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Abstract. Counterfactuals are scenarios that describe alternative ways of how an event, in this case an extreme rainfall event,

could have unfolded. In this study, we present the results of a counterfactual search for flash flood events in Germany. We

used a radar-based precipitation dataset of the German weather service to identify the ten most extreme precipitation events in

Germany from 2001 to 2022, and then assumed that any of these top 10 events could have happened anywhere in Germany.

In other words, the events were shifted around all over Germany. For all resulting positions of the precipitation fields, we5

simulated the corresponding peak discharge for any affected catchment smaller than 750 km2. From all the realisations of this

simulation experiment, the maximum peak discharge was identified for each catchment.

In a case study, we first focused on the devastating flood event in July 2021 in western Germany. We found that a moderate

shifting of the event in space could change the event peak flow at the gauge Altenahr by a factor of two. Compared to the peak

flow of 1004 m3/s caused by the event in its original position, the worst case counterfactual of that event led to a peak flow of10

1311 m3/s. Shifting another event that had occurred just one month earlier in eastern Germany over the Ahr river valley even

effectuated a simulated peak flow of 1651 m3/s.

For all analysed subbasins in Germany, we found that, on average, the highest counterfactual peak exceeded the maximum

original peak (between 2001 and 2022) by a factor of 5.3. For 98 % of the basins, the factor was higher than 2.

We discuss various limitations of our analysis, which are important to be aware of: with regard to the quantification and15

selection of candidate rainfall events, the hydrological model, and the design of the counterfactual search experiment. Still, we

think that these results might help to expand the view on what could happen in case certain extreme events occurred elsewhere,

and thereby reduce the element of surprise in disaster risk management.

1 Introduction

Flash floods constitute a relevant natural hazard in many regions of the world. In comparison to river floods, the footprint of20

a flash flood event is small, yet the local impact can be devastating. Flash floods combine low predictability, erratic overflow

behavior, high flow velocities and often massive debris loads. They are mainly caused by heavy precipitation events (HPEs)

with very high rainfall intensities, and characterized by a rapid concentration of runoff. Usually, flash floods are defined by

a response time of less then six hours (Borga et al., 2008; Marchi et al., 2010) which mostly confines their occurrence to

catchments smaller than 1000 km2. The underlying HPEs often are highly variable in space and time (Borga et al., 2008). In25

addition to the properties of the HPE itself, the geographical context governs the nature of the hydrological response and thus
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the resulting impact. Hence, both atmospheric and hydrological processes interact across various spatial and temporal scales

during flash floods (Georgakakos, 1986).

The management of flash flood risks often requires corresponding extreme value statistics. The robustness of such statistics

is contingent upon the length of historical records (Woo, 2019), and might be compromised by the effects of ongoing climate30

change. Locally, flash floods are rare events; observational data is scarce as the affected catchments are typically small and un-

gauged (Gaume et al., 2008). This makes it difficult to establish reliable extreme value statistics for many locations. Worst case

flood scenarios and their dependence on spatio-temporal characteristics of precipitation as well as the catchment’s hydrological

conditions have not yet been fully understood (Zischg et al., 2018; Marchi et al., 2010). Spatio-temporal patterns of rainfall and

their dynamic interaction with topography and land use significantly influence the generation and propagation of flood peaks35

(Beven and Hornberger, 1982; Singh, 1997; Tarolli et al., 2013; Emmanuel et al., 2015; Zischg et al., 2018). This implies that

even slight changes in event realizations could significantly affect the response. Yet, the sample size of investigated HPEs is

often limited.

To enhance our understanding of the flash flood hazard in Germany, we adopt an approach known as "counterfactual think-

ing" (Roese, 1997; Woo, 2019) which was also proposed recently by Montanari et al. (2023) in the context of flood research.40

This approach involves considering alternative ways of how events could have unfolded. For risk assessment, downward coun-

terfactuals are particularly interesting: they involve thought experiments about past events with worse outcomes than what

actually transpired (Roese, 1997). Such thought experiments can provide valuable insights into worst-case scenarios that have

not (yet) occurred. This way, the level of preparedness could be increased, although the approach typically cannot underpin

such worst-case scenarios with occurrence probabilities.45

Spatial changes, in particular, play a significant role in counterfactual analysis (Woo, 2019): the coincidence of an HPE with

an area characterized by steep slopes, impervious surfaces, and multiple stream intersections can trigger very high flood peaks,

which would be less pronounced in less steep and more natural catchments.

Based on 16 years of radar observations, Lengfeld et al. (2019) found that extreme daily precipitation is dependent on the

orography but that heavy hourly rainfall can occur anywhere in Germany. Based on the – admittedly strong – assumption that50

historical HPEs could have happened anywhere in Germany, we propose, in this study, a systematic downward counterfactual

search for flash floods in Germany. To that end, we adopted the following approach:

1. Based on radar-based precipitation estimates from 2001–2022, we created a catalog of HPEs in Germany and ranked

these HPEs by using a recently proposed metric to assess the extremity of rainfall across spatial and temporal scales

(Voit and Heistermann, 2022).55

2. We shifted the 10 most extreme HPEs from our catalog to each subbasin in Germany and simulated the corresponding

quick runoff (QR) response for the whole affected area. This way we created a total of 23,000 counterfactual scenarios

for each HPE. Each of these scenarios includes the QR simulations for hundreds of subbasins.
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3. Additionally we model, for each subbasin, the QR response to all events contained in our catalog, in their original

position. The corresponding results serve as a reference for the maximum historical QR response in each subbasin, to60

which we compare the results of the counterfactual search.

Based on this groundwork, we first investigate, in a regional case study, counterfactual scenarios of the devastating July

2021 precipitation event over the Ahr river catchment (see Mohr et al., 2023, for details). We then expand our analysis to all

of Germany, and explore the potential hydrological response to rare HPEs in case they had happened anywhere in Germany,

and search for downward counterfactual scenarios. Based on this search, we try to answer how close actual historical events65

(within the last 22 years) have already touched upon the worst case scenario, and discuss the usefulness of this information for

flood risk management.

2 Data

In this section, we will describe the data that was used for the extraction of HPEs as well as the data sources for our hydrological

model. The overall study area is Germany. We will also present a case study in which we focus on the catchment of the Ahr70

river down to the runoff gauge at Altenahr. In our hydrological model, this catchment consists of 37 subbasins (details of this

case study are presented in section 4.2). Both the overall study area as well as the case study area are illustrated in Fig. 1.

2.1 Precipitation Data

To allow for a detailed representation of the spatio-temporal variability of rainfall, we used the radar climatology product

(RADKLIM v2017.002) provided by Germany’s national meteorological service (Deutscher Wetterdienst; DWD hereafter)75

between 2001 and 2022. RADKLIM is a reprocessed version of the operational radar-based quantitative precipitation estima-

tion (QPE) product (RADOLAN, see Winterrath et al., 2012) of the DWD since 2001. To minimize the occurrence of artifacts

(Lengfeld et al., 2019) and to allow for heavy rainfall analysis (Kreklow et al., 2019), the radar data is adjusted by additional

rainfall data from gauges (hourly and daily), a homogeneous set of algorithms and advanced climatological corrections (Win-

terrath et al., 2018b). RADKLIM represents the Germany-wide hourly precipitation at a resolution of 1 x 1 km . Some parts80

of Germany (very North, South and East) have not been covered by radar since 2001, but overall data coverage over Germany

is good with less than 10 % missing hours in most areas (Lengfeld et al., 2019). The RADKLIM data set is available on the

DWD open data server (Winterrath et al., 2018a). We would like to emphasize the importance of using radar-based precipi-

tation products when dealing with flash floods: Compared to rain gauge interpolation, the error of radar-based products have

been shown to be considerably smaller (Journée et al., 2023). Zoccatelli et al. (2010) also showed that the errors of rain gauge85

interpolations for flash-flood triggering HPEs do not average out at the spatial scales associated to flash floods.

2.2 Digital elevation model

The Digital Elevation Model over Europe (EU-DEM) was used to delineate catchments in Germany and for further analysis

of runoff concentration (flow paths and traveltime to catchment outlets). For the EU-DEM, SRTM (Shuttle Radar Topography
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Figure 1. Map of the study region (Germany): topography, major water bodies (blue), federal states (black), and selected cities (red); white:

subbasins of the Ahr catchment upstream of Altenahr (case study region, see section 4.2).

Mission) and ASTER GDEM (Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation90

Model) data is fused by a weighted averaging approach . The data set has a spatial resolution of 25 m and can be downloaded

from the Copernicus Land Monitoring service (European Commission, 2016).
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2.3 Land cover

Information about land cover was derived from CORINE CLC5-2018 (BKG, 2018). The product is based on a classification

of high resolution satellite data into 37 land cover classes (for Germany), according to the nomenclature of the European95

Environmental Agency (EEA). Objects with a minimum size of 5 ha are considered in the classification and the product is

updated every three years.

2.4 Soil data

Soil information was derived from the "BUEK 200" (national soil survey at a scale of 1:200,000; BGR, 2018) which is compiled

from the surveys of each federal state at a scale of 1:200,000 by the Federal Institute for Geosciences and Natural Resources100

(Bundesanstalt für Geowissenchaften und Rohstoffe, BGR) in cooperation with the National Geological Services (Staatliche

Geologische Dienste, SGD). For each mapping unit, the BUEK200 provides areal fractions of dominant soil types and the

corresponding profile information, including texture, bulk density and many more.

3 Methods

This section describes the methods used to create a catalog of HPEs, an outline of the hydrological model to model the105

formation and concentration of quick runoff, and the design of the counterfactual simulation experiment.

3.1 Catalog of heavy rainfall events in Germany

While the DWD provides a catalog of HPEs (CatRaRE: Catalog of Radar-based Heavy Rainfall Events; Lengfeld et al., 2021),

we still opted to develop our own catalog. This decision was motivated by the fact that HPEs which exhibit extreme behaviour

across various durations and spatial scales can trigger different flood mechanisms that can intersect and amplify each other. For110

instance, high-intensity rainfall on a small spatial scale may be embedded within larger events and preceded by periods of low-

intensity rainfall that increase soil moisture. Antecedent soil moisture has a significant impact on event runoff coefficients and

is essential for flash flood modelling (Marchi et al., 2010). To that end, Voit and Heistermann (2022) have recently proposed a

new metric, the cross-scale weather extremity index (xWEI), to detect and assess HPEs that were extreme at various spatial and

temporal scales. Both the WEI (as used by the CatRaRE catalog) and the xWEI quantify a measure of extremeness along two115

dimensions: rainfall duration and spatial extent. Hence the variation of extremeness along these dimensions could be illustrated

as a surface. While the WEI corresponds to the maximum value of that surface, the xWEI corresponds to the volume under the

surface, meaning that it is high if the extremeness is high across spatial and temporal scales.

The catalog was created by applying a multi-step procedure. Considering the RADKLIM dataset as a 3-D array (one temporal

dimension, two spatial dimensions), we first apply a moving 3-D window (72 hours x 3 km x 3 km) to the entire dataset. Within120

this moving window, the rainfall extremeness is computed for each voxel and for various durations. Afterwards, a clustering
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algorithm is applied to identify spatio-temporal clusters of extreme rainfall. The details of this approach together with an

illustration are provided in the supplementary material S1. The resulting catalog contains 17302 events.

3.2 Modelling quick runoff

We used standard GIS techniques (sink filling, flow accumulation, flow direction and catchment delineation) implemented in125

the Python package PCRaster (Karssenberg et al., 2010) to derive the subbasins. Since our model requires the areal average

precipitation per subbasin as input, the subbasins need to be sufficiently small to represent the effects of spatial rainfall variabil-

ity on the formation and concentration of quick runoff. For that purpose, we set outlet points for the subbasins at every stream

intersection with a Strahler order of 7 or larger. This way we divided the study area into 22384 subbasins. For the analysis we

restricted our modelling to a spatial scale of up to 750 km2 which leads to 19809 remaining basins. The median basin size is130

12 km2 (25th percentile: 6.9 km2, 75th percentile: 20.2 km2). Figure S2 (supplementary) illustrates the distribution of subbasin

sizes as a histogram.

In the case study (section 4.2) we focused on the catchment of Altenahr (Rhineland-Palatinate) as a study region (see Fig. 1).

The city of Altenahr was heavily affected by the so-called "Bernd"-event in July 2021 in western Germany and hit by a flood

on 15th July 2021 that caused massive destruction. The catchment upstream of Altenahr, before the inflow of the Vischelbach,135

has an approximate size of 728.6 km2 and is, in our model, split into 37 subbasins. The smallest subbasin has a size of 3 km2,

the largest 48 km2 and the median size is 17.1 km2. The average curve number for the whole catchment is 66 (see section

3.2.1), varying between 61-72 for the individual subbasins (all values for medium soil moisture, soil moisture class 2).

Flash floods are characterized by quick (surface or near-surface) runoff components (Georgakakos, 1986; Marchi et al.,

2010; Grimaldi et al., 2010; Borga et al., 2014). Thus, the hydrological model setup can be simplified, as processes like140

evaporation and groundwater dynamics have minimal impact on the peak formation. While the formation of quick runoff is

mostly controlled by soil conditions and land-use, the concentration of quick runoff is primarily driven by topographic relief

(Ruiz-Villanueva et al., 2012). Based on these considerations, we adopt the following hypotheses for our model:

– Flash floods peaks are dominated by quick runoff (Marchi et al., 2010; Borga et al., 2014).

– The morphology and topography of the catchment exerts the main control on the concentration of quick runoff.145

– Flash floods occur predominantly in small to medium-sized catchments with an area smaller than 750 km2.

– Evapotranspiration and baseflow dynamics are negligible.

– The objective of the model is not to accurately simulate discharge dynamics. Instead, our focus is primarily on the timing

and magnitude of the quick runoff peak flow (QR) and making relative comparisons between different counterfactuals

and original events.150

– Due to the lack of accurate streamflow data (Gaume et al., 2004; Borga et al., 2014) and the computational effort to

model a large number of counterfactual scenarios, we cannot use a model that requires parameter calibration.
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To this end, our model consists of only two components which are described in more detail in the following subsections

below:

1. The Curve Number (CN) method (U.S. Department of Agriculture-Soil Conservation Service, 1972; Natural Resources155

Conservation Service, 2004; Garen and Moore, 2005), calculates the effective rainfall based on land use, soil character-

istics and antecedent rainfall.

2. The geomorphological instanteous unit hydrograph (GIUH) method represents the concentration of quick runoff for each

subbasin. By superimposing these hydrographs, we can efficiently analyze a large number of counterfactual precipitation

scenarios.160

With increasing catchment size, the influence of channel mechanics and hydro-engineering on stream flow becomes more

important. Due to the limitations of our model, we are unable to incorporate these factors. Consequently, we restrict our

QR modeling to subbasins with a spatial scale of up to 750 km2. The majority of the 19809 remaining subbasins are head

catchments (13741) and have an average size of 15 km2 and a median size of 11.2 km2.

3.2.1 SCS-CN method165

We use the established SCS-CN (curve number) method (U.S. Department of Agriculture-Soil Conservation Service, 1972;

Ponce and Hawkins, 1996; Natural Resources Conservation Service, 2004) to calculate the effective precipitation depending

on soil, land use and antecedent wetness. For each subbasin, we utilized the "BUEK 200" soil database (see section 2.4) to

obtain the fractions of four different soil classes (from permeable to non-permeable). This classification was combined with

the CORINE CLC5-2018 land use data (see section 2.3). Given that flash flood events primarily occur during summer months170

(see section 3.3), we made slight adjustments to the CN values for agricultural areas to account for the influence of summer

crops (based on Seibert et al., 2020). Ultimately, a single CN value was calculated for each subbasin using a weighted areal

average.

Rainfall series for each individual subbasin and event realization was obtained using the zonal statistics functionality of the

Python package "wradlib" (Heistermann et al., 2013) which computes the weighted average rainfall per subbasin based on175

the intersection of each RADKLIM pixel with the subbasin. This areal-averaged rainfall data was then used to calculate the

effective rainfall using the SCS-CN method.

3.2.2 GIUH

To route the effective rainfall derived from the SCS-CN method to the subbasin outlet, we utilized the GIUH-method. Especially

for ungauged basins, this method provides a simple and widely used tool for rainfall-runoff modeling by taking into account180

the geomorphological features of a basin (Singh et al., 2014; Yi et al., 2022). The GIUH method constructs a hydrograph by

estimating the travel time of an instantaneously applied unit of effective rainfall (typically 1 mm) from each grid cell in the

catchment to the outlet.
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The travel time is determined based on the length of surface flow paths to the outlet and the corresponding flow velocities.

Various methods exist to calculate flow velocities. We opted for the spatially distributed travel time model introduced by185

Maidment et al. (1996) which allows for the use of distributed terrain information in an efficient manner (Bunster et al., 2019).

This model demonstrated suitability in a comparative study conducted by Grimaldi et al. (2010). In this method, the flow

velocity in a cell is defined as a function of the contributing upstream area A and the local slope s:

v = vm
sbAc

[sbAc]m
(1)

with v as the velocity assigned to a cell with local slope s and upstream drainage area is A. For b and c, 0.5 has been proven190

to be a suitable value (Maidment et al., 1996; Grimaldi et al., 2010). vm describes the average value of the velocity in all cells

in the watershed and is set to 0.1 m/s based on the study of Grimaldi et al. (2010). [sbAc]m is the watersheds average value

of the slope-area term. By incorporating the drainage area A into the formula, this method considers the increasing hydraulic

radius (Manning’s equation) with higher flow volume, thereby capturing the downstream increase in flow velocity without the

need to estimate roughness coefficients for individual grid cells. Furthermore, it eliminates the need to differentiate between195

hill slope and channel grid cells within the catchment. Similarly to previous studies (Sivapalan et al., 2002; Marchi et al., 2010;

Creutin et al., 2013), we constrained the resulting velocities within the range of 0.06 m/s to 3 m/s. By summing the velocities

of each grid cell along a flow path, we estimated the travel time for each cell to reach the outlet using the ldddist function from

the Python PCRaster package (Karssenberg et al., 2010). The hydrograph, representing the QR response of the catchment, is

then derived by the probability density function of travel times from all grid cells to the catchment outlet. This method assumes200

a time- and discharge-invariant velocity field, allowing for a convolution of the GIUHs to model the catchment response to the

effective rainfall of an HPE.

In the case that two subcatchments flow together we add the hydrograph (superposition) of the upstream basin to the hy-

drograph of the downstream basin with a temporal delay. The delay is determined by the travel time from the inlet of the

downstream basins to its outlet.205

3.3 Design of the downward counterfactual simulation experiment

For our counterfactual study, we selected the ten highest-ranking events from our catalog (Tab. 1). We then relocated each

of these events to each subbasin in Germany. Since the spatial extent of the events is much larger than that of the subbasins,

we aligned the pixel with the highest hourly rainfall with the centroid of the corresponding subbasin. We then modelled the

QR response for all sub-basins within the HPE’s bounding box (not just for the subbasin to which we shifted the centroid of210

the HPE). That way, the overall results are not too sensitive to how we actually align an HPE with an individual subbasin.

By following this procedure, we generated approximately 230,000 counterfactual QR scenarios across Germany (23,000 sub-

basins multiplied by 10 HPEs with their centroids shifted across all sub-basins). These data sets contain a total of more than

829 million counterfactual QR hydrographs for the individual subbasins and we refer to them as "cf_germany". Additionally,
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we filtered the complete "cf_germany" dataset by limiting the maximum distances over which the HPEs were shifted to 10, 20,215

50 and 250 km. We refer to these filtered datasets as cf_10km, cf_20km, cf_50km, and cf_250km.

3.4 Metrics for flash flood response

To compare flood peaks across different basin sizes, we utilized the concept of the unit peak discharge (UPD) (refer to Castel-

larin (2007) for a summary of the concept). The UPD [m3/s/(km2)0.6] is the ratio between the discharge peak[m3/s] and the

reduced upstream catchment area [(km2)0.6]. To limit the influence of the upstream catchment area, we use an exponent of220

0.6 (similarly to Gaume et al., 2008; Emmanuel et al., 2017). Amponsah et al. (2018) used a UPD of 0.5 m3/s/km2 (which

corresponds to 0.66 m3/s/(km2)0.6) as the lower threshold for the definition of flash floods across a variety of climates and

studies in their flash flood catalog. To illustrate the unit of the UPD: a UPD of 3 m3/s/(km2)0.6 could equal an 18 m3/s flood

peak in a basin of 20 km2 size, or a peak flow of 72 m3/s in a 200 km2 basin.

4 Results and discussion225

In this section, we present the results of our analysis. Section 4.1 starts by introducing the ten most severe precipitation events

which were identified based on the cross-scale extremity index. By shifting them all over Germany, they form the basis of our

spatial counterfactual search experiment. The hydrological simulation results of this experiment are first explored in a case

study for the Ahr catchment, and put into context to the devastating flood event in July 2021 4.2. Second, we summarize the

results of our simulation experiment for all of Germany.230

4.1 Top 10 HPEs

In this section, we introduce the ten most severe precipitation events between 2001 and 2022, based on DWD’s RADKLIM

dataset. These events are the basis of our counterfactual simulation experiment.

The ten most extreme events in our HPE catalog all occurred during the summer months, and are displayed in Figure 2 and

Table 1.235

It should be noted that the xWEI is sensitive to the spatial extent of an event. Therefore, the top 10 events are generally very

large. The catalog might contain events that are more severe at small spatio-temporal scales, say at the scale of small headwater

catchments. The resulting limitations for our analysis will be further discussed in Sect. 5.1. However, events with a large spatial

extent and a large xWEI value are likely to include smaller event clusters that are extreme at smaller spatio-temporal scales

which exactly motivated the choice to rank events by the xWEI (see also Sect. 3.1). Nonetheless, future applications might240

choose different catalogs or different metrics and ranking criteria to select candidate events for a counterfactual search.

Very different levels of impacts were reported for these events. In section S3 of the supplementary material, we put each event

in context to other available references (scientific or media), and also attempt to compile estimates of reported damages and loss

of lives, if available. While all ten events featured exceptional amounts of rainfall and a corresponding runoff response, only five

of them caused massive impacts (SN/Aug02, SN/Jun13, BW/May16, BB/Jun17, and, with by far the highest impact, NW/Jul21)245
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Figure 2. Original position and cumulated precipitation of the 10 most extreme HPEs from the event catalog. The green cross indicates the

location of the highest hourly precipitation during the event which we chose as centroid when shifting the events to create counterfactuals.

Table 1. The ten most extreme HPEs from our catalog. The ID was constructed from an acronym that specifies the federal state in which the

event mainly occurred, the month, and the year (starting from the year 2000). The precipitation values in the table [mm] are based on a 10 x

10 km moving window average, the ranking is based on the xWEI metric.

rank ID Date xWEI max. 1h prec. max. 24h prec. max. 72h prec. location of max. 1h prec.

1 LS/Jul02 Jul 15-20, 2002 4148 41 138 154 Plön

2 BB/Jun17 Jun 26-Jul 2, 2017 3901 44 149 157 Bautzen

3 SN/Aug02 Aug 10-15, 2002 3741 23 224 255 Wittenberg

4 NW/Jul21 Jul 11-16, 2021 3542 35 136 150 Dortmund

5 LS/Jul17 Jul 22-27, 2017 3327 24 136 233 Göttingen

6 BW/May16 May 27-Jun 1, 2016 3304 53 98 106 Erzgebirgskreis

7 BB/Jun21 Jun 28-Jul 3, 2021 3235 38 217 219 Uckermark

8 BB/Jun20 Jun 11-16, 2020 2964 53 93 104 Ostprignitz-Ruppin

9 HS/May19 May 18-23, 2019 2718 26 106 114 Waldeck-Frankenberg

10 SN/Jun13 Jun 18-22, 2013 2575 62 121 121 Bautzen
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Figure 3. Total rainfall estimates (RADKLIM) for the original NW/Jul21 event for the Altenahr catchment: a) total rainfall [mm] in the

Altenahr subbasins, b) areal average of precipitation [mm/h] for the Altenahr catchment. The outlet of the catchment, is shown in black,

subbasin borders in black, streams in white.

while for the remaining events (LS/Jul02, LS/Jul17, HS/May19, BB/Jun20 and BB/Jun21), the impact was apparently not high

enough to attract attention beyond the affected regions. The results of the counterfactual scenario analysis, as presented in

the following, should help to understand whether the different levels of impacts for these events were mainly caused by their

specific geographic position.

4.2 Case study: Altenahr250

Before exploring the results for all of Germany, we zoom into the counterfactual scenarios obtained for the Ahr catchment (Fig.

3a). The Ahr was the most severely affected river during the July 2021 floods over western Germany (see Mohr et al., 2023,

for more background on the flood event and the Ahr catchment). Typically, a flash flood is characterized by a lag time of up to

six hours between the centroid of the effective rainfall and the hydrograph peak (Borga et al., 2008; Marchi et al., 2010; Morin

et al., 2002). So, strictly speaking, the flood event at Altenahr does not qualify as a flash flood: according to our model, the255

lag time at Altenahr amounted to approximately eight hours. Still, the event at Altenahr is a highly illustrative example for a

swift and massive runoff response at the meso-scale which is the result of the temporal superposition of various upstream flash

floods. In fact, all 23 sub-basins upstream of Altenahr show a lag time of less than 6 hours, 22 of them even less than 3 hours.

By shifting around the top 10 HPEs (as listed in Tab. 1) over Germany, we created a total of 38,871 counterfactual rainfall

scenarios over the Altenahr catchment, representing a large variety of spatial rainfall patterns and average rainfall totals, for all260

of which we simulated the QR peak flow. In the following, we compare these counterfactual peak flows to the peak simulated for

the NW/Jul21 event in its original position. Any event label NW/Jul21_x will refer to a spatial counterfactual of the NW/Jul21

event. The same naming convention is adopted for the other events from Table 2.
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Figure 4. Total rainfall amount and resulting QR peak for counterfactuals of the NW/Jul21 (yellow to blue) and BB/Jun2021 (grey) HPEs

for the Altenahr catchment. Black cross: areal mean of total rainfall the catchment received during the event and the resulting runoff for the

event in its original spatial position. The point color of the NW/Jul21 counterfactuals indicates the distance to the centroid of the original

NW/Jul21 event.

Table 2. Selected counterfactuals for the Altenahr catchment.

ID QR peak [m3/s] total prec. [mm] lat. centroid lon. centroid

NW/Jul21 1004 114 50.740 6.965

NW/Jul21_a 1311 131 51.315 7.519

BB/Jun21_a 1651 159 50.437 6.792

Figure 4 illustrates the results from the counterfactual study for the Altenahr catchment. The total rainfall for the catchment

for each counterfactual and the resulting highest QR peak is shown. Despite the positive correlation (r2 = 0.96, Fig.4) between265

total rainfall and resulting flood peaks we notice that the same total rainfall amounts can yield markedly diverse QR peaks.

During the original event (NW/Jul21), the Altenahr catchment received an areal rainfall average of approximately 114 mm

of which 98 mm fell within 12 hours on the 14th of July. The maximum hourly areal average was 12 mm (Fig. 3b). This
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Figure 5. Contributions of individual subbasins to the runoff peak at Altenahr for three scenarios. The left side shows the superposition of

runoff from the subbasins. The color code describes the runoff contribution to the peak flow (white = low, red = high, dotted line = peak

position). On the right side, the same color code is used to display the spatial distribution of the contributions of each subbasins. Streams

are shown in black as well as the outlet at Altenahr (black dot). Each row of the plot shows a different precipitation scenario a, b) original

NW/Jul21 event, c, d) NW/Jul21_a counterfactual, e, f) BB/Jun21_a counterfactual (see also Tab. 2).

rainfall results in a modelled QR peak of 1004 m3/s. Our model experiment illustrates that, for this specific amount of total

areal rainfall (114 ± 1 mm), the QR peaks span a range of 536 to 1090 m3/s across all NW/Jul21 counterfactuals (Fig. 4).270

This signifies that, with an identical total rainfall volume, the QR peak can vary by a factor of 2.

The original event’s QR peak is already substantial; however, 6 % of the NW/Jul21 counterfactuals would have caused an

even higher QR peak. All of these downward counterfactuals were created by a spatial shift of the original event by 45 - 97 km.

The maximum modelled QR is 1311 m3/s (NW/Jul21_a), which is considerably higher than the 1004 m3/s peak resulting
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from the original event. This outcome would have been achieved if the centroid of NW/Jul21 would have been shifted by only275

75 km.

Fig. 5a) and b) illustrates, for the original NW/Jul21 event, the superposition of peaks at the gauge Altenahr from the

discharge of the individual subbasins. The maximum counterfactual rainfall total (130.7 mm for NW/Jul21_a) results in a

modelled QR peak of 1311 m3/s (Fig. 5c and d). Altogether, these cases underpin the importance of the spatio-temporal

event structure for the peak discharge formation. The mean total precipitation for the whole Altenahr catchment conceals the280

spatio-temporal distribution of rainfall among its subbasins. In our model, the catchment consist of 37 subbasins (Fig. 3a).

By spatially shifting the other nine HPEs from Table 1 across Germany, we can get an idea of the kind of QR flood peaks

that these HPEs could have triggered at Altenahr - had they happened in the region. The BB/Jun21 event is an interesting case:

this event happened just one month prior to NW/Jul21 in the north-east of Germany (Uckermark). Although rated almost as

extreme as the NW/Jul21 event (Tab. 1), it caused little damage in its original position. However, various spatial positions of285

this event would have apparently caused even higher QR peaks in Altenahr, up to 1651 m3/s (BB/Jun21_a, Fig. 5e and f).

Among all ten events, the BB/Jun21 counterfactuals lead to the highest modelled QR peaks for the gauge Altenahr.

Out of all counterfactuals, 1 % resulted in QR peaks higher than the one from the original event NW/Jul21. This underlines

the rarity of the event. Among these, there are no counterfactuals of the events BW/May16, BB/Jun17, LS/Jul17, HS/May19

and BB/Jun20. Further investigation is needed to understand the differences in the spatio-temporal structure of these events290

and how these HPEs were different to the other top 10 events to understand why these HPEs did not have the potential to create

any maximum counterfactual peaks.

In summary, the analysis of 38,871 QR counterfactuals for the Altenahr catchment has demonstrated that, while the original

NW/Jul21 event was exceptional, numerous spatial constellations of the same event and especially of the BB/Jun21 event could

have led to higher flood peaks. While the areal average rainfall total is a key control on peak formation, the spatio-temporal295

distribution of this total can moderate flood peak formation substantially.

The discharge and timing of the modeled QR peak for the NW/Jul21 event (1004 m3/s) fits well with recent reconstructions

that estimated a peak flow around 1000 m3/s at Altenahr (Mohr et al., 2023). This is surprising given that the RADKLIM

product might underestimate the event rainfall (Saadi et al., 2023). In any case, our model confirms that the NW/Jul21 event

triggered a swiftly moving flood wave that exceeded the HQ100 of 241 m3/s for the gauge Altenahr (Mohr et al., 2023) by far.300

4.3 Downward counterfactual analysis for Germany

In this section we show the results of the downward counterfactual modelling for all subbasins in Germany. Because of the large

amount of individual subbasins, spatial details cannot be shown. However, the results are also illustrated in a web application

which allows zooming into regions of interest (Heistermann and Voit, 2023). Since larger subbasins can generate more runoff

than smaller basins, we show the UPD (section 3.4) instead of the absolute peak discharge. On average, there are 41,873305

counterfactuals for each subbasin. Figure 6a shows, for each subbasin, the highest UPD derived from original events (2001–

2022) while Figures 6b and 6c show the maximum UPD and the 99th percentile of all counterfactual scenarios per subbasin.
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Figure 6. a) Maximum UPD from original events; b) Maximum counterfactual UPD; c) 99-percentile UPD derived from downward coun-

terfactual simulations for Germany; d) shows the unit peak discharge derived only from the respective GIUHs. Grey: Basins with an area >

750 km2 which were not considered in the analysis. White: federal state borders.

Looking at historical HPEs and consequent QR peaks that these events triggered, the downward counterfactual analysis is

able to remove the random element of where an HPE occurred (Figures 6b, c). All but one basin showed much higher QR peaks

in response to downward counterfactual events than compared to QR peaks caused by original events (Tab. 3). Unsurprisingly,310
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Figure 7. Cumulative distribution of the ratio between the highest counterfactual and the highest original peak for every subbasin is shown in

red (cf_germany). From yellow to orange we show the same ratio but for counterfactuals with a limited shifting distance (10, 20, 50, 250 km,

see section 3.3). QR peaks resulting from counterfactual simulations are much higher than the QR peaks caused by original events. As the

shifting distance increases, more counterfactuals are considered for each subbasin. As a results, it becomes more likely that the counterfactual

peaks are substantially higher than the highest original peak.

the distribution of the UPD in Germany is closely following the topography (Figures 6b, c and d). Mountain and low mountain

ranges (compare to Fig. 1 display high QR peaks and therefore high UPD in the downward counterfactual analysis.

For headwater basins, where the QR peak does not depend on the inflow from any upstream basin, the GIUH can give a first

idea of a basins’s tendency for quick runoff concentration (Fig. 6 d). But contrary to the counterfactual simulations (Figures

6b and c), this does not give information about potential QR peak flow rates, yet. While GIUHs allow for a very efficient315

hydrological modelling and therefore make a downward counterfactual analysis possible, they use a uniform precipitation

input. As shown in section 4.2 the spatial distribution of rainfall is highly important for the consequent QR peak. For this

reason a detailed spatial resolution (a small subbasin size) is desirable to utilize radar rainfall data to its full extend. A small

subbasin size consequently leads to a higher number of non-headwater basins whose QR peak characteristics can not be

estimated with the GIUH.320

Just for one single basin, the highest modelled peak was caused by an original event (which triggered a severe flash flood

around Rudolstadt, Thuringia, on May 31st, 2008), in contrast to any counterfactual scenario. For 98 % of the basins, the

downward counterfactual peak would be at least two times, for 47% at least five times higher than the highest observed peak

in the last 22 years (Fig. 7). Figure 7 also shows the corresponding ratios for more "conservative" counterfactual scenarios

for which the maximum shifting distance was limited to 10, 20, 50 or 250 km (see section 3.3). For the cf_50km scenario,325

for instance, 21 % of the discharge peaks from counterfactuals are not higher than the peaks caused by original events. This

is due to the fact that a maximum shifting distance of 50 km will leave quite a number of subbasins essentially unaffected by
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Table 3. Display of how often events (and their respective downward counterfactuals) caused the highest discharge in a subbasin (column

"count"). "other" describes original events which do not belong to the top 10 events.

Event count

SN/Jun13 16248

BB/Jun21 3033

LS/Jul02 296

SN/Aug02 227

NW/Jul21 2

BB/Jun20 2

other 1

the main footprint of the shifted HPE. Here we need to keep in mind that we only selected 10 out of 17,302 HPEs from the

catalog for the counterfactual search. A better approach for designing such a conservative counterfactual search might be to

select, for each subbasin, the most extreme HPE in a specific radius (say 50 km) and then shift this HPE over the corresponding330

subbasin. But even within the more conservative cf_50km dataset, 51 % of the basins exhibit a ratio of more than 1.5 between

the counterfactual and the original peak; more than 30 % have a ratio of more than twice as high as the original peak. Especially

in basins which have not yet been affected by severe flash floods in the recent past, the results from the counterfactual analysis

could support the preparedness for flood events that might have been unexpected so far, based on observational records.

For the downward counterfactual study we shifted 10 extreme HPEs across Germany. Additionally, we modelled the runoff335

that was generated by all the HPEs in our catalog in their original spatial position. Table 3 shows which events caused the

highest discharges for sub-basins all across Germany: the counterfactuals of the event SNJun/13 have caused the highest QR

peaks in 82 % of the subbasins. Out of the ten HPEs, this is also the event with the highest hourly precipitation rates (see Tab.

1). Then again, the BB/Jun21 event also accounts for a substantial proportion of maximum counterfactual peaks while it only

ranks sixth with regard to hourly precipitation levels. Only in two subbasins, the highest QR peaks were caused by NW/Jul21340

counterfactuals. In only one case, the worst case scenario was caused by an original event. While we expect the maximum

counterfactual peaks to be governed by the interaction of specific spatio-temporal HPE features and basin properties, the nature

of this interaction remains yet to be explained. In other words, it should be subject to future research to better understand which

features favour an exceptional runoff response at the flash-flood scale. Such research should not be limited to the top 10 events,

but aim for a more comprehensive counterfactual search (see section 4.2).345

The counterfactual analysis results in a large data set of potential QR peaks in Germany. Even though these QR peaks might

not fully represent all processes involved in discharge generation they reflect the major runoff processes in small basins and

show a range of plausible discharge cases which can be useful for further analysis. Specifically, the results could be used as a

basis to further explore the geographic variation of the flash flood hazard in more detail, and to identify sub-basins that appear

particularly prone to flash floods, mainly as a result of topographical controls.350
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5 Uncertainties and Limitations

In this section, we highlight the uncertainties and limitations that should be kept in mind when interpreting the above results.

5.1 Rainfall data and event catalog

Journée et al. (2023) showed that errors made by radar-based QPE are smaller than those obtained from rain gauge interpolation.

Still, RADKLIM (Winterrath et al., 2018a) might considerably underestimate extreme precipitation. Such underestimation is355

typically caused by path-integrated attenuation effects (Jacobi and Heistermann, 2016), and it is not too uncommon that these

effects are not sufficiently captured and corrected for by the applied rain-gauge adjustment methods (see e.g. Saadi et al. (2023))

for the NW/Jul21 event, or Bronstert et al. (2018) for the BW/May2016 event). Consequently, the resulting peak values of QR

might be too low.

The same follows from the fact that the rainfall dataset, RADKLIM, is quite short from the perspective of extreme value360

statistics. While we argue that shifting HPEs across Germany might, to some extent, make up for this shortcoming, we have to

prepare for that fact that other events are yet to be observed that might dwarf the top 10 events from our catalog.

And, finally, the top ten events from our catalog might not yet represent the worst case in terms of the QR response at the

"flash flood scale". Particularly for very small headwater catchments, other events from the catalog could trigger higher runoff

peaks even if their xWEI were smaller. For prospective research, other severity indices, ranking criteria or catalogs might still365

be considered or developed which could provide a more explicit focus on flash floods and might hence serve to an even more

exhaustive counterfactual search.

Then again, the potential underestimation of rainfall also applies to the historical (original) events to which we compare

the counterfactual events. Hence, the ratio between the historical and the maximum counterfactual peak flows might be more

robust against any rainfall estimation bias – although we need to keep in mind the non-linear transformation of rainfall to runoff370

(see next section).

Some HPEs, e.g. the SN/Aug2002 or the NW/Jul21 event are not completely captured by the DWD’s weather radar net-

work, as they extended across the borders of Germany. For these events, the extremeness is necessarily underestimated. We

still decided to use these HPEs in our counterfactual simulation experiment because they are, even while being incompletely

captured, among the 10 most extreme HPEs observed in Germany within the last 22 years.375

For DWD’s operational radar-based precipitation product (RADOLAN), Saadi et al. (2023) reported an underestimation of

18% compared to rain gauges for the NW/Jul21 event; Bronstert et al. (2018) found an underestimation of about 30% for the

BW/May2016 event. For the RADKLIM product, the uncertainty is expected to be lower than for the RADOLAN product, e.g.

due to the usage of additional data for the rain-gauge adjustment. Yet, a systematic assessment of biases in RADKLIM is not

yet available. In any case, the level of underestimation is expected to vary dramatically from event to event, as different sources380

of error govern the overall uncertainty in space and time (Heistermann et al., 2015).
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5.2 Hydrological model

The applied hydrological model has, as any model, a number of limitations which we would like to discuss in more detail.

The unit hydrograph method assumes a linear and time-invariant response of a watershed to a spatially homogeneous pulse

of effective rainfall (Yi et al., 2022). This assumption is a simplification.385

The SCS-CN method implements antecedent soil moisture by considering the total rainfall amount within the last 5 days.

Although we added a temporal buffer around our events, we always started the calculations assuming previously dry soils.

While the modelled soil moisture class will change as the event unfolds, this assumption decreases runoff generation in the

beginning of the event. The worst case scenario, in terms of QR peaks, would be saturated soils at the beginning of an event.

Since our model does not include base flow, there is certainly a small fraction of the total runoff missing in the QR peaks.390

Additionally, we know that clogging of bridges with uprooted trees and debris can play a major role in the formation of flood

peaks (Borga et al., 2014). Neither does our model account for such effects, nor does it include a hydrodynamic channel model.

Together with the expected underestimation of rainfall (see section 5.1) our results are likely to underestimate discharge peaks.

Utilizing a smaller subbasin size would be advantageous, particularly in the context of investigating flash floods. For exam-

ple, within our chosen spatial discretization, we were unable to reproduce the extraordinary discharge peak during the Brauns-395

bach flooding in May 2016 (Bronstert et al., 2018), which was generated in a subbasin of 6 km2. However, computational cost

increases exponentially with spatial resolution, so we did not implement smaller subbasins, yet.

Furthermore, our study relies on an uncalibrated model. The main reason for this is the lack of stream gauge records for

small catchments. In addition, stream gauges are often unable to effectively observe extreme flash floods due to being damaged

by the actual flood wave (Amponsah et al., 2018). Marchi et al. (2010) showed that only 20 % of flash flood events in small400

catchments were gauged by a stream gauge section. For these reasons, flash flood events are usually underrepresented in

streamflow records (Borga et al., 2014). However, both model components, the SCS-CN model for QR formation and the

GIUH for QR concentration are widely used and their applicability was validated in numerous contexts.

Taking all these aspects into account, we would like to emphasize once more that our model is not designed for precise

discharge predictions. Instead, it serves as a tool to consistently represent the effects of rainfall, topography, soils and land405

use while enabling us to simulate a substantial number of counterfactual scenarios. This large number of simulations is a key

feature of this study as it allows to comprehensively explore possible realisations of counterfactual rainfall events and their

effect on peak discharge.

5.3 Spatial shifting of events

In our counterfactual analysis, we assumed that any of the analysed HPEs could have occurred anywhere in Germany. This is a410

very strong assumption, and it should be emphasized that the validity of this assumption remains an open question. Certainly,

an HPE results from the interaction of large and regional scale circulation patterns with regional and local features of the earth’s

surface. E.g, orographic effects can augment precipitation and lead to anchoring convection (Marchi et al., 2010; Tarolli et al.,

2013). Our study does not consider such effects, which could lead to unrealistic counterfactuals. For this reason we also carried
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out a more conservative analysis in which we restricted the spatial shifting of HPEs to a radius of 10 km, 20 km, 50 km and415

250 km around their original centroid. These results are displayed in Figure 7. It would also be very helpful for future research

if the atmospheric modelling community further explored how exceptional HPEs could have unfolded under disturbed initial

and boundary conditions, or under a warmer climate (see e.g. Ludwig et al., 2023, for a pseudo global warming analysis of

the July 2021 event), and thereby provide a better basis to evaluate the assumptions behind our counterfactual search.

6 Conclusions420

In this study, we presented a downward counterfactual scenario analysis to assess the flash flood hazard in small to medium-

sized basins in Germany. Instead of relying on local observational records of limited length, we identified the most severe heavy

precipitation events from 2001 until 2022, and assumed that these events could have occurred anywhere in Germany. The quick

runoff response to the resulting counterfactual rainfall scenarios was simulated by using a parsimonious and computationally

efficient rainfall-runoff model, and compared to the quick runoff response of historical events that actually took place in the425

corresponding subbasins.

By using a radar-based precipitation product, we were able to account in detail for the effects of different spatio-temporal

event realisations on the quick runoff response. These effects can substantially moderate the role of the total accumulation

of areal mean rainfall. This was first demonstrated in a case study of the July 2021 flood event (NW/Jul21) for the Ahr river

catchment, down to the runoff gauge Altenahr. Shifting the NW/Jul21 rainfall event in space resulted in a wide range of430

quick runoff peak values of which 6 percent exceeded the response to the original event. Furthermore, shifting another event

(BB/Jun21), which had occurred one month earlier in eastern Germany, to the Ahr catchment effectuated a peak that exceeded

the worst-case downward counterfactual peak of the NW/Jul21 by another 26 percent.

We then expanded the analysis to all of Germany and found that, on average, the worst case downward counterfactual

exceeded the maximum original quick runoff peak by a factor of 5.3. In general, the quick runoff response is dominated by435

topography. It turned out that the SN/Jun13 event (see Tab. 1) caused the maximum counterfactual peak in the majority of

basins. Still, readers should be aware of various limitations of our approach which, some of which might lead to a considerable

underestimation of counterfactual quick runoff peaks.

To make our results easily accessible, we created a web viewer where interested users can explore the results for each

subbasin in Germany (Heistermann and Voit, 2023). Still, our results leave various open questions: The most obvious, of440

course, is about the validity of shifting events all over Germany. Furthermore, focusing on the top 10 events as ranked by

the xWEI might hide events that were more severe at the flash flood scale. So we should further explore the event catalog to

understand which spatio-temporal structure makes an event particularly hazardous. Besides, it would be interesting to see how

the counterfactual peaks compare to the values which are currently used for risk management. Furthermore, we just looked

at the worst case scenario for individual basins. However, large precipitation events can trigger flash floods in multiple basins445

simultaneously. The identification of regional flash flood clusters caused by one event are relevant in the context of disaster

response. It should be clear that our design of counterfactual scenarios only addresses one single aspect: the spatial position of

20



the precipitation field and its effect on the hydrological hazard intensity. A more comprehensive counterfactual search would

require accounting for impact-related aspects and processes. Such aspects could e.g. be the daytime or weekday at which an

event occurs, the effectiveness of an early warning chain, or cascading effects of damages to infrastructure.450

We would like to emphasize that the presented approach should be considered as a framework rather than a fixed method

with fixed results: users could employ different catalogs, make different assumptions on spatial shifting of heavy precipitation

events, use a different hydrological model, and define different metrics to assess the impact-relevance of the hydrological

response. The key message here is that the presented framework for counterfactual scenario analysis provides a different view

on flash flood hazards which should be helpful to reduce the element of surprise in disaster risk management.455

Code and data availability. We published code and data to exemplify the computation of both WEI and xWEI in the following repository:

https://doi.org/10.5281/zenodo.6556446. We publish notebooks and code which demonstrate our whole workflow for this study for a small,

exemplary region (Altenahr basin, see section 4.2): the derivation of GIUHs from a digital elevation model, the extraction of rainfall data

from and effective rainfall for the subbasins from RADKLIM data and the modelling of quick runoff. The code is published at: https:

//github.com/plvoit/counterfactual_flash_flood_analysis.460

All data used in this study is accessible at the open data repository of the DWD: the RADKLIM_RW_2017.002 dataset is available at https:

//opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/radolan/reproc/2017_002, (Winterrath et al., 2018a); the EU-DEM is

available at https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/elevation/eu-dem/eu-dem-dd; the CLC5-2018 land cover data is

available at https://gdz.bkg.bund.de/index.php/default/open-data/corine-land-cover-5-ha-stand-2018-clc5-2018.html. The soil data is avail-

able at https://www.bgr.bund.de/DE/Themen/Boden/Informationsgrundlagen/Bodenkundliche_Karten_Datenbanken/BUEK200/buek200_node.465

html, all last accessed 13 December 2023.
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