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Abstract. A probabilistic seismic hazard model consists of a set of weighted models/branches that describes the center, the 

body, and the range of seismic hazard. Owing to the intrinsic nature of this kind of analysis, the weight of each model/branch 

represents its scientific credibility. However, practical uses of this model may sometimes require the selection of one or a 10 

few hazard curves that are sampled from the whole model, that often consists of thousands of branches. Here we put forward 

an innovative procedure that facilitates the scoring, ranking and selection of those hazard curves to account for the 

requirements of a specific application. The approach consists of a careful quality check of the data used for scoring and the 

adoption of a proper scoring rule. To show the applicability of this approach, we present an example that consists of scoring 

and ranking a set of multiple models/branches constituting a recent seismic hazard model of Italy. To score these branches, 15 

hazard estimates produced by each of them are compared with time-series of macroseismic observations available in the 

Italian macroseismic database for a carefully selected set of localities deemed sufficiently representative, homogeneously 

distributed in space and complete with respect to time and intensity levels. The proper scoring parameter used for such a 

comparison is the logarithmic score, which can be always applied independently from the distribution of the data. 

1 Introduction 20 

Probabilistic Seismic Hazard Analysis (PSHA) provides basic information for the proper application of the building code. 

Owing to the important practical implications, PSHA models have to be widely accepted by a large scientific community. 

This acceptance is usually achieved by using commonly adopted procedures to calculate PSHA, and the full description of 

associated uncertainties is one of the key points in reliable models (Gerstenberger et al., 2020).  

PSHA is usually built considering different models or branches of a logic tree, which mimics the so-called epistemic 25 

uncertainty, i.e., our ignorance of the true seismic hazard value. A critical aspect in describing quantitatively the distribution 

of the epistemic uncertainty is the way in which the weight of each model or branch is assigned. 

Conceptually, the weighting of each model can follow two main general procedures (e.g., Albarello and D’Amico, 2015): the 

first one is ex-ante, that is by considering inherent properties of each competing PSHA model, i.e., its ability to take into 

account the current knowledge of the underlying physical process evaluated by panels of experts; the second one is ex-post, 30 
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that is by empirically scoring a set of alternative models by comparing the forecasting performance of their outcomes with 

available seismic observations. The first approach was the most commonly adopted in the past (e.g., Stucchi et al., 2011; 

Woessner et al., 2015), whereas today, thanks to the large availability of seismic data for comparisons, state-of-the-art PSHA 

models tend to adopt a combination of the two approaches (e.g., Danciu et al., 2021; Petersen et al., 2024). For example, in 

the recent PSHA model for Italy called MPS19 (Meletti et al., 2021) the weight of each branch was assigned according to 35 

both ways, that is testing the performance of its components, i.e., seismicity and ground-motion attenuation models, against 

available observations and through the evaluation of the models by panels of experts. Worthy of note, independently from 

the specific scheme adopted, the weighting of each PSHA model relies on available scientific knowledge. 

The use of a PSHA model for practical applications may need additional evaluations. Actually, most practical applications 

require the choice of one (or a few) hazard curves that are sampled from the model. For instance, many current building 40 

codes use arbitrarily the mean hazard, neglecting de facto the dispersion of all other hazard curves. Here we propose an 

innovative post-processing scoring strategy that facilitates the ranking and sampling of models/branches of a PSHA model to 

consider specific requests from stakeholders, e.g., those responsible for planning seismic risk reduction strategies.  

We introduce the procedure through an application to score and rank a set of multiple models/branches that constitute the 

MPS19 seismic hazard model of Italy according to their fit with macroseismic intensity data available in a large set of 45 

selected sites; the aim is selecting the models/branches that minimize the difference between PSHA outcomes and 

macroseismic observations at these sites. The scoring procedure consists of a careful quality check of the data used for 

scoring and the adoption of a proper scoring rule.  

MPS19 consists of 11 groups of seismicity models (each composed by a set of sub-models, for a total of 94 seismicity 

models) combined with three Ground Motion Models (GMMs) for the active shallow crustal areas (Bindi et al., 2011; Bindi 50 

et al., 2014; Cauzzi et al., 2015), with two GMMs for the subduction zone of the Calabrian Arc (Skarlatoudis et al., 2013; 

Abrahamson et al., 2016) and one for the volcanic areas (Lanzano and Luzi, 2020), producing a total of 564 branches. The 

hazard was computed in terms of Peak Ground Acceleration (PGA) and Spectral Acceleration (SA), in the period range 

0.05–4 s, for return periods from 30 to 5000 years (for more details on MPS19, see Visini et al., 2021 for seismicity models, 

Lanzano et al., 2020 for GMMs, and Meletti et al., 2021 for the whole model). 55 

Specifically, the scoring procedure proposed here consists of comparing the hazard of each branch of MPS19 with the time-

series of macroseismic observations (“seismic histories”) available in the Italian macroseismic database DBMI15 v1.5 

(Locati et al., 2016; https://emidius.mi.ingv.it/CPTI15-DBMI15_v1.5/query_place/) for a set of localities deemed 

sufficiently complete. 

The proper scoring parameter for such a comparison is the logarithmic score (Gneiting and Raftery, 2007), which can be 60 

always applied independently from the specific distribution of the data; when the data follow a Poisson distribution, the 

logarithmic score is also named Log-Likelihood score (LL): 

 

LL = ∑ log(𝑝!)"
!#$              (1) 
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 65 

where 𝑝! is the probability that each model attributes to the i-th observation above the N available. Gneiting and Raftery 

(2007) show that many other metrics, such as probability, do not have these characteristics and should not be used. 

The main phases of the proposed procedure are the following: i) identification of the testing localities where to compare 

hazard estimates of the individual models with available seismic histories, ii) building of the datasets of observed and 

expected macroseismic intensities for each locality, iii) comparison between estimates from each branch and observed data 70 

in terms of LL of the differences between the number of macroseismic data predicted by the model and the number of those 

observed for different intensity degrees, and iv) scoring and ranking of the models. 

Although our application is focused on a specific PSHA model, we emphasize the generalizability to any other model and 

kind of observations (e.g., accelerometric data, fragile geological structures), provided they are treated with ad hoc 

procedures. 75 

2 Building the datasets of observed and expected intensities 

The first step of our procedure is the identification of the set of localities for evaluating the consistency of PSHA models 

with available observations; then, for each site, two datasets of macroseismic intensities, one of observed data and one of 

intensities expected according to the hazard estimates, have to be built. 

2.1 Selection of the testing localities 80 

The selection of the sites where to compare PSHA models’ outputs with available observations represents one of the most 

crucial issues of the scoring procedure and thus needs great attention. 

In order to have a representative set of sites to perform tests, the selected localities have to guarantee: i) a geographical 

coverage as dense and uniform as possible throughout the whole investigated area, in relation to both high and low hazard 

regions, and ii) seismic histories with a significant number of data, spanning long time periods and covering a wide range of 85 

intensity values (see the examples in Fig. 1). 
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Figure 1: Examples of seismic histories of two nearby Italian provincial capitals. The seismic history of Firenze (left) is extended 
and regular in time (for intensity larger than 4 MCS - Mercalli-Cancani-Sieberg scale; Sieberg, 1923), whereas the one of Arezzo 90 
(right) shows significant gaps in time (i.e., in the periods 1350–1750, and 1800–1850). 

 

In the application to the Italian territory described here, we first identify 133 sites corresponding to 97 provincial capitals and 

36 localities selected trying to fulfil the above criteria. 

We further check the representativeness of their seismic histories, provided by DBMI15 v1.5, comparing the seismic hazard 95 

estimates computed at each locality by means of the so-called “site” approach to PSHA (SASHA; D’Amico and Albarello, 

2008) using: i) only the observed intensity data in DBMI15, and ii) the observed data integrated with “virtual” intensities 

calculated from earthquake parameters of the CPTI15 v1.5 catalogue (Rovida et al., 2016) through an intensity attenuation 

relationship (Pasolini et al., 2008, recalibrated by Lolli et al., 2019). High differences between the two resulting hazard 

estimates may indicate localities with “poor” seismic histories and/or with evident lack of data that should not be used for 100 

scoring.  

On the basis of this analysis, which lead to eliminate or replace 13 localities that might bias the tests (six sites are retained to 

avoid large uncovered areas although they have poor seismic histories), and of the re-examination of the geographical 

distribution of the resulting sites, a further analysis is carried out to thin out very dense areas in Northern and Central Italy 

and to increase the density in some areas in the South. The final set of 124 locations selected for scoring is shown in Fig. 2. 105 

 



5 
 

 
Figure 2: Map of the 124 localities selected for scoring showing the number of intensity data ³ 5 MCS, for each of them. The 
polygons identify the six macro-areas used for subsequent tests. 

 110 

2.2 Completeness periods of site seismic histories 

In DBMI15, 9308 intensity data are referred to the selected localities and are associated to 2400 earthquakes spanning the 

period 1000–2014 and the whole range of intensity degrees, up to 10–11 MCS (Mercalli-Cancani-Sieberg scale; Sieberg, 

1923). 

However, the consistency check of the hazard estimates provided by a given model with the macroseismic observations 115 

available at the selected localities requires that the number of intensities expected from the model at each site is compared 
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with a complete set of observed intensities for each intensity degree. As a consequence, to calculate the number of 

macroseismic data, both observed and expected, at each site it is first necessary to estimate the completeness time intervals 

for each intensity degree, i.e., the periods in which it is reasonable to assume that all the earthquake effects above a given 

intensity have been actually reported in the seismic history (see Stucchi et al., 2004; Antonucci et al., 2023). For this reason, 120 

the completeness of the site seismic histories is different from the completeness of the earthquake catalogue. Indeed, the 

effects of an earthquake occurred in the complete period of the catalogue might not be recorded at a given site for several 

reasons (e.g., they were not documented, documentation exists but has not been analyzed, and so on). 

In our case study, the completeness time intervals for each site are defined using the statistical approach of Albarello et al. 

(2001) applied to observed data with intensity greater than or equal to 5 MCS according to the following procedure:  125 

– intensity data related to earthquakes in CPTI15 identified as “mainshocks”, according to the declustering method used 

in MPS19 (Gardner and Knopoff, 1974), are considered; 

– only intensity data of earthquakes up to 2006 are used, because after that year the systematic collection of 

macroseismic data ceased and DBMI15 is incomplete (Antonucci, 2022); 

– intensities expressed in DBMI15 as non-numerical values, e.g., F for “felt”, HD for “heavy damage”, and so on (see 130 

Rovida et al., 2020 for their complete list), are discarded; 

– uncertain intensities between adjacent integer degrees (e.g., 6–7 MCS) are treated as either the lowest degree (option 

1) or the highest one (option 2). 

 

For each Macroseismic Intensity (MI) threshold, two completeness estimates are therefore obtained, in terms of the starting 135 

year of the complete period (Tc), referred to the two options for assigning the uncertain degrees described above. To take the 

uncertainty in the estimation of completeness into account, the two Tc values corresponding to the median and the 75th 

percentile of the completeness function provided by the adopted method are considered, for a total of four Tc values. The 

estimates of Tc corresponding to the 25th percentile of the completeness function are not taken into account as they are 

considered unrealistic, especially for high degrees (see the example in Fig. 3). Finally, in case the completeness period of a 140 

given intensity threshold is shorter than that of the lower one (e.g., for degree 9 MCS in Fig. 3 on the right), the latter period 

is considered for both the thresholds. 
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Figure 3: Example of completeness graph for the city of L'Aquila according to the two options for assigning uncertain degrees: on 145 
the left, uncertain degrees are assigned to the lowest degree (option 1); on the right, to the highest degree (option 2). The red bars 
indicate, for each MI threshold, the three estimates of the completeness starting year Tc (the median value with solid line, the 25th 
and 75th percentiles with dashed lines). Black dots correspond to intensities observed up to 2006, extracted from DBMI15. 

 

2.3 Dataset of observed intensities 150 

According to the procedures described above, the dataset of observed macroseismic intensities for each testing locality is 

built counting, for each MI degree, the numbers of data after the two different completeness starting years Tc, i.e., those 

corresponding to the median value and the 75th percentile of the completeness function, considering both options 1 and 2 for 

treating the uncertain degrees.  

Thus, four estimates of the number of observed data for each intensity degree are obtained, corresponding to: 155 

i) option 1 and the median Tc value (2100 data); 

ii) option 1 and the 75th percentile Tc value (1671 data);  

iii) option 2 and the median Tc value (2557 data); 

iv) option 2 and the 75th percentile Tc value (2076 data). 

(In brackets, the total number of data referred to all intensity degrees and selected localities is reported). 160 

 

The resulting numbers of data are finally cumulated to obtain the observed exceedances for each considered MI degree at 

each locality. 
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2.4 Dataset of expected intensities 

The number of expected intensity data at each site on the basis of the hazard estimates provided by the individual branches 165 

of MPS19 is computed as follows: 

– the hazard curve for each branch is calculated assuming a value of VS,30 equal to 600 m/s, that is for EC8 soil category 

B instead of A (VS,30 = 800 m/s) to which the MPS19 model refers. This is because macroseismic intensity values 

quantify the earthquake effects (in particular the levels of building damage) observed in extended localities that, in 

Italy, are generally located on class B soils (360 £ VS,30 < 800 m/s, see e.g., Mori et al., 2020) rather than on rocky 170 

soils; 

– from each hazard curve, expressed as annual rates of exceedance of different levels of shaking in terms of PGA or 

SA, the corresponding annual rates of occurrence are obtained. These are then converted into occurrence rates of 

different degrees of intensity λ(MI) through the Ground Motion Intensity Conversion Equation (GMICE) by Gomez 

Capera et al. (2020), taking into account the associated uncertainties, as follows: 175 

 

𝜆(MI) = ∑ 𝜆-𝑥%/𝑃-MI1𝑥%/&
%#$          (2) 

 

where λ(xj) is the annual occurrence rate of each of the M levels of PGA (or SA) in the hazard curve and P(MI|xj) 

corresponds to the conditional probability distribution of the GMICE, as proposed by D’Amico and Albarello (2008); 180 

– the rates of occurrence in intensity estimated in this way are then multiplied by the lengths of the corresponding 

completeness periods to obtain the number of macroseismic data expected for each intensity degree. As done for the 

observed intensity data, the four estimates of the completeness periods are considered (starting from the median Tc 

value and the 75th percentile of the completeness function and for the two options for assigning the uncertain 

degrees); 185 

– the resulting numbers of data are finally cumulated to obtain the expected exceedances for each MI degree. 

 

Figure 4 shows an example of the comparison between the number of observed and expected macroseismic data in the 

locality of Amatrice for different intensity thresholds. 

 190 



9 
 

 
Figure 4: Comparison, for different MI thresholds, between the number of observed macroseismic data in the locality of Amatrice 
and the number of expected intensities from one of the branches of MPS19 (ID001, calculated for soil class B).  

 

3 Consistency test between hazard estimates and macroseismic observations 195 

The parameter used for evaluating the consistency of the predictions of a given PSHA model with the macroseismic 

observations available for the testing localities is the Log-Likelihood score LL (Eq. (1)). In this application, comparisons 

between forecasts and observations are made for individual branches (or models) of MPS19 starting from the hazard curves 

calculated at each testing site for soil class B (VS,30 = 600 m/s) for PGA, SA 0.2 s and 1 s, that are considered the most 

relevant spectral periods for engineering purposes. The total number of analyzed branches is 282 out of the 564 of MPS19, 200 

because the hazard values estimated at the testing sites using the two alternative GMMs selected for the subduction zone are 

almost identical and only the branches adopting the model of Skarlatoudis et al. (2013), that obtained the highest weight, are 

considered. 
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3.1 Calculation of the Log-Likelihood score (LL) 

As described in the previous section, for each considered testing locality and for each PSHA branch, four pairs of observed 205 

and expected numbers of intensity data are obtained for each MI threshold, corresponding to the four different estimates of 

the completeness periods, i.e., for the median value and the 75th percentile of the completeness function and for the two 

options for treating uncertain intensity degrees (see the example in Fig. 4). 

For each site and branch, for each MI threshold and for each of the four pairs of observed and expected numbers of intensity 

data, the probability p of the tails of the Poisson distribution is calculated through the following algorithm (Zechar et al., 210 

2010): 

– if the number of observed data (Nobs) is greater than the number of expected ones (Nexp): 

 

𝑝 = 1 − 𝐹((𝑁'() − 1);	𝑁*+,)         (3) 

 215 

– if the number of observed data is lower than or equal to the number of expected ones: 

 

𝑝 = 𝐹(𝑁'(); 	𝑁*+,)           (4) 

 

where F is the right-continuous Poisson cumulative distribution function with expectation Nexp evaluated at Nobs: 220 

 

𝐹-𝑁'()1𝑁*+,/ = 𝑒-"!"# ∑ "!"#$

.!
|"%&'|
.#1          (5) 

 

The two probabilities (p), defined in Eqs. (3) and (4), respectively answer one of the following questions: is the forecast too 

low (Eq. (3)) or too high (Eq. (4)) compared to the observations? 225 

For each site, we then calculate the weighted average of the four logarithmic scores (LL in Eq. (1)), considering the four 

pairs of observed and expected numbers of data for intensity greater than or equal to 6 (MI6+) and 8 (MI8+) MCS. These 

intensity levels correspond to the threshold of slight and structural building damage, respectively. The weighted average of 

observed and expected data is calculated by equally weighting the two estimates obtained from the median value and the 75th 

percentile of the completeness function and attributing different weights to the two options for treating uncertain degrees as 230 

follows: i) 0.75 to option 1 (i.e., uncertain degree assigned to the lower MI value), and ii) 0.25 to option 2 (i.e., uncertain 

degree assigned to the higher MI value). This choice is consistent with the meaning of uncertain intensity assignments 

described in Grünthal (1998). 

The LL value calculated in this way is defined as LLsite. 
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3.2 Estimates of LL for each model 235 

To identify the models that produce the hazard estimates most consistent with the macroseismic observations at the testing 

sites, we initially calculate, for each branch, the sum of the LLsite values relating to the 124 selected localities, defined as 

LLsum, for the three spectral periods (PGA, SA 0.2 s and 1 s) and the two intensity thresholds (MI6+ and MI8+) considered. 

Figure 5 shows the LLsum values for PGA for all branches: the smaller (closer to zero) is the value, the higher is the 

consistency between the model’s outcomes and the observations. 240 

 

 
Figure 5: Values of LLsum (sum of LLsite of all localities) calculated for each of the 282 considered branches of MPS19 for PGA, 
MI6+ (left) and MI8+ (right). The branches are represented in abscissa from left to right grouped according to the 11 seismicity 
models (for the description of models, see Meletti et al., 2021; Visini et al., 2021), and colored according to the three GMMs 245 
adopted for active crustal areas, namely: “BeA11” (Bindi et al., 2011), “BeA14” (Bindi et al., 2014), “CeA15” (Cauzzi et al., 2015). 
Note that the y-axis for MI6+ is truncated for the purpose of visualization, as a few values tend toward negative infinity. 

 

Then, to test the performance of each branch over different regions of the Italian territory, we group the selected localities 

according to the six macro-areas defined in MPS19 to estimate the completeness of the CPTI15 catalogue, that is: Alps, Po 250 

Valley, Center, South, Sardinia, Sicily (see Fig. 2). Since these macro-areas include different numbers of sites, the average 

(instead of the sum) of the LLsite values is calculated for both the entire set of 124 localities and for the localities in each 

macro-area (Sardinia is excluded since it has only two testing sites). Therefore, six LLmean values are obtained for each 

branch. Figure 6 shows the resulting LLmean values for PGA, for the two intensity thresholds MI6+ and MI8+ and for each 

adopted GMM. 255 
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Figure 6: Values of LLmean for each considered branch of MPS19 for the localities in five macro-areas and for all the sites, for 
PGA, MI6+ (left) and MI8+ (right), and for each adopted GMM. The branches are represented in abscissa from left to right 
grouped according to the 11 seismicity models. 
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As shown, almost all the branches seem to give a good agreement (i.e., LLmean values closer to zero) in the Alps macro-area, 260 

characterized by a much smaller number of sites. In the other four macro-areas, that are more significant in terms of the 

number of sites, the results appear to be very different depending on the different seismicity models. In particular, for the 

BeA11 and BeA14 GMMs, some groups of branches (e.g., MA2, MA3, MF1, MG1, MG2) show generally poorer 

performance in terms of LLmean values and a considerable geographical scatter, whereas others (e.g., MA1, MA4, MF2, 

MS2) show values of LLmean that are generally smaller and more stable in the four macro-areas. The plots of LLmean values 265 

for SA 0.2 s and 1 s are reported in the Supplement (Fig. S1 and S2). 

In order to evaluate the stability of the performance of each branch in the different areas, we then calculate the dispersion of 

the LLmean values among the four macro-areas including the highest number of localities (Po Valley, Center, South, Sicily) as 

the width of the interval between the 2.5th and 97.5th percentiles. The percentiles are estimated using a non-parametric 

distribution of the four LLmean values. Obviously, a different choice of the distribution might lead to changes in the 270 

percentiles, but the aim is only to give an order of magnitude of the dispersion among the measures in the macro-areas. 

Figure 7 shows the dispersion values computed for PGA, for the two intensity thresholds considered (plots for SA 0.2 s and 

1 s are displayed in Fig. S3 of the Supplement).  

The LLmean values computed using the entire set of localities and the relative geographical dispersion are then used to 

establish a ranking of the branches. 275 

 
Figure 7: Dispersion of the LLmean values among the four more representative macro-areas for each branch, for PGA, MI6+ and 
MI8+. The color of the dots indicates the seismicity model, while the color of the borders indicates the GMM used in that branch. 
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3.3 Ranking of the models 

Following the described procedure, a LLmean value for MI6+ and MI8+, for the three spectral periods (i.e., PGA, SA 0.2 s 280 

and 1 s), is assigned to each of the 282 considered branches of MPS19, as well as an estimate of the dispersion of these 

values among the four more representative macro-areas.  

For each spectral period and MI threshold, the branches are then ranked according to the values of LLmean and the relative 

geographical dispersion, assigning the 1st place to the branch with the “best” result (LLmean value or dispersion closest to 

zero) and the 282nd place to the “worst” one.  285 

Initially, comparison plots of the ranks based on LLmean values for the two MI thresholds are produced, focusing the attention 

on those branches that fall within the 10th percentile. This choice, however subjective, result too restrictive, since none of the 

branches fall within this range for all the considered spectral periods. It is then decided to expand the selection criterion. 

Taking into account the first 70 positions (corresponding to the first quartile) in the LLmean tests, for both intensity thresholds 

and for the three spectral periods, we select 35 branches for PGA and 37 branches for SA 0.2 s and 1 s, representing all the 290 

GMMs used and different seismicity models of MPS19.  

Figure 8 shows the placement of each branch in the LLmean test for PGA; the plots for SA 0.2 s and 1 s are reported in the 

Supplement (Fig. S4). In all the plots, the best ranks are generally occupied by the same models, for both MI thresholds. 

 
Figure 8: Comparison between the ranking of the branches for PGA, based on the LLmean values for MI6+ and MI8+. The color of 295 
the dots indicates the seismicity model, while the color of the borders indicates the GMM used in that branch. Black dotted lines 
identify the 70th position in both rankings. 
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The geographical dispersion of LLmean values among the four more representative macro-areas is then considered. For each 

spectral period, a ranking of the branches is made also according to this parameter and the ranks are grouped in three classes, 

for both MI6+ and MI8+, that is: i) rank £100, ii) rank 101–150, and iii) rank >150. 300 

An overall rank (from 1, best rank, to 5) is then assigned to each selected branch, for each of the three spectral periods, based 

on the ranking class for the two intensity thresholds (see the abacus in Table 1). 

 
Table 1: Abacus built to assign an overall rank to each selected branch, for each spectral period considered, on the basis of its rank 
resulting from the dispersion of LLmean values in the four macro-areas. 305 

 
 

The overall rank could allow practitioners to further sample and/or (re-)weight the various branches according to the 

practical constraints of a specific application. Table 2 shows the overall ranks for the 20 best performing selected branches 

for PGA, SA 0.2 s and 1 s. As an example, if one decides to consider those models with an overall rank equal to 1 or 2 for all 310 

the spectral periods, only the first six should be selected. 
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Table 2: Overall ranks of the 20 best performing selected branches, according to the abacus in Table 1. The following columns 
report the position in every computed rank; the cells with gray background mark the branches falling in the first 70 positions in 
the LLmean ranking. 315 

 
 

4 Discussion and conclusions 

We have introduced a new scoring strategy that may be used to rank and sample the multiple models/branches of a PSHA 

model. Scoring is inherently different from testing: the former term indicates approaches devoted at ranking and eventually 320 

weighting a set of competing models, whereas testing procedures aim at evaluating the absolute predictive accuracy of each 

model, indicating if its outcomes are/are not compatible with observations to a given significance level threshold. Therefore, 

testing can allow to identify possibly wrong PSHA models, whereas scoring is aimed to compare models according to a 

specific metric of interest. 

For the sake of example, we have scored and ranked alternative branches of the MPS19 seismic hazard model of Italy 325 

(Meletti et al., 2021) according to their fit with long-term macroseismic intensity data available in a large set of sites, with 
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the scope of selecting the models/branches that minimize the difference between PSHA outcomes and macroseismic 

observations at these sites. To properly compare the performance of the different branches, a Log-Likelihood score has been 

assigned to each of them based on the comparison between numbers of expected and observed intensity data at each site for 

different shaking levels and spectral periods, not considering single return periods but the entire hazard curve.  330 

In countries such as Italy, where the historical record is hundreds-of-years long, i.e., much more than the instrumental one, 

and macroseismic information covers the whole territory (Locati et al., 2022), the use of macroseismic intensity observations 

for scoring PSHA models could be more suitable than accelerometric recordings to consider the effects of earthquakes with 

large magnitudes and long return periods.  

Of course, comparing PSHA outcomes in terms of PGA or SA with macroseismic data requires caution due to the use of 335 

GMICEs, that are empirical conversion relationships characterized by large uncertainties to be taken into account. In fact, if 

one simply converts the ground motion value (e.g., PGA) resulting by a PSHA model into macroseismic intensity just using 

the average estimates and discarding associated variance, the comparison could be severely biased. In the scoring procedure 

presented here, this issue is solved through the convolution of the relevant probability distributions (i.e., hazard curves and 

GMICE), as proposed by D’Amico and Albarello (2008). Moreover, the procedure takes into account both the peculiar 340 

nature of intensity values (discrete, ordinal, range-limited) and associated uncertainties (uncertain intensity values between 

adjacent integer degrees, completeness of site seismic history, etc.). 

A further crucial issue related to using macroseismic intensity data for empirical scoring concerns the selection of sites 

where to compare PSHA models’ outputs with available observations. In fact, to have a representative set of localities to 

perform tests, selected sites have to guarantee a geographical coverage as dense and uniform as possible throughout the 345 

study area (for both high and low hazard regions) as well as a significant number of macroseismic data at each site, covering 

long time periods and a wide range of intensity values. This clearly limits the use of macroseismic data as observables to 

those countries with long records of documentary information about the effects of past earthquakes at a sufficient number of 

sites (e.g., Fäh et al., 2011 for Switzerland; BRGM-EDF-IRSN/SisFrance, 2017 for France). 

The presented procedure can be applied to any kind of model and set of observational data, for instance to rank and select 350 

branches of a complex PSHA model to get one outcome that better satisfies specific stakeholders’ needs. In this regard, it is 

important to remark that our approach is based on a rigorous and quantitative procedure, although the definition of the 

thresholds and ranks for selecting branches is a subjective choice that depends on specific considerations and aims. 

Data availability 

CPTI15 v1.5 is available at https://doi.org/10.6092/ingv.it-cpti15 355 

DBMI15 v1.5 is available at https://doi.org/10.6092/ingv.it-dbmi15 
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