faults. 306 

4.3 Landslide susceptibility modeling 307 

4.3.1 Multi-collinearity analysis 308 

The collinearity of factors will affect the performance of the evaluation model. Therefore, it is necessary 309 

to carry out a collinearity analysis before susceptibility modeling, to ensure that the factors are independent. 310 

The multi-collinear analysis is performed using Tolerance (T) and Variance Inflation Factor (VIF) (Zhou et 311 

al., 2018). When T is greater than 0.2 or VIF is less than 5, it is considered that there is no multi-collinearity 312 

between the factors. Both indices of T and VIF are calculated using SPSS Statistics 26.0, and the results are 313 

shown in Table 5. It indicates that all the twelve factors are independent with no collinearity. 314 
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Table 5 Multi-collinearity analysis of the causal factors. 315 

Influencing factors T VIF 

Elevation 0.43 2.30 

Slope 0.26 3.80 

Aspect 0.96 1.04 

Terrain Roughness Index 0.31 3.18 

Topographic relief 0.32 3.12 

Slope shape 0.64 1.52 

Landuse 0.81 1.22 

Slope structure 0.26 3.80 

Stratigraphic lithology 0.94 1.06 

Topographic Wetness Index 0.75 1.34 

Distance to rivers 0.45 2.25 

Distance to faults 0.95 1.05 

4.3.2 Non-landslide sampling using LR 316 

In this study, we randomly select 70% of landslide pixels for training and the remaining 30% for 317 

validation. Simultaneously, the same number of non-landslide samples are selected for model training. We 318 

propose a non-landslide sampling method to extract high-quality samples by the LR algorithm. At first, we 319 

produce a preliminary landslide susceptibility map by randomly selecting non-landslide as an example in 320 

landslide-free areas, using the following equations: 321 

1.079 0.750
1 2 3 4 5 6

7 8 9 10 11 12

Logit(P)= -10.87 + 2.175 x +1.17 x +6.028 x + x + x +1.071 x +

0.987 x +0.600 x - 1.263 x +0.672 x +0.559 x +0.814 x
                   (7) 322 

Where: x1, x2, …, x12 are independent variables, which indicate the factor values of the slope, aspect, 323 

altitude, slope shape, land use, topographic relief, TRI, TWI, slope structure, lithology, distance to rivers, 324 

distance to faults; P is the probability of landslide susceptibility. The landslide susceptibility index is divided 325 

into five levels: Very High (5%), High (10%), Medium (15%), Low (20%), and Very Low (50%).  The non-326 

landslide samples for training are randomly selected only in the Very Low area. The preliminary susceptibility 327 

map (Fig 8) shows different classes of susceptibility (very high, high, moderate, low, very low and non-328 

landslide) zone along both sides of the Yangtze River. The non-landslide samples are distributed throughout 329 

the study area, concentrated in the areas with high altitudes, steep slopes and few human engineering 330 

activities. Due to topographical and lithological constraints, landslides rarely develop in these areas. 331 

Therefore, the engineering geological conditions of the selected samples are quite different from those of the 332 

landslide, and they are more representative of landslide-free areas. 333 
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 334 
Fig.8 Preliminary susceptibility map and the distribution of non-landslide samples.  335 

4.3.3 Parameter setting 336 

4.3.3.1 Single models of CART and MLP 337 

Maximum tree depth is the crucial parameter for CART Modelling. In this paper, a trial-and-error 338 

method determines the maximum tree depth of the CART as 8. Regarding MLP, the number of hidden layers 339 

and neurons affects its modeling accuracy. After multiple sets of tests, we find that a model structure of MLP 340 

with two hidden layers is suitable. The neuron number of the first and second layers are set to 8 and 25, 341 

respectively. 342 

4.3.3.2 CART-Boosting 343 

In the same way, we obtain the relationship between the parameters and model accuracy of CART- 344 

Boosting through multiple sets of trials (Fig. 9). Similarly with CART-Bagging, the accuracy of CART-345 

Boosting first increases and then decreases with the sub-model number when the maximum tree depth is 346 

constant. In the case of fewer than 10 sub-models, the model accuracy increases with the maximum tree depth; 347 

While the sub-model number is larger than 10, the model accuracy showed a downward trend after the growth. 348 

Therefore, we set the maximum tree depth and the number of sub-models of CART-Boosting to 10 and 14, 349 

respectively.  350 
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 351 
Fig. 9 Accuracy statistics of CART-Boosting with various parameters. 352 

4.3.3.3 CART-Bagging 353 

The number of sub-models and the maximum tree depth are the significant parameters for the CART-354 

based ensemble learning models. To determine the optimal parameters, we obtain the relationship between 355 

the two parameters and the model accuracy of CART-bagging through multiple trials. As shown in Fig. 10, 356 

when the maximum tree depth is determined, the modeling accuracy increases with the number of the sub-357 

model within a specific range.  Similarly, when the number of sub-models is constant, and the maximum tree 358 

depth is less than 10, the modeling accuracy increases with the increase of maximum tree depth. Therefore, 359 

we set the maximum tree depth and the number of sub-models of CART-bagging as 8 and 10, respectively. 360 

 361 
Fig. 10 Accuracy statistics of CART-Bagging with various parameters 362 

4.3.3.4 MLP-Bagging and MLP-boosting. 363 

The relationship between a sub-model number and the accuracy of MLP-based ensemble learning 364 

models is shown in Table 6. For MLP-Bagging and MLP-boosting, the model accuracy first increases and 365 

then decreases with the number of sub-models. For example, both models achieve the highest accuracy when 366 
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the sub-model number is 14. With this, we set the sub-model number of MLP-Bagging and MLP-Boosting 367 

models to 14. 368 

Table 6 Statistics of the sub-model number and accuracy. 369 

No. of sub-model 6 8 10 12 14 16 18 20 

MLP-Bagging 0.9682 0.9740 0.9756 0.9764 0.9780 0.9767 0.9765 0.9761 

MLP-Boosting 0.9823 0.9829 0.9848 0.9852 0.9857 0.9855 0.9853 0.9852 

4.4 Landslide susceptibility mapping 370 

The probability of landslide susceptibility is calculated by applying CART-Bagging, CART-Boosting, 371 

MLP-Bagging, MLP-Boosting, single CART, and single MLP models, respectively. According to the ratio of 372 

0.5: 1: 1.5 : 2: 5, the probability value of landslide susceptibility is divided into five levels, namely Very High, 373 

High, Moderate, Low, and Very Low. The produced landslide susceptibility maps are presented in Fig. 11a-374 

f. In addition, to verify the quality of the non-landslide samples selected by the LR constraint method, we 375 

choose a set of non-landslide samples under no constraint condition (the whole landslide-free area) for 376 

comparison. Similarly,  these six models are used for LSM as well. The produced landslide susceptibility 377 

maps are shown in Fig. 11g-l, respectively. 378 

 379 

 380 

381 
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382 

383 

 384 

Fig. 11 Landslide susceptibility maps using different methods (a) LR-MLP-Boosting, (b) LR-MLP-Bagging, (c) LR-CART-Boosting, (d) LR-CART-385 

Bagging, (e) LR-MLP, (f) LR-CART, (g) No-MLP-Boosting, (h) No-MLP-Bagging, (i) No-CART-Boosting, (j) No-CART-Bagging, (k) No-MLP, and 386 

(l) No-CART. 387 

5 Discussion 388 

5.1 The relationship between landslide development and the main factors 389 

The statistics of information value (Table 1) and susceptibility maps (Fig. 11) indicate that the spatial 390 

development of landslides in this study area is mainly controlled by altitude, lithology, and distance to rivers. 391 

The widely distributed mudstone, marlstone, and weak strata, as well as the layered clastic rock strata 392 

containing weak interlayers, significantly reduced the sliding mass's strength, making the slope vulnerable to 393 

instability (Tang et al., 2019). In the study area, most landslides occur at a low altitude. An altitude of less 394 

than 240 m poses the most significant effect on landslide development, whose information value is the 395 

maximum of 1.49.  This is because many human engineering activities occur in this area, where the thick 396 

loose deposits provide the material basis for landslide occurrence. The periodic fluctuation of reservoir water 397 

level significantly changes the hydrogeological conditions of bank slopes, and plenty of seepage-driven and 398 

buoyancy-driven landslides are triggered (Zhou et al., 2022). In the mountainous regions along the road, 399 
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excessive rainfall enhances flow in the drainage, weakening the rock mass and triggering landslides. The 400 

statistics suggest that the closer the slope to the river, the more it is affected. When the distance to rivers is 401 

less than 300 m, its information value is high at 0.92. Additionally, it is to be noted that the information value 402 

method is a typical statistical method whose reliability depends on sufficient samples. The information value 403 

may need to be more accurate in the case of insufficient data. 404 

5.2 performance comparison of the used algorithms 405 

5.2.1 Machine learning algorithms  406 

To verify the performance of the machine learning algorithms, we count the pixel distribution of four 407 

landslide susceptibility maps produced by LR-CART, LR-MLP, No-CART, and No-MLP (Table 7). The 408 

statistics indicate that the maps produced by these four models are the same. The landslide development law 409 

is consistent with the mapping results, which indicates that the LSM is reliable. Regarding LR-MLP, the 410 

higher the landslide susceptibility level, the higher the landslide ratio. 34.77% of the landslide pixels are 411 

located in the Very High susceptibility area, with the highest landslide ratio of 7.00. 412 

Conversely, only 2.67% of the landslide pixels distributes in the Very Low susceptibility area, and the 413 

landslide ratio is 0.05. In the results of LR-MLP, the landslide ratio in the Very High susceptibility area is the 414 

highest at 6.89, where 35.57% of landslide pixels distribute in this area. The same characteristics are 415 

presented in the results of the No-MLP and No-CART models. The statistics suggest that MLP is slightly 416 

performed better than CART. 417 

The receiver operating characteristic (ROC) curve is a commonly used performance evaluation method 418 

in landslide susceptibility assessment (Sun et al., 2021). The area under the ROC curve (AUC) is used to 419 

assess model performance, and the model with a larger AUC is considered better. As shown in Fig. 12, LR-420 

MLP outperforms LR-CART, and their AUCs are 0.901 and 0.889, respectively. NO-MLP achieves better 421 

accuracy than NO-CART as well. The ROC curves suggest that both algorithms of MLP and CART perform 422 

excellently in LSM. We can infer MLP algorithm can more accurately establish the nonlinear relationship 423 

between landslide occurrence and its influencing factors than CART. 424 
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 425 
  Fig. 12 ROC curves of single models: (a) LR- and NO-CART, and (b) LR- and NO-MLP. 426 

Table 7 Statistical results of susceptibility zoning. 427 

Levels 
Landslide pixles Domain pixles  Ratio 

(a/b) No. % (a) No. % (b) 

No-CART      

Very Low     861   3.56 353,136 50.55 0.07 

Low  1,506   6.22 138,069 19.76 0.31 

Moderate  4,882 20.18 101,150 14.48 1.39 

High  8,393 34.69   69,174   9.90 3.50 

Very High  8,553 35.35   37,117   5.31 6.65 

No-MLP      

Very Low     846   3.35  351,927 50.37 0.07  

Low  1,666   6.89  134,798 19.29 0.36  

Moderate  5,174 21.38  108,194 15.49 1.38  

High  8,250 34.09    68,527   9.81 3.48  

Very High  8,259 34.14    35,200   5.04 6.77  

LR-CART      

Very Low     645   2.67 341,817 48.93 0.05 

Low  1,543   6.38 145,048 20.76 0.30 

Moderate  4,674 19.32 107,442 15.38 1.26 

High  8,726 36.07   68,256   9.77 3.69 

Very High  8,607 35.57   36,083   5.16 6.89 

LR-MLP      

Very Low     652   2.69 352,147 50.4 0.05  

Low  1,408   5.82 136,945 19.6 0.30  

Moderate  4,869 20.12 107,515 15.39 1.31  

High  8,854 36.59   67,333   9.64 3.80  

Very High  8,412 34.77   34,706   4.97 7.00  

5.2.2 Ensemble learning algorithms 428 

The result statistics of the eight coupling models are shown in Table 8. In the landslide susceptibility 429 

map produced by LR-MLP-Boosting, 43.75% of the landslide pixels are distributed in the Very High 430 

susceptibility area. Its landslide ratio is the highest of 8.594, while the Very Low susceptibility area is the 431 

lowest 0.028. LR-MLP-Boosting not only achieves the best prediction accuracy but also has the lowest false 432 

negative error which may lead to catastrophic losses. Higher landslide ratios in Very High susceptibility areas 433 

and lower landslide ratios in Very Low susceptibility areas suggest that the model has better performance. 434 

The comparison results indicate that LR-MLP-Boosting performs better than LR-CART-Boosting, and LR-435 
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MLP-Bagging outperforms LR-CART-Bagging. The same comparison results are presented in the results of 436 

the No-MLP-Boosting, No-MLP-Bagging, No-CART-Boosting, and No-CART-Bagging models.  437 

Table 8 Statistical results of each landslide susceptibility zoning. 438 

Levels 
Landslide pixels Domain pixels  Ratio 

(a/b)      No % (a) No  % (b) 

LR-MLP-Boosting      

Very Low        346 1.43  352,156 50.41  0.028  

Low       706 2.92  135,816 19.44  0.150  

Moderate    3,222 13.32  105,327 15.08  0.883  

High    9,336 38.59  69,792 9.99  3.863  

Very High  10,585 43.75  35,555 5.09  8.597  

LR-MLP-Bagging      

Very Low      423 1.75  359,283 51.43  0.034  

Low      933 3.86  131,112 18.77  0.205  

Moderate   4,185 17.30  105,520 15.10  1.145  

High   8,998 37.19  68,320 9.78  3.803  

Very High  9,656 39.91  34,411 4.93  8.103  

LR-CART-Boosting      

Very Low     394 1.63  364,801 52.22  0.031  

Low     770 3.18  122,823 17.58  0.181  

Moderate   3,829 15.83  107,890 15.44  1.025  

High   9,006 37.22  67,320 9.64  3.863  

Very High  10,196 42.14  35,812 5.13  8.221  

LR-CART-Bagging      

Very Low       413 1.71 342,258 48.99 0.035  

Low    1,105 4.57 145,233 20.79 0.220  

Moderate    3,786 15.65 107,928 15.45 1.013  

High    8,883 36.71 67,105 9.61 3.820  

Very High  10,008 41.36 36,122 5.17 8.000  

No-MLP-Boosting      

Very Low       595 2.46  342,258 51.43  0.048  

Low       929 3.84  145,233 18.77  0.205  

Moderate    4,124 17.04  107,928 15.07  1.131  

High    8,834 36.51  67,105 9.78  3.735  

Very High    9,713 40.14  36,122 4.96  8.094  

No-MLP-Bagging      

Very Low        601 2.48  353,804 50.64  0.049  

Low     1,089 4.50  132,710 18.99  0.237  

Moderate     4,034 16.67  108,589 15.54  1.073  

High     8,707 35.99  67,991 9.73  3.698  

Very High     9,764 40.36  35,552 5.09  7.930  

No-CART-Boosting      

Very Low       623 2.57  352,231 50.16  0.051  

Low    1,106 4.57  135,474 19.39  0.236  

Moderate    4,121 17.03  107,995 15.46  1.102  

High    8,786 36.31  67,976 9.73  3.732  

Very High    9,559 39.51  34,970 5.01  7.893  

No-CART-Bagging      

Very Low       622 2.57  342,258 48.99  0.050  

Low     1,340 5.54  145,233 20.79  0.260  

Moderate     3,750 15.50  107,928 15.45  1.000  

High     8,688 35.91  67,105 9.61  3.740  

Very High     9,795 40.48  36,122 5.17  7.830  
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We also utilize the ROC curves to quantify the performance of the coupling models. The same 439 

conclusion about the performance ranking of the coupled models can be drawn from the ROC Curves (Fig. 440 

13). LR-MLP-Boosting achieves the best prediction accuracy with the highest AUC of 0.985. Apparently, the 441 

coupling models outperform the single machine learning models. Boosting and Bagging improve the 442 

accuracy of LR-MLP by 0.085 and 0.077, respectively, while improving the accuracy of LR-CART by 0.092 443 

and 0.084, respectively (Table 9). Accuracy improvement from Boosting is more significant than the 444 

improvement from Bagging. In Boosting method, the prediction of all the sub-models was sequentially 445 

integrated into the training process to achieve the final results (Fig. 3). However, it is parallel to the Bagging 446 

method (Fig. 4). The boosting method is more effective at reducing the deviation and variance, which 447 

enhances the prediction ability of the coupling model. 448 

 449 

Fig. 13 ROC curves of coupling models: (a) no constraint sampling and (b) LR constrained sampling   450 

Table 9 Statistics of modelling accuracy. 451 

Single model 
Original Bagging Boosting  

AUC AUC Improvement AUC Improvement 

No sampling      

CART 0.842 0.926 0.084 0.935 0.093 

MLP 0.870 0.932 0.062 0.940 0.070 

LR sampling      

CART 0.889 0.973 0.084 0.981 0.092 

MLP 0.901 0.978 0.077 0.986 0.085 

5.3 The advantages of the proposed method for non-landslide sampling 452 

High-quality non-landslide samples are critical to the performance improvement of LSM. We use two 453 

methods for non-landslide sampling, and two single models and four coupling models for susceptibility 454 

mapping are established using selected samples. As shown in the ROC curves and statistics (Figs. 12 and 13, 455 

Tables 8 and 9), all the LR- models achieve a better performance than the corresponding NO- models. It 456 

indicates that the application of the LR model to constrain the selection range of non-landslide samples can 457 
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effectively improve sample quality.  458 

Many machine learning methods can produce more accurate initial susceptibility maps to constrain the 459 

range of non-landslide sampling. However, as reported in earlier studies (Zhou et al., 2018; Yang et al., 2021; 460 

Sun et al., 2022), the performance of machine learning methods varies in regions, and high-quality data is 461 

required. As a result, a poor prediction may occur in some landslide-prone regions. Due to the simplicity of 462 

operation, high accuracy and stable performance, LR is widely used and consistently achieves acceptable 463 

results. In comparison, LR is a better choice to ensure the generalization of the non-landslide sampling 464 

method. 465 

The non-landslide pixels obtained by random sampling under no constraint conditions may have 466 

engineering geological conditions prone to landslides. The mixing of these pixels will reduce the quality of 467 

non-landslide samples. In addition, the engineering geological conditions that inhibit the occurrence of 468 

landslides are diverse. Some non-landslide sampling range constraint methods, such as the low-slope method, 469 

cannot select non-landslide samples with different geological conditions. Therefore, it may limit the 470 

improvement of modelling accuracy. LR model produces an initial susceptibility map, and non-landslide 471 

samples are only selected from the Very Low susceptibility areas. This method can effectively avoid the mis-472 

selection of samples in landslide-prone areas and keep the diversity of non-landslide sample characteristics. 473 

In general, our proposed non-landslide sampling method is conducive to improving LSM performance and 474 

can be applied worldwide.  475 

6 Conclusion 476 

 Our detailed analysis is based on two single models (CART and MLP) and four coupling models 477 

(CART-Bagging, CART-Boosting, MLP-Bagging, and MLP-Boosting) to study the landslide susceptibility 478 

map using two kinds of non-landslide samples. We quantitatively analyze the relationship between landslide 479 

spatial development and each causal factor. We have considered twelve controlling parameters as inputs for 480 

LSM after multi-collinearity analysis. We found that the altitude (<240 m) and distance to rivers (<300 m) 481 

emerged as important factors for the cause of landslides in the study area. Their information values are the 482 

highest at 1.49 and 0.92, respectively. LR-MLP-Boosting achieves the highest prediction accuracy with an 483 

AUC of 0.985. The accuracy of the comparison indicates that MLP performs better than CART. The coupling 484 

models outperform the corresponding single models and Boosting algorithm performs better than the 485 

Bagging algorithm. High-quality non-landslide samples enhance the accuracy of LSM. They can be 486 

effectively obtained by using the LR model to constrain its selection range. The non-landslide samples 487 

selected from the low susceptibility area are of higher quality than those selected from the entire landslide-488 
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free area. LR is a reliable method to generate a preliminary susceptibility map to determine the Very Low 489 

susceptibility area. The results will be of great help to the community and to the scientists to monitor the 490 

susceptible locations and to get an early information about the occurrence of landslide event to minimize loss 491 

of life and damages. 492 
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