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Section 1.  Hazard layers and their definitions  

1.1 River floods 

 
The  damages generated by flood inundation are estimated in various studies, mainly through 

hydraulic  modelling and by quantifying socio-economic impacts of floods. The estimation is based on 
the concept of water depth-damage functions or loss functions and most of the literature considers 
direct tangible damage, which adds up most of total damage figure (Ward et al., 2011; te Linde et al., 
2011). A central approach in economic damage is set on the monetary damage obtained from the type 
or use of the buildings or built-up space and the inundation depth. Several studies have focused on 
flood economic damage assessment across different scales, from river basins area (te Linde et al., 
2011, Falter et al., 2016; Schumann et al., 2013) to pan- European (Lugeri et al., 2010; Feyen et al. 
2012; Rojas et al., 2013; Alfieri et al., 2016) or even globally (Jongman et al. 2014). Similarly, loss of 
life is one of the most important consequences of flood disasters (Jonkman et al., 2016). River flooding 
studies are quantifying in most of the studies either the population affected as social damage (Rojas 
et al., 2013, Alfieri et al., 2016) or models the losses of life as a function of various variables (people 
at risk, mortality and evacuation fraction)(di Mauro et al., 2012; Kolen et al., 2012; Jonkman et al., 
2016). The reported studies identify as the main driver of flood impact the increasing exposure 
(population, wealth, expansion of residential areas) in the flood prone areas (De Moel et al., 2011; 
IPCC, 2012, Elmer et al., 2012).  

In order to provide an estimation of exposure (maximum potential impact) from floods, both 
on population and residential built-up, we use the European inundation maps derived by the high-
resolution 2-D hydraulic model LISFLOOD (Bates et al., 2010; Alfieri et al., 2014) as a measure of the 
areal extent of the flood prone areas (fig. S1). The200 years return period hazard layer  is considered. 
It is a low probability flood and it is proposed in the general floodplain legislation that defines the 
design flood (along with the 100 years return period) (Jakob, M., et. al., 2005). We intersect flood 
prone areas with built-up and residential population layers in order to determine the Flood 
management is based on prior assessments of flood events and their impacts. Such approach became  
dominant  for flood control policies throughout Europe (Merz, B., et al., 2010). An approximation of 
the maximum potential impact, as suggested by our approach,  can be a support to decision-making, 
in particular to prioritize areas where action is required. 
 

Figure S1. River flood population (%) exposure (left) and the 200-year return period river flood hazard layer (right) 
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1.2 Landslides 

Impacts from landslides on both built-up space (Zêzere et al. 2008, Papathoma-Köhle et al. 
2011, Pomper et al., 2015) or human lives (Guzzetti, 2000, Papathoma-Köhle et al. 2007, Garcia et. al., 
2016) are frequently considered respect to physical vulnerability (relationships between process 
intensity and the expected degree of loss) and social vulnerability assessments. In Europe, landslides 
are known for causing significant economic losses and less known for causing “catastrophic” events 
(loss of human life)( Papathoma-Köhle et al. 2007). Nevertheless, danger or threat from landslides 
occur when landslides as a natural process interacts with humans, their activities and/or properties 
(Jaedicke, C., 2014). 

Landslides, as geohazard capable of causing damages, have been related in literature to either 
a hazard or a susceptibility map (Promper et al., 2016). For the RDH, we consider an ‘hazard indicator’ 
approach based on combining spatial and temporal probability layers. This is done by intersecting  a 
landslide susceptibility layer from the ELSUS v2  (Wilde M., et al, 2017) with  daily maximum 
precipitation from GPCC1. We follow here the methodology described in Thiebes et al., 2017.  The 
resulting landslide hazard layer (fig. S2) combines  the physical characteristics of various terrain factors 
that provides high predisposition to landslide occurrence with a probabilistic daily maximum 
precipitations using a matrix approach. For the purpose of our study, we have used the 200yr RP 
landslide hazard layer. In order to quantify the exposure from landslides we overlapped the hazard 
layer with assets layers (e.g. population ,residential built-up layers). 

Figure S2.  Landslide population (%) exposure (left) and the landslide hazard susceptibility layer (right) 

 
 
 
 
 
 
 

 
 
 
 

1.3 Coastal inundation  

Coastal inundation (or coastal flooding) is generally defined as the sea water level that can exceed the 
height of natural (e.g., dunes, cliffs) or anthropic barriers (e.g., sea walls, dykes) (Vousdoukas, et al., 
2016) producing catastrophic consequences in the coastal zones. Studies on coastal inundation have 
been related mainly with sea level rise (Lowe et al., 2009; Brown et al., 2012; Gaslikova et al., 2013) 
or as contribution of waves to sea water levels during extreme weather events (Barnard et al., 2015; 
Bertin et al., 2012; Vousdoukas, et al., 2016). The inundations impact on coastal zones has been 
considered either by quantifying  flooded areas (Hinkel et al., 2014; Losada et al., 2013; Weisse et al., 
2014) or by estimating the number of people affected as a direct or indirect proxy of coastal impacts 
(Brown et al., 2013; Hinkel et al., 2010; Lloyd et al., 2015). When combined with socioeconomic 

 
1 https://psl.noaa.gov/data/gridded/data.gpcc.html 
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exposure maps the coastal inundation estimation offers information with major implications for 
coastal management and adaptation. 

For the present study, we used the estimated coastal flood extent with 200-year return period ( fig. 
S3) developed by Vousdoukas, et al., 2016 in order to provide exposure of residential buildings and 
population to coastal flooding. The estimated inundation map represents the extreme total water 
level (TWL), and is the result of the contributions from the mean sea level (MSL), the tide and the 
combined effect of waves and storm surge. For a better description, please refer to Vousdoukas, et 
al., 2016 . 

Figure S3.  Coastal flood population (%) exposure (left) and the 200-year return period coastal flood hazard layer (right) 

 

1.4  Earthquake 

We identify the areal extend of the seismic hazard using the European probabilistic seismic hazard 
data produced in the context of the SHARE project (Woessner et al. 2015). More specifically we use 
the exceedance probabilities of peak ground acceleration (PGA) for a corresponding to 10 % 
exceedance probability in 50 years (i.e. equivalent to an average recurrence of such ground motions 
every 475 years). 

In order to provide exposure from seismic hazard, we delineate in our study, areas from high intensity 
distribution with damage potential. We established these areas from an analogue approach that 
relates the physical ground motion parameters (such as PGA) with actual levels of damage derived 
from Instrumental Intensity scale developed by United States Geological Survey (USGS) (Worden, C. 
B., et. al., 2016). The intensity scale greater than 0.18 PGA or the equivalent “Moderate” potential 
damage level defines the areal confine we considered in our study. The intensity classes considered 
are shown in Table S1 (highlighted in grey): 

Table S1. Instrumental Intensity scale developed by United States Geological Survey (USGS) 

Instrumental  
Intensity 

Acceleration 
(g) 
  

Perceived shaking Potential damage 

    
I < 0.0017 Not felt None 
II–III 0.0017 – 0.014 Weak None 
IV 0.014 – 0.039 Light None 
V 0.039 – 0.092 Moderate Very light 
VI 0.092 – 0.18 Strong Light 
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VII 0.18 – 0.34 Very strong Moderate 

VIII 0.34 – 0.65 Severe 
Moderate to 
heavy 

IX 0.65 – 1.24 Violent Heavy 
X+ > 1.24 Extreme Very heavy 

 

Relating physical ground motion parameters with seismic intensities has been a difficult task for 
numerous studies either at worldwide level (Murphy, 1978; Trifunac and Brady 1976), European wide 
level (Corbane, et.a al., 2017), regional (Wald, D. J., et. al., 1999,) and country level (Teselentis, G., A, 
et. al., 2008, Faenza, L., et al., 2010). It is an ideal alternative solution as the intensity of an earthquake 
is not entirely determined by its magnitude but is rather empirically based on observed effects of the 
earthquakes (Musson, R., M.,W.,2000). Nevertheless, an equation that expresses the relationships 
between seismic intensity and PGA applicable uniformly across EU countries is difficult to identify 
(Corbane, et.a al., 2017). Therefore, by using the USGS’s Instrumental Intensity scale greater than 0.18 
PGA, equivalent to “Moderate” potential damage level we have approximated areas with potential 
impact from seismic hazard at European level. Within these areas, we have quantified the residential 
build-up and population exposure to the seismic hazard (fig. S4). We did not disaggregate, within the 
considered seismic hazardous area, the attributes of residential build-up and population in order to 
search for elements most likely to be damaged/impacted. Instead, we have assessed the residential 
build-up and population sums and densities within the seismic hazardous area. Consequently, the 
exposure and its variability is expressed as sum (absolute value) and as densities (relative values) of 
residential build-up and population among the cumulative statistical areas (LAU) situated in the areas 
prone to seismic hazard .   

Figure S4. Population (%) exposed to earthquake aggregated at LAU level  (left) and the earthquake hazard layer (right)
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1.5 Drought (Subsidence) 

Here we define subsidence as a clay-related geohazard capable of causing harm to both life and the built 
environment. It is a result of soils shrinking and swelling according to wetting and drying conditions 
respectively (Corti et al. 2011) which causes vertical and horizontal ground movement (due to volumetric 
changes in soil mass) causing significant damage to buildings and infrastructure (Pritchard, et. al., 2015). 
Ground movement, incorporating clay-related subsidence, is a recognised hazard across some EU member 
countries: UK (Cabinet Office 2011), France (JORF, 1992) or in USA (Seed, et.al., 1962, Van der Merve, 
D.H., 1964). It is a highly damaging geohazard: Corti et al., (2011) suggests that the impact of soil 
subsidence in France is exceeding, financially, flooding, Sudjianto  et al. (2011), Steiberg, (2008) in the 
United States, suggests that the financial cost of swelling soils has exceeded other natural disasters (i.e. 
tornadoes, earthquakes and hurricanes) and Pritchard, et. al., 2015 suggests that clay-related subsidence 
is Great Britain’s (GB) most damaging soil-related geohazard, costing the economy up to £500 million per 
year. 

In our study, we aimed to provide a measurable and geographically defined potential impact areas from 
clay-related subsidence. Our approach does not quantify the shrink–swell behaviour of a soil by modelling 
meteorological, soil hydrology or soil mechanics data. Instead, we indicate the potential for such a hazard 
to be present, with regard to the amount of clay content of the soils on which the high activity and 
plasticity index of the soils is based on. Likewise, in order to nominate soils that are prone to subsidence 
(shrink-swell) at European level we have extracted from the Dominant surface textural class of the STU 
(ESDAC), the soils with values of fine and very fine soil texture and with clay content greater than 35%. 
Atkinson, J., 2014, suggests that the proportion of clay mineral flakes (< 2 mm size) in a fine soil affects its 
current state, particularly its tendency to swell and shrink with changes in water content. This happens 
because - in the case of fine soils (such as soils with high content of clays) - it is the shape of the particles 
rather than their size that has the greater influence on engineering properties of the soil. Clay soils are 
characterised by flaky particles to which water adheres, thus imparting the property of soil plasticity. 
Consequently, we have defined the soils with fine texture and clay content greater than 35% as soils with 

High : 0.67
 
Low : 0.18
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high subsidence potential and based on their geographical extent and location we have mapped the 
subsidence susceptibility area at European level (fig. S5). 

Figure S5. Population (%) exposed to subsidence aggregated at LAU level (left) and the subsidence hazard layer (right) 

                   

1.6 Forest Fire 

Forest Fire has been described using a variety of approaches and variables including expected fire 
behavior (Hardwick et al., 1998; Hessburg et al., 2007), fuel characteristics (Hogenbirk and Sarrazin-Delay, 
1995), satellite image classification (Cohen, 1989; Jain et al., 1996; Ercanoglu et al., 2006), topography 
analysis (Yool et al., 1985), expert knowledge (Gonzalez et al., 2007), crown fire index calculations (Fiedler 
et al., 2003) and identification of Wildland-Urban Interface (Bar-Massada et al., 2014; Cohen, 2000; 
Lampin-Maillet et al., 2009; Lowell et al., 2009). 

For the current study, in order to find the hazardous potential of forest (wild) fire, we considered 
Wildland–Urban Interface area (WUI) (FAO, 2002), as areas where wildfires are most likely to threaten 
assets and population and present fire danger conditions.  

Identification of WUI areas that are more likely to be affected by fires is essential for fire management. 
Researchers and policymakers have requested for a better accountability of impact potential from fire 
hazard especially within the WUI areas communities (Lee, 1991; Jakes, Kruger, Monroe, Nelson, & 
Strurtevant, 2007).  

Accordingly, population (Johnson Gaither, et. al. 2015; et. al., 2011; WFEC, 2014) or artificial areas 
(Atkinson, et al., 2012; Chuvieco et al., 2010; Keane, et. al., 2010; Stockmann, et. al., 2010) has been largely 
used for characterising potential exposure or sensitivity to forest fire within the WUI areas. Conducted at 
relevant spatial scales, fire hazard potential in the WUI area can provide important information about the 
magnitude and extent of impact. 

A threefold steps approach was set in our study for characterising potential exposure and 
sensitivity to forest fire. First, we identified the WUI areas at European level, then we delimited the WUI 
area with potential fire activity and lastly we quantified the residential built-up area and population 
exposed to fire within the identified WUI area. 
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In the first step the WUI areas at European level are mapped according to the methodology 
described by [Modugno., S. et. al, 2016]: as the space where artificial surface (build-up area) and forest 
fuel mass come into contact. These two surfaces were created as the selection from level 1 and 3 land 
cover classes from CLC 2006 shown in Table S2.  

Table S2. CLC 2006 nomenclature used to select classes that represent the residential areas and fuel areas 

Residential areas Code Fuel areas Code 

Continuous urban fabric 1.11 
Broad-leaved forest 3.11 

Coniferous forest 3.12 

Discontinuous urban fabric 1.12 

Mixed forest 3.13 

Sclerophyllous vegetation 3.23 

Transitional woodland-shrub 3.24 

The maximum buffer distances - according to the Mediterranean Countries forest fire management plans 
(add ref here) - around the considered fuel and artificial surfaces were used, ensuring in this way that no 
area exposed to forest fire is overlooked. The considered buffer distances around the artificial and fuel 
areas were, likewise, set as 400 m from fuel mass (woodland) and 200 m from urban space. Finally, to 
account for WUI areas, the intersecting artificial surfaces and the fuel surface buffer zones are mapped. 
Fig. S6 depicts the geospatial analysis method used. 

Figure S6. GIS analysis to generate WUI areas ( Modugno, S., et. al, 2016) 

 

In order to identify the WUI area with potential fire activity, we established a spatial relationship with 
historical events (burned areas) as a function of the distance from the historical burned area. The historical 
event database of burned areas used cover the period 2006-2017 and was accessed from the Joint 
Research Centre European (San-Miguel-Ayanz et al., 2013) product, supplied by the Forest Fires 
Information system (EFFIS, 2014). A Euclidean distance of 10 km was applied and considered as 
independent explanatory variable for the potential fire activity. More detailed methods using logistic 
regression (LoR), modelled the relationship between burned area and WUI areas (Martinez et al., 2009, 
Vilar et al., 2010, Kleinbaum and Klein, 2010, Modugno., S. et. al, 2016) and established the 10 km limit 
range from the burned areas as hypothetical distance with increased probability of fire activity. By 
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applying this distance range, we have selected the WUI areas with high potential fire activity at European 
level (fig S7). 

Lastly, we quantify the exposure of residence-build up and the residential population when their location 
intersects the WUI areas with high potential impact (fig S7 - right). 

Figure S7. Population (%) exposed to subsidence aggregated at LAU level  (left) and the subsidence hazard layer- WUI areas 
with high potential impact (right) 
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Section 2 

2.1 Maximizes the autocorrelation/clustering 

Based on the selection of the neighbourhood size (k) in the k-Nearest Neighbour the spatial 
autocorrelation/clustering across single hazard exposures can be maximized. In the k-NN literatures, there 
are several studies focusing on the selection of an optimal k for k-Nearest Neighbour (Hand, D.J. et all 
2003; Gosh, A. K. et all 2006; Hall, P. et all 2008). The optimal k value has to balance between susceptibility 
to noise and outliers for low values (large z-scores with high variance) and risks of over-smoothing for high 
values (small z-scores with low variance).  

A variety of techniques are available to determine the optimal k value for clustering algorithms (Tibshirani 
et al., 2001, Rousseeuw, 1987, Baker and Hubert, 1975, Smyth, 1996) and various ways of being 
categorised, either if we consider their application on clustering geographical neighbours (in 
conceptualisation of spatial relationship as it is in our case) or on clustering attributes of neighbours 
(referring to text mining or machine learning). Generally, they are grouped into three classes of criteria 
(Theodoridis and Koutroubas, 2008): (i) relative (compare two different clustering or clusters), (ii) external 
(evaluation of a clustering structure by comparing it with other clustering schemes) and (iii) internal 
criteria (evaluation based on the internal clustering structure).  

Our approach falls into the internal criteria technique and is based on the effect of the size of k by running 
a clustering algorithm (a spatial lag model with k-Nearest Neighbour spatial weight matrices in our case) 
several times increasing the stepwise k value for each run. This method is central to the geostatistical 
concept of variogram, which gives the variation of sites’ attribute as distance between sites increases. We 
run the clustering algorithm 10 times increasing the stepwise k=5 for each run. The coefficients we used 
to investigate the variations among clusters are: Mean Square Error (MSE), Correlation coefficient and 
within cluster sum of squared errors (WCSS) (fig S8). We also used and an empirical rule-of-thumb 
popularized by the "Pattern Classification" book by Duda et al., 2001 which sets the k equal to the square 
root of the number of instances. 

The procedure of identifying the optimal k parameter is based on “elbow” method (Aldenderfer, et all 
1984). The method used  is a visual method and involves graphing the coefficient on a y-axis and the 
number of increasing stepwise clusters on an x-axis. It shows that increasing the number of clusters  
improves the fit (the variation is better explained) and it is represented either through increasing 
correlation or through decreasing error. A marked flattening of the graph suggests that the clusters being 
created are over-fitted, thus the appropriate number of clusters is found at the ‘elbow’ of the graph 
(Ketchen, et all. 1996). 

The optimal number of neighbours (k) around the individual regions (LAU) that optimize the clustering are 
presented in Table S3 and Table S4. The method is applied on population and residential build-up, both 
on absolute and relative aggregations of the exposure to the considered hazards.  
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Figure S8. Elbow method applied on 3 coefficients used to investigate the optimal k: MSE (upper left), Correlation coefficient 
(bottom left), WCSS (upper right). The plots indicate the optimal number of neighbours (k) to be used to maximize the relative  

population exposed to landslides clustering (as identified by the 3 coefficients ) (Please see fig. 11 to 21 for the built-up and 
population plots) 

 

Table S3. The optimal neighbourhood size (k) of the population (absolute and relative) exposures identified by the coefficients 
Mean Square Error (MSE), Correlation , Within Cluster of Sum of Squared errors (WCSS) using the “elbow” method  

              Coefficient 

Hazard /  
Aggregation 

WCSS Correlation MSE 

Absolute % Absolute % Absolute % 

Coastal flood 6 11 16 6 16 6 

Earthquake 6 6 16 1 16 1 

River flood 6 11 21 6 21 11 

Landslide 6 6 16 16 16 11 

Subsidence 6 6 6 6 11 6 

Forest fire (WUI) 6 11 21 6 41 11 

Table S4. The optimal neighbourhood size (k) of the residential build-up (absolute and relative) exposures identified by the 
coefficients Mean Square Error (MSE), Correlation , Within Cluster of Sum of Squared errors (WCSS) using the “elbow” method  

Coefficient WCSS Correlation MSE 
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Hazard  / Aggregation Absolute % Absolute % Absolute % 

Coastal flood 6 6 16 6 16 11 

Earthquake 6 6 6 6 11 6 

River flood 6 6 21 6 21 11 

Landslide 6 6 16 11 16 11 

Subsidence 6 36 11 6 11 6 

Forest fire (WUI) 6 11 11 6 11 11 

 

We compare the distributions of the effect size (z-score) and their significance level for the single hazard 
exposures in order to choose the optimal number of neighbours k detected previously by the coefficients 
Mean Square Error (MSE), Correlation and Within Cluster of Sum of Squared errors (WCSS). We observe 
(as the example presented in fig. S9) a general agreement on 3 among the 4 methods (the ‘thumb’ method 
appears dissimilar) which indicate that any k identified by these methods would optimize the clustering 
similarly. We select the number of k neighbours identified by the correlation coefficient, to optimize the 
clustering and perform the hotspots analysis for the single hazard exposures. 



13 
 

Figure S9. The distribution of the effect size (z-score) (upper plot) and the significance (bottom plot) of the methodologies used 
to compute the optimal k  for the single hazards considered (example of the relative (%) population exposure). Please see 

below in fig. 22 the same for the built-up exposure (%) 

 

 

Once the hotspot analysis is completed for the single hazards both for residential area and population 
grids, the resulting clusters with various significance levels are combined in a multi-hazards hotspot 
analysis.  
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Figure S10 . Elbow method applied on Correlation coefficient.  The plots indicate the optimal number of neighbors (k) to be 
used to maximize clustering of the relative (%)  population exposed to : coastal flood, flood, subsidence clustering  (left side 

from upper to bottom plots) earthquake, landslides, forest fire_ WUI clustering (right side from upper to bottom plots) 
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Figure S11 . Elbow method applied on Correlation coefficient .  The plots indicate the optimal number of neighbors (k) to be 
used to maximize  the clustering of (absolute) population exposed to : coastal flood, flood, subsidence clustering  (left side from 

upper to bottom plots) earthquake, landslides, forest fire_ WUI clustering (right side from upper to bottom plots) 
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Figure S12 . Elbow method applied on Correlation coefficient.  The plots indicate the optimal number of neighbors (k) to be 
used to maximize clustering of the relative (%)  residential buitlup exposed to : coastal flood, flood, subsidence clustering  (left 

side from upper to bottom plots) earthquake, landslides, forest fire_ WUI clustering (right side from upper to bottom plots) 
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Figure S13 . Elbow method applied on Correlation coefficient.  The plots indicate the optimal number of neighbors (k) to be 
used to maximize clustering of the  absolute  residential built up exposed to : coastal flood, flood, subsidence clustering  (left 
side from upper to bottom plots) earthquake, landslides, forest fire_ WUI clustering (right side from upper to bottom plots) 
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Figure S14 . Elbow method applied on WCSS coefficient.  The plots indicate the optimal number of neighbors (k) to be used to 
maximize clustering of the relative (%)  population exposed to : coastal flood, flood, subsidence clustering  (left side from upper 

to bottom plots) earthquake, landslides, forest fire_ WUI clustering (right side from upper to bottom plots) 
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Figure S15 . Elbow method applied on WCSS coefficient.  The plots indicate the optimal number of neighbors (k) to be used to 
maximize clustering of the absolute  population exposed to : coastal flood, flood, subsidence clustering  (left side from upper to 

bottom plots) earthquake, landslides, forest fire_ WUI clustering (right side from upper to bottom plots) 
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Figure S16. Elbow method applied on WCSS coefficient.  The plots indicate the optimal number of neighbors (k) to be used to 
maximize clustering of the relative (%)  residential built up exposed to : coastal flood, flood, subsidence clustering  (left side 

from upper to bottom plots) earthquake, landslides, forest fire_ WUI clustering (right side from upper to bottom plots) 
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Figure S17. Elbow method applied on WCSS coefficient.  The plots indicate the optimal number of neighbors (k) to be used to 
maximize clustering of the  absolute residential built up exposed to : coastal flood, flood, subsidence clustering  (left side from 

upper to bottom plots) earthquake, landslides, forest fire_ WUI clustering (right side from upper to bottom plots) 

 

 

 



22 
 

Figure S18. Elbow method applied on MSE coefficient.  The plots indicate the optimal number of neighbors (k) to be used to 
maximize clustering of the relative (%)  population exposed to : coastal flood, flood, subsidence clustering  (left side from upper 

to bottom plots) earthquake, landslides, forest fire_ WUI clustering (right side from upper to bottom plots) 
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Figure S19. Elbow method applied on MSE coefficient.  The plots indicate the optimal number of neighbors (k) to be used to 
maximize clustering of the absolute  population exposed to : coastal flood, flood, subsidence clustering  (left side from upper to 

bottom plots) earthquake, landslides, forest fire_ WUI clustering (right side from upper to bottom plots) 
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Figure S20. Elbow method applied on MSE coefficient.  The plots indicate the optimal number of neighbors (k) to be used to 
maximize clustering of the relative (%)  residential built up exposed to : coastal flood, flood, subsidence clustering  (left side 

from upper to bottom plots) earthquake, landslides, forest fire_ WUI clustering (right side from upper to bottom plots) 

 

 

 



25 
 

Figure S21. Elbow method applied on MSE coefficient.  The plots indicate the optimal number of neighbors (k) to be used to 
maximize clustering of the  absolute residential built up exposed to : coastal flood, flood, subsidence clustering  (left side from 

upper to bottom plots) earthquake, landslides, forest fire_ WUI clustering (right side from upper to bottom plots) 
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Figure S22. The distribution of the effect size (z-score) (upper plot) and the significance (bottom plot) of the methodologies 
used to compute the optima k  for the single hazards considered (example of the relative (%) residential build up exposure) 
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2.2 . Difference between the methodological aspects of the study and its implementation on 
the RDH platform 

In contrast to other studies, transferability is not limited due to the reliance on case-study-specific data or 

methodology. The methodological approach described in this study it is already implemented on the DRMKC Risk 

Data Hub platform (https://drmkc.jrc.ec.europa.eu/risk-data-hub/#/). The methodology utilizes the existing analysis 

hosted and shared through the platform and demonstrates its accessibility and replicability. However, differences 

between the methodological approach presented and its implementation on the RDH platform exists. They are 

presented in the table S5 and they mainly include: 

(i..) The input data. On the RDH the exposure as input is a matrix of exposure and probability on a temporal dimension 

(1, 5, 10, 15, 25 years) on which the cluster analysis are performed while in this study we only focused on a scenario 

(e.g. either medium case scenario: RP= 200yrs or an spatial probability/susceptibility: high, medium)  

(ii..) The (k) parameter. The optimal neighbourhood size (k) used to cluster the single hazard exposure on the RDH 

platform is fixed to 8 neighbours whilst in the present study we use a dynamic (k)  parameter function of the assets-

hazard relation type (Supplementary , Section 2, table 3 and 4). 

(iii.) The clustering. On the RDH platform, the statistical description of the cluster is based on the Z-score only while 

the study is underlying the statistical significance of the Z-score by considering the p-value. The implementation of 

the significance of the clusters is foreseen for the future development of the RDH platform. 

(iv.) Meta analysis or the multi-hazard clustering (hot/cold-spots). Both the RDH platform and the present study use 

the Stouffer’s method (Stouffer, 1949) based on unweighted Z-transform test. 

(v.) Identification of regions at risk to multi-hazards. On the RDH platform is done only on the bases of the 

normalisation of the Z-score while in this study we consider for a statistical overview the regions with more than 1 

hazard exposure (Hz > 1) and confidence level set at 90% (p-value < 0.10 and positive Z-score  >  0). 

 

Table S5. Difference between the methodological aspects of the study and its implementation on the RDH platform 

Analysis 

  

Risk Data Hub implemented 

methodology 

Methodology presented in this 

article 

1. Input data: Exposure   

Single hazard exposure ( E to Hz) 

f (t, E to H) - Single hazard 

Expected Annual Exposure (matrix 

of exposure and probability on a 

temporal dimension) 

(E to H) - Exposure to single 

hazard as scenario (as presented in 

table1) 

2. Single hazard hot-

spots (clustering) 

Building 

a spatial 

weights 

matrix 

Kernel function 

With fixed neighbour size across all 

exposure type (k=8)  

With dynamic neighbour size (k) 

computed for different types of 
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exposures (Supplementary, 

Section 2, table 3 and 4) 

Clustering 

Normalization using Getis and Ord’s Gi* as:  

- standard deviations (Z-score) 
- standard deviations (Z-score);                                                                                 

- probability (p-value) 

3. Multi-hazard hot-

spots (meta-analysis) 
  Stouffer’s method (Stouffer, 1949) based on Z-transform test 

4. Identification of 

regions at risk to multi-

hazards  

  Normalization of Z-scores (0-10) 

Regions with more than 1 hazard 

exposure (Hz > 1) and confidence 

level set at 90% (p-value < 0.10 

and positive Z-scores , Zs  >  0) 
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Figure S23. Hot-spot analysis of multi-hazard population exposure at the level of urbanized areas (Functional Urban Area) in 
Europe .For the analysis in 3.1 (iii) only the high significant hot-spots are used (>90% confidence) 

 

Table S6.  Number of urban areas per income level and countries (only the high significant hot-spots are used : >90% 
confidence)) 

Countries High 
income 

High midle 
income 

Low 
income 

Low midle 
income 

Total urban 
areas 

AT 4 4 
 

2 6 
BE 2 3 

 
3 6 

BG 
  

16 
 

16 
CH 8 

   
8 

CY 
   

2 2 
CZ 

  
11 

 
11 

DE 20 26 1 20 49 
DK 1 1 

  
2 

EL 
  

1 1 2 
ES 1 15 7 18 39 
FI 5 2 

  
7 

FR 9 46 
 

41 69 
HR 

  
4 

 
4 

HU 
  

13 
 

13 
IE 2 2 

  
3 

IS 1 
   

1 
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IT 9 30 8 25 63 
LU 1 

   
1 

LV 
  

3 1 3 
NL 28 21 

 
4 43 

PL 
  

15 1 15 
PT 

  
9 1 10 

RO 
  

17 1 17 
SI 

  
1 1 2 

SK 1 
 

5 
 

6 
UK 23 20 

 
15 47 

Grand 
Total 

115 169 110 136 442 

 

Figure S24. Population (%) at risk from multi-hazard risk occurrence within the urban areas comparing the categories: cities (or 
city cores/centers - C) and larger urbanized zones (commuting zone/Functional Urban - F). 
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