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Abstract.  The Disaster Risk Management Knowledge Centre (DRMKC) has developed the Risk Data Hub (RDH), a web 

platform designed to enhance the accessibility and exchange of curated risk data, tools, and methodologies across the European 

Union to support actions related to Disaster Risk Management (DRM).  In advancing the Risk Data Hub, we have established 

a methodology to identify regions with multi-hazard exposure on a pan-European scale. Our results reveal that 21.4% of 

Europe’s local administrative units (LAUs), encompassing 87 million people (18.8% of the EU population), are exposed to at 15 

least two hazards. Economic and urbanization patterns show that 67% of these exposed regions are low and low-middle-

income, while 54% of the exposed population (46.8 million) resides in urban areas. Validation has demonstrated a high 

correlation (r = 0.59) for statistically significant clusters, confirming the robustness of the analysis. 

This study employs a meta-analysis approach, combining single-hazard exposure hotspots to provide statistical proof of multi-

hazard potential while addressing the challenge of insignificant results. We support these results through a validation process 20 

which considers empirical data on fatalities and disaster events as explanatory variables. 

The scalable methodology reveals the location and characteristics of assets exposed to multiple hazards, paving the way for 

better disaster risk management pathways. 

These findings provide valuable input and will assist national authorities in integrating multi-hazard analysis into their National 

Risk Assessments and Disaster Risk Management plans. 25 

 

1. Introduction 

The results of a ‘’Needs and Gaps” analysis performed as part of the preparation of the European Commission Staff Working 

Document – ‘’Overview of Natural and Man-made Disaster Risks the European Union may face’’ (2014 , 2017 ,2020), 

concluded that a gap in knowledge and data availability exists for multi-hazard assessments (EUR-Lex, 2014; European 30 

Commission, 2017; European Commission, 2020). A number of international frameworks such as Hyogo Framework for 
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Action (UN-ISDR, 2005) or Sendai Framework for Disaster Risk Reduction 2015–2030, have endorsed the multi-hazard 

approach for Disaster Risk Reduction.  

It is now well recognized in the research community that for an adequate understanding of disaster risk potential within a 

region it is essential to move from single hazard to multi-hazard approach (Marzocchi et al., 2009; Kappes et al., 2012; Gill 35 

and Malamud, 2014; Tilloy et al., 2019; Ward et al., 2022). The hazard interrelations can lead to a combined impact that is 

different from the sum of each hazard’s impacts separately. In order to assess the potential hazards and the risk to which a 

region is exposed, some studies combined independent analysis of single hazards (Granger et al., 1999; van Westen et al., 

2002; Greiving et al., 2006; Grünthal et al., 2006; Marzocchi et al., 2012; Forzieri et al., 2016) and superposed natural hazards 

over a region (multi-layer hazards). Other studies have considered hazard interactions (Tarvainen et al., 2006; Han et al., 2007; 40 

De Pippo et al., 2008; Kappes et al., 2010; van Westen et al., 2014; Liu et al., 2016; Sadegh et al., 2018; Gill et al., 2020; 

Claassen et al., 2023; Lee et al., 2024). Often, these assessments are based on case studies within limited spatial extension, 

addressing a limited number of perils/hazards and addressing a limited number of sectors (Ciurean et al., 2018; Tilloy et al., 

2019). 

In this context, our study aligns with the first definition of multi-layer hazards, as we examine the combined exposures of 45 

single hazards over a region, recognizing that hazard interrelations can result in an impact distinct from the sum of individual 

hazards exposures. 

This is exemplified by events such as the Portugal wildfires and flash floods in October 2017, where these hazards occurred 

in relatively close succession, both affecting the same buildings and infrastructure, Similarly, the floods and the dam failure in 

summer of 2002 in Czech Republic when floods had caused significant damage to buildings, infrastructure, and agricultural 50 

land and subsequent dam failure added to the devastation, impacting structures that were already dealing with the effects of 

the floods. 

Research on multi-hazard analysis has underscored several critical gaps that request attention for more effective multi-hazard 

assessments. These gaps could be listed as: data quality, incomplete, outdated, that impacts on accurate multi-hazard 

assessments  (Cutter et al., 2014; Gentile et al., 2022); understanding the complex interactions between hazards (Gill et al., 55 

2016; Lee et al., 2024); temporal dynamics (Fuchs and Thaler, 2018; De Angelis et al., 2022); addressing varying 

vulnerabilities across hazards (Saaty, 1987; UNISDR, 2004). Additionally, the limited attention given to uncertainty and 

sensitivity analyses in multi-hazard assessments (Haasnoot et al., 2013; Camus et al., 2021); the inadequate incorporation of 

climate change considerations into multi-hazard assessments (IPCC, 2014; Gallina et al., 2016; Ghanbari et al., 2021) and the 

communication challenges conveying multi-hazard risks to stakeholders (Dallo et al., 2020; De Fino et al., 2023). 60 

One development that addresses these challenges, is the Risk Data Hub platform (RDH) of the Disaster Risk Management 

Knowledge Centre (DRMKC). The platform facilitates access and sharing of curated European-wide risk data and 

methodologies being a fundamental tool in support of the DRM and CCA actions at national and subnational level (European 

Civil Protection Knowledge Network, 2021; European Commission, 2021). Within the DRMKCRDH development, we 
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propose a methodology which is accessible, scalable and replicable even at subnational and local level for the identification of 65 

regions exposed to multi-hazards. 

The multi-hazard methodological approach is the main goal of this study, focused on addressing four major challenges:  

1. identification of regions with significant multi-hazard potential,  

2. exposure relationships between assets and multiple hazards,  

3. quantification of multi-hazard exposure and  70 

4. transferability of the method.  

These challenges are further constrained by the wide scale of our analysis (European coverage), the alignment to a common 

hazard definition and their practical implementation on the online web platform, the DRMKC RDH.    

Challenge 1 is addressed in this study with a novel methodology that identifies, at pan-European scale, the regions (Local 

Administrative Units - LAUs) exposed to multi-hazards with high level of statistical significance (p_value < 0.10). Our 75 

approach involves a meta-analysis technique which functions as a powerful significance test (Hak et al., 2016). We combine 

the hotspots of single hazards’ exposure, and we generate a unified result, effectively addressing the challenge presented by 

divergent and even contradicting independent results. This is the first study that uses spatial patterns (clusters/hotspots) and 

meta-analysis for this purpose.  

Furthermore, for challenge 2, we show that the proposed methodology allows for the detection of the regions exposed to multi-80 

hazards, differently, as function of the typology of the assets. This is important as it directly reveals relationships between asset 

types and threats, valuable for the identification of the disaster risk management pathways in multi-hazard assessment (Ward 

et al., 2022). This is the central aspect of the multi-hazard analysis presented in this study, which considers the relation of 

single asset (population and the residential built-up respectively) to the multiple hazards: landslide, coastal flood, river flood, 

earthquake, wildfires, and subsidence. 85 

Challenge 3, the quantification of multi-hazard exposure is addressed, by totalling the assets found only for the regions exposed 

to multi-hazards with high level of significance. This areal dimension approach (Hewitt and Burton, 1971) omits a detailed 

level of study that could more accurately examine the spatial coincidence, trigger relations or cascading effects when 

quantifying the impacts from multi-hazards. Nevertheless, we argue that our methodology succeeds in describing the 

“hazardousness” level of a region which offers a generalized spatial understanding of where the specific assets are exposed to 90 

multiple hazards and what hazard becomes accountable for a potential impact.  

Challenge 4 is addressed by showing that in contrast to other studies, the transferability of the developed methodology is not 

limited due to the reliance on case-study-specific data and methods. The methodological approach described in this study is 

already implemented on the DRMKC Risk Data Hub platform and uses the existing pan-European data hosted and shared 

through the platform.  95 

We structure the study as follows, after the Introduction we describe the Data and the methodology used, in Results and based 

on these identified regions we provide a statistical analysis looking at different socioeconomic features. Furthermore, a 

Validation exercise is performed followed by Discussions and Conclusions.  
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2. Data and methodologies 

The methodological approach is presented in 3 steps: (1) we describe the underlying exposure data and methodology that 100 

creates the basis for our single and multiple hazard analysis, (2) we present the methodological approach used to find the 

hotspots for single hazards’ exposure, (3) we present the metadata analysis methodology used to combine the hotspots of single 

hazards’ exposure and to identify regions with significant multi-hazard potential. A representation of the entire methodological 

chain is provided in Fig. 1. 

 105 

 

Figure 1: Different steps of the methodological approach developed in this study 

2.1 The exposure data and methodology  

2.1.1 The areal dimension 

For this study the multi-hazard spatial coincidence is assessed at the level of areal dimension, represented by the Local 110 

Administrative Units (LAUs). The LAUs are the finest hierarchical classification of subdividing the European economic 

territory into regions in which statistics can be provided at a local level. This dataset comes from the statistical office of the 

European Union (Eurostat) and represents the administrative units of municipalities and communes of Europe, version 2013. 

In the present study, the LAUs cover the EU27+UK and the European Free Trade Association (EFTA) countries. 

These administrative entities are used as statistical areas for multi-hazard exposure and hotspot analysis as an approach meant 115 

to support disaster risk management activities. Administrative directives, organisations and operational services are 

coordinated at the level of administrative entities and they become of high relevance when linked down to local level, 

challenging the gap in the scale of policy and scale of practice (Gaillard et al., 2013).  
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 120 

Figure 2: Local Administrative Units area (km2), spatial distribution (left) and mean LAUs area per country (right) 

There are 122 034 LAUs considered as geographical statistical units on which the aggregations and statistical analysis are 

performed in this study. Their average area is 39.6 km2, the maximum area is 20 688 km2 (Kiruna, SE) and the minimum is 

0.2 km2 (Thorpe Hamlet, UK). LAUs present heterogeneities across Europe in terms of area covered especially in northern 

part of Europe (e.g. Scandinavia), even if they are rather homogeneously distributed within the national boundaries (Fig. 2).  125 

Despite being a well-established geographic concept, the process of aggregating higher resolution data to larger administrative 

units comes with a potential source of error known as modifiable areal unit problem (MAUP). The two related issues to the 

MAUP, largely presented in the literature (Fotheringham and Wong, 1991; Jelinski and Wu, 1996; Openshaw, 1984) are the 

scaling and the zonation effect (Charlton, 2009). These are generally altering the variance structure of the data when aggregated 

due to disconnection across scales and to different ways of subdividing the geographical space at the same scale (Stillwell et 130 

al., 2014). In order to minimize the MAUP effect, recommended practices (Su, 2011; Kwan, 2012) which are consistent with 

our approach focus on using smaller areal unit (e.g., LAUs rather than provinces or countries) for data aggregation. It reduces 

the potential errors of spatial pattern distortion without completely removing it. 

 

2.1.2. Input hazard and exposure data 135 

The exposure data is built on the relationship hazard (i) - assets (ii): exposure/assets at risk = f (Assets, Hazard). We overlay 

spatial information about residential built-up and population with data describing hazard areas in order to define the assets 
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exposure to single hazards. We then aggregate the exposure at the level of LAUs. We search for the significant hotpots of 

assets exposed from single hazards using two types of exposure aggregation: 

- based on absolute values - the sum of the exposed asset  140 

- based on relative values - as ratios or share of the exposure from the total amount of asset in a LAUs. 

For the exposure to earthquake, due to the continuous spatial extent of the hazard area, we depict the relative aggregation 

schema using the density (or share of the exposure compared to the total area of the LAUs). The relative aggregation schema 

intends to address risk management strategies based on the cost-efficient measure while the absolute schema supports the risk 

management strategies that prioritize the most affected areas and people. 145 

(i) Hazard Layers 

The hazard layers considered in this study represent areal extension rather than intensity. We do not use a probabilistic 

assessment but rather a deterministic approach selecting hazards with average temporal (frequency of occurrence) and spatial 

probability (susceptibility). A review of the hazard datasets and their characteristics is presented in Table 1. The motivations 

for their selection along with their usage in disaster risk assessments are presented in the sections dedicated to individual 150 

hazards in Supplementary material (Section 1 - Hazard data). 

 

Table 1. Description of the Hazards scenarios and datasets considered and their characteristics 

Component Scenario Description 

Spatial 

resolution Data source 

River flood 1 event in 200yr RP 

Areal extent of the river flood prone 

areas  100m 

EFAS (European Flood 

Awareness System), 

KULTURisk project 

Landslide 

High and very high 

susceptibility classes 

Physical characteristics of various 

terrain factors that provides high 

predisposition to landslide occurrence 

(ELSUS 100 layer)  200m 

ESDAC (European Soil 

Data Centre) 

Coastal 

inundation 1 event in 200yr RP 

Areal extent of coastal inundation as 

extreme total water level (TWL) result 

of the contributions from the mean sea 

level (MSL), the tide and the 

combined effect of waves and storm 

surge. 100m 

HELIX project, JRC 

Coastal Risk and GAP-

PESETAII projects 

Earthquake 

PGA >= 0.18 (g) for a 

probability of exceedance 

Areal extent of PGA >= 0.18 (g), 

equivalent of ‘Moderate’, ‘Moderate 

to heavy’ ’Heavy’’, ‘’Very heavy’ 1000m SHARE project 
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(ii) Assets layers 

As assets layer, we use the residential built-up from the European Settlement Map (ESM) (Florczyk et. al., 2015) and residential 

population form the Global Human Settlement Layer (GHSL) (Freire et al., 2015). These are two main groups of assets that 

are present currently across all types of analysis within the DRMKC Risk Data Hub. The residential built-up is represented as 

built-up area (km2) and the population is amount of people within 100m x 100m grid cells.  160 

In order to discriminate the residential typology for both built-up and population, the Corine Land Cover (CLC 2018) code 

1.111 (continuous urban fabric) and 2.112 (discontinuous urban fabric) is used as the artificial explanatory layer. 

2.2 Single hazard hotspots analysis  

The study uses a hotspot analysis to identify clusters (concentrations) of regions – LAUs, with assets (or elements at risk) 

exposed to single-hazard. The chosen approach enables the recognition of spatial patterns and trends which are not immediately 165 

apparent in raw data, and which exhibit underlying spatial processes at work that are not the result of random processes (Getis 

and Ord., 1992). We argue that these spatial patterns (hotspots) once combined across multiple hazards will describe the 

statistically significant multi-hazard exposure of regions. 

Various methods for combining single hazard data are considered in literature, including classifications and index 

developments. For more information on this topic, the reader can refer to Kappes et al. (2012). 170 

 

For this study, the Gi*(d) statistic is used for local spatial autocorrelation analysis using the python-based Exploratory Spatial 

Data Analysis (PySAL-esda) package (Rey and Anselin, 2007). The method describes the spatial autocorrelation as Z-score 

(standard deviations), p-value (probability), and confidence level (significance) for each feature (each LAU region). Very high 

(positive) or very low (negative) Z-scores, associated with very small p-values (e.g. values of p < 0.1), describe spatial clusters 175 

as hot spots and respectively cold spots with high significance level. When the p-value is very small (we fixed the p_values < 

0.10 in our study), it means it is very unlikely (small probability) that the observed spatial cluster is the result of random 

processes (so the spatial pattern denotes a statistically significant clustering). In the field of disaster risk reduction and 

of 10% in 50 years (475yr 

RP) 

potential damage level of USG 

Intensity Scale 

Subsidence (from 

drought) 

Soils with clay content 

greater than 35%.  

Areal Extent of fine and very fine soil 

texture (particle < 2 mm size) and with 

clay content greater than 35%.  1000m ESDAC, IPL project 

Wildfire 

Wildland–Urban 

Interface area (WUI) 

WUI areas within 10 km limit range 

from the historical burned areas 

(2000-2016) 100m EFFIS based 
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management, identifying both cold spots and hotspots is crucial for allocating resources efficiently. In the present study the 

hot spots refer to areas or regions with higher susceptibility of risk from multi-hazard while the cold spots can be considered 180 

less prone to multi-hazard risks. 

Conceptualization of Spatial Relationship. A known characteristic is that the statistics we are interested in (high Z-scores, 

low p-values) are placed in the tails of the distribution and therefore are susceptible to noise and spatial outliers. Moreover, 

the skewness of a distribution can bias the statistics (Cousineau, 2010). These are important to consider as the resulting 

distribution areas of the single hazard clusters needs to be homogeneous in order to be significantly combined in a multi-hazard 185 

spatial cluster through meta-analysis (Hak et al., 2016). 

To ensure reliable results, the study addresses noise and outliers through a spatial weights matrix. This matrix defines 

neighbouring regions, and we use the k-Nearest Neighbour (Fix and Hodges, 1951; Cover and Hart 1967) algorithm which is 

based on the proximity (k) information in order to represent the spatial relationship between regions (LAUs). We have selected 

this method over contiguity-based weights, since the k-nearest neighbour weights displays no ‘’island’’ problem (isolated 190 

polygons that do not share any boundaries with other polygons), and every region has at least one neighbour. More information 

on the factors which affect clustering performance can be found in Zhao et al. (2016), on the merits of a weighted matrix.  

The study also considers the optimization of spatial autocorrelation/clustering across single hazard exposures by selecting the 

optimal neighbourhood size (k) in the k-Nearest Neighbour (k-NN) algorithm (we present it in Supplementary material section 

2). 195 

2.3 Meta-Analysis: Identifying Regions with potential exposure to multi-hazard  

The study adopts a meta-analysis approach to identify regions with multi-hazard potential. This involves combining 

probabilities (Z-scores and p-values) from independent hotspots. From the hotspot analysis of different hazards exposure, the 

same region can show statistically significant positive clustering (hotspot), statistically significant negative clustering (cold 

spot) as well as statistically non-significant clustering. By the combined outcome of these individual tests that sometimes differ 200 

and contradict each other, we measure the multi-hazard potential at regional level. Meta-analysis serves as a viable solution 

for addressing the challenge of seemingly conflicting evidence in research (Hak et al., 2016; Borenstein et al., 2009). Notably, 

it serves as a potent tool for conducting robust significance tests (Hak et al., 2016). Consequently, meta-analysis also proves 

instrumental in resolving the issue of "insignificant results." In the context of our study, meta-analysis serves as a mechanism 

for synthetizing findings from various clustering analyses. Furthermore, by elucidating the statistical significance of the 205 

common estimation, it furnishes an objective "statistical proof" of the potential for multi-hazard clustering in our particular 

case. 

Many p-values or Z-scores combining methods are used in meta-analysis to aggregate summary statistics. Most used methods 

are the following: 

i. Fisher method (Fisher, 1932) based on p-value to test the significance of the aggregations, 210 

ii. Lancaster’s method (Lancaster, 1961) is a generalization of Fisher’s test by assigning different weights,  
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iii. Stouffer’s method (Souffer, 1949) based on Z-transform test,  

iv. Lipták’s method (Lipták, 1958) which is Stouffer’s method with weights, known as weighted Z-test,  

v. the binomial test (Wilkinson, 1951) which counts the number of p-values that are below a threshold α, 

vi. the truncated P-value methods (Zaykin et al., 2002) which adds up p-values that fall below a threshold α, 215 

For a good overview and comparison of these methods, please refer to Whitlock (2005), Zaykin (2011), and Chen (2011). 

Meta-analysis has a widespread use due to their applicability, primarily in psychology, biology, and medicine (McFarland, 

2015). Within the field of disaster risk management, meta-analysis has been used mainly to assign the macroeconomy of 

disasters (van Bergeijk et. al., 2015).  

 We chose to use the Stouffer’s method (Z-transform test), without weighting, applied on the two-tailed distribution of the 220 

single clusters as in Eq. (1): 

 

𝑍௦ =
 Ʃసభ

ౡ   

√
                                                (1) 

 

The sum of Z-scores (Zi), divided by the square root of the number of tests, k, provides a test of the cumulative evidence on 225 

the common null hypothesis (Whitlock, 2005). 

Generally, the Z-transform test converts the one-tailed p-values, from each of k independent tests into standard normal deviates 

Zi. A common approach in meta-analysis is to sum the Z-scores across studies, weighting them appropriately using the sample 

sizes. On considering two-tailed method please see Whitlock (2005), Yoon et al. (2021) and on advantages and disadvantages 

of using the unweighted version of this method please see Becker (1994). The z-transform test was performed in python using 230 

the scipy.stats (SciPy, 2024.) 

3. Results 

We identify the regions (LAUs) in Europe exposed to multi-hazards by combining the Z-scores and p-values across the hotspots 

of single hazard exposure (i.e. population and built-up) computed on absolute and relative (%) aggregations. In Fig. 3, we map 

these regions and further we consider for a statistical overview the regions with more than 1 hazard exposure (Hz > 1) and 235 

confidence level set at 90% (p-value < 0.10 and positive Z-score > 0). In the Supplementary material (Fig. S25) we present 

also the map with all hazard types identified at the level of LAU and depicted by the analysis done on the relative population 

exposure (the analysis performed on other asset types will present a different spatial distribution of the hazard types). 
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Figure 3:  Regions (LAUs) exposed to multi-hazards identified by the meta-data analysis performed on a.) absolute residential built-240 
up exposure and b.) relative (%) residential built-up exposure c). absolute population exposure, d.) relative (%) population exposure. 

 

The identification of these regions yielded disparate outcomes contingent upon the specific exposure types scrutinized within 

our analysis, namely, population density or residential built-up areas. Moreover, the choice of aggregation method, whether 

relative (expressed as a percentage) or absolute (in terms of the number of individuals or square kilometres of residential built-245 

up areas exposed), introduced variations in both the quantity and spatial arrangement of regions identified as susceptible to 

multi-hazard events. The difference in multi-hazard exposure among regions, when considering absolute versus relative 

aggregation, is influenced by clustering algorithm sensitivity to distance (computed by the k-parameter) and similarity 

measures, where absolute aggregation accentuates variance and is susceptible to outliers, while relative aggregation smooths 

dominance of extreme values, potentially overlooking high-exposure areas within densely populated regions. Also, a higher 250 
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number of regions at the European level were identified as susceptible to multi-hazard risks when considering population-

based criteria, as opposed to residential built-up exposures (see Fig. 4). Furthermore, there is a significant difference between 

the number of regions being exposed to multi-hazards identified on absolute (12% for population and 10.6% for residential 

built-up) compared with the relative aggregation (21% - population and 13.6% - residential built-up). 

 255 

Figure 4:  Local administrative units (as % from the total in Europe) identified as being prone to multi-hazards based on different 
indicators (population and residential built-up) and aggregation types (relative and absolute) 

In order to simplify the interpretation of the results and clearly present the potential of the methodology used, we further focus 

only on the regions exposed to multi-hazards identified by the relative (%) population.  

3.1. Regions (LAUs) with significant multi-hazard potential 260 

Based on population exposure we found 26 058 administrative regions, LAUs (Fig. 5) prone to multi-hazards in Europe with 

high significance level (regions with > 90 % confidence interval and number of hazards >1). Most of these regions (20 912) 

are described statistically as hotspots with highest confidence, 99%, and in only 6 regions in Europe all of the hazard considered 

for this analysis are present (5 in Italy and 1 in Croatia) (Fig. 5 c). These are mountainous and coastal regions.  

Regions prone to multiple hazards represents 21.4% of the local administrative units of Europe and around 87 mil. people 265 

(18.8 % of Europe population) (Fig. 5 c and d). In figure 5 d, we show that almost half of the population is exposed to more 

than 3 hazards. Most of these regions are found in France 6956 LAUs, Italy 4627 LAUs, Slovenia 3802, Bulgaria 1876, Spain 

1779, Germany and Romania (around 1000 LAUs each). Almost a quarter of the population is exposed in Italy (21.4 mil) and 

together with the Netherlands (10.1 mil), France (9.5 mil), Spain and Germany (7.1 mil each) they total more than 55% of 

population exposed to multi-hazards (Fig. 5 b and 5 d). 270 
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Figure 5: Regions (LAUs) with population exposed to multi-hazards by significance level (a.); Sum of population exposed to multi-
hazards assessed at NUTS3 (only hotspots regions with > 90 % confidence interval) (b.); Number of administrative areas exposed to 
multi-hazards by confidence interval and number of hazards (c.); Population exposed to multi-hazards by confidence interval and 275 
number of hazards (d.). 

We present a statistical overview of these regions identified as being exposed to multi-hazards, looking at their spatial 

distribution and their population exposed considering (see 3.1): 

i. various level of economic development (high, middle high, middle low- and low-income regions - LAUs),  

ii. urbanisation level: rural and urban (according to URAU audit 2018 definitions across European LAUs), 280 

iii. identifying metropolitan1  areas exposed to multi-hazards, 

 
1 The metropolitan areas' according to URAU 2018 definitions and represented here as composed by: core city, Functional Urban Area, Grater city and Trans-

national Functional Urban Area (codes: C, F, K, T)  

c) d) 
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iv. and comparing city centres (city cores – C) and Functional urban areas (FUA) levels in a metropolitan area. 

 

(i.) In Fig. 6 we present the results per income group and degree of urbanisation at European level (Fig. 6, a., c.) and by 

countries (Fig. 6 b, d).  285 

From Fig. 6 a., about 36% (9496) of the administrative regions (LAUs) identified as having population exposed to multi-

hazards are low-income regions and together with the low-middle income they sum up to 67%. High income regions represent 

10% of the LAUs and high middle-income regions 23%. However, the groups of high and high middle-income administrative 

regions total around 50% (43.4 mil) of the population exposed to multi-hazards (Fig. 6. c).  

In Fig. 6, b., based on income group and degree of urbanisation, we present the top countries with administrative 290 

regions (LAUs) identified as being exposed to multi-hazards.  

Based on the income groups, most of the high-income administrative regions exposed to multi-hazards are in Switzerland (30,9 

%), Italy (19.1%) France (16.7%) and Austria, Germany, the Netherlands ( each >5% ) while the low-income administrative 

regions are mostly found in the southern and eastern Europe in Slovenia (31.6%), Bulgaria (19.8%), Romania (10.4%), 

Hungary (8.9%) and in Italy and Portugal (each > 5%).  295 

In Fig. 6, d., most of the low-income population exposed to multi-hazards are concentrated in Romania (23%), Italy, Hungary, 

Poland and Bulgaria (each > 10%) while the high-income population exposed to multi-hazards is found in the Netherlands 

(33%), Germany, Italy and Austria (each >10%). 

(ii.) Also, from Fig. 6, a., the number of administrative areas (LAUs) that are characterised as urban area (based on 

URAU 2018 definition and on correspondence with LAUs) is much smaller than the number of rural administrative areas 300 

(respectively 26.3% or 6585 versus 73.7% or 19200). 

Nevertheless, the urban population exposed to multi-hazards total 54% (46.8 mil) compared with the rural administrative areas 

46% (40.1 mil) (Fig. 6. c.). 

Based on the urbanisation degree, 15 countries in Europe have a higher share of population exposed to multi-hazards 

in rural areas compared to urban areas: Sweden, Norway (100%) or Croatia, Cyprus, Portugal, Slovakia (between 70%-90%) 305 

and  Hungary, Spain, Belgium, Slovenia, Romania, Switzerland, (between 50%-70%). In the rest of the countries like the 

Netherlands, Austria (> 80%), Poland, Germany, Greece, (60%-80%), Ireland, United Kingdom, France, Denmark, Czech 

Republic, Bulgaria (50%-60%) the share of population exposed to multi-hazards in urban areas is higher compared to rural 

area. 

This indicates that people are more exposed to multi-hazards if they live in regions with higher GDP and more densely 310 

populated  (high and high-middle income and urban areas, these are 12% of the administrative regions in Europe) compared 

with people living in regions with lower GDP and less populated (low and middle low-income and rural areas, these are 54% 

of the administrative regions in Europe). Also considering the degree of urbanisation only, people are more exposed to multi-

hazards either if they live in high-income urban areas (compared with low-income urban areas) or low-income rural areas 

(compared with high-income rural areas) (Fig. 6. c.). 315 
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 Figure 6: Number of administrative areas  (LAUs) with population exposed to multi-hazards by income level and urbanization 
level (a. – Europe wide, b. - the 15 highest ranked countries) (upper part); Population exposed to multi-hazards by income level 

and urbanization level (c. – Europe wide, d. - the 15 highest ranked countries) (lower part) 

From Fig. 7 exploring the differences between various income classes we find that as countries and their regions get richer, 320 

they get more exposure to multi-hazard risk. After they reach a higher level of income (in the middle-income category), the 

population exposed from multi-hazard decreases towards the high-income. This can suggest that low-income countries have a 

major part of the population exposed in the rural areas compared to the high-income countries where most of the population 

exposed is in densely populated urban area and only a quarter from the population exposed (25%) live in the rural area. The 

peak in the countries with regions in the middle-income category could suggest a balance between the high number of urban 325 

areas (the largest across various income classes) and the rural areas with high densities in population.   
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Figure 7: Population exposed per income level. The markers represent countries’ population exposed of multi-hazard split by 
income level. The blue line links the 75th quantile of the income classes 

(iii.) Using the Urban Audit 2018 definition and based on correspondence with LAUs we have identified 46% of the 330 

urban/metropolitan areas in Europe (442 of a total of 952) have population exposed to multi-hazards. These urban areas, 

totalling 46.8 mil people, are mostly high and middle high-income (62.4%). The high-income urban areas are mostly found in 

the Nederland (28), UK (23), Germany (20), France (9) and Italy (9) while the low-income (110 at European level) are found 

in Romania (17), Poland (15), Hungary (13), Czech Republic (11) and Bulgaria (16) and others (in Supplementary Fig.S23 

and table S6) 335 

(iv.) In Fig. 8 a). and b). we further explore the distribution of population exposed to multi-hazards within the urban areas 

comparing the categories: cities (or city cores/centers - C) and larger urbanized zones (commuting zone/Functional Urban - 

F). We show that from this local perspective, the population exposed to multi-hazards is governed either by urban population 

densities or the expansion of urban land. 58% of commuting zones (FUA), which is 257 out of 442, are more exposed to multi-

hazards compared to city centers. However, 57% of the population exposed form the metropolitan areas in Europe live in city 340 

centers. This would suggest that the more population density in the city centers, the more exposed is the metropolitan area. 

This positive relationship is depicted in Fig. 8 b. but is particularly week in the case of high-income metropolitan areas, as 

shown by the almost flat fitting (red) line, and stronger for the middle high and low-income. This shows that going towards 

the richer metropolitan area the risk increases due to the expansion of the urban area (into the functional urban areas) and 

diversely, going towards less rich metropolitan areas, due to the densities increase. This is confirmed, with some exceptions 345 

(the Netherlands, Austria, Iceland), by the high-income Nordic and Wester countries metropolitan areas where higher 

proportion of  population exposed is found in the functional urban areas compared with the city centers: Denmark, Luxembourg 

(100%), Finland, Belgium, Switzerland (between 60%-80%) and  Ireland, Italy, Germany and UK (between 50%-60%). 
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Contrarily, in France, Spain and Portugal, most of population exposed (between 50%-60%) is concentrated in city centres of 

the middle-income metropolitan areas which are also the most populated. For the Eastern European lower income countries, 350 

the population exposed to multi-hazards is greater in the city centres compared with the functional urban areas: Latvia, 

Romania, Poland, (> 70%), Bulgaria, Slovenia, Slovakia, Hungary, Czech Republic (between 60%-70%) (Supplementary Fig. 

S24). However, it is evident that the intended comparison could be better explained through complex urban processes such as 

changing patterns of residential-choice behaviour due to socio-economic growth which we do not address in this work.  

 355 

Figure 8: Population exposed to multi-hazards at the level of Metropolitan area; a). European countries’ population exposed within 
Metropolitan categories: City Centres (C) and Functional urban area (F). The lower and upper whiskers represent, respectively, the 
lowest 5% and the highest 95% of the calculated population exposed to multi-hazards for each metropolitan category; b). Linear 
relation between population exposed and total population assessed as difference from FUA of the City Centres. A flatter fitted line 
indicates a weaker or less pronounced relationship between the population exposed and the total population. In this case, changes 360 
in the total population have a relatively smaller impact on the population exposed. It suggests that the income category of the region 
may not strongly influence the risk factors within the population. A less flat fitted line, on the other hand, indicates a stronger 
relationship between the population exposed and the total population, with changes in the total population having a more significant 
impact on the population exposed. 

 365 

 

4. Validation 

The validation proposed is based on Spearman correlation analysis of the population exposed from multi-hazard with 2 

empirical datasets as independent variable: the DRMKC RDH recorded data on fatalities from past events and the count of 

events with fatalities (for the period 1980-2019), for common hazards: coastal floods, earthquakes, river floods, landslides, 370 

subsidence and wildfires. The input data, both the population exposed to multi-hazards and the empirical data are brought to a 

common geographical scale, the NUTS3 and metric (Z-scores and p-values of clusters). We use the same methodological 

approach explained in this study in order to arrive to single hazard (clusters) hotspots. The single hazard hotspots of empirical 
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data (fatalities and event count) and population exposed to multi-hazards are combined through meta-analysis in order to arrive 

to a multi-hazard hotspot, of fatalities, event count and of population exposed scaled at NUTS3 level (Fig.9). Finally hot/cold-375 

spots regions of the 2 independent variables (fatalities and event count) are compared with the population exposed from multi-

hazard. 

 

Figure 9: Identified hot /cold-spots regions (NUTS3) with a.) population exposed to multi-hazard; b.) fatalities from multi- hazard, 
c.) number of events with fatalities; used in Spearman correlation analysis for the validation purpose 380 

By using the correlation coefficient analysis, we tried to capture the strength of the relation between the two paired datasets, 

numerically.  

We focused on a non-parametric test, the Spearman correlation analysis, because it does not assume that the data is from a 

specific distribution and is computed on ranks and so depicts monotonic relationships. We choose it as a neutral way of 

assessing the general central tendency (median) among the pairs of variables at NUTS3. As interpretation, the Spearman shows 385 

the degree by which two variables tend to change in the same direction. Therefore, variables with high correlation increase 

and decrease simultaneously, while variables with low absolute correlation rarely increase and decrease together.  
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Figure 10: Spearman correlation between the multi-hazard clusters' size (Z-scores) of population exposed with the empirical 390 
fatalities from past events (lefts) and events count (right) 

 

The results presented in Fig. 10 refers to the correlation coefficients between paired population exposed with the: a.) number 

of fatalities (absolute) and b.) count of events of the empirical data. 

 We find a rather inconclusive relationship between the multi-hazard risk data and the empirical data, if we consider all regions 395 

for all significance levels. The scatterplot suggests a positive correlation between the variables, but their increasing monotonic 

relationship is weak (r=0.37 with fatalities and r=0.25 with the event count). 

However, if we consider only the regions with higher significance (p<0.01, p<0.05, p<0.10) we notice a stronger correlation 

(table 2 and Fig. 11). This means that going towards more significant clustering (hot/cold-spots), the independent variables 

used for the validation tend to follow better the changes in value of the population exposed to multi-hazards.   400 

 

Table 2. Spearman correlation coefficient between the empirical data (fatalities and count of past events) and the population exposed 
from multi-hazard for regions (NUTS3) with different significance levels. 

Variables p_value<0.01 p_value<0.05 p_value<0.10 All regions 

Fatalities absolute 0.59 0.51 0.46 0.37 

Count events 0.30 0.40 0.35 0.25 

 

 405 
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Figure 11: Regions (NUTS) exposed to multi-hazards identified with high significance, p<0.01 (left), and p<0.10 (right) as 
hotspots/cold-spots and their correlation coefficient (Spearman r) with independent variables:  a). empirical data – fatalities (upper 410 
subplots), b.) empirical data – count of events (lower subplots). 

Therefore, more significant the multi-hazard clustering, stronger is the relationship with the independent variables. The 

monotonic relationship is strong r=0.59 with the fatalities as independent variable for the regions with the highest significance 

p<0.01 while the for the event count the strongest correlation (r=0.40) is reached for the regions with the significance p<0.05. 

This makes the recorded data on fatalities a better explanatory variable for the clustered population exposed to multi-hazards. 415 

 

5. Discussions 

The identification of exposure or risk on the DRMKC RDH platform is generally performed by relating an asset to a specific 

hazard. There is also the possibility to relate an asset to multiple hazards and have a multi-hazard assessment (of exposure or 
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risk) on the single asset. This latter situation is the central aspect of the analysis presented in this study which considers the 420 

relation of a single asset (e.g. population or the residential built-up) to multiple hazards: landslide, coastal flood, river flood, 

earthquake, wildfires and subsidence. Starting from this initial setting of the analysis specific characteristics and limitations 

need to be presented.  

First, we show that the proposed methodology allows for the detection of the regions exposed to multi-hazards, 

differently, as function of the typology of the assets. This is important as it directly reveals specific asset-threat relationships, 425 

valuable for the identification of the disaster risk management pathways in multi-hazard assessment (Ward et al., 2022).  

Furthermore, we argue for an approach that identifies the regions (local administrative units) prone to multi-hazard 

with high level of significance. We adopt a meta-analysis approach, combining single hazard hotspots which seeks to solve 

the problem of “insignificant results” and provides an objective “statistical proof” of the multi-hazard potential of a region.  

We support these results through a validation process which considers empirical data as explanatory variables. We show that 430 

more significant is the multi-hazard clustering, stronger is the correlation relationship with the independent variables. 

With this study we also show that the proposed methodology allows for detecting changing patterns of the population 

being exposed from multi-hazard by considering the socio-economic dimension. Our findings are in line with previous studies 

which present an increase in risk to multi-hazard from low-income countries towards higher income countries, and then a 

decrease as countries’ income is the highest (Koks et al., 2019).  Our study also highlights the elevated risk in highly urbanized 435 

areas, as identified by Hansjurgens et al. (2008) compared with the rural administrative units from multi-hazard occurrence. 

Furthermore, we show the potential of this methodological approach in detecting the risk to multi-hazard associated with 

complex socio-economic urban processes. We indicate that high density of population is a good explanatory variable for the 

increase in risk of the metropolitan areas. However, this situation is particularly different in the case of high-income 

metropolitan areas where it is the less densely populated functional urban areas that are more exposed to multiple hazards. 440 

Whilst we believe that the disaster risk management for multi-hazard assessment is brought forward by the ability of 

the proposed approach to identify regions (LAUs) being exposed to multi-hazards with high significance, several shortcomings 

are identified.  

Most important shortcoming is that the presented case study does not consider the vulnerability (which was initially considered 

in the design of the research) for the assessment of the assets (population and residential built-up) exposed to multi-hazards. 445 

The multi-hazard potential of regions is measured in this study by means of exposure (or assets exposed). Nevertheless, the 

overall analytical approach is detecting significant patterns of multi-hazard potential across regions, revealing spatially explicit 

clusters in a heterogeneous group of data and thereby setting the basis for more precise and focused analysis. 

Furthermore, the clusters are identified at the level of areal dimension (represented by LAUs). The areal dimension 

approach excludes a detailed level of study that could more accurately examine the spatial coincidence of multiple hazards at 450 

localized levels. Also, by subdividing the exposure data at the level of areal dimension which are heterogenous in size (see 

2.1.1.) will introduce underestimations or overestimations of the clusters especially when the clustering analysis is based on 
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neighbouring relations defined by distance. However, we identified the optimal k value (dynamic for any relation hazard-asset) 

in order to reduce the susceptibility to noise and outliers used in the clustering analysis. 

A way of improving the results accuracy and a direction for future research includes the revision of the meta- analysis 455 

(based on the Stouffer’s method), used in this analysis. The choice is whether to use the weighted or unweighted versions of 

the Z-transform test for Stouffer method when combining the single hazards hotspots into multi-hazard hotspots. There are 

arguments in the statistical literature (Whitlock, 2005) that favour the weighted Z-approach especially when there is variation 

in the sample size across studies/clusters (e.g. the number of regions depending on the exposure type) as it is the case in our 

study. However, the weighted or unweighted version of this test is actually an open question in meta-analysis (Becker, 1994). 460 

6 Conclusions 

To our knowledge, this is the first study that uses spatial patterns (clusters/hotspots) and meta-analysis to identify the regions 

at European level exposed to multi-hazards. The methodology presented in this study advances multi-hazard insights, valuable 

for the identification of the disaster risk management pathways in multi-hazard risk assessments. The findings point out the 

socio-economic dimension as a determinant factor for the spatial variability and the multi-hazard risk potential of the local 465 

administrative units. We show that the high density of population is a good explanatory variable for the identification of the 

regions exposed to multi-hazards, yet it is the economic aspect that is the main driver of the risk profile at local level: be it 

within rural and urban areas or in complex socio-economic urban structure.  

By identifying local administrative units with high level of significance as being exposed to multi-hazards we also narrow the 

uncertainty around the major challenges related with multi-hazard studies: identification of the regions prone to multi-hazard 470 

and quantification of multi-hazard exposure.  

The outcome of this study brings forward a valuable methodological contribution, which is made available for use through the 

Risk Data Hub platform, which can aid national authorities in incorporating a multi-hazard perspective into their National Risk 

Assessment. 

Future research should aim to address identified limitations by incorporating vulnerability assessments into multi-hazard 475 

analyses and the adoption of a multi-hazard interaction framework, for improved accuracy and reliability of multi-hazard 

hotspots identification. 
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