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Abstract. Additive logistic regression models for lightning
(ARlig) and large hail (ARhail) were developed using convec-
tive parameters from the ERA5 reanalysis, hail reports from
the European Severe Weather Database (ESWD), and light-
ning observations from the Met Office Arrival Time Differ-
ence network (ATDnet). The models yield the probability of
lightning and large hail in a given timeframe over a particular
grid point. To explore the value of this approach to medium-
range forecasting, the models were applied to the European
Centre for Medium Range Weather Forecasts (ECMWF) re-
forecasts to reconstruct probabilistic lightning and large hail
forecasts for 11 ensemble members, from 2008 to 2019 and
for lead times up to 228 h. The lightning and large hail mod-
els were based on different predictor parameters: most un-
stable convective available potential energy (CAPE), 925–
500 hPa bulk shear, mixed layer mixing ratio, wet bulb zero
height (for large hail), most unstable lifted index, mean rel-
ative humidity between 850 and 500 hPa, 1 hourly accu-
mulated convective precipitation and specific humidity at
925 hPa (for lightning). First, we compared the lightning and
hail ensemble forecasts for different lead times with observed
lightning and hail focusing on a recent hail outbreak. Second,
we evaluated the predictive skill of the model as a function of
forecast lead time using the area under the ROC curve (AUC)
as a validation score. This analysis showed that ARhail has a
very high predictive skill (AUC > 0.95) for a lead time up to
60 h. ARhail retains a high predictive skill even for extended
forecasts (AUC= 0.86 at 180 h lead time). Although ARlig
exhibits a lower predictive skill than ARhail, lightning fore-
casts are also skilful both in the short term (AUC= 0.92 at

60 h) and in the medium range (AUC= 0.82 at 180 h). Fi-
nally, we compared the performance of the 4-dimensional
hail model with that of composite parameters such as the sig-
nificant hail parameter (SHP) or the product of CAPE and
the 925–500 hPa bulk shear (CAPESHEAR). Results show
that ARhail outperforms CAPESHEAR at all lead times and
SHP at short-to-medium lead times. These findings suggests
that the combination of additive logistic regression models
and ECMWF ensemble forecasts can create highly skilful
medium-range hail and lightning forecasts for Europe.

1 Introduction

Lightning and large hail are responsible every year for large
societal and economic impacts in Europe. While hail is
mostly responsible for high economic losses with single
events causing more than USD 1 billion in damage (Púčik
et al., 2019), lightning is responsible for hundreds of in-
juries and an average of 64 fatalities per year in Europe only
(Kühne et al., 2023). Such extensive economic and societal
impacts have sparked research on different aspects of these
events ranging from the development of climatologies (hail:
Cintineo et al., 2012; Cecil and Blankenship, 2012; Bang
and Cecil, 2019; Púčik et al., 2019; Taszarek et al., 2020a;
Fluck et al., 2021; Murillo et al., 2021, lightning: Feudale et
al., 2013; Wapler, 2013; Taszarek et al., 2019; Enno et al.,
2020), to nowcasting (hail: Ryzhkov et al., 2013; Ortega et
al., 2016; Nisi et al., 2020; Schmidt, 2020, lightning: Mosta-
jabi et al., 2019; Cintineo et al., 2022; Leinonen et al., 2022)

1



2 F. Battaglioli et al.,: Forecasting large hail and lightning

and forecasting (hail: Jewell and Brimelow, 2009; Adams-
Selin and Ziegler, 2016; Czernecki et al., 2019; Allen et al.,
2020, lightning: McCaul et al., 2009; Zepka et al., 2014;
Dafis et al., 2018; Geng et al., 2021). Lightning can be fore-
casted based on the pre-convective environment using the
ingredient-based methodology (Johns and Doswell, 1992)
of deep-moist convection for which convective storms re-
quire three ingredients to form: conditional instability, mois-
ture and lift. Although all convective storms require these
three ingredients, not all of them produce lightning. Van Den
Broeke et al. (2005) found that sufficient instability must ex-
ist in the lower mixed phase region of the cloud for lightning
to occur. Their findings have been used to create a physical-
based parameter for lightning prediction at the Storm Predic-
tion Center (Bright et al., 2005). Westermayer et al. (2017)
have found that the relative frequency of lightning increases
as convective available potential energy (CAPE) grows be-
tween 0 and 200 J kg−1, levelling off after that. The fre-
quency only increases further once the mid-tropospheric rel-
ative humidity increases and/or Convective Inhibition (CIN)
decreases. Another approach to lightning forecasting is us-
ing explicit simulations of a thunderstorm updraft and its
microphysics. This is the case for the lightning potential in-
dex (LPI) developed by Yair et al. (2010) and applied in a
number of convection-allowing models (Lagasio et al., 2017;
Brisson et al., 2021; Uhlířová et al., 2022). For global, lower-
resolution models, a combination of pre-convective environ-
ment and cloud properties have been used to parameterize
lightning (Lopez, 2016). Hail forecasting techniques have
been widely explored in the United States both with the de-
velopment of hail models based on the explicit simulation
of hail growth mechanisms in a thunderstorm, e.g. HAIL-
CAST (Brimelow et al., 2002; Jewell and Brimelow, 2009;
Adams-Selin and Ziegler, 2016), but also with the use of
convection-allowing models (Gallo et al., 2016, 2018) and
convection-allowing ensembles (Loken et al., 2020). In Eu-
rope, hail research has mostly concentrated on (semi-) au-
tomatic nowcasting techniques using radar data (Martius et
al., 2015). Although successful medium-range hail forecasts
can mitigate the impacts of hail and have been shown to be
skilful in the United States (Lepore et al., 2017, 2018), little
attention has been given to the development of specific prod-
ucts for medium-range hail forecasting in Europe. At such
lead times, convection-allowing models are not available, but
an ingredients-based approach (Doswell et al., 1996) can be
used, whereby forecasters look for the simultaneous pres-
ence of prerequisites needed to sustain hailstorms, such as
instability, moisture, lift, and a minimum amount of wind
shear. Composite parameters such as the large hail parame-
ter (LHP; Johnson and Sugden, 2014), the supercell compos-
ite parameter (SCP; Thompson et al., 2004) and the signif-
icant hail parameter (SHP; http://www.spc.noaa.gov/exper/
mesoanalysis/help/help_sigh.html, last access: 22 Febru-
ary 2023) can help by combining several ingredients into one
number describing whether the environmental conditions are

supportive for large hail and can be used for medium-range
forecasting. SHP calculated from the Global Ensemble Fore-
cast System (GEFS) yielded skilful probabilistic hail fore-
casts up to 12 d in advance in the United States (Gensini and
Tippett, 2019). Although composite parameters such as SHP
perform well across the United States, climatologies based
on them perform worse across regions where the parameter
has not been specifically developed (e.g. Europe, as found
by Taszarek et al., 2020b). Battaglioli et al. (2023) showed
that the additive logistic regression models (AR-CHaMo) for
large hail occurrence have a better predictive skill than SHP
and can result in a more realistic climatological distribution
of hail occurrence across Europe. Building upon these find-
ings, in this study we leverage an ensemble approach in con-
junction with the lightning and hail models from Battaglioli
et al. (2023) to yield probabilistic lightning and hail forecasts
with the ultimate goal of improving medium-range forecast-
ing of these hazards in Europe.

2 Data

2.1 AR-CHaMo lightning and hail models

The AR-CHaMo models were developed by Rädler et
al. (2018) and improved by Battaglioli et al. (2023). The
models were trained using lightning observations from the
Arrival Time Difference Network (ATDNet, Anderson and
Klugmann 2014; Enno et al., 2020), hail reports from the
European Severe Weather Database (ESWD; Dotzek et al.,
2009; Groenemeijer et al., 2017) and convective parameters
from the ERA5 reanalysis (Hersbach et al., 2020). The model
training area for large hail was limited to Central Europe
(Fig. 1a) where the reporting of severe weather in the ESWD
is the highest (Groenemeijer and Kühne, 2014; Taszarek et
al., 2020a). This was done to limit sampling of situations in
our training dataset that could have affected the model de-
velopment, namely when hail occurred but was not reported
to the ESWD. The lightning model training region covered
a much larger area (Fig. 1b) since the detection efficiency of
ATDnet is homogeneous across the European domain. Light-
ning and hail reports were gridded on a 0.25◦× 0.25◦ grid,
the same horizontal resolution of the ERA5 reanalysis. In ad-
dition, the time of reports was rounded down to the nearest
full hour. This allowed us to best sample the pre-convective
environment associated with each lightning observation or
hail report, as done by Rädler et al. (2018) and Taszarek et
al. (2021b). The AR-CHaMo models use logistic regression
to assign a probability of hazard occurrence as a function of
reanalysis-derived predictor parameters. AR-CHaMo sepa-
rately predicts the probability of thunderstorm formation and
the probability of large hail (≥ 2 cm) given that a thunder-
storm formed. The probability of large hail (Phail > 2 cm) is a
product of these two components, as shown in Eq. (1):

Phail > 2 cm = Plightning. ·Phail > 2 cm|lightning (1)

http://www.spc.noaa.gov/exper/mesoanalysis/help/help_sigh.html
http://www.spc.noaa.gov/exper/mesoanalysis/help/help_sigh.html
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Figure 1. Annual mean distribution of lightning (a) and hail ≥ 2 cm (b) for the period 2008–2019. The black squares in (a) and (b) indicate
the training regions for lightning (34.5–63.5◦ N, −9.0–46.0◦W) and hail ≥ 2 cm (45.0–54.0◦ N, 5.0–22.0◦W). Adapted from Battaglioli et
al. (2023).

Table 1. Selected predictor parameters for the original AR-CHaMo
models. Acronyms are explained in Appendix D.

Model Lightning Hail≥ 2 cm

Predictors MU_LI (K) MU500_CAPE-10◦ (J kg−1)
RH_500–850 hPa (%) EFF_MU_BS (m s−1)
1 h Acc. conv. precip. MU MIXR (g kg−1)
(kg m−2)
MU_MIXR (g kg−1) 0◦ height (m)
Land–sea mask

Different predictor parameters from the ERA5 reanalysis
were selected for the lightning and the hail model following
a model selection procedure on the basis of an ingredients-
based approach (Doswell et al., 1996), the deviance ex-
plained (Wood, 2017) and the Bayesian information crite-
rion (BIC, Schwarz, 1978) score. Out of 172 available pa-
rameters from the ERA5 reanalysis, the model selection pro-
cedure with deviance explained (the higher, the better) and
BIC (the lower, the better) yielded a 5-dimensional lightning
model and a 4-dimensional conditional hail ≥ 2 cm model.
More details on the model selection procedure can be found
in Battaglioli et al. (2023) while the final model predictors
for the lightning and the conditional hail models are listed in
Table 1.

2.2 ECMWF forecast data

Forecast data across Europe were obtained from the
European Centre for Medium Range Weather Forecasts
(ECMWF) reforecasts (Vitart, 2013) for the period 2008–
2019. ECMWF reforecasts used in this study consist of 10
perturbed ensemble members and one control forecast run
every Monday and Thursday. These reforecasts, unlike re-
analysis, always use the operational version of the ECMWF
Integrated Forecasting System (IFS), covering two IFS cy-
cles: 46r1 until 30 June 2020 and 47r1 afterwards. Such
change in IFS cycle is, however, not expected to have caused

discontinuities in the calculation of convective parameters
(e.g. in CAPE) since the convection scheme was not mod-
ified from 46r1 to 47r1. Reforecast data were extracted at a
spatial resolution of 0.2◦× 0.2◦ and 6 hourly temporal res-
olution. The forecast parameters downloaded from refore-
casts were temperature, specific humidity, u and v wind com-
ponents at the 1000, 850, 700 and 500 hPa pressure levels.
They were used to compute convection-related parameters
such as mixing ratio, mid-level relative humidity and 925–
500 hPa bulk shear (deep layer shear). Composite parame-
ters, such as CAPESHEAR (a product of

√
CAPE and deep

layer shear) and SHP were also calculated while CAPE for
the most-unstable parcel (MUCAPE) and convective precip-
itation were obtained directly from the IFS.

2.3 Lightning observations and hail reports

Lightning data from ATDnet were used to verify lightning
forecasts from AR-CHaMo. This network can detect light-
ning flashes even at large distances from a sensor and en-
ables verification of the lightning forecasts across a broad
region covering most of Europe. Data were obtained for the
period 2008–2019, gridded on a 0.2◦× 0.2◦ grid to allow for
direct comparison with ECMWF reforecasts, and organized
as a binary field indicating whether a lightning case occurred
(1= yes, 0= no). A lightning case was defined as a 1 h period
with at least two lightning strikes per grid box. Following
Rädler et al. (2018), single detections were ignored as they
might be isolated measurement errors rather than lightning.
Hail reports were obtained from the ESWD and used to ver-
ify the hail forecasts. As per Rädler et al. (2018), reports with
an excessive time uncertainty (> 1 h) were discarded from
the verification dataset. In total, 10 872 890 lightning obser-
vations and 5493 reports of large hail were considered within
the verification dataset.
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3 Model development and adaptation

The models for lightning and large hail developed by
Battaglioli et al. (2023) were based on the predictors from
the ERA5 reanalysis listed in Table 1. Owing to the lim-
ited vertical resolution of the ECMWF reforecast data, some
of the original AR-CHaMo predictors (e.g. MU500_CAPE-
10◦) could not be calculated using the ECMWF refore-
casts. For this reason, the models were adapted using pre-
dictors as close as possible to their original versions (e.g.
MU_CAPE was chosen instead of MU500_CAPE-10◦). The
models were then trained again using the adapted predic-
tors (shown in Table 2) using ERA5 reanalysis, lightning
and hail observations. The models were not retrained using
the ECMWF reforecasts owing to the nature of the dataset:
reforecasts are initialized only twice a week and the repre-
sentation of the environmental conditions in proximity of a
report is dependent on the forecast lead time (the closer to
the initialization time, the better). By training a single model
for all lead times, if, for instance, two hail reports occurred
on Tuesday at 12:00 UTC and on Wednesday at 18:00 UTC,
it would not be possible to qualitatively compare the envi-
ronmental conditions at these two time steps. This is be-
cause for a forecast initialized on Tuesday at 00:00 UTC,
the environmental conditions associated with the Wednesday
at 18:00 UTC report would be subject to larger uncertainty
due to the larger lead time. The models based on ERA5 as-
sign a probability of hazard occurrence as a function of the
reanalysis-derived predictor parameters listed in Table 2 to
any location in a 0.25◦× 0.25◦ grid and 1 hourly intervals.
Given the different spatial (ERA5: 0.25◦× 0.25◦, ECMWF
reforecast: 0.20◦× 0.20◦) and temporal (1 and 6 h) resolu-
tion between ERA5 and ECMWF reforecasts, the probabili-
ties had to be readapted. To account for the different spatial
resolution of ECMWF reforecasts, the ERA5 Phazard(ERA5)

probabilities were adapted following Eq. (2):

Phazard(ECMWF) = 1− (1−Phazard(ERA5))
AECMWF/AERA5 , (2)

where AECMWF is the area of an ECMWF reforecast grid box
(km2), AERA5 is the area of an ERA5 grid box (km2), and
Phazard(ECMWF) is the adapted probability using an ECMWF
reforecast grid (%).

Given that ECMWF reforecasts are available every 6 h,
lightning and large hail probabilities could be calculated only
at four different hourly time steps during the day (00:00–
01:00, 06:00–07:00, 12:00–13:00, 18:00–19:00 UTC). Us-
ing only four hourly time steps would significantly limit
the amount of large hail reports to work with for veri-
fication. Therefore, probabilities were upscaled to 3 h in-
tervals (00:00–03:00, 06:00–09:00, 12:00–15:00, 18:00–
21:00 UTC) following Eq. (3), based on the assumption that
each hour probability is independent of that in another hour:

Phazard(3 hourly) = 1− (1−Phazard(1 hourly)).
3 (3)

With these adaptations, we applied the AR-CHaMo based
on ERA5 to ECMWF reforecasts yielding 3 hourly ensem-
ble lightning and hail probabilistic forecasts at 0.20◦× 0.20◦

spatial resolution for the period 2008–2019 and for the whole
of Europe.

4 Application of hail and lightning models to a case
study: 15 June 2019

4.1 Ensemble forecasts

We first tested the AR-CHaMo-based lightning and hail fore-
casts on a case study. On 15 June 2019, severe storms with
large hail occurred in eastern Germany, western Poland and
Czechia. More than 20 hail reports were submitted for the
period 12:00–15:00 UTC with several hail reports exceeding
5 cm in diameter. A second region of interest on the day was
south-eastern France where very large hail was also reported
(8 cm near Grenoble). We evaluated the performance of the
ensemble forecasts depending on the lead time by consid-
ering ECMWF reforecasts initialized at three different lead
times (t−12 h, t−108 h and t−180 h) ahead of the event. To
allow for a comparison with hail forecast products from the
US Storm Prediction Centre (SPC), probabilities were up-
scaled using an adapted version of Eq. (2) to yield a prob-
ability of hail ≥ 2 cm occurrence in a radius of 25 miles
of a point, approximately 40 km. For hail forecasts for
15 June 2019 at 12:00 UTC, initialized at 00:00 UTC on the
same day, a strong agreement between all ensemble members
was present in identifying the Germany–Poland–Czechia re-
gion and south-eastern France as the areas with highest hail
potential (Phail > 2 cm > 30 %) (Fig. 2). To compare the AR-
CHaMo forecast with that of existing composite parame-
ters, we produced probabilistic hail forecasts for the same
time step and initialization time based on two 1-dimensional
logistic models trained using SHP (Fig. 3) and CAPES-
HEAR (Fig. 4). The SHP model is in agreement regarding
the Germany–Poland–Czechia and south-eastern France re-
gions, but compared to AR-CHaMo, yields high hail proba-
bilities also across regions where no hail was reported, e.g.
the Balkans and Eastern Europe. The CAPESHEAR model,
on the other hand, identifies well the south-eastern France re-
gion but places the highest probability of hail across northern
Germany and northern Poland away from the highest den-
sity of hail reports to the south. Similarly to the hail fore-
casts, there was a strong agreement in the lightning ones
among the ensemble members at 12 h lead time (Fig. 5). A
high probability of lightning (Plightning > 80 %) was present
across the German–Polish border and south-eastern France.
Between 12:00 and 15:00 UTC, widespread lightning activ-
ity occurred across a broad region extending from north-
ern Germany and Denmark all the way south to southern
Austria, verifying the lightning forecast in these areas. In
addition to these regions, high lightning probabilities were
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Table 2. Chosen predictor parameters for the regression models to be applied to the ECMWF reforecasts. Predictors highlighted with an
asterisk are the ones that have been changed compared to the original ERA5 ones listed in Table 1.

Model Lightning Hail≥ 2 cm

Predictors MU_LI (K)
RH_500–850 hPa (%)
1 h Acc. conv. precip. (kg m−2)
Specific humidity at 925 hPa (g kg−1)∗

MU_CAPE (J kg−1)∗

Deep-layer shear (m s−1)∗

Specific humidity at 925 hPa (g kg−1)∗

Wet bulb zero height (m)

Figure 2. Probabilistic forecast of hail ≥ 2 cm occurrence on 15 June 2019 at 12:00 UTC (initialized on 15 June 2019 at 00:00 UTC) for the
individual ensemble members. Hail reports between 12:00 and 15:00 UTC are shown as triangles (green for hail ≥ 2 cm but ≤ 5 cm, black
for hail ≥ 5 cm) in the top-right panel.

found along a corridor extending from Ukraine into Russia.
Widespread lightning activity was also observed here. An
underestimation of the lightning activity was present across
western Türkiye, where thunderstorms occurred despite low
CAPE (< 100 J kg−1; see sounding in Appendix A).

4.2 Physical interpretation of model forecasts

Forecast soundings and hodographs can show how individ-
ual parameters influenced the probability of lightning or
hail simulated by AR-CHaMo. Two regions, central Ukraine
and central Italy, showed respectively high and low prob-
abilities of lightning (Fig. 6). While moderate buoyancy
(CAPE > 1000 J kg−1) was present in both regions, the main
difference in the two profiles was the mid-level relative hu-
midity, significantly lower in the Italian sounding. Here a
deep, dry layer in the mid-troposphere could have resulted
in dry air entrainment of updrafts that inhibited convec-

tive initiation (Rädler et al., 2018; Poręba et al., 2022).
Although this analysis provides a physical explanation of
the different lightning probabilities, it is important to note
that here we considered vertical profiles from the two de-
terministic runs only, while the profiles of the single en-
semble members could differ significantly, for instance in
the representation of mid-level moisture. The comparison
between hail and lightning forecasts highlights the abil-
ity of the model to distinguish between areas with light-
ning potential and with hail potential. In a region extend-
ing from Romania into Ukraine and Russia, low probabilities
of large hail (Phail > 2 cm < 10 %) were found (Fig. 5) along-
side high lightning probabilities (Plightning > 70 %). On the
other hand, across eastern Germany the probabilities of light-
ning (Plightning > 70 %) and hail (Phail > 2 cm > 25 %) were
both relatively high. While high CAPE was present both
across Ukraine and eastern Germany, the deep-layer shear
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Figure 3. Probabilistic ensemble forecast of hail occurrence based on a 1-dimensional logistic SHP model for 15 June 2019 at 12:00 UTC
(initialized on 15 June 2019 at 00:00 UTC). Hail reports between 12:00 and 15:00 UTC are shown as triangles (green for hail ≥ 2 cm but
≤ 5 cm, black for hail ≥ 5 cm) in the top-right panel.

Figure 4. Probabilistic ensemble forecast of hail occurrence based on a 1-dimensional logistic CAPESHEAR model for 15 June 2019 at
12:00 UTC (initialized on 15 June 2019 at 00:00 UTC). Hail reports between 12:00 and 15:00 UTC are shown respectively as triangles
(green for hail ≥ 2 cm but ≤ 5 cm, black for hail ≥ 5 cm) in the top-right panel.



F. Battaglioli et al.,: Forecasting large hail and lightning 7

Figure 5. Probabilistic forecast of lightning occurrence on 15 June 2019 at 12:00 UTC (initialized on 15 June 2019 at 00:00 UTC) for the
individual ensemble members. Lightning observations between 12:00 and 15:00 UTC are shown as orange dots in the top-right panel.

Figure 6. Ensemble mean probabilistic forecast of lightning occurrence on 15 June 2019 at 12:00 UTC (initialized on 15 June 2019 at
00:00 UTC). Forecast soundings from the ECMWF deterministic run are shown for two locations: central Ukraine and central Italy. Corre-
sponding CAPE and relative humidity between 500 and 850 hPa (RH500–850) values are also shown. Hodographs are plotted in red (0–1 km),
yellow (1–3 km), green (3–6 km) and blue (6–10 km) for the respective height intervals.
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Figure 7. Ensemble mean probabilistic forecast of hail ≥ 2 cm occurrence on 15 June 2019 at 12:00 UTC (initialized on 15 June 2019 at
00:00 UTC). Forecast sounding from the ECMWF deterministic run are shown for two locations: eastern Germany and central Ukraine.
Corresponding CAPE and deep-layer shear are also shown. Hodographs are plotted in red (0–1 km), yellow (1–3 km), green (3–6 km) and
blue (6–10 km) for the respective height intervals.

was much stronger over Germany (Fig. 7). Stronger shear is
associated with a higher likelihood of large hail, because it
promotes storm organization (Thompson et al., 2012; John-
son and Sugden, 2014; Púčik et al., 2015; Taszarek et al.,
2020b; Kumjian et al., 2021). This was well reflected by AR-
CHaMo that showed a higher hail probability across eastern
Germany in correspondence with the strongest shear.

4.3 Forecast dependence on lead time

We next investigated how lead time affects forecast per-
formance by comparing the hail forecast for 15 June 2019
at 12:00 UTC initialized on 11 June 2019 at 00:00 UTC
(t − 108 h, Fig. 8) with the t − 12 h forecast (Fig. 2). De-
spite the increased lead time, the ensemble members were
still in good agreement regarding the location of the highest
hail probabilities across the German–Polish–Czech area even
4 d in advance. The largest difference compared to the t−12 h
forecast was found across south-eastern France where most
members showed no probability of large hail occurrence.

The reason for the large spread in the hail probabilities was
a large spread in the predicted CAPE (Fig. 10), which was
much lower for shorter lead times (Fig. 9). While the t−12 h
forecast highlights a localized spot of high CAPE across
south-eastern France, this region of enhanced buoyancy was
not represented by most members in the t − 108 h forecast.
Forecasts of deep-layer shear (not shown) for the two lead
times did not show differences that might impact the fore-
cast across south-eastern France. As the lead time and spread
among the forecast members increased, the probabilities de-
creased (Fig. 11). A similar dependence on the lead time

was observed for the 1-dimensional logistic models based
on SHP and CAPESHEAR (Appendix B). Despite the in-
creased spread compared to the t−12 h forecast, the t−108 h
hail forecast had a good predictive skill across the German–
Polish–Czech area with a widespread 10 %–15 % probabil-
ity of occurrence, which could be clearly distinguished from
surrounding areas with very low probabilities. The t − 108 h
lightning forecast (Appendix C) was also in good agreement
with the t − 12 h forecast, although lower confidence was
found across Eastern Europe where uncertainty regarding the
location of the initiation boundary existed. The spread in-
creased further in the t − 180 h forecast for both hail and
lightning (Fig. 11). For this case study we showed that the
logistic model applied to the ECMWF reforecasts provided
a skilful forecast at least up to 108 h in advance for both hail
and lightning. The loss of predictive skill from 12 to 108 h
for the hail model was mostly caused by an increasing uncer-
tainty in the CAPE forecast with increasing lead time.

5 Model evaluation

In order to provide a more general evaluation of the skill
of the model not tied to a single case study, the ensem-
ble mean probabilistic forecasts were systematically veri-
fied at four different times during the day (00:00, 06:00,
12:00, and 18:00 UTC) against lightning observations from
ATDnet in the 1 h following the forecast time (00:00–01:00,
06:00–07:00, 12:00–13:00, and 18:00–19:00 UTC) and hail
reports from the ESWD in the 3 h following the forecast
time (00:00–03:00, 06:00–09:00 12:00–15:00, and 18:00–
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Figure 8. As in Fig. 2 but for a forecast initialized on 11 June 2019 at 00:00 UTC.

21:00 UTC). While for lightning the full European domain
was used to verify lightning forecasts owing to the homoge-
neous detection efficiency of ATDnet across the domain, hail
forecasts were only verified against ESWD hail reports in
Central Europe (Fig. 1b). This reduced area was chosen be-
cause of a lack of reports from some regions, such as south-
eastern Europe (Rädler et al., 2018). We used the receiver
operating characteristic (ROC) curves for lead times from 12
to 228 h (at 24 h time steps) to investigate changes in forecast
skill of the lightning and hail models, similarly to Tsonevsky
et al. (2018). The area under the ROC curve (AUC, Wilks,
1995) measures the ability of the hail (lightning) model
to discriminate between hail (lightning) and non-hail (non-
lightning) situations. The AUC scores for the hail model
were higher than the lightning model ones at all lead times
(Fig. 12). The hail model exhibited a very high predictive
skill: AUC > 0.95 for lead times up to 60 h. Although the
predictive skill decreased with increasing lead time, a high
AUC was still found for lead times up to 108 h. A relatively
strong discontinuity in predictive skill was found between
108 (0.920) and 132 h (0.873) and after 180 h. The lightning
model exhibited an almost linear decrease of predictive skill
with increasing lead time. The performance of ARhail was
compared with that of 1-dimensional logistic models trained
using CAPESHEAR and SHP as predictors and the same
training dataset as for ARhail. In Fig. 11, we display the AUC
scores for ARhail and for the models based on the two com-
posite parameters as a function of the forecast lead time. To
quantify the uncertainty in the AUC for the different models,

we performed a 1000-member block bootstrap procedure, as
done by Hamill et al. (2018), which allowed us to determine
the corresponding 95 % confidence intervals (Fig. 13). Com-
paring the AUC scores of the probabilistic forecasts based on
the 1-dimensional CAPESHEAR model and those of ARhail,
we concluded that ARhail outperformed CAPESHEAR at all
lead times. Compared to SHP, ARhail had a higher perfor-
mance at short-to-medium range (up to 60–84 h) while with
increasing lead time the two metrics became comparable in
terms of predictive skill. It is hypothesized that the increase
in the uncertainty of the atmospheric predictors was respon-
sible for the loss of skill with increasing lead time, as shown
for CAPE in Sect. 4.3.

6 Conclusion

We applied AR-CHaMo for lightning and large hail to the
ECMWF reforecasts to develop probabilistic ensemble fore-
casts for the period 2008–2019 across Europe. In a case study
of 15 June 2019, the models provided skilful guidance both
for large hail and lightning up to 108 h. The loss of skill with
increasing lead time was mostly due to increased spread in
CAPE. The predictive skill was quantified in terms of AUC
scores as a function of lead time: at short-to-medium ranges
hail forecasts are highly skilful (≥ 0.95 up to 60 h) and out-
perform all composite indices. The skill decreases progres-
sively, most rapidly after 108 h in lead time. Some limita-
tions of this study must be considered with the interpretation
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Figure 9. Forecast of MUCAPE for 15 June 2019 at 12:00 UTC, initialized at 00:00 UTC on the same day depending on the individual
ensemble members. Lightning and hail reports between 12:00 and 15:00 UTC are also shown respectively as yellow dots and triangles (green
for hail ≥ 2 cm, black for hail ≥ 5 cm).

Figure 10. As in Fig. 9 for a forecast initialized on 11 June 2019 at 00:00 UTC.
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Figure 11. Ensemble mean probabilistic forecast of lightning and hail ≥ 2 cm occurrence for three different lead times (t − 12 h, t − 108 h
and t − 180 h).

Figure 12. Receiver operating characteristic (ROC) curve for (a) the hail ≥ 2 cm and (b) the lightning model for lead times from 12 to 228 h.
Corresponding values of the area under the ROC curve (AUC) are also shown.

of these results. First, the limited vertical resolution of the
ECMWF reforecasts did not allow the exact models devel-
oped using ERA5 to be applied, since some of the original
predictors could not be calculated due to the limited refore-
cast data availability. The atmospheric variables selected as
predictors in place of the ERA5 variables can only approxi-
mate the original predictors and are likely not fully represen-
tative of the models developed using ERA5. It is important to
note that although the original, more skilful, predictors from
ERA5 could not be calculated, the adapted versions still man-

aged to outperform state-of-the-art predictors such as SHP
(at short-to-medium lead times) and CAPESHEAR (at all
lead times). Another limitation is that forecasts were only
available four times a day, at 6 h intervals, due to the limited
temporal resolution of ECMWF reforecasts. Given the con-
vective nature of these events it is likely that some hail events
for verification were missed in the 6 h intervals between each
forecast. To reduce this, forecasts were verified against hail
reports in the 3 h following the forecast time.
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Figure 13. AUC depending on forecast lead time for ARhail,
CAPESHEAR and the significant hail parameter; 1000-member
block bootstrap was performed to estimate 95 % AUC confidence
intervals for each model (shaded).

Finally, although AR-CHaMo produces probabilities for
large hail and lightning, these probabilities are not calibrated.
This implies that the computed probabilities do not necessar-
ily coincide with the observed frequency of the phenomena.

Apart from these limitations, the models give valuable
guidance on the occurrence of these hazards and represent
an improvement compared to state-of-the-art composite pa-
rameters in Europe. Future work will involve the applica-
tion of the full ERA5 models to numerical weather predic-
tion (NWP) to develop hail forecasts operationally and on a
pan-European scale. A significant improvement in predictive
skill is expected with the use of the most skilful predictors
calculated form the ERA5 reanalysis. An extension of this
approach to different convective hazards such as severe con-
vective wind gusts and tornadoes can also be foreseen.

Appendix A: ECMWF forecast sounding for
15 June 2019 at 12:00 UTC (initialized at 00:00 UTC)
across central Türkiye

Figure A1. Ensemble mean probabilistic forecast of lightning occurrence on 15 June 2019 at 12:00 UTC (initialized at 00:00 UTC). The
forecast sounding from the ECMWF deterministic run is shown for central Türkiye. The corresponding CAPE and relative humidity between
500 and 850 hPa (RH500–850) are also shown.
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Appendix B: Lightning and hail forecasts based on SHP
and CAPESHEAR

Figure B1. Probabilistic ensemble forecast of hail occurrence based on a 1-dimensional logistic SHP model for 15 June 2019 at 12:00 UTC
(initialized on 11 June 2019 at 00:00 UTC). Hail reports between 12:00 and 15:00 UTC are shown as triangles (green for hail ≥ 2 cm but
≤ 5 cm, black for hail ≥ 5 cm) in the top-right panel.

Figure B2. As in B1 but for initialization on the 8 June 2019 at 00:00 UTC.
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Figure B3. Probabilistic ensemble forecast of hail occurrence based on a 1-dimensional logistic CAPESHEAR model for 15 June 2019 at
12:00 UTC (initialized on 11 June 2019 at 00:00 UTC). Hail reports between 12:00 and 15:00 UTC are shown respectively as triangles (green
for hail ≥ 2 cm but ≤ 5 cm, black for hail ≥ 5 cm) in the top-right panel.

Figure B4. As in B3 but for initialization on 8 June 2019 at 00:00 UTC.
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Appendix C: Additional lightning and hail forecasts for
15 June 2019 at 12:00 UTC

Figure C1. Probabilistic forecast of hail occurrence on 15 June 2019 at 12:00 UTC (initialized on 8 June 2019 at 00:00 UTC) for the
different ensemble members. Hail reports between 12:00 and 15:00 UTC are shown as triangles (green for hail ≥ 2 cm but ≤ 5 cm, black for
hail ≥ 5 cm) in the top-right panel.

Figure C2. Probabilistic forecast of lightning occurrence on 15 June 2019 at 12:00 UTC (initialized on 11 June 2019 at 00:00 UTC) for the
different ensemble members. Lightning observations between 12:00 and 15:00 UTC are shown as yellow dots in the top-right panel.
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Figure C3. As in C2 but for initialization on 8 June 2019 at 00:00 UTC.

Appendix D: Acronyms of model predictors

Table D1. Acronyms for parameters from ERA5 reanalysis used in AR-CHaMo.

Acronym Definition

MU_LI Most unstable lifted index
RH_500–850 hPa Mean relative humidity between 500 and 850 hPa
1 h Acc. conv. precip. 1 h Accumulated convective precipitation
MU_MIXR Most unstable mixing ratio
MU500_CAPE-10◦ Most unstable CAPE (for a parcel originating above 500 m above ground level)

released above the −10 ◦C isotherm
EFF_MU_BS Effective most unstable bulk shear
MU_CAPE Most unstable CAPE
Deep-layer shear Bulk wind difference between 925 and 500 hPa

Code availability. Code for computing the probabilistic fore-
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