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Abstract: Droughts often lead to cross-sectoral and interconnected socio-economic impacts, affecting human well-being, 15 

ecosystems, and economic development. During extended drought periods, such as the 2018-2022 event in Germany, 

these impacts are amplified due to temporal carry-over effects. Yet, our understanding of drought impact dynamics during 

increasingly frequent multi-year drought periods is still in its infancy. In this study, we analyze the socio-economic 

impacts of the 2018-2022 multi-year drought in Germany and compare them to previous single-year events. Leveraging 

text-mining tools, we derive a dataset covering impacts reported by 260 newspapers on agriculture, forestry, livestock, 20 

waterways, aquaculture, fire, and social impacts spanning 2000 to 2022. We introduce the concept of drought impact 

profiles (DIPs) to describe spatio-temporal patterns of the reported co-occurrences of impacts. We employ a clustering 

algorithm to detect these DIPs and then use sequence mining, visualization techniques statistical tests to analyze spatio-

temporal trends. Our results reveal that the 2018-2022 multi-year drought event had distinct impact patterns compared to 

prior single-year droughts regarding their spatial extent, impact diversity, and prevalent impact types. For the multi-year 25 

drought period, we identify shifts in how impacts have been perceived regionally, especially focusing on legacy and 

cascading effects on forestry and social activities. Also, we show how regional differences in relevant impacts are 

controlled by different land-cover types. Our findings enhance the understanding of the dynamic nature of drought 

impacts, highlighting the potential of text-mining techniques to study drought impact dynamics. The insights gained 

underscore the need for different strategies in managing multi-year droughts compared to single-year events. 30 

1. Introduction 

Droughts challenge human well-being, ecosystems, and economic development worldwide. Their impacts spread across 

multiple socio-economic sectors such as agriculture, livestock, and waterways navigation (Stahl et al., 2016). They can 

occur concomitantly (i.e., compounding) or spread from one economic sector to another (i.e., cascading)  (Erian et al., 

2021; de Brito, 2021; Lawrence et al., 2020; Garrick et al., 2018). For instance, drought-related harvest failures in Russia 35 

https://doi.org/10.5194/nhess-2023-228
Preprint. Discussion started: 21 December 2023
c© Author(s) 2023. CC BY 4.0 License.



 
 

2  

in 2010, combined with an export ban, led to a global spike in cereal prices. This shortage is assumed to have amplified 

the food security risk in other countries (Challinor et al., 2018, 2017). Another example is the 2018 summer in Germany, 

where low soil moisture values caused crop failures, leading to feeding shortages and consequent livestock reductions 

(de Brito, 2021). 

The socio-economic impacts of droughts are not only driven by the biophysical severity of the drought itself but are also 40 

shaped by factors such as societal exposure, vulnerability, and adaptation responses (Damian et al., 2023; Blauhut et al., 

2015; Lindner et al., 2010; Simpson et al., 2021). Also, impacts influence each other, forming a complex network of 

cascading and compounding patterns (Chen et al., 2022; de Brito, 2021; Erian et al., 2021). As a result, the socio-economic 

impacts of droughts are spatiotemporally dynamic and not directly proportional to the biophysical occurrence of drought 

hazards. This complexity becomes especially salient during multi-year droughts, which are characterized by an extended 45 

duration of low precipitation and water scarcity typically leading to regional biophysical feedbacks that exacerbate the 

hazardous conditions (Miralles et al., 2019). Here, the effects of vulnerability and exposure tend to build up over time 

during prolonged droughts (Kim et al., 2021; De Silva and Kawasaki, 2018). Consequently, the impacts of multi-year 

droughts are not static and consistent; rather, they evolve and change continuously. 

The increasing incidence of multi-year drought periods in several regions worldwide (Rakovec et al., 2022; Moravec et 50 

al., 2021; Fischer et al., 2021) underscores the need to comprehend how these extended drought events impact society. 

Previous studies have shown that the duration of drought is linked to the emergence of new socio-economic impact types  

(Yu et al., 2018; Tijdeman et al., 2022; Chen et al., 2022). An intuitive example of the effect of drought duration is the 

dieback of trees in Australian and California forests due to the extended and intense droughts (Stephenson et al., 2018; 

Matusick et al., 2018). Therefore, research on the distinct spatio-temporal impact patterns during multi-year droughts is 55 

needed for designing and implementing robust adaptation measures (Liguori et al., 2021; Rakovec et al., 2022).  

Over the past years,  substantial advancements have been made in studying patterns of socio-economic drought impacts 

(Niggli et al., 2022; Erfurt et al., 2020; Dahlmann et al., 2022; Liguori et al., 2021; de Brito, 2021). However, a majority 

of these studies exhibit a limited scope, both spatially and temporally. Their concentration on isolated incidents 

undermines the potential for broader generalization and it often is unclear whether patterns observed during a particular 60 

drought event are representative of other periods not covered by the study. Also, very few studies consider multiple 

sectors impacted by droughts, and a focus on singular sectors such as agriculture or forestry prevails (Stahl et al., 2016; 

de Brito et al., 2020; Sutanto et al., 2019). Overall, there is a clear need for a systematic approach that incorporates the 

multi-sectoral effects of drought during extended periods and geographic regions. 

In this paper, we study the spatio-temporal patterns of reported socio-economic drought impacts of both multi-year and 65 

single-year drought periods in Germany from 2000 to 2022. Germany is selected as a case study because of its recent 

history of significant droughts (2003, 2015, 2018-2022) with widespread impacts on agriculture, forestry, livestock, and 

waterways navigation, among others (Peña-Angulo et al., 2022; Rakovec et al., 2022; Tijdeman et al., 2022; de Brito et 

al., 2020). The assessment of reported impacts supports a focal point on their human perception. Specifically, we focus 

on the multi-year drought period between 2018-2022, which is considered a new benchmark in terms of duration and 70 

intensity (Rakovec et al., 2022). With this, we aim to understand (a) how single-year and multi-year drought events differ, 

(b) how drought impact patterns change or persist over the years, and (c) how land-cover are related to these impact 

patterns. 
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2. Methods 

In this study, we used newspaper texts to create a German-wide drought impact dataset covering multiple sectors. We 75 

introduced the concept of a drought impact profile (DIP) to construct a typology summarizing co-occurring drought 

impact types at a certain time and region. Based on the developed DIPs, we investigated patterns of drought impact 

occurrence throughout 3 levels of analysis (see Fig. 1). First, we compared the DIPs of multiple drought events to 

understand how single-year and multi-year drought events differ. Second, we examined how the DIPs change or persist 

within each district using graphical and sequence mining methods. Third, we used land-cover data to demonstrate how 80 

external data on exposure and vulnerability can be linked to the DIPs to understand what controls their occurrences.  

2.1 Data 

We developed a dataset covering 7 commonly observed drought impact types in Germany between 2000 and 2022. These 

include impacts on agriculture (including crop yield losses), livestock (i.e. impacts on livestock farming and animal 

populations), waterways (i.e. impacts on shipping and navigation), forestry (i.e. impacts on trees and forest ecosystems), 85 

aquaculture (i.e. impacts on fishing-related activities), social (i.e. impacts on places and activities used for recreation, 

tourism, leisure), and fire (i.e. fire in forests or other areas due to drought conditions); for a detailed description of each 

impact class see Table A.1. 

To create this dataset, we leveraged the text-mining approach proposed by Sodoge et al. (2023) for detecting and 

classifying the drought impacts and their geographic location from newspaper articles. We considered ~50,000 German 90 

newspaper articles mentioning drought-related keywords published between 2000 and 2022. We first removed duplicate 

and non-relevant articles. Then, we classified the impact types using lasso logistic regression models that were trained 

and evaluated on a sample of 1,800 annotated newspaper articles. The models achieved an 89% median accuracy when 

compared to the manually annotated data (see Table A.2). In a final step, we estimated the impact location on the district 

level following the nomenclature of territorial units for statistics (NUTS-3 units). 95 

The resulting dataset described the frequency of drought impact statements (DIS) by year and district. A DIS documents 

a specific type of reported impact, its estimated date of occurrence, and its location. For example, a DIS could describe 

the reported impact on agriculture in Berlin on 16.8.2022. We aggregated the DIS per year and district. The aggregation 

by year followed natural breakpoints, as shown in Fig. A.2. Most impacts were reported in summer and continuously 

decreased towards winter. To assess how well our DIS dataset corresponds to external data, we correlated it against 100 

multiple empirical indicators: precipitation deficit (DWD, 2023), Google trends data reflecting public awareness (Google, 

2023), forest fire statistics (BZL, 2020), and agricultural yield losses (RDB, 2023). The validation results showed that the 

DIS and these empirical indicators were correlated, suggesting that our estimates are accurate (see Fig. A.1). Detailed 

descriptions of the proposed method, validation procedure, and results can be found in Sodoge et al. (2023). 
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 105 
Figure 1: Overview of the methods used to compute drought impact profiles and analyze their patterns. 

 

2.2 Computing and analyzing drought impact profiles (DIPs) 

Drought and their impacts are known to be power-law distributed (Zscheischler et al., 2014; Mahecha et al., 2017). 

Accordingly, we find that most observations in our DIS database have few or no impacts reported, while a few 110 

observations contained the majority of reported impacts. This intrinsic imbalance hinders the construction of DIPs 

because they disrupt clustering by co-occurrence patterns. Hence, we used the following transformations to the DIS data 

to ensure that the resulting DIPs primarily reflect co-occurrence patterns rather than the severity of droughts. To this end, 

we only consider observations from years with severe drought impacts. These were selected based on previous studies 

(Peña-Angulo et al., 2022; Tijdeman et al., 2022; Rakovec et al., 2022) and the annual magnitude of the DIS. Specifically, 115 

we focused on the droughts of 2003, 2015, and the 2018-2022 multi-year drought period. We excluded 2021 from the 

analysis because few impacts were reported, which could skew the computation of DIPs. Furthermore, we did not treat 

2022 as a single-year drought because its effects were still reminiscent of the preceding 2018-2020 drought. We then 

grouped the DIS data by year and district and re-scaled from 0 to 1, where 0 means the minimum DIS value within the 

grouping, and 1 is the maximum (see Fig A.3). This rescaling allowed us to assess variations in the relative significance 120 

of impacts across different regions (e.g. north vs. south) and years. 

After transforming the data, we created the DIPs by clustering similar observations. To this end, we computed their 

Euclidean distances, where a small distance reflects similar impacts, whereas a larger distance indicates distinct ones. 

Based on these distances, we clustered the observations using an agglomerative hierarchical clustering algorithm called 

Ward’s linkage (Sharma et al., 2019). We selected this algorithm because it is known to provide robust results when 125 

dealing with continuous data by minimizing the variance between clusters. This method initially labels each observation 

as an individual cluster and iteratively merges them into larger clusters based on the identified distances (Husson et al., 

2010). The ideal number of clusters (k) was determined using both quantitative measures (e.g. Elbow method, silhouette 
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coefficient) (Ketchen and Shook, 1996; Thorndike, 1953) and domain knowledge. For the latter, we considered existing 

information about compounding and cascading impacts in Germany (de Brito, 2021) as well as co-occurrence patterns 130 

within our DIS dataset (Fig. A..4).  

2.2.1 Differences in impact patterns between single-year and multi-year drought events 

To compare the impact patterns of single-year and multi-year drought events, (analysis level 1 in Fig. 1), we used a 

similarity measure and hierarchical clustering. We computed the similarity between the two years by counting the number 

of districts with identical DIP in both years. For instance, if 140 districts exhibited the same DIP in 2003 and 2015, the 135 

similarity measure would also be 140. Subsequently, we applied hierarchical clustering with Ward’s linkage to visualize 

these pairwise similarities in a dendrogram. 

To further explore the differences between single-year and multi-year droughts, we also considered the diversity of 

occurring DIPs. To this end, we calculated the Shannon index (H) (Spellerberg and Fedor, 2003) for each year by 

summing the products of the relative abundance of each category (pi) and the natural logarithm of that category’s relative 140 

abundance (ln(pi)) (see Eq. 1). A higher H value suggests that there are many different types of DIPs across the analyzed                                                                                                                                                                          

districts, and these are evenly distributed. In contrast, a lower H value indicates fewer distinct types of DIPs, and some 

may dominate. 

𝐻 =  − ∑ 𝑝𝑖 ∗ ln (𝑝𝑖)𝑖           (1) 

2.2.2 Dynamic patterns of impacts during multi-year drought periods 145 

To investigate how the DIP patterns evolved during the 2018-2022 multi-year drought period (analysis level 2 in Fig. 1), 

we employed two distinct yet complementary approaches: a graphical analysis using alluvial diagrams and statistical 

sequence mining. Both approaches aimed at identifying temporal sequences that describe DIP’s characteristic shifts (or 

persistence). Alluvial charts served to effectively visualize sequences, presenting them in proportion to the number of 

affected districts. Sequence mining assisted as a quantitatively complementary approach to identify statistically 150 

significant sequences of DIPs in consecutive years. We employed the CSPADE  (Sequential Pattern Discovery using 

Equivalence classes) algorithm, a widely used sequence mining implementation (Zaki, 2001; Wright et al., 2015) (see 

Fig. 2). To apply the CSPADE algorithm, we created a transactional database with the antecedent and consequent DIPs 

in each district during the 2018-2022 drought period. The extracted sequences were evaluated on 3 measures: support, 

confidence, and lift. Support corresponds to how often the particular sequence appeared within the data (see Eq. 2). 155 

Confidence measures how often the DIP occurred together relative to all observations with the antecedent (see Eq. 3). 

Lift measures how often antecedent and consequent DIPs were observed together relative to how often they were expected 

to be observed (see Eq. 4). The obtained sequences with high lift can be interpreted as the most prevalent ones. 

 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝐴

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
      (2) 160 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴 → 𝐵) =  
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴+𝐵)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴)
        (3) 

𝐿𝑖𝑓𝑡 (𝐴 → 𝐵) =  
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴+𝐵)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴)∗𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐵)
        (4) 
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Figure 2: Process of extracting DIP sequences with CSPADE algorithm. For each district, a timeline was created 165 
representing the DIP observed during the multi-year drought period. These were split into a transactional database 

representing the transitions between the DIPs of two consecutive years. By using the CSPADE algorithm, we extracted the 

most frequent sequences and quantified them based on lift, support, and confidence metrics. 

2.2.3 Linking land-cover to multi-year drought impact profiles (DIPs)  

To demonstrate the analytical capabilities of the DIPs typology, we leveraged non-parametric statistical tests to search 170 

for significant associations between the DIPs and land-cover data (analysis level 3 in Fig. 1). For this analysis, we focused 

on the observations during the multi-year drought period as we aim to disentangle the patterns within this special period. 

Land-cover has been found to control the effect of drought on ecology (Flach et al., 2021) and the socio-economic impacts 

of drought (Sutanto et al., 2019; Blauhut et al., 2016). We considered the 10 most prevalent types of land-cover in 

Germany using the CORINE (Coordination of Information on the Environment, Land Cover) dataset (Büttner et al., 175 

2004). For each district, we calculated the relative share of each land-cover type. To detect statistically significant 

associations between the DIPs and the share of each land-cover type, we applied a one-sided Mann-Whitney U test. This 

test was chosen because of its suitability in detecting significant differences between two data samples without requiring 

specific data distributions. It compares two samples through rank transformation and subsequent comparison of these 

ranks (details can be found in McKnight and Najab (2010)). The resulting p-value indicates whether there are significant 180 

differences between the two analyzed samples. For this study, we performed two types of comparisons. First, we 

compared the land-cover types of districts affected to those unaffected by a particular DIP. A significant p-value indicates 

that districts impacted by a specific DIP exhibit a greater proportion of a particular land-cover type. Second, we compared 

the land-cover types of districts experiencing a particular DIP sequence to those without that sequence. Here, we select 

the most prevalent sequences from the sequence mining application (see Section 2.2.2). Using sequences can provide 185 

insights into what factors drive regions to switch from one DIP to another.  

3. Results 

3.1 Socio-economic drought impact dataset 

The text-mining-based drought impact dataset for Germany comprises 31,370 DIS along 7 impact types reported by 

newspapers between 2000 and 2022 (see Fig. 3). Notably, the period from 2018-2022 (excluding 2021) accounts for 42 190 

% of all DIS. Throughout this period, we observe a varied and diverse distribution of the DIS across time and space. For 

example, northeastern Germany’s agriculture and livestock sectors were particularly affected. Conversely, impact types 
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such as ‘social’, ‘forestry’, or ‘fire’ exhibit a more widespread occurrence. The severe drought events of 2003 and 2018 

have caused the highest number of impacts across all the impact types we analyzed. However, there are variations in their 

temporal trends. For instance, ‘agriculture’ impacts peaked during the 2018 drought. Instead, ‘forestry’ impacts were less 195 

pronounced in 2018 and peaked in 2019 and 2020. 

3.2 Drought impact profiles 

As a result of the hierarchical clustering, we identified 4 clusters of observations with similar co-occurring impact types, 

referred to here as drought impact profiles (DIPs) (Fig. 4). Overall, both quantitative evaluation metrics (i.e. silhouette 

coefficient and dendrogram inspection) and qualitative inspection of the DIPs, confirm the distinctiveness of these 4 200 

clusters (see Fig. A.5). With an emphasis on interpretability, the derived DIPs showcase unique characteristics which 

closely mirror co-occurrence patterns from correlation analysis results (see Fig. A.4). The silhouette coefficient, 

measuring 0.22, suggests a moderate degree of separation and discernible structure within the data. In light of the 

exploratory nature of this study, the moderate clustering results can be considered suitable as they uphold interpretability 

and align with domain knowledge.  205 

Each DIP is enriched by characteristic impact types and has a varying spatial and temporal distribution. These are used 

here as a reference point for subsequent analysis. For example, DIP 1 predominantly features ‘agriculture’ and ‘livestock’ 

impacts and is particularly prevalent in eastern Germany. The prevalence of DIP 1 declined during the multi-year drought 

period. Meanwhile, it was dominant during 2018 and 2003. The second DIP is enriched by water ecosystem 

consequences, including ‘waterways’ and ‘aquaculture’ impacts. In 2018 and 2022, DIP 2 reached its peak when 210 

compound heat and drought events affected aquaculture and led to low flows, limiting waterway transportation on major 

water courses (Conradt et al., 2023; Free et al., 2023). As such, DIP 2 is prevalent in districts with major water courses, 

such as the Rhine River in western Germany and the Oder River on the Polish border. DIP 3, on the other hand, is 

composed mainly of ‘forestry’ impacts and is spread across Germany, especially in forestry ecosystems that experienced 

notable drought effects: the Harz region, Saxon Switzerland mountains, and Alsace (Holzwarth et al., 2020; Erfurt et al., 215 

2020). While DIP 3 hardly occurred during the single-year drought events, we observed an increase in 2019. Lastly, DIP 

4 is characterized by the interplay between ‘fire’ and ‘social’ impacts. The occurrence of forest fires, or a high likelihood 

of them, limits the functioning of recreational zones, such as parks and forests. While this DIP is dispersed 

heterogeneously across Germany, it reflects hot spots of past forest fires such as (north-)eastern Germany (Thonfeld et 

al., 2022). Notably, we observe an increasing occurrence of this DIP over the last 20 years. 220 
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Figure 3: Spatial and temporal distribution of drought impact statements (DIS) between 2000-2022. Each map displays the 

relative distribution for a particular impact type, where 1 corresponds to the DIS type’s national maximum and 0 to the 225 
minimum. Each time series displays the magnitude of DIS, where 1 corresponds to the maximum DIS among all impact 

types, and 0 is the minimum. 

3.3 Comparison of the DIPs between single-year and multi-year drought events 

The comparison of the DIPs across the drought events shows the distinctiveness of the multi-year drought period 

compared to prior single-year events (Fig. 5). The droughts of 2003 and 2015 display the highest similarities despite 230 

being more than a decade apart. Both share a high prevalence of DPI 1 (enriched in agriculture and livestock impacts), 

particularly in eastern Germany and many districts without any impact. The dominance of ’agriculture ’ and ’livestock ’ 

impacts can be attributed to the importance and vulnerability of the agricultural sector in (northeastern) Germany, as well 

as the societal significance of the resulting crop yield losses (Zink et al., 2016; Schmitt et al., 2022; Reyer et al., 2012). 
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Both years exhibit the lowest DIP diversity scores, corroborating the hypothesis that single-year droughts tend to have 235 

more homogeneous impacts. 

The number of districts being affected (thus having a DIP) sets the single-year from the multi-year drought events apart. 

In single-year droughts, an average of 60% of all districts in Germany were affected, whereas during the 2018-2022 

drought, 92% of the districts had at least one reported impact each year. The widespread impacts of the 2018-2022 drought 

can be linked to the severe biophysical drought conditions and their extensive reach, which positioned the multi-year 240 

drought as an unprecedented event (Rakovec et al., 2022). For instance, while 2018 is similar to 2003 and 2015 concerning 

dominating DIP 1, the spatial extent of the impacts in 2018 is strongly different. Only 2020, where 21% of the districts 

did not report any DIS, displays higher similarity scores to the single-year events. During the multi-year drought period, 

the varying similarities between each year indicate some evolving differences. A striking finding is the low similarity 

between 2018 and 2019.  245 

 

 
Figure 4: Overview of drought impact profiles (DIPs) derived from hierarchical clustering (Fig. A.5). Each DIP describes a 

characteristic combination of co-occurrences among the 7  DIS categories. For each impact type in the radar chart, the 

maximum and minimum correspond to the maximum/minimum of the particular impact type in the DIS dataset. For the 250 
spatial patterns, DIPs are aggregated for the analyzed years.  

3.4 Dynamic patterns of impacts during multi-year drought periods 

Throughout the multi-year drought period, we observe distinct patterns of how the DIPs change over time. The probability 

that a district remains with the identical DIP for two years is only 26 %. Yet, the DIPs do not change in random order and 

instead follow identifiable patterns that cause shifts in the dominating DIP. By examining the results from both the alluvial 255 

chart analysis and sequence mining, we identify 4 major trends (Fig. 6 and 7).  
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First, we recognize a legacy effect driving a delayed emergence of the ’forestry’ DIP from 2019 onwards. From 2018 to 

2019, 53 (13%) districts shifted from the ’aquaculture/waterways’ and ’livestock/agriculture’ DIPs to the forestry DIP. 

Sequence mining also revealed similar sequences (DIP 1 to 3, support=0.20 in Fig. 6). This underlines the escalating 

significance of the forestry sector in 2019. The increased effects on the forestry sector are documented and attributed to 260 

an increased vulnerability of the trees after the 2018 drought and exacerbated by bark beetle pest causing higher tree 

mortality (Bastos et al., 2020; Schuldt et al., 2020; Kannenberg et al., 2020). After 2019, the prevalence of the ’forestry 

’ DIP slowly declines yet remains at higher levels compared to 2018. 

 

 265 
Figure 5: Comparison of annual events based on DIPs within each district. A dendrogram of hierarchical clustering where 

a structure of similar years emerges. H indicates the calculated diversity index. B similarity matrix with the number of 

identical DIPs between individual years and is used to perform the hierarchical clustering in panel A. 

 

 270 
Figure 6: Transitions among DIPs present in each district during the multi-year drought period. Flows of at least 20 

districts between two DIPs are highlighted. 

 
Second, we identify an increasing prevalence of the ’social/fire’ DIP, which was present in 13% of the districts in 2018 

and increased to 26% in 2022. Within this context, 65 districts affected by ’agriculture/livestock’ DIPs in 2018 and 2019 275 

shifted to ’social/fire’ DIPs. Additionally, 44 districts associated with the ’forestry’ DIP in 2019 and 2020 shifted to the 
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’social/fire’ DIP in 2022. Here, we hypothesize that severe and long-lasting forest damages reported in the prior 2 years 

had resulted in a loss of forest function for recreation or made forests more vulnerable to fire. Then, the shift towards 

’social/fire’ DIP would directly result from the multiple years of drought that have damaged forest ecosystems. Such 

patterns are documented in regions like the Harz mountain region (Hahne et al., 2009; Schütte and Plothe, 2022).  280 

Third, the prior two trends are underpinned by a steadily decreasing relevance of the ’agriculture/livestock’ DIP and a 

more even distribution of the DIPs in the consecutive years. In 2018, 142 districts were linked to the 

’agriculture/livestock’ DIP, while in 2022 only 58 were affected. This decreasing relevance results in a more even 

representation of the DIPs in the following years, which is visible in the measured DIP diversity (see Fig. 5). Concurrently, 

a more fragmented geographic distribution of the DIPs emerges. For instance, northeastern Germany is less dominated 285 

by ’agriculture/livestock’ impact.  

Fourth, we found that districts affected by the ’waterways/aquaculture’ DIP exhibit a higher degree of persistence, 

meaning that they are less likely to transition to other DIPs. The sequence mining highlights a sequence where districts 

remain with the ’waterways/aquaculture’ DIP for two years (DIP 2 → DIP2, support = 0.246 in Fig. 6) . This persistence 

can be attributed to the importance of waterbodies for specific regions, exemplified by the vital role of waterbodies like 290 

the Rhine River. Meanwhile, a less frequent sequence was identified where districts shift from the 

’waterways/aquaculture’ to the ’social/fire’ DIP. Here, we posit that districts with affected waterbodies may have closer 

ties to recreational impacts, thus contributing to the association between these specific DIPs (Wieland and Martinis, 2020; 

Erfurt-Cooper and others, 2009).  

 295 
Figure 7: Sequences of DIPs during multi-year drought period discovered with CSPADE sequence mining algorithm. All 

sequences with a minimum support measure of 0.2 are displayed and labeled accordingly Full evaluation metrics are 

provided in Table A.3. 

 

3.5 Linking land-cover and multi-year drought impact patterns 300 

To investigate the exposure factors contributing to drought impacts, we linked the DIPs with distinct land-cover types 

(Fig. 8). Our analysis revealed key associations between DIP categories and land-cover types. DIP 1, representing 

‘agriculture’ and ‘livestock’ impacts, is more prevalent in districts with non-irrigated, arable land than those without this 
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DIP (p-value 0.00). At the same time, districts with agricultural land cover are more likely to experience ’agriculture’ and 

’livestock’ impacts. DIP 2 (’aquaculture/waterways’) is significantly linked to a higher presence of watercourses and 305 

water bodies (p = 0.001; 0.003, respectively). Districts impacted by the ’forestry’ DIP exhibit elevated levels of broad-

leaved and mixed forest land-cover (p=0; 0.04), while those influenced by the ’social/fire’ DIP show greater proportions 

of mixed and coniferous forests (p=0;0.02). Here, we note a particular differentiation: coniferous forests are significantly 

linked to the DIP ’fire/social’ DIP, whereas broad-leaved forests with the ’forestry’ DIP. This distinction points to a 

higher susceptibility of coniferous forests to ’fire’ impacts, while broad-leaved forests appear to be more affected by 310 

factors such as tree mortality. This observation aligns with prior research, which highlights the heightened susceptibility 

of coniferous forests to fires, especially in eastern Germany (Gnilke and Sanders (2021). Other significant associations 

were also found. For instance, the ’forestry’ DIP is linked to the discontinuous urban fabric and commercial units’ land-

cover. While an intuitive linkage cannot explain these findings, these might stem from (i) multi-collinearity among the 

land-cover types, (ii) unknown characteristics of affected districts or impacts, or (iii) driven by special events. 315 

 

To further understand what land-cover types drive districts to shift DIPs from one to another, we identify land-cover types 

that match the sectors affected by the temporal sequences. For example, districts sticking to the ’forestry’ DIP within two 

consecutive years show significantly higher broad-leaved forest land-cover. This additional analysis adds additional depth 

to the characteristics of the districts. For instance, districts affected by the ’agriculture/livestock’ DIP within two 320 

consecutive years display higher shares of agricultural land-cover. Instead, districts that shift from ’agriculture/livestock’ 

DIP to the ’social/fire’ DIP have no significantly higher agricultural land-cover and instead higher coniferous forest land-

cover. These differences indicate that districts remaining impacted by dominating ’agriculture/livestock’ impacts possess 

different land-cover characteristics to those shifting towards other DIPs. 

 325 

 
Figure 8: Testing associations between land-cover types and DIP occurrences using the one-sided Mann-Whitney U test. A 

significant p-value indicates that districts where a particular DIP (sequence) indicates have a higher share of respective 

land-cover types. 
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3. Discussion 330 

Multi-year drought periods are becoming increasingly likely and thus require special attention for developing effective 

adaptation measures (Rakovec et al., 2022; van der Wiel et al., 2023). Against this background, we investigated the impact 

patterns during the recent multi-year drought period from 2018-2022 in Germany and compared those with patterns 

observed in single year droughts. Using a text-mining-based socio-economic impact dataset, our study provides insights 

into (1) differences between the multi-year drought and single-year drought events, (2) dynamic patterns during multi-335 

year drought periods, and (3) linkages between land-cover and impact patterns during the multi-year drought period.  

 

Using text-mining to obtain socio-economic drought impact data, we demonstrated how natural language processing can 

support the assessment of impacts. This can, in turn, empower scientists to study drought patterns over long timescales 

and with broad geographical coverage. Prior research on drought impact patterns has often been challenged by the lack 340 

of multi-sectoral and large-scale impact datasets and thus used smaller spatio-temporal scopes. While studies highlight 

the advantages of using newspaper articles for natural hazard impact, reports can miss or overemphasize impact data 

(Noone et al., 2017; Engelmann, 2010; Llasat et al., 2009; de Brito et al., 2020). However, our empirical validations 

highlighted that impacts’ spatial and temporal distribution correlated with external indicators (Sodoge et al., 2023). Still, 

for future research, it is necessary to improve the evaluation of reporting biases to enhance the accuracy of resultant 345 

impact data and enable more insightful interpretations. 

 

For examining multi-sectoral and spatio-temporal drought impact patterns, this study illustrates the effectiveness of 

combining multiple pattern mining methods for both visual and statistical examination. By using clustering algorithms to 

create a typology of co-occurring impact types that match patterns of cascading and compounding impacts in Germany, 350 

we advanced the representation of multi-sectoral impact patterns. Prior work has used dyadic conceptualization of impact 

interactions (i.e. the relationships between 2 linked impacts) through forms of network analysis for studying multi-sectoral 

patterns (de Brito, 2021; Chen et al., 2022). Meanwhile, clustering approaches have already been used for hydrological 

characteristics of droughts yet not for socio-economic impacts (Kim et al., 2021; Arabzadeh et al., 2016; Hao and Singh, 

2015). Our approach has the potential to facilitate a multi-sectoral perspective on drought impact patterns as it can 355 

incorporate patterns of cascading and compounding impacts. 

 

In addition to these methodological contributions, our work also adds to empirical knowledge on droughts in Germany. 

Concerning the differences between single-year and multi-year drought events, we showed distinct patterns in the multi-

year drought event compared to single-year events. The lower spatial extent and diversity of impacts separated the single-360 

year drought events from the multi-year drought period. Agriculture and livestock impacts dominated during the single-

year events, while the multi-year drought period displayed a more diverse distribution of impacts. Several studies 

identified differing hydrological characteristics and effects on ecosystems between multi-year and single-year drought 

periods (Rakovec et al., 2022; Moravec et al., 2021; Tijdeman et al., 2022; Tsakiris et al., 2010). Specifically for 

southwestern Germany, Tijdeman et al. (2022) confirmed similar trends for 2003, 2015, 2018, and 2019, which they 365 

linked to changing biophysical conditions and the severity of the droughts. Next to the previously identified biophysical 
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differences, our study thus makes a significant contribution by pointing out the differentiating factors concerning socio-

economic impacts. 

 

During the multi-year drought period, we discovered dynamically changing DIPs that led to an increasingly diverse 370 

landscape of impacts. Specifically, we found that an initial dominance of agriculture/livestock impacts was increasingly 

replaced by forestry impacts and, subsequently social/fire impacts. The emergence of impacts that increasingly gain 

relevance during multi-year drought periods reflects evidence from several studies (Tijdeman et al., 2022; Chen et al., 

2022; Al-Faraj and Tigkas, 2016). For example, Chen et al. (2022) showed that during a multi-year drought period in 

1920s China, cascading effects led to unprecedented effects such as growing food prices, dietary changes, and declining 375 

health conditions following agricultural losses. Concerning the multi-year drought period under investigation here, 

particularly the delayed effects on the forestry ecosystem from 2019 onwards, were pointed out by other studies. Repeated 

stress exposure caused tree damage that became evident throughout Central Europe  (Schuldt et al., 2020; Buras et al., 

2020; Kannenberg et al., 2020). Here, we advanced existing knowledge by showing the consequent effects on districts 

affected in the forestry sector, which later shifted to social impacts as visible in the Harz region (Hahne et al., 2009; 380 

Schütte and Plothe, 2022). Next to such sequential patterns, our longitudinal coverage of the multi-year drought period 

also revealed the sudden effects of extreme events. For instance, the high shares of water-related impacts in 2018 and 

2022 were fostered by compounding drought and heat waves (Zscheischler and Fischer, 2020; Wieland and Martinis, 

2020). By using a multi-sectoral perspective, we were able to detect such overarching trends that shaped the impact 

patterns across Germany and connected various sectors. Future research can leverage these identified trends to conduct 385 

more in-depth investigations into the mechanisms that underpin these dynamic shifts. 

 

Our results also demonstrated that distinct land-cover types, such as forest or agricultural land, control the occurrence of 

impact patterns. We found intuitive connections between land-cover types and the DIPs. For instance, regions with high 

shares of agricultural land-cover were more likely to experience impacts on agriculture and livestock. We also unveiled 390 

subtler effects, demonstrating that coniferous forest land-cover heightened fire-related impacts, which aligns with 

research findings on German forests (Gnilke and Sanders, 2021). Instead, broad-leaved forests did not exhibit such an 

association. Identifying factors controlling impact patterns (such as exposure and vulnerability) is necessary to effectively 

design adaptation measures (Tijdeman et al., 2022; Bachmair et al., 2017; Rannow et al., 2010). Various case studies 

have demonstrated significant effects of land-cover (and land-use) when assessing drought risk and predicting impacts 395 

(Blauhut et al., 2016; Ihinegbu and Ogunwumi, 2022). For instance, Blauhut et al. (2016) found diverse land-cover types 

relevant for predicting drought risk across Europe. Yet, there remains a scarcity of publications addressing the 

relationships between multi-sectoral impacts and land-cover while researchers have delved into more nuanced distinctions 

within specific sectors like agriculture (Brown et al., 2011; Taiwo et al., 2023; Carter et al., 2013). Therefore, future 

research should advance both the exploration of additional variables (Knutson et al., 1998) and methods for linking these 400 

to impacts. As mentioned earlier, such progress will require impact datasets of greater spatio-temporal scope. 
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4. Conclusion 

In this study, we analyzed the patterns of socio-economic drought impacts during both single-year and multi-year drought 

events in Germany. We found that during the multi-year drought period, an increasingly diverse landscape of drought 

impacts emerged that replaced dominating agriculture and livestock impacts. We noted distinct regional variances in 405 

impact patterns, characterized by shifts towards social and forestry-related consequences in some areas and relatively 

stable agriculture and livestock impacts in others. These findings underscore the need for localized and context-specific 

approaches to drought management that consider droughts’ duration and cumulative effects. Finally, we demonstrated 

how these impact patterns are controlled by land-cover types, providing insights into the underlying exposure factors that 

drive them. Expanding on attributing the impact patterns in future research, we could design more targeted and effective 410 

drought adaptation strategies. Overall, our research provides an improved understanding of the unique shifts in socio-

economic impacts during a multi-year drought period and highlights the potential of text- and pattern-mining methods to 

analyze complex drought impact patterns. 

 

 415 
Code availability: The code for generating the impact dataset is available at https://github.com/jansodoge/drought-

impact-text-mining, and the code for the analysis conducted here is provided at 
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Appendix A 

 

Table A.1: Definition of impact classes following de Brito et al. (2020) 

 625 
Impact class Definition 

Agriculture Impacts within the agricultural sector including the following sub-categories: reduced 

productivity of crops, early harvesting, increased need for irrigation, economic losses. 
Livestock Impacts within the livestock sector including the following sub-

categories: reduced productivity of livestock farming, forced reduction of 
stock, shortage of feed for livestock, general impacts to animals 
(including e.g. insect mortality), economic losses for livestock farming 
 

Social Impacts within the social sector including the following sub-categories: 
parks, tourism, recreation areas and activities affected 

Forestry Reduces tree growth or vitality, water stress on trees, decrease in forestry 
products, increase in pest and disease attacks on trees, increased dieback 
of trees, economic losses for forestry 
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Aquaculture Commercial and non-commercial fishing and aquaculture activities 

Waterways Impaired navigability of streams (reduction of load, increased need for 
interim storage transportation of goods at ports) 

Fire Occurrence of forest and wildfires 

 

 

 

 

 630 

Table A.2: Performance of classification models to detect reported drought impacts in newspaper articles 

Impact class Recall Precision F-score Accuracy Sensitivity 

Livestock 0.92 0.93 0.93 0.88 0.92 

Fires 0.97 0.95 0.96 9.93 0.97 

Forestry 0.94 0.9 0.92 0.89 0.94 

Waterways 0.99 0.96 0.98 0.96 0.99 

Aquaculture 0.85 0.93 0.83 0.74 074 

Social 0.74 0.93 0.83 0.74 0.74 

Agriculture 0.92 0.94 0.93 0.89 0.92 

 

 

 

Figure A.1: Correlation of DIS with external validation indicators from Sodoge et al. (2023). For spatial correlations, 635 
each dot represents a year. For temporal correlations, each triangle represents a NUTS-1 unit. Subfigure a) describes 

correlation analysis in which an ideal explanation corresponds to Spearmans Rho = 1. Subfigure b) describes correlation 

analysis in which an ideal explanation corresponds to Spearmans Rho = −1. 
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 640 
 

Figure A.2: Temporal distribution of DIS. (a) Temporal distribution for the entire period studied. Clear peaks exist for 

studied drought events. (b) total number of DIS per month. A normal distribution with peaks in July and only a few 

impacts reported during winter months. 
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 645 
 

Figure A.3: Distribution of impacts before and after transformation, re-scaled to [0-1] interval for each grouping. 
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Figure A.4: Correlations between the occurrences of different impact types. Correlation analysis was performed on the 665 
obtained drought impact dataset with annual aggregation before transformation for hierarchical clustering. 

Correlations are calculated using Spearman’s Rho. 

 

 

 670 
Figure A.5: Dendrogram of hierarchical clustering of DIS with the 4 clusters colored.  
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 675 
Table A.3: Overview of evaluation metrics for obtained sequences  

Item A Item B Support Confidence Lift 

1 4 0.308 0.504 0.765 

1 1 0.268 0.438 0.717 

2 2 0.246 0.419 0.715 

1 2 0.219 0.358 0.611 

2 4 0.214 0.364 0.552 

4 4 0.208 0.316 0.479 
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