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Abstract. The Disaster Risk Management Knowledge Centre (DRMKC) is developing and hosting a web platform – the 

Risk Data Hub - intended to improve the access and sharing of curated EU-wide risk data, tools and methodologies for 

fostering Disaster Risk Management (DRM) related actions. Within the DRMKC’s Risk Data Hub (RDH) development, we 

integrate develop a methodology for the identification of regions with multi-hazard potential impact exposure at pan 

European level. With this study we present the methodological approach and we stage it as one fundamental development in 15 

support of DRM decision-making at national and subnational level. 

. We adopt a meta-analysis approach, and by combining the hotspots of exposure to single hazards’ exposure, we address the 

challenge of statistically ‘insignificant results’’ and we provide an objective “statistical proof” of the multi-hazard potential 

of a region.  We support these results through a validation process which considers empirical data on fatalities and disaster 

events  as explanatory variables. 20 

Presenting an implemented methodology, scalable down to local subnational level, that reveals types of assets at riskexposed 

to multiple hazards and their location, we take one further step towards the identification of the disaster risk management 

pathways in multi-hazard analysisassessment. 

The outcome of this study provides valuable input and will assist national authorities on the integration of multi-hazard 

analysis in their National Risk Assessments and Disaster Risk Management plans. 25 
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1. Introduction 

The results of a ‘’Needs and Gaps” analysis performed as part of the preparation of the European Commission Staff Working 35 

Document – ‘’Overview of Natural and Man-made Disaster Risks the European Union may face’’ (20141 , 20172 ,20203), 

concluded that a gap in knowledge and data availability exists for multi-hazard assessments. A number of international 

frameworks such as Hyogo Framework for Action (UN-ISDR, 2005) or Sendai Framework for Disaster Risk Reduction 

2015–2030, have endorsed the multi-hazard approach for Disaster Risk Reduction.  

It is now well recognized in the research community that for an adequate understanding of disaster risk potential within a 40 

region it is essential to move from single hazard to multi-hazard approach (Marzocchi et al., 2009, Kappes et al., 2012, Gill 

and Malamud., 2014, Tilloy et al., 2019, Ward, P. J., et al., 2022). The hazard interrelations can lead to a combined impact 

that is different from the sum of each hazards’ impacts separately. In order to assess the potential hazards and the risk to 

which a region is exposed, some studies combined independent analysis of single hazards (Granger et al., 1999; van Westen 

et al., 2002; Greiving et al., 2006; Grünthal et al., 2006; Marzocchi et al., 2012, Forzieri et al., 2016) and superposed natural 45 

hazards over a region (multi-layer hazards). Others studies considered hazard interactions (Tarvainen et al., 2006; Han et al., 

2007; De Pippo et al., 2008; Kappes et al., 2010; van Westen et al., 2014, Liu et al., 2016; Sadegh et al., 2018; Gill et al., 

2020; Claassen et al., 2023; Lee et al., 2024). Often, these assessments are based on case studies within limited spatial 

extension, addressing a limited number of perils/hazards and addressing specific  a limited number of sectors (Ciurean et al., 

2018, Tilloy et al., 2019).   50 

Our study aligns with the first definition of multi-layer hazards, as we examine the combined exposures of single hazards 

over a region, recognizing that hazard interrelations can result in an impact distinct from the sum of individual hazards 

exposures. 

This is exemplified by events such as the Portugal wildfires and flash floods in October 2017, where these hazards occurred 

in relatively close succession, both affecting the same buildings and infrastructure or the  floods and the dam failure in 55 

summer of  2002 in Czech Republic  when floods had caused significant damage to buildings, infrastructure, and agricultural 

land and subsequent dam failure from August added to the devastation, impacting structures that were already dealing with 

the effects of the floods. 

One development that addresses these challenges, is the DRMKC Risk Data Hub platform (DRMKC RDH) of the Disaster 

Risk Management Knowledge Centre (DRMKC). The platform improves facilitates the access and sharing of curated 60 

European-wide risk data and methodologies being a fundamental tool in support of the DRM4 and CCA5 actions at national 

 
1 EUR-Lex - 52014SC0134 - EN - EUR-Lex (europa.eu) 
2 https://ec.europa.eu/echo/sites/echo-site/files/swd_2017_176_overview_of_risks_2.pdf 
3https://ec.europa.eu/echo/sites/echo-site/files/overview_of_natural_and_man-made_disaster_risks_the_european_union_may_face.pdf 
4 https://civil-protection-knowledge-network.europa.eu/knowledge-network-science/data-tools  

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52014SC0134
https://ec.europa.eu/echo/sites/echo-site/files/swd_2017_176_overview_of_risks_2.pdf
https://civil-protection-knowledge-network.europa.eu/knowledge-network-science/data-tools
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and subnational level. Within the DRMKC Risk Data HubRDH development, we propose a methodology which is 

accessible, scalable and replicable even at subnational and local level for the identification of regions exposed at risk to 

multi-hazards. 

The multi-hazard methodological approach is the main goal of this study, focused on addressing four major challenges:  65 

1. identification of regions with significant multi-hazard potential;  

2. establishment of the impact exposure relation assets – multiple hazards,  

3. quantification of multi-hazard potential impact  exposure and  

4. transferability of the method.  

These challenges are further constrained by the wide scale of our analysis (European coverage), the alignment to a common 70 

hazard definition and their practical implementation on the online web platform, the DRMKC RDH.    

Challenge 1 is addressed in this study with a novel methodology that identifies, at pan-European scale, the regions (Local 

Administrative Units - LAUs) exposedat risk to multi-hazards with high level of statistical significance (p_value < 0.10). 

Our approach involves a meta-analysis technique which functions as a powerful significance test (Hak et al., 2016). We 

adopt a meta-analysis approach, and by combining the hotspots of single hazards’ exposure, we address the problem of 75 

statistically ‘insignificant results’’ and we provide an objective “statistical proof” of the multi-hazard potential of a region. 

We combine the hotspots of single hazards’ exposure and we generate a unified result, effectively addressing the challenge 

presented by divergent and even contradicting independent results. This is the first study that uses spatial patterns 

(clusters/hotspots) and meta-analysis for this purpose.  

Furthermore for challenge 2, we show that the proposed methodology allows for the detection of the regions at riskexposed 80 

to multi-hazards, differently, as function of the typology of the assets. This is important as it directly reveals relationships 

between assets types and  threats, valuable for the identification of the disaster risk management pathways in multi-hazard 

assessment (Ward, P. J., et al., 2022). This is the central aspect of the multi-hazard analysis presented in this study, which 

considers the relation of single asset (population and the residential built-up respectively) to the multiple hazards: landslide, 

coastal flood, river flood, earthquake, wildfires and subsidence. 85 

Challenge 3, the quantification of multi-hazard potential impact exposure  is addressed, by totalingtotalling the assets found 

only for the regions at riskexposed to multi-hazards with high level of significance. This areal dimension approach (Hewitt 

and Burton, 1971), omits a detailed level of study that could more accurately examine the spatial coincidence, trigger 

relations or cascading effects when quantifying the impacts from multi-hazards. Nevertheless, we argue that our 

methodology succeeds in describing the “hazardousness” level of a region which offers a generalized spatial understanding 90 

of where the specific assets are exposed to multiple hazards and what hazard becomes accountable for a potential impact.  

Challenge 4 is addressed by showing that in contrast to other studies, the transferability of the developed methodology is not 

limited due to the reliance on case-study-specific data and methods. The methodological approach described in this study is 

 
5 eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0082 (pg. 6) 

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0082
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already implemented on the DRMKC Risk Data Hub platform and uses the existing pan-European data hosted and shared 

through the platform.  95 

Research on multi-hazard analysis has underscored several critical gaps that request attention for more effective multi-hazard 

assessments. These gaps could be listed as : data quality, incomplete, outdated, that impacts on accurate multi-hazard 

assessments  (Cutter et al., 2014, Gentile et al., 2022); understanding the complex interactions between hazards (Gill et al., 

2016; Lee et al., 2024); temporal dynamics (Fuchs & Thaler, 2018, De Angelis et al., 2022); addressing varying 

vulnerabilities across hazards (Saaty, 1987; UNISDR, 2004). Additionally, the limited attention given to uncertainty and 100 

sensitivity analyses in multi-hazard assessments (Haasnoot et al., 2013, Camus et al., 2021); the inadequate incorporation of 

climate change considerations into multi-hazard assessments (IPCC, 2014; Gallina et al., 2016, Ghanbari et al., 2021) and 

the communication challenges conveying multi-hazard risks to stakeholders (Dallo et al., 2020; De Fino et al). 

We structure the study as follows, after the Introduction we describe the Data and the methodology used, in Results and 

based on these identified regions we provide a statistical analysis looking at different socioeconomic features.. Furthermore, 105 

a Validation exercise is performed followed by Discussions and Conclusions.  

 

 

 

 110 

2. Data and methodologies 

The methodological approach is presented in 3 steps: (1) we describe the underlying exposure data and methodology that 

creates the basies for our single and multiple—hazard analysis, (2) we present the methodological approach used to find the 

hotspots for single hazards’ exposure, (3) we present the metadata analysis methodology used to combine the hotspots of 

single hazards’ exposure and to identify regions with significant multi-hazard potential. A representation of the entire 115 

methodological chain is provided in fig. 1. 
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Figure 1 Different steps of the methodological approach developed in this study 120 

2.1 The exposure data and methodology  

2.1.1 The areal dimension 

For this study the multi-hazard spatial coincidence is assessed at the level of areal dimension, represented by the Local 

Administrative Units (LAUs). 

  The LAUs are the finest hierarchical classification of subdividing the European economic territory into regions in which 125 

statistics can be provided at a local level.. This dataset comes from the statistical office of the European Union (Eurostat) and 

represents the administrative units of municipalities and communes of Europe, version 2013. In the present study, the LAUs 

cover the European Union 28 EU27+UK and the European Free Trade Association (EFTA) countries. 

These administrative entities are used as statistical areas for multi-hazard exposure and hotspot analysis as an approach 

meant to support disaster risk management activities. Administrative directives, organisations and operational services are 130 

coordinated at the level of administrative entities and they become of high relevance when linked down to local level, 

challenging the gap in the scale of policy and scale of practice (Gaillard et al., 2013).  
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 135 

Figure 2. Local Administrative Units area (km2), spatial distribution (left) and mean LAUs area per country (right) 

There are 122 034 LAUs considered as geographical statistical units on which the aggregations and statistical analysis are 

performed in this study. Their average area is 39.6 km2, the maximum area is 20 688 km2 (Kiruna, SWE) and the minimum 

is 0.2 km2 (Thorpe Hamlet, UK). LAUs present heterogeneities across Europe in terms of area covered especially in northern 

part of Europe (e.g. Scandinavia), even if they are rather homogeneously distributed within the national boundaries (fig. 2).  140 

Despite being a well-established geographic concept, the process of aggregating higher resolution data to larger 

administrative units comes with a potential source of error known as modifiable areal unit problem (MAUP). The two related 

issues to the MAUP, largely presented in the literature (Fotheringham and Wong, 1991; Jelinski and Wu, 1996; Openshaw, 

1984) are the scaling and the zonation effect (Charlton, 2009). These are generally altering the variance structure of the data 

when aggregated due to disconnection across scales and to different ways of subdividing the geographical space at the same 145 

scale (Stillwell et al., 2014). In order to minimize the MAUP effect, recommended practices (Su, 2011; Kwan, 2012) which 

are consistent with our approach focus on using smaller areal unit (e.g., LAUs rather than provinces or countries) for data 

aggregation. It reduces the potential errors of spatial pattern distortion without  completely removing it. 

 

2.1.2. Input hazard and Eexposure data 150 

The exposure data is built on the relationship hazard (i) - assets (ii): exposure/assets at risk = f(Assets, Hazard). We overlay 

spatial information about residential built-up and population with data describing hazard areas in order to define the assets 

exposure to single hazards. We thean aggregate the exposure at the level of LAUs. We search for the significant hotpots of 

assets at riskexposed from single hazards using two types of exposure aggregation: 
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- based on absolute values - the sum of the exposed asset  155 

- based on relative values - as ratios or share of the exposure from the total amount of asset in a LAUs. 

For the exposure to earthquake, due to the continuous spatial extent of the hazard area, we depict the relative aggregation 

schema using the density (or share of the exposure compared to the total area of the LAUs). The relative aggregation schema 

intends to address risk management strategies based on the cost efficient-measure while the absolute schema supports the 

risk management strategies that prioritize the most affected areas and people. 160 

(i) Hazard Layers 

The hazard layers considered in this study represent areal extension rather than intensity. We do not use a probabilistic 

assessment but rather a deterministic approach selecting hazards with average temporal (frequency of occurrence) and spatial 

probability (susceptibility). A review of the hazard datasets and their characteristics is presented in Table 1. The motivations 

for their selection along with their usage in disaster risk assessments are presented in the sections dedicated to individual 165 

hazards in Supplementary material (Section 1 - Hazard data). 

 

Table 1. Description of the Hazards scenarios and datasets considered and their characteristics 

Component Scenario Description 

Spatial 

resolution Data source 

River flood 1 event in 200yr RP 

Areal extent of the river flood prone 

areas  100m 

EFAS (European Flood 

Awareness System), 

KULTURisk project 

Landslide 

High and very high 

susceptibility classes 

Physical characteristics of various 

terrain factors that provides high 

predisposition to landslide occurrence 

(ELSUS 100 layer)  200m 

ESDAC (European Soil 

Data Centre) 

Coastal 

inundation 1 event in 200yr RP 

Areal extent of coastal inundation as 

extreme total water level (TWL) result 

of the contributions from the mean sea 

level (MSL), the tide and the 

combined effect of waves and storm 

surge. 100m 

HELIX project, JRC 

CoastalRiskandGAP-

PESETAII projects 

Earthquake 

PGA >= 0.18 (g) for a 

probability of exceedance 

of 10% in 50 years (475yr 

RP) 

Areal extent of PGA >= 0.18 (g) , 

equivalent of ‘Moderate’, ‘Moderate 

to heavy’ ’Heavy’’, ‘’Very heavy’ 

potential damage level of USG 

Intensity Scale 1000m SHARE project 

Subsidence (from Soils with clay content Areal Extent of fine and very fine soil 1000m ESDAC, IPL project 
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(ii) Assets layers 

As assets layer, we use the residential built-up from the European Settlement Map (ESM) (Florczyk, et. al., 2015) and 

residential population form the Global Human Settlement Layer (GHSL) (Freire, et al., 2015). These are two main groups of 

assets that are present currently across all types of analysis within the DRMKC Risk Data Hub. The residential built-up is 

represented as built-up area (km2) and the population is amount of people within 100m x 100m grid cells.  175 

In order to discriminate the residential typology for both built-up and population, the Corine Land Cover (CLC 2018) code 

1.111 (continuous urban fabric) and 2.112 (discontinuous urban fabric) is used as the artificial explanatory layer. 

2.2 Single hazard hotspots analysis  

The study uses a hotspot analysis in order to identify clusters (concentrations) of regions -– LAUs,  with assets (or elements 

at risk) exposed to single-hazard. The chosen approach enables the recognition of spatial patterns and trends which are not 180 

immediately apparent in raw data and which exhibit underlying spatial processes at work that are not the result of random 

processes (Getis and Ord., 1992). We argue that these spatial patterns (hotspots) once combined across multiple-hazards will 

describe the statistically significant multi-hazard potentialexposure of regions. 

Various methods for combining single hazard data are considered in literature, including classifications and index 

developments. For more information on this topic, the reader can  refer to Kappes et al., (2012). 185 

 

For this study, the Gi*(d) statistic is used for local spatial autocorrelation analysis using the python-based Exploratory 

Spatial Data Analysis (ESDA)6 package. The method describes the spatial autocorrelation as Z-score (standard deviations), 

p-value (probability), and confidence level (significance) for each feature (each LAU region). Very high (positive) or very 

low (negative) Z-scores, associated with very small p-values (e.g. values of  p < 0.1), describe spatial clusters as cold spots 190 

and respectively hotspots with high significance level. In the field of disaster risk reduction and management, identifying 

both cold spots and hotspots is crucial for allocating resources efficiently. In the present study the hot spots refers to areas or 

regions with higher susceptibility of risk from multi-hazard while the cold spots can be considered less prone to multi-hazard 

risks. 

 
6 https://pysal.org/esda/ 

drought) greater than 35%.  texture (particle < 2 mm size) and 

with clay content greater than 35%.  

WildfireForest 

fire 

Wildland–Urban 

Interface area (WUI) 

WUI areas within 10 km limit range 

from the historical  burned areas 

(2000-2016) 100m EFFIS based 
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 Conceptualization of Spatial Relationship. A known characteristic is that the statistics we are interested in (high Z-scores, 195 

low p-values) are placed in the tails of the distribution and therefore are susceptible to noise and spatial outliers. Moreover, 

the skewness of a distribution can bias the statistics (Cousineau D.,2010). These are important to consider as the resulting 

distribution areas of the single hazard clusters needs to be homogeneous in order to be significantly combined in a multi-

hazard spatial cluster through meta-analysis (Hak et al., 2016). 

To ensure reliable results, the study addresses noise and outliers through a spatial weights matrix. This matrix defines 200 

neighboring regions and we use the k-Nearest Neighbour (Fix and  Hodges, 1951, Cover and Hart 1967) algorithm which is 

based on the proximity (k) information in order to represent the spatial relationship between regions (LAUs). We have 

selected this method over contiguity based weights, since the k-nearest neighbour weights displays no ‘’island’’ problem 

(isolated polygons that do not share any boundaries with other polygons), and every region has at least one neighbour. More 

information on the factors which affect clustering performance can be found in Zhao, M., et al., 2016, on the merits of a 205 

weighted matrix.  

The study also considers the optimization of spatial autocorrelation/clustering across single hazard exposures by selecting 

the optimal neighborhood size (k) in the k-Nearest Neighbor (k-NN) algorithm (we present it in Supplementary material 

section 2). 

2.3 Meta-Analysis: Identifying Regions with Multi-Hazard Potential driven by exposure 210 

The study adopts a meta-analysis approach to identify regions with multi-hazard potential. This involves combining 

probabilities (Z-scores and p-values) from independent hotspots. From the hotspot analysis of different hazards exposure, the 

same region can show statistically significant positive clustering (hotspot), statistically significant negative clustering 

(coldspot) as well as statistically non-significant clustering. By the combined outcome of these individual tests that 

sometimes differ and contradict each other, we measure the multi-hazard potential at regional level. Meta-analysis serves as 215 

a viable solution for addressing the challenge of seemingly conflicting evidence in research (Hak et al., 2016; Borenstein et 

al., 2009). Notably, it serves as a potent tool for conducting robust significance tests (Hak et al., 2016). Consequently, meta-

analysis also proves instrumental in resolving the issue of "insignificant results." In the context of our study, meta-analysis 

serves as a mechanism for synthetizing findings from various clustering analyses. Furthermore, by elucidating the statistical 

significance of the common estimation, it furnishes an objective "statistical proof" of the potential for multi-hazard clustering 220 

in our particular case. 

Many p-values or Z-scores combining methods are used in meta-analysis to aggregate summary statistics. Most used 

methods are the following: 

i. Fisher method (Fisher, 1932) based on p-value to test the significance of the aggregations;  

ii. Lancaster’s method (Lancaster, 1961) is a generalization of Fisher’s test by assigning different weights;  225 

iii. Stouffer’s method (Souffer, 1949) based on Z-transform test,  

iv. Lipták’s method (Lipták, 1958) which is Stouffer’s method with weights, known as weighted Z-test;  
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v. the binomial test (Wilkinson, 1951) which counts the number of p-values that are below a threshold α 

vi. the truncated P-value methods (Zaykin et al., 2002) which adds up p-values that fall below a threshold α 

For a good overview and comparison of these methods please refer to Whitlock, 2005; Zaykin, 2011; Chen, 2011. Meta-230 

analysis have a widespread use due to their applicability, primarily in psychology, biology and medicine (McFarland, V, L., 

2015). Within the field of disaster risk management,  meta-analysis have been used mainly to assign the macroeconomy of 

disasters (van Bergeijk et. Al., 2015).  

 We chose to use the Stouffer’s method (Z-transform test), without weighting, applied on the two-tailed distribution of the 

single clusters: 235 

 

𝑍𝑠 =
 Ʃ𝑖=1

k   𝑍𝑖

√𝑘
 

 

The sum of Z-scores (Zi), divided by the square root of the number of tests, k, provides a test of the cumulative evidence on 

the common null hypothesis (Whitlock, 2005). 240 

Generally the Z-transform test converts the one-tailed p-values, from each of k independent tests into standard normal 

deviates Zi. A common approach in meta-analysis is to sum the Z-scores across studies, weighting them appropriately using 

the sample sizes. On considering two-tailed method please see Whitlock (2005); Yoon et al., (2021) and on advantages and 

disadvantages of using the unweighted version of this method please see Becker, B.J. 1994.The z-transform test was 

performed in python using the scipy.stats.7 245 

3. Results 

We identify the regions (LAUs) in Europe at riskexposed to multi-hazards by combining the Z-scores and p-values across the 

hotspots of single hazard exposure (i.e. population and built-up) computed on absolute and relative (%) aggregations. In fig. 

3, we map these regions and further we consider for a statistical overview the regions with more than 1 hazard exposure (Hz 

> 1) and confidence level set at 90% (p-value < 0.10 and positive Z-score  >  0). In the Supplementary material (fig. S25) we 250 

present also the map with all  hazard types identified at the level of LAU and depicted by the analysis done on the relative 

population exposure(the analysis performed on other assets types will presents a different spatial distribution of the hazard 

types). 

 

 255 

 

 
7 https://docs.scipy.org/doc/scipy/tutorial/stats.html 
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Figure 3.  Regions (LAUs) at riskexposed to multi-hazards identified by the meta-data analysis performed on a). absolute 

population exposure , b.) relative (%) population exposure, c.) absolute residential built-up exposure and d.) relative (%) 

residential built-up exposure 260 

 

The identification of these regions yielded disparate outcomes contingent upon the specific exposure types scrutinized within 

our analysis, namely, population density or residential built-up areas. Moreover, the choice of aggregation method, whether 

relative (expressed as a percentage) or absolute (in terms of the number of individuals or square kilometres of residential 

built-up areas at riskexposed), introduced variations in both the quantity and spatial arrangement of regions identified as 265 

susceptible to multi-hazard events. The difference in multi-hazard exposure among regions, when considering absolute 

versus relative aggregation, is influenced by clustering algorithm sensitivity to distance (computed by the k-parameter) and 

similarity measures, where absolute aggregation accentuates variance and is susceptible to outliers, while relative 

aggregation smooths dominance of extreme values, potentially overlooking high-exposure areas within densely populated 

regions. Also Aa higher number of regions at the European level were identified as susceptible to multi-hazard risks when 270 

a. 

b. 

c. 

d. 
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considering population-based criteria, as opposed to residential built-up exposures (see Figure 4). Furthermore, there is a 

significant difference between the amount of regions being at riskexposed to multi-hazards identified on absolute (12% for 

population and 10.6% for residential built-up) compared with the relative aggregation (21% - population and 13.6% - 

residential built-up). 

 275 

 

 

 

Figure 4.  Local administrative units (as % from the total in Europe) identified as being prone to multi-hazards risk based on 

different indicators  (population and residential built-up) and aggregation types (relative and absolute) 280 

In order to simplify the interpretation of the results and clearly present the potential of the methodology used, we further 

focus only on the regions at riskexposed to multi-hazards identified by the relative (%) population.  

3.1. Regions (LAUs) with significant multi-hazard potential 

Based on population exposure we found 26 058 administrative regions, LAUs (fig. 5)  prone to multi-hazards risk in Europe 

with high significance level (regions with > 90 % confidence interval and number of hazards >1). Most of these regions (20 285 

912) are described statistically as hotspots with highest confidence, 99%, and in only 6 regions in Europe all of the hazard 

considered for this analysis are present (5 in Italy and 1 in Croatia) (fig. 5 c). These are mountainous and coastal regions..  

Regions prone to multiple hazards represents 21.4% of the local administrative units of Europe and around 87 mil. people 

(18.8 % of Europe population) (fig. 5 c and d). In figure 5 d, we show that almost half of the population is at risk exposed to 

more than 3 hazards. Most of these regions are found in France 6956 LAUs, Italy 4627 LAUs, Slovenia 3802, Bulgaria  290 

1876, Spain 1779,  Germany and Romania (around 1000 LAUs each). Almost a quarter of the population at riskis exposed is 
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in Italy (21.4 mil) and together with the Netherlands (10.1 mil), France (9.5 mil), Spain and Germany (7.1 mil each) they 

total more than 55% of population at riskexposed to multi-hazards (fig. 5 b and 5 d). 

 

 295 

 

Figure 5. Regions (LAUs) with population at riskexposed to multi-hazards by significance level (a.); Sum of population at 

riskexposed to multi-hazards assessed at NUTS3 (only hotspots regions with > 90 % confidence interval) (b.); Number of 

administrative areas at riskexposed to multi-hazards by confidence interval and number of hazards (c.); Population at riskexposed 

to multi-hazards by confidence interval and number of hazards (d.). 300 

We present a statistical overview of these regions identified as being at riskexposed to multi-hazards, looking at their spatial 

distribution and their population at riskexposed considering (see 3.1): 

i. various level of economic development (high, middle high, middle low and low income regions - LAUs)  

ii. urbanisation level: rural and urban (according to URAU audit 2018 definitions across European LAUs) 

a. b

.. 

c.

. 

d

.. 
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iii. identifying metropolitan8  areas at riskexposed to multi-hazards  305 

iv. and comparing city centres (city cores – C ) and Functional urban areas (FUA) levels in a metropolitan area 

 

(i.) In fig. 6 we present the results per income group and degree of urbanisation at European level (fig. 6, a., c.) and by 

countries (fig. 6 b, d) .  

From fig. 6 a., about 36% (9496) of the administrative regions (LAUs) identified as having  population at riskexposed to 310 

multi-hazards are low income regions and together with the low middle income they sum up to 67%. High income regions 

represent 10% of the LAUs and high middle income regions 23%. However,  the groups of high and high middle income 

administrative regions total  around  50%  (43.4 mil) of the population at riskexposed to multi-hazards (fig. 6. c).  

In fig. 6, b., based on income group and degree of urbanisation, we present the top countries with administrative 

regions (LAUs) identified as being at risk exposed to multi-hazards.  315 

Based on the income groups, most of the high income administrative regions at riskexposed to multi-hazards are in 

Switzerland (30,9 %), Italy (19.1%) France (16.7%) and Austria, Germany, the Netherlands ( each >5% ) while the low 

income administrative regions are mostly found in the southern and eastern Europe in Slovenia (31.6%), Bulgaria (19.8%), 

Romania (10.4%), Hungary (8.9%) and in Italy and Portugal (each > 5%).  

In fig. 6, d., most of the low income population at riskexposed to multi-hazards are concentrated in Romania (23%), Italy, 320 

Hungary, Poland and Bulgaria (each > 10%) while the high income population at riskexposed to multi-hazards is found in 

the Netherlands (33%), Germany, Italy and Austria (each >10%). 

(ii.) Also, from fig. 6, a., the number of administrative areas (LAUs) that are characterised as urban area (based on 

URAU 2018 definition and on correspondence with LAUs) is much smaller than the number of rural administrative areas 

(respectively 26.3% or 6585 versus 73.7% or 19200). 325 

Nevertheless, the urban population at riskexposed to multi-hazards total 54% (46.8 mil) compared with the rural 

administrative areas 46% (40.1 mil) (fig. 6. c.).   

Based on the urbanisation degree, 15 countries in Europe have a higher share of population at riskexposed to multi-

hazards in rural areas compared to urban areas: Sweden, Norway (100%) or Croatia, Cyprus, Portugal, Slovakia (between 

70%-90%) and  Hungary, Spain, Belgium, Slovenia, Romania, Switzerland, (between 50%-70%). In the rest of the countries 330 

like the Netherlands, Austria (> 80%), Poland, Germany, Greece, (60%-80%), Ireland, United Kingdom, France, Denmark, 

Czech Republic, Bulgaria (50%-60%) the share of population at riskexposed to multi-hazards in urban areas is higher 

compared to rural area. 

This indicates that people are more at exposed torisk to multi-hazards if they live in regions with higher GDP and 

more densely populated  (high and high middle income and urban areas, these are 12% of the administrative regions in 335 

Europe) compared with people living in regions with lower GDP and less populated (low and middle low income and rural 

 
8 The metropolitan areas' according to URAU 2018 definitions and represented here as composed by: core city, Functional Urban Area, Grater city and 

Trans-national Functional Urban Area  (codes: C, F, K, T)  

https://www.nature.com/articles/s41467-019-10442-3#Fig4
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areas, these are 54% of the administrative regions in Europe). Also considering the degree of urbanisation only, people are 

more at riskexposed to multi-hazards either if they live in high income urban areas (compared with low income urban areas) 

or low income rural areas (compared with high income rural areas) (fig. 6. c.).   

 340 

 

 

 Figure 6. Number of administrative areas  (LAUs) with population at riskexposed to multi-hazards by income level and 

urbanization level (a. – Europe wide, b. - the 15 highest ranked countries) (upper part); Population at riskexposed to multi-

hazards by income level and urbanization level (c. – Europe wide, d. - the 15 highest ranked countries) (lower part) 345 

a. 
b. 

d. c. 
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From fig. 7 exploring the differences between various income classes we find that as countries and their regions get richer 

they get more exposure to multi-hazard risk. After they reach a higher level of income (in the middle income category), the 

population at riskexposed from multi-hazard decreases towards the high income. This can suggest that low income countries 

have the major part of the population at riskexposed in the rural areas compared to the high income countries where most of 

the population at riskexposed is in densely populated urban area and only a quarter from the population at riskexposed  (25% 350 

) live in the rural area. The peak in the countries with regions in the middle income category could suggest a balance 

between the high number of urban areas (the largest across various income classes) and the rural areas with high densities in 

population.   

 

 355 

 

Figure 7. Population at riskexposed per income level. The markers represent countries’ population at riskexposed of multi-hazard 

split by income level. The blue line links the 75th quantile of the income classes 

(iii.) Using the Urban Audit 2018 definition and based on correspondence with LAUs we have identified 46% of the 

urban/metropolitan areas in Europe (442 of a total of 952) have population at riskexposed to multi-hazards. These urban 360 

areas, totalling 46.8 mil people, are mostly high and middle high income (62.4%). The high income urban areas are mostly 

found in the Nederland (28), UK (23), Germany (20), France (9) and Italy (9) while the low income (110 at European level) 

are found in Romania (17), Poland (15), Hungary (13), Czech Republic (11) and Bulgaria (16) and others (in Supplementary 

fig.S23 and table S6) 

(iv.) In fig. 8 a). and b). we further explore the distribution of population at riskexposed to multi-hazards within the 365 

urban areas comparing the categories: cities (or city cores/centers - C) and larger urbanized zones (commuting 

zone/Functional Urban - F). We show that from this local perspective, the population at riskexposed to multi-hazards is 
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governed either by urban population densities or the expansion of urban land. The commuting zones (FUA) are more at 

riskexposed to multi-hazards compared with the city centers: 58% (in 257 out of 442) compared with the city centers. 

However, 57% of the population at riskexposed form the metropolitan areas in Europe live in City Centers. This would 370 

suggest that the more population density in the city centers, the more at riskexposed is the metropolitan area. This positive 

relationships is depicted in fig. 8 b. but is particularly week in the case of high income metropolitan areas, as shown by the 

almost flat fitting (red) line, and stronger for the middle high and low income. This shows that going towards the richer 

metropolitan area the risk increases due to the expansion of the urban area (into the functional urban areas) and diversely, 

going towards less rich metropolitan areas, due to the densities increase. This is confirmed, with some exceptions (the 375 

Netherlands, Austria, Island), by the high income Nordic and Wester countries metropolitan areas where higher proportion 

of  population at riskexposed is found in the functional urban areas compared with the city centers: Denmark, Luxembourg 

(100%), Finland, Belgium, Switzerland (between 60%-80%) and  Ireland, Italy, Germany and UK (between 50%-60%). 

Contrarily, in France, Spain and Portugal, most of population at riskexposed (between 50%-60%) is concentrated in city 

centres of  the middle income metropolitan areas which are also the most populated. For the Eastern European lower income 380 

countries, the population at riskexposed to multi-hazards is greater in the city centres compared with the functional urban 

areas: Latvia, Romania, Poland, (> 70%), Bulgaria, Slovenia, Slovakia, Hungary, Czech Republic (between 60%-70%) 

(Supplementary fig. S24). However, it is evident that the intended comparison could be better explained through complex 

urban processes such as changing patterns of residential-choice behaviour due to socio-economic growth which we do not 

address in this work.  385 

 

 

Figure 8. Population at riskexposed to multi-hazards at the level of Metropolitan area; a). European countries’ population at 

riskexposed within Metropolitan categories: City Centres (C) and Functional urban area (F). The lower and upper whiskers 

represent, respectively, the lowest 5% and the highest 95% of the calculated population at riskexposed to multi-hazards for each 390 
metropolitan category; b). Linear relation between population at riskexposed and total population assessed as difference from 

FUA of the City Centres. A flatter fitted line indicates a weaker or less pronounced relationship between the population at 

a. 
b. 
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riskexposed and the total population. In this case, changes in the total population have a relatively smaller impact on the 

population at riskexposed. It suggests that the income category of the region may not strongly influence the risk factors within the 

population. A less flat fitted line, on the other hand, indicates a stronger relationship between the population at riskexposed and the 395 
total population, with changes in the total population having a more significant impact on the population at riskexposed. 

4. Validation 

The validation proposed is based on  Spearman correlation analysis of the population at riskexposed from multi-hazard with 

2 empirical datasets as independent variable: the DRMKC RDH recorded data on fatalities from past events and the count of 

events with fatalities (for the period 1980-2019), for common hazards: coastal floods, earthquakes, river floods, landslides, 400 

subsidence and wildfires. The input data, both the population at riskexposed to multi-hazards and the empirical data are 

brought to a common geographical scale, the NUTS3 and metric (Z-scores and p-values of clusters). We use the same 

methodological approach explained in this study in order to arrive to single hazard (clusters) hotspots. The single hazard 

hotspots of empirical data (fatalities and event count) and population at riskexposed to multi-hazards are combined through 

meta-analysis in order to arrive to a multi-hazard hotspots, of fatalities, event count and of population at riskexposed scaled 405 

at NUTS3 level  (fig.9). Finally hot/cold-spots regions of the 2 independent variables (fatalities and event count) are 

compared with the population at riskexposed from multi-hazard. 

 

 

 410 

Figure 9. Identified hot /cold -spots regions (NUTS3) with a.) population at riskexposed to multi hazard; b. ) fatalities from multi- 

hazard,  c. ) number of events with fatalities;  used in  Spearman correlation analysis for the validation purpose 

By using the correlation coefficient analysis we tried to capture the strength of the relation between the two paired datasets, 

numerically.  

We focused on a non-parametric test, the Spearman correlation analysis, because it does not assume that the data is from a 415 

specific distribution and is computed on ranks and so depicts monotonic relationships. We choose it as a neutral way of 

assessing the general central tendency (median) among the pairs of variables at NUTS3. As interpretation, the Spearman 

a. 
b. c. 
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shows the degree by which two variables tend to change in the same direction. Therefore, variables with high correlation 

increase and decrease simultaneously, while variables with low absolute correlation rarely increase and decrease together.  

 420 

 

 

 

 

 425 

 

 

 

 

 430 

 

 

Figure 10 Spearman correlation between the multi-hazard clusters' size (Z-scores) of population at riskexposed  with the empirical 

fatalities from past events (lefts) and events count (right ) 

 435 

The results presented in fig. 10 refers to the correlation coefficients between paired population at riskexposed with the: a.) 

amount of fatalities (absolute) and b.) count of events of the empirical data. 

 We find a rather  inconclusive relationship between the multi-hazard risk data and the empirical data, if we consider all 

regions for all significance levels. The scatterplot suggests a positive correlation between the variables but their increasing 

monotonic relationship is weak (r=0.37 with fatalities and r=0.25 with the event count) . 440 

However, if we consider only the regions with higher significance (p<0.01, p<0.05, p<0.10) we notice a stronger correlation 

(table 2  and fig. 11). This means that going towards more significant clustering (hot/cold-spots), the independent variables 

used for the validation tend to follow better the changes in value of the population at riskexposed to multi-hazards.   

 

Table 2. Spearman correlation coefficient between the empirical data (fatalities and count of past events) and the population at 445 
riskexposed from multi-hazard for regions (NUTS3) with different significance levels. 

Variables p_value<0.01 p_value<0.05 p_value<0.10 All regions 

Fatalities absolute 0.59 0.51 0.46 0.37 

Count events 0.30 0.40 0.35 0.25 
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Figure 11. Regions (NUTS ) at riskexposed to multi-hazards identified with high significance, p<0.01 (left), and p<0.10 (right) as 450 
hotspots/cold-spots and their correlation coefficient (Spearman r) with independent variables:  a). empirical data – fatalities, b.) 

empirical data – count of events . 

Therefore, more significant the multi-hazard clustering, stronger is the relationship with the independent variables. The 

monotonic relationship is strong  r=0.59 with the fatalities as independent variable for the regions with the highest 

significance p<0.01 while the for the event count the strongest correlation (r=0.40) is reached for the regions with the 455 

significance p<0.05. This makes the recorded data on fatalities a better explanatory variable for the clustered population at 

riskexposed to multi-hazards. 

 

a.) 

b.) 
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5. Discussions 

The identification of exposure or risk on the DRMKC RDH platform is done generally from relating an asset to a hazard. 460 

There is also the possibility to relate an asset to multiple hazards and have a multi-hazard assessment (of exposure or risk ) 

on the single asset. This latter situation is the central aspect of the analysis presented in this study which considers the 

relation of a single asset (e.g. population or the residential built-up) to multiple hazards: landslide, coastal flood, river flood, 

earthquake, wildfires and subsidence. Starting from this initial setting of the analysis specific characteristics and limitations 

need to be presented.  465 

First, we show that the proposed methodology allows for the detection of the regions at riskexposed to multi-

hazards, differently, as function of the typology of the assets. This is important as it directly reveals relationships between 

assets types and  threats, valuable for the identification of the disaster risk management pathways in multi-hazard assessment 

(Ward, P. J., et al., 2022).  

Furthermore, we argue for an approach that identifies the regions (local administrative units) prone to multi-hazard 470 

with high level of significance. We adopt a meta-analysis approach, combining single hazard hotspots which seeks to solve 

the problem of “insignificant results” and provides an objective “statistical proof” of the multi-hazard potential of a region.  

We support these results through a validation process which considers empirical data as explanatory variables. We show that 

more significant is the multi-hazard clustering, stronger is the correlation relationship with the independent variables. 

With this study we also show that the proposed methodology allows for detecting changing patterns of the 475 

population being at riskexposed from multi-hazard by considering the socio-economic dimension. Our findings are in line 

with previous studies which present an increase in risk to multi-hazard from low income countries towards higher income 

countries, and then a decrease as countries’ income is the highest (Koks et al., 2019). We have also evidenced the highly 

urbanized regions (urban area) as a space of risk (Hansjurgens et al., 2008) compared with the rural administrative units from 

multi-hazard occurrence. Furthermore, we show the potential of this methodological approach in detecting the risk to multi-480 

hazard associated with complex socio-economic urban processes. We indicate that high density of population is a good 

explanatory variables for the increase in risk of the metropolitan areas. However this situation is particularly different in the 

case of high income metropolitan areas where more at riskexposed to multi-hazards are the population living in the (less 

densely populated) functional urban area.  

We also exemplify the applicability of the multi-hazard methodological approach within the multi-hazard 485 

interaction theoretical framework developed by Gill and Malamud (2014). We demonstrate it is scalable down to local and 

regional level and we present it as one future step in support of DRM decision-making at national and subnational level. 

Whilst we believe that the disaster risk management for multi-hazard assessment is brought forward by the ability 

of the proposed approach to identify regions (LAUs) being at riskexposed to multi-hazards with high significance, several 

shortcomings are identified.  490 
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Most important shortcoming is that the presented case study does not consider the vulnerability for the assessment 

of the assets (population and residential built-up) at riskexposed to multi-hazards. The multi-hazard potential of regions is 

measured in this study by means of exposure (or assets at riskexposed). Nevertheless, the overall analytical approach is 

detecting significant patterns of multi-hazard potential across regions, revealing spatially explicit clusters in a heterogeneous 

groups of data and thereby setting the basies for more precise and focused analysis. 495 

Furthermore the clusters are identified at the level of areal dimension (represented by LAUs). The areal dimension 

approach excludes a detailed level of study that could more accurately examine the spatial coincidence of multiple hazards at 

localized levels. Also, by subdividing the exposure data at the level of areal dimension which are heterogenous in size (see 

2.1.1.) will introduce underestimations or overestimations of the clusters especially when the clustering analysis is based on 

neighbouring relations defined by distance. However, we identified the optimal k value (dynamic for any relation hazard-500 

asset) in order to reduce the susceptibility to noise and outliers used in the clustering analysis . 

A way of improving the results accuracy and a direction for future research includes the revision of the meta- 

analysis (based on the Stouffer’s method), used in this analysis. The choice is whether to use the weighted or unweighted 

versions of the Z-transform test for Stouffer method when combining the single hazards hotspots into multi-hazard hotspots. 

There are arguments in the statistical literature (Whitlock, M.C. 2005) that favour the weighted Z-approach especially when 505 

there is variation in the sample size across studies/clusters (e.g. the number of regions depending on the exposure type) as it 

is the case in our study. However the weighted or unweighted version of this test is actually an open question in meta-

analysis (Becker, 1994). 

 

6 Conclusions 510 

To our knowledge, this is the first study that uses spatial patterns (clusters/hotspots) and meta-analysis in order to identify 

the regions at European level at risk exposed to multi-hazards. The methodology presented in this study provides multi-

hazard enhanced insights, valuable for the identification of the disaster risk management pathways in multi-hazard risk 

assessments. The findings point out the socio-economic dimension as a determinant factor for the spatial variability and the 

risk potential of the local administrative units to multi-hazard. We show that the high density of population is a good 515 

explanatory variable for the identification of the regions exposedat risk to multi-hazards but the economic aspect is the main 

driver that controls the risk status at local level: within rural and urban areas and in complex socio-economic urban structure. 

We also exemplify the applicability of the multi-hazard methodological approach within a multi-hazard interaction 

theoretical  framework and we demonstrate that is scalable to local and regional level and replicable. 

 By identifying local administrative units with high level of significance as being exposedat risk to multi-hazards we also 520 

narrow the  uncertainty around the major challenges related with multi-hazard studies: identification of the regions prone to 

multi-hazard, and quantification of multi-hazard exposure.impact and characterization of the relation between the multiple 
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hazards. Future research should aim to address identified limitations by incorporating vulnerability assessments into multi-

hazard analyses and the consideration of a multi-hazard interaction framework, for improved accuracy and reliability of 

multi-hazard hotspots identification. 525 

The outcome of this study brings forward an useful methodological input that is made available for use through the Risk 

Data Hub platform. The objective of this study is to support national authorities on addressing the multi-hazard approach in 

the National Risk Assessments preparation. 
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