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Abstract. The mechanical description of the seismic cycle has an energetic analogy in 

terms of statistical physics and the Second Law of Thermodynamics. In this context, an 

earthquake can be considered as a phase transition, where continuous reorganization of 15 

stresses and forces reflects an evolution from equilibrium to non-equilibrium states and 

we can use this analogy to characterize the earthquake hazard of a region. In this study, 

we used 8 years (2007–2014) of high-quality Integrated Plate Boundary Observatory 

Chile (IPOC) seismic data for >100,000 earthquakes in northern Chile to test the theory 

that Shannon entropy, H, is an indicator of the equilibrium state of a seismically active 20 

region. We confirmed increasing H reflects the irreversible transition of a system and is 

linked to the occurrence of large earthquakes. Using variation in H, we could detect major 

earthquakes and their foreshocks and aftershocks, including 2007 𝑀𝑊 7.8 Tocopilla 

earthquake, 2014 𝑀𝑊 8.1 Iquique earthquake, and the 2010 and 2011 Calama 

earthquakes (𝑀𝑊 6.6 and 6.8, respectively). Moreover, we identified possible periodic 25 

seismic behaviour between 80 and 160 km depth. 

 

1 Introduction 

The seismicity of a region contains abundant information that can be used, from different 

points of view, attempting to know when an earthquake is going to occur. In physics, 30 

Entropy is one of the most fascinating, abstract and complex concepts. The present paper 

shows how to use Entropy to characterize the occurrence of earthquakes, i.e. to have a 

characterisation of the seismic hazard in entropic terms. 

It is well known (e.g. Nikulov, 2022) that the second law of thermodynamics postulates 

the existence of irreversible processes in physics: the total entropy of an isolated system 35 

can increase, but cannot decrease. Namely, only those phenomena for which the entropy 

of the universe increases are allowed. Thus, in seismology, it is natural to use entropy to 

find out future states that a region of the Earth’s crust can access from its current state 

(Akopian, 2015). 
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The concept of entropy and its connection to the Second Law of Thermodynamics was 40 

proposed by Clausius in 1865 (Clausius, 1865) and a few years later, Boltzmann realised 

that entropy could be used to connect the microscopic motion of particles to the 

macroscopic world; in his analysis, entropy (S) is proportional to the number of accessible 

micro-states of the system (𝛺) and is expressed by the famous Boltzmann equation: 

𝑆 = 𝑘 ln Ω , (1) 

where 𝑘 is Boltzmann's constant. Ben-Naim (2020) stated that, at first glance, 45 

Boltzmann’s entropy and Clausius’ entropy are absolutely different; however, there is 

complete agreement in calculating changes in entropy using the two methods (up to a 

multiplicative constant). The generalization of Boltzmann’s entropy for systems 

described by other macroscopic variables corresponded to Gibbs (Zupanovic and 

Domagoj, 2018) and can be written as: 50 

𝑆 =  −𝑘 ∑ 𝑝𝑖 log  𝑝𝑖

𝛺

𝑖=1

 , 
(2) 

where 𝑝𝑖 is the probability of the system being in the i-th state. Shannon (1948) and 

Shannon and Weaver (1949) introduced Boltzmann-Gibbs’s entropy concept into 

communication theory and defined the measure of information as: 

𝐼(𝑝) =  ∑ 𝑝𝑖 log  𝑝𝑖

Ω

𝑖=1

 , 
(3) 

where 𝑝 is the distribution of states and 𝑝𝑖 is the relative frequency for each event 𝑖. The 

function 𝐼(𝑝) is called ‘Shannon information’ because it is a measure of knowledge; 55 

therefore, −𝐼(𝑝) denotes a lack of knowledge or ignorance as Majewski (2001) has 

highlighted. Clearly, 𝐼(𝑝) is always negative or zero; as such, it is possible to define the 

‘Shannon information entropy’ (H) as the negative information measure (Ben-Naim, 

2017); that is: 

𝐻(𝑝) =  −𝐼(𝑝) =  − ∑ 𝑝𝑖 𝑙𝑜𝑔  𝑝𝑖

Ω

𝑖=1

 , 
(4) 

which is always positive or zero. In the last equation it has been assumed, for simplicity 60 

(Truffet, 2018), that k = 1, or equivalently, that 𝐻(𝑝) =  − 
𝐼(𝑝)

𝑘
⁄ . Some (relatively) 

recent research carried out in the field of information theory suggests that the above 

expressions can be generalised. Thus, Tsallis (1988) proposed the use of: 

𝑆𝜏 =  
𝑘

𝜏 − 1
 (1 − ∑ 𝑝𝑖

𝜏

Ω

𝑖=1

)  , 
(5) 
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where τ is called the entropic index and can, in principle, be any real number. The standard 

distribution that characterises Boltzmann-Gibbs statistics is a particular case of Tsallis 65 

entropy in the limit of τ = 1. Others generalizations, such as Renyi entropy, can be found 

in the scientific literature (e.g. Majewski and Teisseyre, 1997). 

From the point of view of classical thermodynamics (Varotsos et al., 2011; Vargas et al., 

2015; Sarlis et al., 2018; Vogel et al., 2020; Telesca et al., 2022, Varotsos et al., 2022), 

but also statistical mechanics (Michas et al., 2013; Vallianatos et al., 2015; Papadakis et 70 

al., 2015; Vallianatos et al., 2016; Vallianatos et al., 2018), variation in Entropy has been 

widely used in seismology as an indicator of the evolution of a system (from precursor 

papers such as Rundle et al., 2003 or Sornette and Werner, 2009, to recent ones from 

Posadas et al., 2021, Pasten et al., 2022 or Posadas and Sotolongo, 2023).  

In this paper, we used 8 years (2007–2014) of high-quality Integrated Plate Boundary 75 

Observatory Chile (IPOC) seismic data for >100,000 earthquakes in northern Chile to test 

the theory that Shannon entropy, H, is an indicator of the equilibrium state of a seismically 

active region. Moreover, we will rough out a thermodynamics vision of the seismic cycle 

to characterize the seismic hazard of the northern Chilean seismicity. 

 80 

2 Methods 

2.1 Theoretical framework 

Let us start with a representation of the state of a given seismically active region from the 

distribution of earthquakes with magnitudes M associated with time t; that is, 𝑃(𝑀). Thus, 

entropy, H, postulated by Shannon, which is associated with information flow, can be 85 

reformulated (De Santis et al., 2019) as: 

𝐻 (𝑡) = − ∫ 𝑃(𝑀) ∙ 𝑙𝑜𝑔 (𝑃(𝑀))𝑑𝑀
𝑀𝑚𝑎𝑥

𝑀0

 (6) 

where 𝑀0 is the threshold magnitude (i.e., the magnitude for which the seismic catalogue 

is complete) and 𝑀𝑚𝑎𝑥 is the maximum magnitude up to which earthquakes occur. There 

are two restrictive conditions to solve that integral. First: 

∫ 𝑃(𝑀)𝑑𝑀
𝑀𝑚𝑎𝑥

𝑀0

= 1 (7) 

The second arises from the fact that the average value of all possible magnitudes �̅�, in a 90 

certain period, is: 

�̅� = ∫ 𝑀 ∙ 𝑃(𝑀)𝑑𝑀
𝑀𝑚𝑎𝑥

𝑀0

 (8) 
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The Second Law of Thermodynamics requires that there exists a distribution under which 

H would be at its maximum value while under the two restrictive conditions; that is, the 

spontaneous development of the system from a state of non-equilibrium to a state of 

equilibrium is a process in which entropy increases and the final state of equilibrium 95 

corresponds to the maximum entropy. Thus, the problem can be solved by applying the 

Lagrange multiplier method; to do that, we define the lagrangian ℒ as:  

ℒ (𝑃(𝑀)) = 𝐻(𝑃(𝑀)) −  𝜆1  ∫  𝑃(𝑀)𝑑𝑀
𝑀𝑚𝑎𝑥

𝑀0

 − 𝜆2  ∫ 𝑀 𝑃(𝑀) 𝑑𝑀
𝑀𝑚𝑎𝑥

𝑀0

 (9) 

where 𝜆1 and 𝜆2 are Lagrange’s multipliers; then, it is possible to deduce the probability 

density function in the form (Feng and Luo, 2009): 

𝑃(𝑀) =  
1

�̅�  −  𝑀0

exp (− 
𝑀 −  𝑀0

�̅� − 𝑀0

 ) (10) 

On the other hand, if we have N earthquakes and n denotes the number of earthquakes 100 

with magnitude equal to or larger than M:  

𝑃(𝑀) =  
𝑛

𝑁
 (11) 

then, we match both formulas and take logarithms to get: 

log 𝑛 = log (
𝑁

�̅� − 𝑀0 
) +  

𝑀0  ∙ log(𝑒)

�̅� − 𝑀0

 −  
log(𝑒)

�̅� − 𝑀0

 ∙ 𝑀 (12) 

But, the Gutenberg-Richter relationship (Gutenberg and Richter, 1944) states that the 

distribution of earthquake magnitudes follows an empirical and universal relationship:  

log  𝑛 = 𝑎 − 𝑏𝑀  (13) 

where 𝑛 is the cumulative number of earthquakes with a magnitude equal to or larger than 105 

M, and a and b are real constants that may vary in space and time. Parameter a 

characterises the general level of seismicity in a given area during the study period (i.e., 

the higher the a value, the higher the seismicity), whereas parameter b, which is typically 

close to 1, describes the relative abundance of large to smaller shocks. Now, identifying 

terms from Eqs. 12 and 13, we obtain: 110 
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𝑎 =  𝑙𝑜𝑔 (
𝑁

�̅� − 𝑀0 
) + 

𝑀0  ∙ 𝑙𝑜𝑔(𝑒)

�̅� − 𝑀0

 (14) 

and 

𝑏 =
log(𝑒)

�̅�  −  𝑀0

 (15) 

Hence, the probability density function (Eq. 10) can be rewritten as: 

𝑃(𝑀) =  
𝑏

log (𝑒)
∙  10− 𝑏(𝑀 − 𝑀0) (16) 

and, finally, substituting into Eq. 6, we get (De Santis et al., 2011): 

 𝐻 =  − ∫
𝑏 ∙ 10− 𝑏(𝑀 − 𝑀0)

log(𝑒)

∞

𝑀0

 ∙ log (
𝑏 ∙ 10− 𝑏(𝑀 − 𝑀0)

𝑙𝑜𝑔(𝑒)
) 𝑑𝑀 = 

=  − log(𝑏) + log(𝑒 ∙ 𝑙𝑜𝑔(𝑒)) (17) 

After computing b from the classical Utsu expression (Utsu, 1965): 115 

𝑏 =
log(𝑒)

�̅� − (𝑀0 −
∆𝑀

2 )
  (18) 

where ∆𝑀 is the resolution of magnitude (usually ∆𝑀 = 0.1), the value of entropy can 

be found. 

 

2.2 Methodology 

Our analysis approach included three steps: 120 

1. First, the value of the threshold magnitude (𝑀0) is a critical choice. There are two main 

classes of methods to evaluate 𝑀0: catalogue-based methods (e.g., Amorèse, 2007) and 

network-based methods (e.g., D'Alessandro et al., 2011). We used a catalogue-based 

method because the necessary inputs were available from our dataset. Although some 

studies estimate the value of 𝑀0 by fitting the linear Gutenberg–Richter relationship to 125 

the observed frequency–magnitude distribution (the magnitude at which the lower end of 

the frequency–magnitude distribution departs from the Gutenberg–Richter relationship is 

taken as 𝑀0 (Zúñiga and Wyss, 1995)), several other methods can better determine the 

threshold magnitude. Catalogue-based techniques include day-to-night noise modulation 
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(day/night method) (Rydele and Sacks, 1989), the Entire Magnitude Range (Ogata and 130 

Katsura, 1993), the MAXC technique or Goodness-of-Fit Test (GFT) (Wiemer and Wyss, 

2000), b-value stability (MBS) (Cao and Gao, 2002), and median-based analysis of the 

segment slope (MBASS) (Amorèse, 2007). The MAXC technique is mainly used in 

applied techniques and was chosen here; however, the results do not differ significantly 

among these approaches. 135 

2. Second, the time interval W was determined for the calculation of entropy (equation 

17), using the minimum number of earthquakes to calculate H. The time interval can be 

chosen by defining a cumulative, moving, or overlapping earthquake window. Here, the 

results are presented for a sliding window to avoid the memory effect. It turns out that the 

results are substantially the same regardless of the approach taken. On the whole, the final 140 

window size offered a reasonable compromise between resolution and smoothing. The 

width of the window was chosen by following the approach of De Santis et al. (2011), 

which is based on meaningful values of b. In short, 200 events is the minimum needed to 

perform a robust statistical estimation of b and H. This has been confirmed by previous 

statistical analyses of a and b values (Utsu, 1999). However, larger values of W can be 145 

adopted depending on the relative error when entropy is computed (Posadas et al., 2021); 

this criterion is explained below in the Results section. 

3. Finally, the entropy function was obtained for each time t following Eq. 17. By 

convention, the time attributed to each point of the analyses was the time of the last 

seismic event considered in each window. The occurrence of a large earthquake (or the 150 

accumulation of several important ones) is expected to lead the seismic system to a state 

of greater disorder. Then, any earthquake is an irreversible transition to a new state 

carrying an increase in entropy. Once the major shock is over, entropy returns to stable 

values. 

 155 

3 Data: the northern Chilean seismicity 

The Pacific Ring of Fire, a 40,000 km horseshoe marking the tectonic boundaries of the 

Pacific Ocean (primarily along the boundaries of the Pacific Plate), hosts 90% of Earth’s 

seismic activity and 75% of the active volcanoes. Also known as the Circum-Pacific Belt, 

it extends from Tonga and the New Hebrides islands through Indonesia, the Philippines, 160 

Japan, the Kuril and the Aleutian Islands, to the western coast of North America, before 

ending in the Cordillera de los Andes of South America. Among these regions, the 

Northern Chile Forearc experiences abundant interplate and intraplate earthquakes, 

intermediate and deep earthquakes associated with subduction, and a high tsunami risk 

along coastal areas. Events such as 2007 𝑀𝑊 7.8 Tocopilla earthquake (Delouis et al., 165 

2009), 2010 𝑀𝑊 8.8 Maule megathrust earthquake (Derode et al., 2021), and 2014 

𝑀𝑊 8.1 Iquique earthquake (Cesca et al., 2016) highlight the special relevance of this 

region. As such, monitoring seismic and volcanic activity in northern Chile using dense 

seismic networks (permanent and temporary) to create extensive high-quality seismic 
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catalogues is a priority. To this end, the Integrated Plate Boundary Observatory Chile 170 

(IPOC), established by a network of European and South American institutions, operates 

a wide system of instruments and projects dedicated to the study of earthquakes and 

deformation at the continental margin of Chile (https://www.ipoc-network.org/). The 

network extends from the Peru–Chile border in the north to the city of Antofagasta in the 

south, and from the coast in the west to the high Andes in the east. 175 

 

Table 1. Earthquakes with magnitudes of > 6.5 in the Integrated Plate Boundary Observatory 

Chile (IPOC) catalogue for the period 2007 to 2014. 

Date 

(yyyy/mm/dd) 
Time Latitude Longitude 

Depth 

(km) 
MW Name 

2007/11/14 15:40:50 −22,332 −70,044 49.24 7.8 Tocopilla earthquake 

2007/12/16 08:09:13 −23,298 −70,379 64.22 6.9 

Aftershock of Tocopilla 

earthquake 

2010/03/04 22:39:24 −22,391 −68,572 109.51 6.6 Calama 2010 earthquake 

2011/06/20 16:35:58 −21,894 −68,554 132.84 6.8 Calama 2011 earthquake 

2014/03/16 21:16:28 −19,955 −70,860 17.86 6.6 

Foreshock of Iquique 

earthquake 

2014/04/01 23:46:46 −19,589 −70,940 19.91 8.1 Iquique earthquake 

2014/04/03 02:43:14 −20,595 −70,585 21.96 7.6 

Aftershock of Iquique 

earthquake 

 

In this study, we used high-quality IPOC data from 2007 to 2014 (the period for which 180 

data are publicly available) to test the theory that Shannon entropy (we will use Shannon 

entropy but whatever other such as Tsallis entropy, e.g. Vallianatos et al., 2015, 

Vallianatos et al., 2018, Khordad et al., 2022 or Rastegar et al., 2022 could be adopted) 

represents an indicator of the equilibrium state of a seismically active region (or seismic 

system); we hypothesized that the relationship between increasing entropy and the 185 

occurrence of large earthquakes reflects the irreversible transition of a system. The data 

included records of 101,601 accurately located earthquakes within an epicentral area of 

17ºS–25ºS and 66ºW–72ºW (Figure 1a). A comprehensive study of the dataset can be 

found in Sippl et al. (2018).  
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Figure 1. (a) Seismicity within an epicentral area of 17ºS–25ºS and 66ºW–72ºW between 2007 

and 2014. Data are from the Integrated Plate Boundary Observatory Chile (IPOC) catalogue, 

which contains > 100,000 earthquakes; however, only events with magnitudes of > 4.0 are 

shown here (3,960 events in total). Circle colours denote event magnitudes: yellow = 4.0–4.9, 

cyan = 5.0–5.9, and blue = 6.0–6.9. Earthquakes with magnitudes of > 7.0 include 2007 MW  

7.8 Tocopilla earthquake (magenta star), 2014 MW  8.1 Iquique earthquake (red star), and its 

main aftershock (MW  = 7.6, shown by the red triangle). (b) Gutenberg–Richter relationship. 

Blue circles denote the cumulative number of earthquakes; red triangles denote the non-

cumulative number of earthquakes. Based on the maximum curvature (MAXC) technique 

(Wiemer and Wyss, 2000), M0 = 2.2. (c) Histogram of earthquake depth. Bins have a 10 km 

resolution and three regions can be differentiated: zone A (up to 80 km depth), zone B (80–160 

km depth), and zone C (> 160 km depth). 

 190 

4 Results 

Earthquakes included in the catalog have depths ranging from 0 to 300 km; It is evident 

that the seismic behavior of the shallower part is different from that of the deeper zone 

and so they should be analyzed separately. However, first, we begin with a preliminary 

analysis of the whole catalog to show whether the used technique could recognize 195 

earthquakes of greater magnitude. Subsequently, in a more detailed approach, a second 

analysis will be carried out that takes into account the depths (and, therefore, the different 

physical behaviors associated with seismicity in each region). 
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The seismic catalogue contains 32 earthquakes with magnitudes of 6.0 or greater, 7 of 

which have magnitudes of > 6.5 (Table 1). The two largest earthquakes are the 𝑀𝑊 7.8 200 

Tocopilla earthquake (November 14, 2007) and 𝑀𝑊 8.1 Iquique earthquake (April 1, 

2014). Figure 2 shows a time series of events for earthquakes with magnitudes of > 4.0; 

the number of earthquakes versus time is shown in Figure 3.  

 

 

Figure 2. Magnitude versus time for earthquakes with magnitudes of > 4.0 within an epicentral 

area of 17ºS–25ºS and 66ºW–72ºW. Stars correspond to the earthquakes listed in Table 1, 

including the (1) 2007 MW 7.8 Tocopilla earthquake, (2) 2007 MW 6.9 Tocopilla aftershock, 

(3) 2010 MW 6.6 Calama earthquake, (4) 2011 MW 6.8 Calama earthquake, (5) 

MW 6.6 foreshock of the Iquique earthquake, (6) MW 8.1 Iquique earthquake, and (7) 

MW 7.6 aftershock of the Iquique earthquake. Circles' size increases gradually with magnitude 

and colour, from blue to yellow, highlighting the temporal evolution. 

. 205 

 

Figure 3. Number of daily earthquakes from 2007 to 2014 within an epicentral area of 17ºS–

25ºS and 66ºW–72ºW. The seismic crises associated with the 2007 Mw 7.8 Tocopilla 

earthquake and 2014 Mw 8.1 Iquique earthquakes are clearly distinguished by the two 

prominent peaks. 
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First, the threshold magnitude 𝑀0 is needed; to get it, we used the MAXC technique as 

we have mentioned before. Then, the Gutenberg-Richter relationship was got (Figure 1b) 

and a value of 𝑀0 = 2.2 is found. 

The second step of our method is to determine the width of window W for the windowing 210 

process. Figure 4 shows the relative error of entropy versus window width. The choice of 

W must consider that values of b should be significant. One way to objectify this choice 

of W is to study the relative error when obtaining the entropy. Utsu’s formalism (Utsu 

1965) showed that the uncertainty associated with b value, interpreted as the error in the 

b value determination, is given by: 215 

 

𝜎 =
𝑏

√𝑁
 (19) 

From the expressions 17 and 19, it is easy to get that, for an entropy value H, the error 

margins are: 

∆𝐻 = log (
𝑏 + ∆𝑏

𝑏 − ∆𝑏
) (20) 

Hence, the relative error can be calculated as:  

𝜀 (%) =
100

𝐻
∙ 𝑙𝑜𝑔 (

𝑏 + ∆𝑏

𝑏 − ∆𝑏
) (21) 

 220 

From Figure 4, as the window width increases, the error decreases; when the window 

width is 4,000 earthquakes (blue line), the error is barely 1%. Overall, the relative errors 

of entropy range between 0.5% and 2% for window widths of > 500 cumulative 

earthquakes. From this point of view, the choice of W must be a reasonable compromise 

between calculated errors and the visibility of the results. We ultimately chose a 

window of 𝑊 =  3,000 earthquakes (yellow line), for which the relative error of 

entropy is close to 1% and remains practically constant. 
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Figure 4. Relative error as a function of the given initial window width. For example, the cyan 

line corresponds to an initial window width of W = 500, for which the calculated relative error 

in entropy is 2.7%. 

 

The threshold magnitude and width of the window for the windowing process have been 

set to 𝑀0 = 2.2 and 𝑊 =  3,000, respectively; this reduced the size of the catalogue to 

84,593 events. Finally, the third step is to get Entropy H. The evolution of entropy with 

time from the windowing process is shown in Figure 5. Sudden changes in entropy are 225 

evident and correspond to the times of the largest earthquakes. Levels of change in the 

absolute values of entropy increase with increasing earthquake magnitude. The entropy 

change for the Tocopilla earthquake reached 𝐻 =  0.35, while for the Calama 2010 and 

2011 earthquakes, it barely exceeded 𝐻 =  0.25. For the Iquique earthquake and its large 

foreshock and aftershock, the entropy value reached 𝐻 =  0.45. 230 
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Figure 5. Time series of Shannon entropy, H, with the occurrence times of MW  >

 6.5 earthquakes shown by dashed lines (note that the large foreshock, mainshock, and large 

aftershock of the Iquique earthquake occurred close together in time; as such, only a single 

dashed line is shown). Sudden changes in entropy are clearly identifiable and coincident with 

large earthquakes. 

Chilean seismicity is not only shallow seismicity; in fact, deep abundant earthquakes 

occur as correspond to a subduction region; then, we also investigated entropy variation 

as a function of earthquake type, as defined by depth (Figures 1c and 6), as follows. Zone 

A: intraplate earthquakes characterised by shallow depth (0–80 km) and a tectonic origin. 

Zone B: interplate earthquakes characterised by intermediate depth (80–160 km) and 235 

related to the contact between the two plates. Zone C: slab earthquakes that occur at large 

depths (> 160 km) in the slab of the underlying plate. 

 

Figure 6. Earthquake depth versus longitude for earthquakes with magnitudes of > 2.0. Circle 

colours denote event magnitudes: yellow = 2.0–3.9, cyan = 4.0–4.9, blue = 5.0–5.9, and 

magenta = 6.0–6.9. Red stars denote earthquakes with magnitudes of > 7.0, including the (1) 

2007 MW 7.8 Tocopilla earthquake, (2) 2014 MW 8.1 Iquique earthquake, and (3) 2014 MW 7.6 

aftershock of the Iquique earthquake. 
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The analysis of threshold magnitudes for zones A, B, and C, as well as the calculation of 

window W were as described above for the previous calculation of H (see Figure 7 for 

epicentral maps of the three zones and the computation of 𝑀0 in each). Figure 8 shows 240 

the time series of entropy for each of the three zones. In zone A, sudden changes in 

entropy were coincident with the Tocopilla and Iquique earthquakes. Zones B and C show 

low-amplitude sawtooth fluctuations in entropy (maximum ∆H of ≤ 0.09 vs. ∆H ≈ 0.5 in 

zone A). The entropy variations in zones B and C are negligible compared with those in 

zone A.  245 

In zone B (Figure 8), the 2010 and 2011 Calama earthquakes (MW 6.6 and MW 6.8 events 

on days 1,158 and 1,631, corresponding to April 4, 2010 and June 20, 2011, respectively) 

are clearly identifiable by increases in entropy. Other peaks before and after these 

earthquakes are coincident with either smaller earthquakes or clusters of smaller 

earthquakes (𝑀𝑊 5.5–6.5), including a 𝑀𝑊 6.5 event on March 24, 2008 (day 448); a 250 

group of earthquakes between December 4, 2008 and March 27, 2009 (days 703–816, 

magnitudes of 5.8–6.0), a 𝑀𝑊 5.9 earthquake on August 8, 2012 (day 2,107); a cluster of 

earthquakes between July 10, 2013 and January 7, 2014 (days 2,382–2,563, magnitudes 

of 5.9–6.2); and, two earthquakes on March 31 and August 23, 2014, both with 

magnitudes of 6.2 (days 2,646 and 2,791, respectively).  255 

A visual analysis of figure 8 seems to indicate that there is a periodic behaviour in the 

temporal signal of entropy; Although this behaviour seems evident in zone B, it is not so 

evident in zones A and C. Zone A is associated with a stress loading rate usually not 

uniform in time because, as is well known, the strength of the crust is not constant; Then, 

change in entropy is only appreciated when the two great earthquakes occurred. On the 260 

other hand, zone C, where the most complex physical phenomena occur due to the 

rheological state of the materials, seems to exhibit a half-period in the entropic signal, but 

this must be confirmed in further studies with up-to-date data. The apparent periodicity 

in zone B suggests carrying out a Fourier analysis of the entropic signal. The entropic 

signal is not uniformly sampled in the time domain; for this reason, it was averaged to the 265 

tenth part of the day and, subsequently, an interpolation was made for points with no 

sample. Thus, the resulting entropic signal was uniformly sampled and a fast Fourier 

transform was feasible. 
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Figure 7. Epicentrally represented earthquake activity and non-cumulative and cumulative 

Gutenberg–Richter relationships in zones A–C for earthquakes with magnitudes of > 3.0. (a) 

Zone A (0–80 km), (b), zone C (80–160 km), and (c) zone C (>160 km). Symbol colours denote 

earthquake magnitude: yellow circles = 3.0–3.9, cyan circles = 4.0–4.9, blue circles = 5.0–5.9, 

green triangles = 6.0–6.9, and red stars = > 7.0. Based on the maximum curvature (MAXC) 

technique (Wiemer and Wyss, 2000), M0= 2.2 in zones 𝐴 and B, and 3.2 in zone C. 

 

 270 

The Fourier transform of the entropic signal (Figure 9) revealed that the peaks of the 

predominant amplitude have frequencies of 0.00048 and 0.00119 𝑑𝑎𝑦𝑠−1, 

corresponding to periods of ~2,100 and 840 days, respectively. The 840-day period 

approximately reproduces the sequence of M > 5.5 earthquakes. For instance, 840 days 

after the Tocopilla earthquake (November 14, 2007) was March 3, 2010, which is 1 day 275 

before the 2010 Calama 2010. However, given the relatively short period covered by the 

data (8 years), this Fourier analysis is necessarily preliminary. Further studies with 

observation periods from 2015 until the present are needed to confirm these results. 
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Figure 8. Time series of Shannon entropy, H, within different depth intervals. (a) Zone A 

(earthquakes with depths of 0–80 km), (b) zone B (80–160 km), and (c) zone C (> 160 km). 

The relative change in entropy in zone A is ~0.5 units compared with 0.09 units in zones B and 

C. Lines 1 and 2 in (a) correspond to the 2007 MW 7.8 Tocopilla earthquake and MW 8.1 

Iquique earthquake, respectively; lines 1 to 7 in (b) correspond to the MW 6.5 March 2008 

earthquake, clusters of earthquakes with magnitudes ranging from 5.8 to 6.0 from December 

2008 to March 2009, the 2010 MW 6.6 Calama earthquake, the 2011 MW 6.8 Calama 

earthquake, the 2012 MW 5.9 earthquake, clusters of earthquakes with magnitudes ranging 

from 5.9 to 6.2 from July 2013 to January 201, and the two 2014 MW 6.2 earthquakes. 
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Figure 9. Spectrum for the entropic signal of zone B (80–160 km). The two peak amplitudes have 

frequencies of f1 =  0.00048 day−1 and f2 =  0.00119 days−1, corresponding to periods of 

~2,100 and 840 days, respectively. 

5 Discussion and conclusions 

It is widely accepted that the seismic cycle (or “seismic system”) comprises six main 280 

stages (Figure 10) (Derode et al., 2021; Akopian and Kocharian, 2014). The stages are: 

(1) Over decades or years, small and medium asperities break continuously, resulting in 

a uniform rate of seismicity. (2) Asperities become locked, resulting in stress 

accumulation and decreasing seismic activity. (3) Weeks or days before a mainshock, 

important asperities progressively break along some sections (i.e., the foreshock stage). 285 

(4) Over a scale of hours, accumulated stresses overcome friction and blockages in the 

main asperities, causing the largest magnitude earthquake of the cycle. (5) Stress 

relaxation occurs after the mainshock and is characterised by numerous aftershocks of 

smaller magnitude over several weeks or months; this ceases when new asperities become 

locked. (6) Finally, the system returns to the initial, long-term, state. 290 

In this paper, we have visualized that this mechanical description of the seismic cycle has 

an energetic analogy in terms of statistical physics and the Second Law of 

Thermodynamics. As argued in detail by De Santis et al. (2019), an earthquake can be 

considered as a phase transition, where continuous reorganization of stresses and forces 

reflects an evolution from equilibrium to non-equilibrium states. Therefore, entropy, 295 

which measures the number of accessible states for the present conditions of the systems, 

can be used as an indicator of the evolution of the system (e.g., (Telesca et al., 2004, 

Vogel et al., 2020). Stages 1–3 correspond to increasing stresses and the accumulation of 

seismic energy. During this inter-seismic period, the magnitudes of earthquakes are 

relatively uniform (or ‘ordered’) and entropy is relatively low. When a large earthquake 300 

occurs (stage 4), the rupture process triggers earthquakes with magnitudes of all sizes in 

a chaotic way, evolving to new conditions reaching a wider range of microstates in a 

disordered way, and the entropy increases. Finally, during the post-seismic state (stages 

5 and 6), the system progressively recovers conditions similar to the initial ones. 
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Figure 10. Seismic cycle from a mechanical perspective (i.e., stresses and seismic rate, which 

are shown in blue and red, respectively) and from a thermodynamic perspective (i.e., entropy, 

H, which is shown in grey). (1) Stage 1, the interseismic period, is characterised by 

approximately constant stress, seismic rate, and H. (2) Stage 2, the accumulation period, is 

characterised by modest increases in stress and H, but a modest decrease in seismic rate. (3) 

Stage 3, the foreshocks period, is characterised by increasing stress, seismic rate, and H. (4) 

Stage 4, the coseismic period, is characterised by an abrupt decrease in stress, but increases in 

the seismic rate and H. (5) Stage 5, the postseismic and aftershock period, is characterised by 

decreasing stress (i.e., relaxation), seismic rate, and H (towards the initial value). (6) Stage 6, 

during which the seismic cycle starts again. 

 305 

Increasing entropy, H, from a thermodynamic perspective, is associated with an 

irreversible transition from one state to another on both small (Scholz, 1968) and large 

(e.g., Parsons et al., 2008) scales. Using a high-quality catalogue of seismicity in northern 

Chile, made possible owing to the IPOC network, we confirmed a strong temporal 

correlation between entropy and the occurrence of earthquakes. Using the entropy value, 310 

we could identify all earthquakes with magnitudes of > 6.5 in the catalogue. (i.e., seven 

events from 2007 to 2014, with magnitudes ranging from 6.6 to 8.1) 

However, it is important to note that changes in entropy are detected by analysing the 

entire catalogue; that is, to detect a change in entropy associated with any event, data from 

both before and after the event must be analysed. At present, this limits the use of this 315 

method for seismic prediction. Further study is needed to determine a robust approach for 

predicting how a time series will continue without prior knowledge; that is, to determine 

threshold entropy values and trends that can be used to predict a significant event in the 

immediate future. To achieve this, an absolute scale of entropy will be necessary. 

Time
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1 2
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Earthquakes in zone A (0–80 km depth) tend to be tectonic in origin and have higher 320 

magnitudes than those in zones B and C (i.e., intermediate and deep earthquakes); as such, 

they are of most concern from a risk management perspective. Our results show that the 

entropy changes associated with such events are much stronger when only data from this 

depth interval is considered; variations are of the order of one hundredth in zones B and 

C, but several tenths in zone A. 325 
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