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Abstract 16 

Central Asia is an area characterized by complex tectonics and active deformation; the related seismic activity 17 

controls the earthquake hazard level that, due to the occurrence of secondary and tertiary effects, has also direct 18 

implications on the hazard related to mass movements as landslides, which are responsible for an extensive number 19 

of casualties every year. Climatically, this region is characterized by strong rainfall gradient contrasts, due to the 20 

diversity of climate and vegetation zones. The region is drained by large, partly snow- and glacier-fed rivers, that 21 

cross or terminate in arid forelands; therefore, it is affected also by a significant river flood hazard, mainly in spring 22 

and summer seasons. The challenge posed by the combination of different hazards can only be tackled considering 23 

a multi-hazard approach harmonized among the different countries, in agreement with the requirements of the 24 

Sendai Framework for Disaster Risk Reduction. This work was carried out within the framework of the SFRARR 25 

Project (“Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia”) as a part of a 26 

multi-hazard approach, and is focused on the first landslide susceptibility analysis at a regional scale for Central 27 

Asia. To this aim the most detailed landslide inventories, covering both national and transboundary territories were 28 

implemented in a Random Forest model, together with several independent variables. The proposed approach 29 

represents an innovation in terms of resolution (from 30 to 70 m) and extension of the analysed area with respect 30 

to previous regional landslide susceptibility and hazard zonation models applied in Central Asia. The final aim 31 

was to provide a useful tool for land use-planning and risk reduction strategies to landslide scientists, practitioners, 32 

and administrators.  33 

1. Introduction 34 
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During the two decades spanning between 1988 and 2007, according to observed estimates, out of 177 reported 60 

disasters in Central Asia 13% were landslides, causing 700 deaths (Table 1Table 1), while in the same period 61 

economic losses have been as high as $150 million, including damage to infrastructures, settlings and 62 

agricultural/pasture lands, as well as displacement of the population (GFDRR, 2009). More recent modelled 63 

estimates show that in the Central Asia states an annual average of 3 million persons are affected by earthquakes 64 

and floods, with an estimated annual average GDP of 9 billion USD (GFDRR, 2016). 65 

Table 1: Observed landslide hazard statistics (1988-2007). Source: Risk assessment for Central Asia and 66 

Caucasus (UN ISDR, 2009). 67 

Country No. disasters/year Total no. of deaths Deaths/year 
Relative vulnerability 

(deaths/year/million) 

Kazakhstan 0.05 48 2.40 0.16 

Kyrgyz 

Republic 
0.30 238 11.90 2.27 

Tajikistan 0.50 339 16.95 2.51 

Turkmenistan n.a. n.a. n.a. n.a. 

Uzbekistan 0.15 75 3.75 0.14 

 68 

Due to their large size and impact, most of the occurring landslides have profound transboundary implications. 69 

Tajikistan and Kyrgyz Republic are the countries most impacted by landslides: in Tajikistan around 50000 70 

landslide were mapped, 1,200 of which threaten settlements or facilities (Thurman, 2011), while Kyrgyz Republic 71 

has been affected by 5,000 landslides, of which 3,500 at various levels of activity are located in the southern 72 

portion of the country (the Fergana Valley area) (Pusch, 2004; Li et al., 2021). Only in Kyrgyz Republic, up to 73 

2017, 784 landslides and 1658 mudflows (also including loess flows) and flash floods caused 352 victims 74 

(Kalmetieva et al., 2009; Havenith et al., 2015a; 2017). Almaty province in Kazakhstan, Tashkent, Samarkand, 75 

Surkhandarya, Kashkadarya Provinces of Uzbekistan, and Ahal Province of Turkmenistan are also exposed to 76 

landslides (World Bank, 2006). Given the increased anthropogenic pressures and the impact of climate change, 77 

since the early ‘90s several projects have tried to improve the knowledge on landslide hazard (Thurman, 2011), 78 

by providing landslide losses estimations, location, type, triggering/reactivation dates, inventories and hazard/risk 79 

maps, as well as platforms to retrieve open disaster risk data and overviews on landslide risk reduction strategies. 80 

Amongst the regional studies on landslide hazard, providing descriptions, statistics, and inventory maps, it is worth 81 

mentioning: 82 

• Disaster Risk Management and Climate Change Adaptation in Europe and Central Asia, developed by the 83 

World Bank - Global Facility for Disaster Reduction and Recovery (Pollner et al., 2010). 84 
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• Disaster Risk Reduction, 20 Examples of Good Practice from Central Asia, developed by the European Union, 85 

International Strategy for Disaster Reduction ISDR (European Commission Humanitarian Aid, Civil 86 

Protection, 2006). 87 

• Science for Peace Project (983289) ‘Prevention of landslide dam disasters in the Tien Shan, LADATSHA’. 88 

2009–2012, NATO Emerging Security Challenges Division. 89 

• PROGRESS (Potsdam Research Cluster for Georisk Analysis, Environmental Change and Sustainability). 90 

German Federal Ministry of Research and Technology (BMBF).  91 

• Tian Shan-Pamir Monitoring Program (TIPTIMON). German Federal Ministry of Education and Research 92 

(BMBF). 93 

• M126 IPL Project (funded by the International Consortium on Landslides): M2002111 Detailed study of the 94 

internal structure of large rockslide dams in the Tien Shan; M2004126 Compilation of landslide/rockslide 95 

inventory of the Tien Shan Mountain System. 96 

Besides the creation of landslide inventories, a common approach to assess landslide hazard is the development of 97 

landslide susceptibility maps (LSMs), which depict the relative probability of occurrence of a given type of 98 

landslide in a given area, without considering the probability of occurrence in time (Brabb, 1984). In other words, 99 

LSMs identify those areas where landslides can occur, based on their geological, morphological, and climatic 100 

characteristics. These maps have been extensively used as useful tools for land planning (Cascini 2008; Frattini et 101 

al., 2010) and hazard assessment (Corominas et al., 2003). More recently, they have been successfully integrated 102 

also in quantitative risk assessment (Chen et al., 2016), and early warning systems (Segoni et al., 2018: Tiranti et 103 

al., 2019). LSMs have been produced by applying a wide range of mathematical techniques, from the most 104 

traditional statistic approaches like frequency ratio (Yilmaz, 2009), discriminant analysis (Carrara, 1983; Trigila 105 

et al., 2013) and logistic regression (Lee, 2005; Duman et al., 2006; Manzo et al., 2013), to more recent and more 106 

advanced techniques, like artificial neural network (Tien Bui et al., 2016; Ermini et al., 2005), machine learning 107 

(Catani et al., 2013) and multi criteria decision analysis (Akgun, 2012). Statistical-probabilistic models for 108 

landslide susceptibility can overcome the data gaps and allow to analyse very wide areas (from basin to national 109 

scales), by adopting a homogeneous methodology and a harmonized dataset (including global and local data 110 

sources). However, landslide hazard assessment is a complex process since it needs accurate knowledge of the 111 

topic and appropriate input data (historical inventories, and regional inventories that consist of large prehistoric 112 

events mainly). In this work the landslide susceptibility analysis was carried out by means of the “Random Forest” 113 

machine learning algorithm, which is credited as one of the most advanced and reliable techniques in this field 114 

(Catani et al., 2013, Goetz et al 2015). This work represents the first landslide susceptibility analysis at a regional 115 

scale for Central Asia, and was carried out in the framework of the SFRARR Project (“Strengthening Financial 116 

Resilience and Accelerating Risk Reduction in Central Asia”) as a part of a multi-hazard approach (Bazzurro et 117 

al., in prep). The main challenge of this work was the creation of a unique LSM of the whole Central Asia, that 118 

involved the use of a wide range of variables, to account the features of each country, a high volume of input data, 119 

and the development of new approaches to analyse these data and to take into accounts possible discrepancies and 120 

non-homogeneities. The proposed approach represents an innovation in terms of resolution, extension of the 121 

analysed area with respect to previous regional landslide susceptibility and hazard zonation models applied in 122 
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Central Asia (e.g., Nadim et al., 2006; Havenith et al., 2015b; Stanley and Kirshbaum, 2017; Pittore et al., 2018; 123 

World Bank, 2020). For the studied area the landslide susceptibility distribution in the area covered by elements 124 

at risk, such as roads, railways, and buildings, was also assessed (Scaini et al., in prep).  125 

 126 

2. Study area 127 

Geographically, Central Asia is a vast and diverse region including high mountain chains, deserts, and steppes 128 

(Fig. 1). A large portion of the Central Asia countries, especially the southern and eastern parts of the region, are 129 

occupied by the mountainous areas of the Djungaria, Tien Shan, Pamir, Kopetdag, and small part of Western Altaj, 130 

with peaks above 7,000 m a.s.l (Strom, 2010). These intraplate mountain systems formed in the Cenozoic between 131 

the Tarim Basin and the Kazakh Shield, as a result of the India-Asian collision (Molnar and Tapponier 1975, 132 

Abdrakhmatov et al., 1996; 2003; Zubovich et al., 2010, Ullah et al., 2015). This work is focused in the most inner 133 

part of Central Asia, represented by the territories of Turkmenistan, Kazakhstan, Kyrgyz Republic, Uzbekistan, 134 

and Tajikistan. Active mountain building started in the Oligocene (Chedia 1980) or even later (Abdrakhmatov et 135 

al. 1996), forming a complex system of basement folds disrupted by numerous thrusts and reverse faults with 136 

significant amount of lateral offset (Delvaux et al. 2001). Several regional fault zones are aligned along large parts 137 

of the mountain belts, others cross the orogen in a NW-SE direction, e.g., the Talas-Fergana fault, which forms a 138 

distinct boundary between the western and central Tien Shan (Trifonov et al. 1992) (Fig. 2). 139 

 140 

Figure 1. Study area geographical-geomorphological setting. Lakes’ polygons from Schiavina et al., 2022, 141 

while MERIT DEM (Yamazaki et al. 2017) was used as topographic base. 142 

Mountain ridges, formed mainly by palaeozoic crystalline rocks, are separated by wide lenticular or narrow, linear 143 

intermountain depressions, containing Neogene and Quaternary deposits, mainly sandstone, siltstone with gypsum 144 

interbeds, and conglomerates (Strom and Abdrakhmatov, 2017). Mesozoic and Paleogene deposits are typical of 145 



 

5 

 

the foothill areas. Almost every ridge, especially in the Tien Shan, corresponds to a neotectonic anticline, and most 146 

of the main river valleys follow intermontane tectonic depressions, which are linked by narrow deep gorges up to 147 

1-2 km deep (Strom and Abdrakhmatov, 2018). These mountain systems are the sources of most of Central Asia 148 

rivers, which, being fed by glaciers, snowmelt water and rain, have deeply incised valleys.  149 

Such extreme topography along with complex geological structure, active tectonics and high seismicity determine 150 

important landslide predisposing factors, making landslides the third most prevalent natural hazard in Central Asia, 151 

following earthquakes and floods (CAC DRMI, 2009; Havenit et al, 2017). 152 

 153 

Figure 2. Geological map of the study area. Geological formation data from United States Geological Survey 154 

(see Persits et al., 1997 for the legend), including faults from the AFEAD (Active Faults of Eurasia) database 155 

(Styron and Pagani, 2020). 156 

2.1 Landslide types in Central Asia 157 

According to the international Cruden and Varnes 1996 classification, landslides phenomena in Central Asia 158 

include rockslides/rock avalanches, rotational/translational slides and mud/debris flows (often involving loess), 159 

which are triggered by natural events such as earthquakes, floods, rainfall and snowmelt (Behling et al., 2014; 160 

2016; Golovko, 2015; Havenith et al., 2006a,b, 2015a, b; Kalmetieva et al., 2009; Saponaro et al., 2014; 2015; 161 

Strom and Abdrakhmatov, 2017; 2018). Glacial lakes outburst flood phenomena, caused by the breech of natural 162 

glacial dams, often result in large scale catastrophic mud/debris flows. In Central Asia, landslides more often occur 163 

in the loess zone of contact with other rocks, on clay interlayers of the Mesozoic and Cenozoic age, reaching a 164 

volume from tens of thousands up to 15-40 *106m3 (Juliev et al., 2017). Seismically triggered landslides are very 165 

common in tectonically active mountain regions, such as Tien Shan and Pamir (Sternberg et al., 2006; Hong et al., 166 

2007; Juliev et al., 2017). According to the literature background, most of the large mapped mass movements 167 

(especially those with a volume of more than 106 m3) were triggered generally by major (also prehistoric) 168 

earthquakes, possibly in combination with climatic factors, namely snowmelt and heavy rainfall (Havenith et al., 169 
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2003; Strom and Korup, 2006; Strom, 2010; Schlögel et al., 2011; Strom and Abdrakhmatov 2017, 2018; Havenith 170 

et al., 2015a; 2016; Behling et al., 2014; 2016; Piroton et al., 2020). Furthermore, in the past few decades, the 171 

number and intensity of landslides have grown owing to climate change and the increase of the anthropic pressure, 172 

due to several factors such as the uncontrolled land and water use, the rising of the water tables (often induced by 173 

the increase of iIrrigation; Ishihara et al., 1990), mining, and excavation activities (Pollner et al., 2010; Thurman, 174 

2011). 175 

2.2 Large Rockslides and natural dams 176 

Numerous rockslides have occurred in the mountains producing hazardous natural phenomena such as long runout 177 

rock avalanches (Fig. 3) and dammed lakes, more than 100 of which still store water (Strom, 2010). These mainly 178 

involve the Palaeozoic magmatic and metamorphic crystalline bedrock, but also the sandstone and limestone 179 

formations. Although according to Strom, 2010, many of the existing dammed lakes should be considered as stable, 180 

catastrophic outburst floods that occurred in the 20th century, emphasize high potential hazard of landslide natural 181 

blockages. Havenith et al., 2015a report a catalogue of large to giant landslides (having volumes exceeding >107 182 

m3) in the Tien Shan area, showing several information such as location, time of occurrence, volumes, and 183 

thickness. Regarding the volumes of these rockslides, these range from 50*103 m3 to 10 km3 (Strom and Korup, 184 

2006; Strom and Abdrakhmatov, 2018). Many of these phenomena, though not all, were triggered by earthquakes 185 

with M > 6 and have dammed a river valley (some of the dams have been naturally or artificially breached). 186 

 187 

Figure 3. Examples of large rockslide features in Central Asia. Helicopter view of the Usoi landslide scarp, 188 

triggered by the 1911 earthquake, Tajikistan (a) (after Strom, 2010); Khait rock avalanche (b) (after Havenith et 189 

al., 2015a); helicopter view of Ananevo landslides (c) (after Havenith et al., 2015a). 190 

2.3. Landslide in soft rocks and loose deposits  191 

Rotational landslides mostly occur in loose unconsolidated Quaternary deposits, and in soft and semi-hard rock 192 

layers in Mesozoic-Cenozoic sediments, represented mainly by layers of clays, claystones, siltstones, sandstones, 193 
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marls, limestone, gypsum, and conglomerates, with intercalated clays (Roessner et al., 2004; Kalmetieva et al., 194 

2009) (Fig. 4). These phenomena can create river dams, but they rarely are long-living dams, since usually they 195 

are small and their bodies are eroded quickly even if they block a river channel (Strom and Korup, 2006).  196 

The loess landslides occur quite regularly (on a yearly basis) in the regions presenting an almost continuous and 197 

locally very thick (>20 m) cover of this material, generally at mid-mountain altitude (900 –- 2,300 m) and mainly 198 

along the border of the Fergana Basin (Kyrgyz Republic, Uzbekistan, and Tajikistan), and on the southern border 199 

of the Tien Shan in Tajikistan (Fig. 4).  200 

 201 

Figure 4. Examples of landslides in soft rocks-loose deposits. Picture the Kamar landslide (a) and the Beshbulak 202 

landslide (b) (after Niyazov and Nurtaev, 2013). Examples of loess slides and mixed loess—soft landslides in NE 203 

Fergana valley: Kochkor-Ata landslide failure in spring 1994 (c) (after Roessner et al., 2005); Field photo of the 204 

Kainama landslide (d) (after Behling et al., 2016). 205 

Loess flow landslides and debris flows, involving the eluvial slope cover, represent a relevant hazardous 206 

phenomenon in the mountainous regions of Kazakhstan, in the area of Almaty, near the southern border with 207 

Kyrgyz Republic, in the Altai area (Medeu and Blagovechshenskiy, 2016), around the Fergana Basin, all along 208 

the border between Tajikistan and Kyrgyz Republic and around the Tajik Depression. Landslides occurring in 209 

Quaternary loess units of up to 50 meters thick are characterized by very rapid avalanche-like mass movements, 210 

which can reach several meters per second (often represent a combination of rotational slide and dry flow resulting 211 

in long runout zones; World Bank, 2008). Typically, pure loess landslides have a volume of hundreds up to one 212 

million cubic meters and appear as clusters (Roessner et al., 2005). From the recent history it appears that pure (or 213 

quasi-pure) loess slides and flows are particularly dangerous because of their high velocity and long runout which, 214 
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in turn, can generate a great destructive power and more severe disasters than other types of mass movements of 215 

similar size (Havenith et al., 2015a; Behling et al., 2014; 2016). If failure also affects underlying materials (mostly 216 

Mesozoic and Cenozoic soft rocks), the volume of these mixed slides can exceed 10 × 106 m3.  217 

These kinds of landslides are particularly deadly and can be triggered by a combination of long-term slope 218 

destabilization factors (e.g., rainfall and snowmelt) and short-term triggers (e.g., seismic shocks). Even though 219 

earthquake-triggered loess slides and flows are far less frequent than rainfall triggered ones, they caused much 220 

larger disasters in recent history, such as those triggered, respectively, by the July 1949 Khait and the January 1989 221 

Gissar earthquakes. The number of active debris flow basins in Kazakhstan is over 300 with registered cases of 222 

more than 600 debris flows of different genesis (80% of which are represented by heavy rainfall-triggered debris 223 

flows, while the glacial debris flows make up about 15% of the total) (Yaning, C., 1992). 224 

3 Materials and Methods 225 

3.1 Landslide databases 226 

To implement the adopted susceptibility models the largest, most accurate, and updated landslide inventories were 227 

used (Fig. 5). These were compiled by several authors by means of decades of field surveys, remote sensing and 228 

geophysical analysis in the study area.  229 

Hereafter we report their description in detail (Tab. 2): 230 

• The “Tien Shan landslide inventory” (Havenith et al., 2015a): represents the largest inventory in the study 231 

area. Compiled by means of field surveys, remote sensing data interpretation and geophysical surveys, it 232 

comprises the rockslides of the previous inventory together with other smaller landslides in soft sediments 233 

(Havenith et al. 2006a; Schlögel et al., 2011) for a total of 3,462 landslides polygons, also including 234 

information on landslide length and area. 235 

• The “Rockslides and Rock Avalanches of Central Asia” (Strom and Abdrakhmatov, 2018): a large inventory 236 

including 860over 1000 polygons of large-scale (>=1 Mm3) rockslides and rock avalanches, covering central 237 

Asian countries (except for Turkmenistan and Altai) plus Chinese Tien Shan and Pamir, and Afghan 238 

Badakhshan. Compiled in decades of field work and analysis of aerial/satellite imaging, it also comprises 239 

information on landslide morphometric parameters (runout, area), and 126 polygons on possible landslide 240 

bodies, dammed lakes, and head-scarps. Quantitative characteristics (area, volume, runout, etc.) for about 600 241 

cases are provided as well. 242 
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 243 

 244 

Figure 5. Map of the adopted landslide inventory maps. Basemap source: Esri, Maxar, Earthstar Geographics, 245 

and the GIS User Community. 246 

• The “Tien Shan landslide inventory” (Havenith et al., 2015a): represents the largest inventory in the study 247 

area. Compiled by means of field surveys, remote sensing data interpretation and geophysical surveys, it 248 

comprises the rockslides of the previous inventory together with other smaller landslides in soft sediments 249 

(Havenith et al. 2006a; Schlögel et al., 2011) for a total of 3,462 landslides polygons, also including 250 

information on landslide length and area. 251 

• The “Multi-temporal landslide inventory for a study area in Southern Kyrgyz Republic derived from RapidEye 252 

satellite time series data (2009 – 2013)” (Behling et al., 2014; 2016; 2020), is a semi-automated spatiotemporal 253 

landslide inventory for the period from 1986 to 2013, covering a 2,500 km2 in the Fergana valley rim in 254 
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southern Kyrgyz Republic. This inventory includes  2,0521,582 landslide polygons mapped from multi-sensor 255 

optical satellite time series data, together with information on spatiotemporal landslide activity patterns (area 256 

and year of trigger). 257 

• “The EMCA landslide catalogue Central Asia” (Pittore et al., 2018), including 3,12930 points, which covers 258 

mostly western and northern Kyrgyz Republic as well as Tajikistan’'s Region of Republican Subordination. 259 

The catalogue is a summary (point locations) of the documented landslides between 1954 and 2009 260 

(Kalmetieva et al., 2009), which are collected by the Central Asian Institute for Applied Geosciences through 261 

geological surveys (field campaigns) on single sites close to urban areas. 262 

• The “Tajikistan landslide database” provided by the Institute of Water problems, Hydropower, Engineering 263 

and Ecology of Tajikistan (IWPHE), which includes 2,822710 landslide polygons and 114 landslide-prone 264 

areas (with information on length and area). 265 

• The “Uzbekistan landslide inventory” provided by the Institute of Seismology of the Academy of Science of 266 

Uzbekistan (ISASUZ) and the State Monitoring Service of the Republic of Uzbekistan for hazardous 267 

geological processes, which covers the Tashkent province-Gushay provinces, and the Akharangan Valley. It 268 

comprises a 49 point inventory (including location, type, volume, length, and date of triggering; Nyazov R.A. 269 

2020) and a polygon inventory digitized for this project from the maps in Juliev et al., 2017 (including a total 270 

3245 landslide polygons). 271 

• The “Kazakhstan landslide inventory”, provided by the Institute of Seismology Limited Lability Partnership 272 

(LLP) LLP “Institute of Seismology” of the Science Committee of the Republic of Kazakhstan, covering 273 

mainly the Tien Shan area at the border with Kyrgyz Republic, and small part of the western Altai, including 274 

254 point-objects with information on type, area/volume, triggering date.  275 

• Part of the “Global Landslide Catalogue (GLC)” (Kirshbaum et al., 2015), which covers Kyrgyz Republic and 276 

Tajikistan, including 15 landslide point with a description on landslide size/type and triggering date/factor. 277 

The GLC was compiled since 2007 at NASA Goddard Space Flight Centre NASA and considers all types of 278 

mass movements triggered by rainfall, which have been reported in the media, disaster databases, scientific 279 

reports, or other sources.  280 

Table 2. Name of the Landslide Inventory Maps (LIM) of the study area. 281 

LIM name Author 
Covered 

country 

Type of 

element 

N° of 

elements 
Web reference 

Tien Shan 

landslide 

inventory 

Havenith et 

al., 2015a 

Kazakhstan, 

Kyrgyz 

Republic, 

Tajikistan, 

Uzbekistan, 

People’s 

Republic of 

China 

Polygons 3,462 

https://www.sciencedirect.com/science/

article/abs/pii/S0169555X15000665?vi

a%3Dihub 
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Rockslides and 

Rock Avalanches 

of Central Asia 

Strom and 

Abdrakhmato

v, 2018 

Kazakhstan, 

Kyrgyz 

Republic, 

Tajikistan, 

Uzbekistan, 

Afghanistan

, People’s 

Republic of 

China 

Polygons 986 

https://www.sciencedirect.com/book/97

80128032046/rockslides-and-rock-

avalanches-of-central-asia 

Multi-temporal 

landslide 

inventory for a 

study area in 

Southern Kyrgyz 

Republic derived 

from RapidEye 

satellite time 

series data (2009 

– 2013) 

Behling et al., 

2014; 2016; 

2020 

Kyrgyz 

Republic 
Polygons 2,052 

https://dataservices.gfz-

potsdam.de/panmetaworks/showshort.p

hp?id=escidoc:5085890 

The EMCA 

landslide 

catalogue Central 

Asia 

Pittore et al., 

2018 

Kyrgyz 

Republic, 

Tajikistan 

Points 3,129 

https://dataservices.gfz-

potsdam.de/panmetaworks/showshort.p

hp?id=escidoc:3657915 

Tajikistan 

landslide database 

Institute of 

Water 

problems, 

Hydropower, 

Engineering 

and Ecology 

of Tajikistan 

(IWPHE) 

Tajikistan Polygons 2,822 N.A. 

Uzbekistan 

landslide 

inventory 

Institute of 

Seismology of 

the Academy 

of Science of 

Uzbekistan 

(ISASUZ), 

State 

Monitoring 

Service of the 

Republic of 

Uzbekistan 
Polygons/

Points 
375 N.A. 
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Uzbekistan 

for hazardous 

geological 

processes, 

Nyazov R.A. 

2020, Juliev 

et al., 2017 

Kazakhstan 

landslide 

inventory 

Institute of 

Seismology 

Limited 

Lability 

Partnership 

(LLP) 

Kazakhstan, 

Kyrgyz 

Republic 

Points 254 N.A. 

Global Landslide 

Catalogue (GLC) 

Kirshbaum et 

al., 2015 

Kyrgyz 

Republic, 

Tajikistan, 

Uzbekistan 

Points 15 https://svs.gsfc.nasa.gov/4710 

 282 

3.2 Random Forest (RF) model 283 

To generate the landslide susceptibility maps in this work, the Random Forest model (RF) was used. The RF is a 284 

nonparametric and multivariate machine learning technique, which was proposed by Breiman (2001), and first 285 

used in landslide susceptibility analysis by Brenning (2005). Since then, it has rapidly gained widespread 286 

consolidation through many research and case studies, as it is considered a relatively powerful approach in 287 

classification, regression, and unsupervised learning (Lagomarsino et al., 2017). Among the advantages of using 288 

the RF algorithm, there is the possibility of using numerical and categorical variables at the same time, without 289 

assumption on the statistical distribution of their values. Furthermore, RF is acknowledged to be capable of 290 

handling implicitly the multicollinearity of variables, identifying the uninfluential (or the detrimental) ones 291 

(Breiman, 2001; Brenning, 2005). The RF also automatically performs a validation by building a Receiver 292 

Operating Characteristic Curve (ROC Curve) and calculates the relative Area Under the Curve (AUC). AUC is 293 

widely used as a quantitative indicator for the predictive effectiveness of susceptibility models: it can range from 294 

0.5 (completely random predictions) to 1.0. This model, by means of the bootstrapping technique, also calculates 295 

the Out-of-Bag Error (OOBE) for each variable. This parameter measures the relative error that would be 296 

committed if a given variable is excluded from the RF classifier. OOBE can be used to assess the relative 297 

importance of each independent variable, thus representing a powerful tool to interpret the results and to rank the 298 

variables according to their importance (Catani et al., 2013). RF contains a series of binary tree predictors, which 299 

are generated by using a random selection of the input data (the independent variables which in LSM studies, are 300 

a set of physical parameters representing the predisposing factors), in order to split each binary node (yes/no), and 301 

to perform a classification of the target dependent variable (in LSM studies, the presence or absence of landslides). 302 
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Some of the observations are used for internal testing to evaluate the predictive capability of each predictor tree. 303 

This information is used to iterate the procedure hundreds of times by growing other random trees (hence the name 304 

“Random Forest”), and to iteratively adjust the prediction effectiveness. Once the best predictor tree is identified, 305 

it is applied to the whole study area, to define the LSM. Another important key point of RF is that it has a great 306 

predictive performance and runs fast by summarizing many classification trees and this is particularly useful when 307 

dealing with large amounts of data.  308 

3.3. Selection of independent variables 309 

As independent variables, twenty “"basic parameters”" were selected in all 5 countries, based on the available data 310 

and according to the ones most widely adopted in literature (Catani et al., 2013; Reichenbach et al., 2018). Many 311 

of these are DEM-derived products (e.g., elevation, aspect, slope, slope curvature, flow accumulation, Stream 312 

Power Index, Topographic Wetness Index, Topographic Position Index). It must be considered that the resolution 313 

of the susceptibility maps depends on the resolution of the input data. Therefore, it was decided to use pixels 314 

corresponding to the MERIT DEM (Yamazaki et al. 2017) resolution (3”" – ca. 90 m at equator and ca 70 m at 315 

40° latitude). In addition, the DEM itself was used as a reference map, so that the other parameters were processed 316 

to have a perfect overlapping. Therefore, the resulting landslide susceptibility maps will also be perfectly 317 

overlapping to it. The variables such as lithology and soil type were rasterized with this resolution by choosing the 318 

most frequent value in a reference window. The twenty “basic parameters” used are listed below, including a brief 319 

description: 320 

• MERIT DEM and DEM-derived products: Aspect, Slope Gradient, Total Curvature, Profile Curvature, Planar 321 

Curvature, Flow Accumulation, Topographic Wetness Index (TWI), Stream Power Index (SPI), Topographic 322 

Position Index (TPI). 323 

• Lithology, derived from the geological map of the former Soviet Union made by the USGS (Persits et al. 1997).  324 

• Soil type map from the DSMW database (Copernicus land use; https://land.copernicus.eu/). 325 

• Distance from Faults: it is minimum distance, in meters, between each landslide and the nearest fault. The fault 326 

database is derived from the AFEAD catalogue (Styron and Pagani, 2020) and was modified after Poggi et al., 327 

a (in prep.). 328 

• Distance from Roads: it is minimum distance, in meters, between each landslide and the nearest road. The roads 329 

database is derived from Scaini et al., (in prep.). 330 

• Distance from Rivers: it is minimum distance, in meters, between each landslide and the nearest river. The river 331 

network database is derived from Coccia et al., (in prep.). 332 

• Distance from Hypocentres: it is minimum distance, in meters, between each landslide and the nearest 333 

earthquake hypocentre with a magnitude greater than 6.5 (following the methodology adopted by Havenith et 334 

al., 2015a). The Hypocentre database was provided by Poggi et al., a (in prep.). 335 

• Peak Ground Acceleration (PGA): 4 kind of PGA maps according to different return times (475 and 1000 years) 336 

and different materials (soil layers and bedrock) to which it refers were created (Poggi et al. b, in prep). 337 

In addition to these “basic parameters”, in this study it was decided to use five parameters related to the propensity 338 

of the territory to be affected by precipitation (Fig. 6). These parameters were obtained from the ERA5 database 339 

https://lan/


 

14 

 

(www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5). Rainfall distribution maps have been used to 340 

differentiate the study area based on the rain rate and the distribution of anomalous rainfall events, since more 341 

rainy areas are more likely to experiment landslide events than those less rainy. At the same time, a rain event with 342 

a low probability of occurrence can likely trigger a landslide even in less rainy areas, so the probability of some 343 

extreme rainfall events was calculated as well. 344 

 345 

Figure 6. Rainfall maps from the ERA5 database (www.ecmwf.int/en/forecasts/datasets/reanalysis-346 

datasets/era5). (a) rainfall amounts corresponding to 3 standard deviations for 1-day rainfall; (b) rainfall amounts 347 

corresponding to 3 standard deviations for 7-days rainfall; (c) rainfall amounts corresponding to 1.5 standard 348 

deviations for 30-days rainfall; (d) rainfall amounts corresponding to 1.5 standard deviations for 120-days rainfall. 349 

Basemap source: Esri, USGS, NOAA. 350 

These data span from 1981 to 2020, have a 1-hour temporal resolution (summarized to daily resolution for this 351 

work) and a spatial resolution 0.25°. The first parameter is the Mean Annual Precipitation (MAP) map, where, for 352 

each pixel, the mean annual precipitation was calculated (Fig. 6). Other maps (named Sigma maps) have been 353 

calculated by the spatialization of the approach described in Martelloni et al (2011). In detail, for each rain gauge 354 

(represented by the pixels of ERA5 maps in this work) the rain values corresponding to a given standard deviation 355 

for several cumulative intervals are defined (e.g., the rain values corresponding to 2 standard deviations of the 356 

distribution of 3-days cumulative rainfall): 357 

http://(www.ecmw/
http://(www.ecmw/
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• Sigma 1.5 – 120 days: rainfall values corresponding to 1.5 standard deviations of the 120-days cumulative 358 

rainfall They range from 70 mm to 1778.8 mm (Fig. 6a). 359 

• Sigma 1.5 –- 30 days: rainfall values corresponding to 1.5 standard deviations of the 30-days cumulative rainfall. 360 

They range from 0 mm to 563.1 mm (Fig. 6b). 361 

• Sigma 3 –- 1 days: rainfall values corresponding to 3 standard deviations of daily cumulative rainfall. They 362 

range from 0 mm to 62.2 mm (Fig. 6c). 363 

• Sigma 3 –- 7 days: rainfall values corresponding to 3 standard deviations of the 3-days cumulative rainfall. 364 

They range from 0 mm to 271.9 mm (Fig. 6d). 365 

The sigma parameters represent the probability of having a given rainfall amount over a defined time interval. In 366 

this work, four intervals were selected (1, 7, 30 and 120 days) to consider both short and long rain events, that can 367 

lead to the triggering of surficial or deep-seated landslides, respectively. For 1 and 7 days the maps of the rainfall 368 

values corresponding to 3 standard deviations over the mean rainfall were selected, to verify if short and very 369 

intense rainfall (with a very low probability of occurrence) could influence the slope stability in the study area. 370 

Regarding the 30-days and 120-days interval, rainfall values corresponding to 1.5 standard deviation were 371 

calculated, in order to assess the influence of longer and less intense rainfalls over slope stability.  372 

3.4. Model optimization 373 

3.4.1 Independent variables optimization 374 

The LSM was defined using the whole study area, instead of processing each country individually. This choice 375 

allowed to overcome the boundary effects associated with the use of independent countries. In addition, a buffer 376 

of 10 km was considered around the whole area, to avoid deformation due to boundary effects. These choices were 377 

helpful in reducing distortions and improving the quality of the results, but also led to a huge amount of data to be 378 

processed. Since the same resolution of the DEM was used for susceptibility assessment, the whole area was 379 

divided into about 1.07 * 109 cells and for each cell 26 condition factors and 1 dependent variable were defined; 380 

this led to about 2.89 * 1010 data to be processed. In order to reduce the processing time and avoid computational 381 

problems due to the huge amount of data and to the width of the study area, large flat areas were filtered and not 382 

considered in the modelling process, since landslides generally take place along slopes (some exceptions to this 383 

statement in the area are represented by landslide around the flat Caspian Sea area (Pánek et al., 2016)). For 384 

Turkmenistan no landslide database was available, so it was decided to train and test the model only with the other 385 

4 countries, to obtain the best predictor model for the available data. The trained model has then been applied to 386 

the whole study area, including Turkmenistan, to define the LSM.  387 

3.4.2 Landslide Inventory Harmonization 388 

Regarding the dependent variables, the landslides inventory was created by merging the data described in section 389 

3.1. As a result, this landslide dataset was quite heterogenous, hence an initial control and homogenization phase 390 

was necessary. In this framework the landslide data were checked to verify the presence of overlapping polygons 391 

or topological errors, which were removed. Since some landslide inventories were composed solely by points, 392 

these were mapped only as a “landslide points”, a 100 m buffer was created around them, in order to include them 393 

in the model. However, when the points refer to large landslides, which are frequent in the study area, it is possible 394 
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that part of the body of these landslides is still outside the perimeter achieved with the buffer. To avoid classifying 395 

these areas as non-landslide points, it was decided to create an additional buffer of 1 km around points, used as a 396 

mask where the non-landslide points were not to be selected. This process reduced the probability of pixels 397 

misclassification (e.g., landslide points considered as non-landslide points) during the training of the model. All 398 

the points inside the 1-km buffer were only considered during the model application, as well as point from 399 

Turkmenistan. Some landslide-prone areas were also present in the input inventories; since these were not real 400 

landslides but ‘landslide-prone zones’, these areas were not used to train the susceptibility model but were used in 401 

the validation of the results. This optimization procedure, schematized in Fig. 7, allowed to define an input dataset 402 

of 1.08*108 points (along with 27 variables for each point) to be used to define the susceptibility model. 403 

 404 

Figure 7. Workflow describing the landslides database harmonization procedure. In gray: sample points for 405 

RF; pink: landslide points; blue: 100m buffer; yellow: 1km buffer; red: sample points identified as vardip=1; green: 406 

sample points identified as vardip=0; bold black line: landslide body; VarDip=dependent variable. 407 

3.4.3 Trees number optimization 408 

 A further optimization of the model was performed by the evaluation of the out of bag classification error, i.e., 409 

the variation of the misclassification probability with the number of grown classification trees.  410 

The classification error initially reduces with the increasing of classification trees, then it turns to be stable, so the 411 

definition of the optimal number of classification trees is required to avoid the use of an overgrown forest with an 412 

excessive number of trees (hence with high computational load and time) and without any advantage for the model 413 

(Fig. 78). 414 
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 415 

Figure 78. Example of out of bag classification error. The error is stable using 100 or more trees.  416 

3.5. Model training 417 

Once all the data were prepared and organized, the algorithm to create the landslide susceptibility maps was 418 

developed. A crucial step in LSM analysis is the approach used to sample the variables to train and validate the 419 

model. As in any other statistical procedures, the size of the dataset influences the results, therefore the higher the 420 

number of samples to perform the statistical calibration/validation of the model, the more reliable are the obtained 421 

results. To avoid a generalized hazard overestimation, Catani et al. (2013) demonstrated that a random sampling 422 

improves the predictive capability of the map, and that the susceptibility model should also be trained/validated 423 

with respect to information about non-landslide locations. Regarding the proportion between the calibration and 424 

validation dataset samples, it is common practice to split them according to a 70/30 ratio. Therefore, using ESRI 425 

ArcGIS Pro software, all the variables were sampled pixel by pixel, after which, with the Matlab software, from 426 

the total of the sampled points, all the points within a landslide and a same amount of randomly chosen non-427 

landslide points were extracted. This input dataset was divided into two parts, 70% of the data (calibration dataset) 428 

was used for the training phase, and the remaining 30% (validation dataset) for the testing phase. The selection 429 

and division were randomly repeated 5 times, in order to assess the stability of the model to the variation of the 430 

training and testing datasets, hence, to verify the absence of overfitting issues. Each one of these datasets was 431 

created to be equally composed by pixel within a known landslide and pixel outside a landslide. All these data 432 

were then used to train and test the algorithm created to predict the landslide susceptibility of the whole area. The 433 

best predictor model identified in the training phases was then applied to all the available data (also for 434 

Turkmenistan and for the 1-km buffer area around the point-object landslides) for the development of the 435 

susceptibility map on the whole Central Asia area. The results obtained from the application of the aforementioned 436 

methodology are the susceptibility map, the ROC (Receiver Operating Characteristic) curves with their AUC (Area 437 

Under the Curve) values, and the histogram of the importance of variables. ROC and AUC are used to verify the 438 

quality of the landslide susceptibility model, both by graphical and analytical approach. Due to the high volume 439 
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of data, their variety, values, and heterogeneity a specific algorithm was created for this work, that was set to be 440 

able to perform several activities: 441 

• Reading and properly formatting the input data and then dividing them between independent and 442 

dependent variables. 443 

• Automatically and randomly selecting locations associated with landslides or outside landslides to create 444 

the training and test datasets. 445 

• Identifying the best predictor and evaluating its performances by the calculation of the misclassification 446 

probability of the values calculated by the model. 447 

• Evaluating the overall performances of the model by the mean of ROC and AUC. 448 

• Identifying the importance of the parameters in landslide susceptibility. 449 

• Applying the model to the whole study area, calculate the probability of classification (landslide or non-450 

landslide) of each pixel and extraction of the final map in raster format. 451 

The algorithm was set to work in classification mode, e.g., for each pixel a value (1 or 0) is assigned to identify 452 

the presence or absence of a landslides (dependent variable), along with the values of the independent variables. 453 

Using these data, the RF model identifies the best association of independent variables linked to presence or 454 

absence of landslides (landslide susceptibility prediction model). The prediction model is then applied to all the 455 

pixels of the investigated area, and the probability of each pixel to be classified as landslide (or non-landslide) 456 

pixel is evaluated. These probability values are those used to create the landslide susceptibility maps. It must be 457 

noticed that the landslide inventories adopted to train the RF rarely reported the type of landslide, so the LSMs 458 

must be considered not related to a specific type of landslide. 459 

3.6. Model validation 460 

To verify the quality of the susceptibility models, beside the AUC value previously reported, a confusion matrix 461 

for the four countries where the model was trained was created (Fig. 89). In each matrix the predicted landslide 462 

classes are compared with the ground truth to verify the presence of significant misclassification error. In all the 463 

matrix the value 1 represent the presence of landslide, the value 0 represents the absence of landslides; the numbers 464 

in each cell represent the number of pixels classified in that combination of 0 and 1, according to this scheme (the 465 

first number represent the predicted class, the second number the ground truth): 466 

• 0-0 (True negative): pixels outside any landslides are correctly identified as no-landslide pixels by the 467 

model. 468 

• 1-1 (True positive): pixels inside a landslide are correctly identified as landslide pixels by the model. 469 

• 0-1 (False negative): pixels inside a landslide are wrongly identified as no-landslide pixels by the model. 470 

• 1-0 (False positive): pixels outside any landslides are wrongly identified as landslide pixels by the model. 471 
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 472 

Figure 89. Confusion matrix for the four countries where the model was trained. 473 

The 0-0 and 1-1 combinations represent well classified pixels (blue cells in Fig. 8), while 0-1 and 1-0 represent 474 

misclassification error (light red cells in Fig. 8). Since this matrix needs some ground-truth parameters (True 475 

classes), it can be applied only where the presence or absence of landslides is known. For this reason, in this work, 476 

this matrix was calculated considering only the test dataset. A further control of the results was made using the 477 

areas prone to landslides identified in the used landslide inventories. 478 

 479 

3.7. Landslide susceptibility and elements at risk 480 

The susceptibility map of the study area was intersected with the elements at risk, consisting of roads-railways, 481 

population, to analyse the landslide susceptibility distribution in the area covered by elements at risk. The database 482 

of element at risk was provided by Scaini et al., in prep. In order to perform the analysis several approaches were 483 

defined based on the different types of elements at risk. the population and buildings data were based on a grid 484 

with a spatial resolution of 1km2, defining for each cell the number of inhabitants, the number of different types 485 

of buildings (residential, commercial, industrial, education and healthcare), and the mean susceptibility class by 486 

means of spatial statistics between input databases (population-buildings data and susceptibility map). The results 487 

carried out from the spatial statistics allowed to assess the people and buildings distribution within each 488 

susceptibility class. On the contrary, the linear elements (roads and railways) were divided in segments with 1-km 489 

in length, and buffered, setting a distance parameter equal to 100 m. After this preliminary process, the spatial 490 

statistics with the landslide susceptibility have been carried out.  491 

4. Results 492 

4.1 Susceptibility map 493 



 

20 

 

In the map presented in the following Figures 9 10 and 1011, the susceptibility values, ranging from 0 to 1, were 501 

classified into five classes (Table 2Table ). Here the corresponding extension and percentage of the study area are 502 

also reported, showing that the most frequent susceptibility class for the whole study area is the null class (=87.8%; 503 

landslides generally don’t occur in flat areas), followed by low and medium classes. Only the 4% of the central 504 

Asian territory is represented by areas with high and very high landslide susceptibility (Table 2Table ).  505 

 506 

Figure 910. Landslide susceptibility map of Central Asia. Basemap source: Esri, USGS, NOAA. 507 

ha formattato: Tipo di carattere: 10 pt

ha formattato: Tipo di carattere: 10 pt
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 508 

Figure 1011. Detail of the landslide susceptibility map with the overlapping landslide polygons (in black). 509 

On the top left the detailed area with respect to the central Asian territory. Basemap source: Esri, USGS, NOAA. 510 

Table 23. Landslide susceptibility class intervals, corresponding area, and percentage with respect to CA. 511 

Susceptibility class 
Landslide spatial 

probability interval 
Corresponding area (km2) 

Corresponding percentage 

of CA (%) 

Null 0 - 0.05 2,889,481.2 87.8 

Very Low 0.05 - 0.25 94,674.7 2.9 

Low 0.25 - 0.35 85,294.1 2.6 

Medium 0.35 - 0.45 87,528.5 2.7 

High 0.45 - 0.6 99,689.8 3 

Very High 0.6 - 1 31,436.4 1 

 512 

In Fig. 1112, the susceptibility maps of five selected areas are displayed to better show the details result of the 513 

susceptibility assessment, and its comparison with mapped .landslides in different geomorphological contexts of 514 

the study area. From these details it is possible to ascertain the high usefulness of the landslide susceptibility map 515 

realized by applying the Random Forest model, which, mainly based on the hydro-geomorphological properties, 516 

can establish the degree of susceptibility even in areas where there is no awareness of the predisposition to 517 

instability due to the absence of reported landslides.  518 
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In particular: 519 

• Fig. 11a 12a shows the area north of the city of Denau, in the south-east of Uzbekistan, which is characterized 520 

by a high susceptibility, despite the almost total absence of mapped landslides.  521 

• Fig.11b 12b shows a detail of the city of Ura-Tube, in the North-West of Tajikistan, where there are not any 522 

known landslides, but a high susceptibility has been obtained in the surrounding mountain relief.  523 

• In Fig. 11c 12c there is a close-up on the city of Dushanbe, the capital of Tajikistan, where close to roads 524 

and inhabited centres a high landslides susceptibility is observed.  525 

• The shores of Lake Issyk-Kul in the Kyrgyz Republic, shown in Fig. 11d12d, are generally flat areas, with a 526 

low or null landslide susceptibility but in the central zone. 527 

• Finally, Fig. 11e 12e shows a detail of the western area of the Kyrgyz Republic, where a high landslide 528 

susceptibility is observed along the slopes adjacent to the river network. 529 

 530 
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 531 

Figure 1112. Details of the landslide susceptibility map. (a) the city of Denau, Uzbekistan; (b) the city of Ura-532 

Tube, Tajikistan; (c) the city of Dushanbe, Kyrgyz Republic; (d) the Lake Issyk-Kul, Kyrgyz Republic; (e) the 533 

eastern area of the Kyrgyz Republic. Black poligons represent landslide areas from the adopted landslide 534 

inventories. Basemap source: Esri, USGS, NOAA. 535 

4.2 The Fergana valley mountainous rim  536 

The Fergana valley spreads across eastern Uzbekistan, southern Kyrgyz Republic, and northern Tajikistan (Fig. 537 

1213). It is one of the largest intermountain depressions in Central Asia, located between the mountain systems of 538 

the Chatkal-Kuraminsk ranges in the north and the Turkestan--Alai in the south. The two main rivers, the Naryn 539 

and the Kara Darya, flow into the valley and unite forming the Syr Darya. In this area landslides represent one of 540 

the major natural hazards due to their frequent (seasonal) occurrence across large areas: in fact, they are particularly 541 

concentrated in a range of altitudes between 700 and 2000 m along the topographically rising rim below its 542 

transition into higher mountainous terrain (Roessner et al., 2000; 2004; 2005; Behling et al., 2014; 2016). This 543 

region is quite densely populated, and landslides lead almost every year to damage of settlements and infrastructure 544 

and loss of human life (Schloegel et al., 2011; Piroton et al. 2020). In this area landslide activity is caused by 545 

complex interactions between tectonic, geological, geomorphological and hydrometeorological factors (Havenith 546 

et al., 2015a, b). In the Fergana valley rim mass movements are often characterized by deep and steep scarps, 547 

mobilize weakly consolidated sediments of Tertiary or Quaternary age, including loess deposits (Piroton et al., 548 

2020). These kinds of landslides are particularly deadly, and can be triggered by a combination of long-term slope 549 

destabilization factors (e.g., rainfall and snowmelt) and short-term triggers (Danneels et al., 2008). Slope landslide 550 

susceptibility was analysed in this area using the previously mentioned methodologies. Fig. 12 13 shows the 551 

particular about the landslide susceptibility map obtained for the Fergana Valley, while Fig. 13 14 reports the 552 
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histogram of the area occupied by each susceptibility class. It can be observed that the most frequent susceptibility 553 

class in the Fergana Valley area is the Null class, which covers an area of about 20,743 km2, that is 36% of the 554 

valley. The Very Low and Low classes occupy respectively an area of 681 km2 (1.2%) and 5,431 km2 (9.4%). The 555 

Medium class instead extends for about 8,608 km2, namely the 15% of the total. The High class instead extends 556 

for about 16,395 km2, that is 28.5% of the total and finally, the remaining 9.9% of the national territory, that is 557 

about 5,683 km2, is classified in the Very High class. 558 

  559 

Figure 1213. Detail of the landslide susceptibility map obtained for the Fergana Valley. Basemap source: 560 

Esri, USGS, NOAA. 561 
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 562 

Figure 1314. Frequency histogram of susceptibility classes obtained for the Fergana Valley mountainous 563 

rim. On each bar the corresponding area in km2 is reported. 564 

4.3 Trained model performances and conditioning factors relevance 565 

The RF was initially trained setting 1,000 trees to be growth. After the first run, the analysis of the out-of-bag error 566 

revealed that misclassification probability reduced significantly with a forest of 150 trees and then reduced slightly 567 

up to 500 trees, then it turned to be stable, so the optimal number of trees was set equal to 500 and used for all the 568 

simulations. As described above, the model was run 5 times to verify its stability and the AUC values ranged from 569 

0.93103 to 0.93144 (Fig. 1415), with a mean value of 0.93122 and a standard deviation of 0.00015. The low 570 

variance of the AUC values confirmed the stability of the model and its applicability to the whole area. As we can 571 

see in the ranking of the susceptibility parameters, reported in Fig. 1516, soil type, lithology, elevation, the distance 572 

from roads and hypocentres plays a crucial role in landslide susceptibility, since they are the five most influencing 573 

factors (for the four countries where the model was trained). Rainfall parameters are also important in the obtained 574 

landslide susceptibility, in particularly the 1-day rainfall value that shows the highest importance among the 575 

rainfall parameters. Also, the PGA maps are a relevant factor, while TWI and slope curvature are the less important 576 

parameters. The average AUC value of the models is 0.93122, indicating their very good quality. Such high AUC 577 

values can indicate the presence of overfitting issues, but this hypothesis can be discarded, since the random 578 

variable resulted without any importance in landslide susceptibility (negative OOBE value).  579 
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 580 

Figure 1415. ROC curve and relative AUC value for each model run (test samples). 581 

 582 

Figure 1516. Variable importance in landslide susceptibility for the four countries where the model was 583 

trained. From the 5 model runs, the results were averaged and displayed in this image, with the error bars showing 584 

the maximum and the minimum value obtained. 585 



 

27 

 

4.4 Landslide susceptibility and exposed elements  586 

Concerning the outcomes regarding buildings and population, they are represented by Table 3, in which for each 587 

susceptibility class the number of people and the number of different building types are reported, and in the bar 588 

diagram of (Fig. 16). The obtained results about roads and railways are reported in Table 4 and in Fig. 17.  589 

Table 3. Population and buildings distribution in each landslide susceptibility class. 590 

Element at risk  
Landslide susceptibility 

Null Low medium high very high 

Population 68,422,152 3,046,892 1,612,487 2,812,081 97,934 

Residential buildings 8,769,270 319,776 245,754 386.628 12,753 

Commercial buildings 2,196,037 103,745 68,187 68.232 3,410 

Industrial buildings 705,352 14,776 6396 7024 110 

Education buildings 42,472 1802 960 2102 96 

Healthcare buildings 15,476 224 84 226 2 

 591 

 592 

 593 

Figure 16. Percentage of the Element at risk falling within landslide susceptibility classified areas. 594 

 595 

 596 

 597 
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Table 4. Distribution (corresponding km) of road and railway classes in landslide susceptibility classes. 598 

  Null Low Medium High Very High 

R
o

ad
 

C
la

ss
 

Primary 15,000 646 368 873 26 

Secondary 28,773 911 589 1,173 30 

Tertiary 71,515 2,637 1,643 3,898 55 

Trunk 30,058 1,887 686 1,887 77 

Motorway 1,732 / / / / 

R
ai

lw
ay

 

C
la

ss
 High-Speed 45,866 589 317 187 25 

Conventional 128 4 16 12 / 

 599 

 600 

Figure 17. Landslide susceptibility distribution for each transportation class. 601 

5. Discussion 602 

Landslide susceptibility 603 

The main issue affecting the used random forest model is the need of an adequate training dataset to properly 604 

calibrate the predictor model. The first step of the work has been the homogenization of the landslide data, the 605 

used landslide inventory was created starting from different sources, hence, with quite non-homogeneous (e.g., in 606 

some cases the whole landslide perimeter was available, in other cases only a point representing the source area 607 
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of each landslide was provided, without info about the landslide dimension or propagation distance; more in 608 

general there were few or no data about the landslide type or triggering causes). The lack of some data about the 609 

landslides, or the partial or complete lack of landslides as in Kazakhstan and Turkmenistan, could lead to 610 

underestimate the real landslide hazard of the studied countries, since some points could have been wrongly 611 

classified (e.g., they have been considered as no landslide areas, but it was possible that a not reported landslide 612 

was present). Furthermore, not all the adopted landslide inventories included information regarding the landslide 613 

types, leading to the creation of a general landslide susceptibility map, where all the types of landslides are 614 

considered. The created maps have been validated only using the available landslide dataset, providing good results 615 

and highlighting the good prediction capability of the model. Anyway, an in-situ validation in some sample areas 616 

can help to verify the quality of the results. As previously stated, for Turkmenistan there was no landslide inventory 617 

available to train the RF model, therefore the corresponding LSM was obtained applying the model trained for the 618 

other four countries. The lack of landslide data did not allow any validation of the result or estimation of the quality 619 

of the susceptibility map of Turkmenistan. Furthermore, applying the model developed for the other countries, the 620 

same importance of the conditioning factors (e.g., the independent variables) was assumed. For these reasons, the 621 

landslide susceptibility map for Turkmenistan is more uncertain than those evaluated for the other four countries. 622 

Among the used conditioning factors, soil type, distance from roads and distance from hypocentres resulted to be 623 

the most influencing factors in slope stability, while planar curvature resulted with a high variability of its 624 

importance. These parameters have been hence more deeply analysed to understand how they influence landslide 625 

susceptibility. According to the partial dependency plots (Fig. 1817), which show how the values of each 626 

conditioning factor influence the landslide susceptibility, the soil types more related to landslides are lithosols and 627 

cambisols, low thickness soils limited in depth by a continuous coherent and hard rock layer, located in steeply 628 

slopes, with more than 30% of slope gradient. While the classes that have the lowest importance score are fluvisols 629 

(young soils in alluvial deposits), xerosols (mainly arid clay) and chernozems (soils rich in organic matter), each 630 

situated in flat to hilly areas, with less than 30% of slope gradient. Distance from roads, as expected, is important 631 

for low values since the importance score is maximum for distance close to zero and it decrease exponentially with 632 

the increasing of the distance. A similar behaviour can be noted with the distance from hypocentres, meaning that 633 

areas close to hypocentres (within a radius of about 25 km) can more easily experience landslide phenomena in 634 

case of future earthquakes. The partial dependency plot of planar curvature showed that the variability highlighted 635 

in Fig. 16, is in fact, not so relevant since the range of the importance score is quite limited (values ranging from 636 

0.4992 to 0.5008). In addition, it is possible noticing that negative values of planar curvature have a higher 637 

importance score than zero values or positive values, meaning that concave slopes are more prone to landslide 638 

than plain or convex surfaces. 639 

Landslide susceptibility and exposed elements 640 

The integration of susceptibility map with the maps of element al risk and communication router allowed to 641 

identify those elements potentially more prone to landslide hazard, even of with some limitations. The obtained 642 

results are indeed influenced by the input data (the susceptibility maps and the elements at risk databases).  643 
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The buffering procedures on roads and railways could overestimated or underestimated the susceptibility 644 

distribution in some cases, likewise the analysis at 1km2 resolution on population and buildings could led to an 645 

exaggeration in the assessment of elements distribution in each class of landslide susceptibility. 646 

 647 

Figure 1817. Partial dependence plots. 648 

Nevertheless, the adopted approaches represented the only way to obtain an analysis as much accurate as possible 649 

respect to the input databases. In this perspective, the detail of analyses could be improve focusing both on the 650 

refinement of the analysis resolution (e.g., population and buildings) and on the elements at risk that are not located 651 

in flat areas, where the landslide susceptibility is surely 0 or NULL.  652 

6. Conclusions 653 

In this work a new landslide susceptibility assessment of Central Asia was carried out. With respect to previous 654 

works, in this research a unique map was created and with a higher resolution, in order to avoid boundary effects, 655 

to get to more homogeneous and with better resolution results. The used approach allowed also to identify the 656 

most relevant landslides predisposing factors: soil type distance from roads and hypocentres. The size and the 657 

heterogeneity of the study area required the use of many input variables, some of them never used before in 658 

landslide hazard assessment, and the elaboration of a high volume of data, as well as the adoption of some specific 659 

procedure to accounting for the presence of heterogeneities and uncertainties in the input data, as the presence of 660 

point landslides. The comparison with elements at risk and communication routes allowed a better assessment of 661 

landslide hazard in the area, which can be useful to improve the land use management and to reduce the risk. The 662 

main limitation of the work is related to absence of data about type and geometry for several landslides; in the 663 

future a better input landslide inventory could help get to different susceptibility maps for different landslide types. 664 
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Another limitation is due to the absence of any information about the presence or absence of landslides in 665 

Turkmenistan, which did not allow any clear validation of the results for this country. 666 

In this work a new landslide susceptibility assessment of Central Asia was carried out as a part of a multi-hazard 667 

approach in the framework of the SFRARR Project (“Strengthening Financial Resilience and Accelerating Risk 668 

Reduction in Central Asia”). Over 13,000 landslide elements were implemented in a Random Forest model to 669 

create a unique map in order to avoid boundary effects and obtain, a more homogeneous and with higher resolution 670 

susceptibility map with respect to previous works. The used approach allowed also to identify the most relevant 671 

landslides predisposing factors: soil type, distance from roads and hypocentres. The size and the heterogeneity of 672 

the study area required the use of many input variables (some of them never used before in landslide susceptibility 673 

assessment), and the elaboration of a high volume of data, as well as the adoption of specific procedures to account 674 

for the presence of heterogeneities and uncertainties in the input data (such as the presence of polygon and point 675 

landslides). The main limitation of the work is related to absence of data about type and geometry for several 676 

landslides; in the future a better input landslide inventory could help get to different susceptibility maps for 677 

different landslide types. Another limitation is due to the absence of any information about the presence or absence 678 

of landslides in Turkmenistan, which did not allow any clear validation of the results for this country. The results 679 

provide a useful tool for landslide scientists, practitioners, and administrators involved in land use-planning 680 

activities and risk reduction strategies in Central Asia.  681 
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