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Abstract  

Storm surge is a common nature disaster in China southern coastal area, which usually causes  

heavy human life and economic losses. With the economic development and population  

concentration of coastal cities, the storm surges may result in more impacts and damage in the  

future. Therefore, it is of vital importance to conduct risk assessment to identify high-risk areas  

and evaluate economic losses. However, quantitative study of storm surge risk assessment in  

undeveloped areas of China is difficult, since there is a lack of building characters and damage  

assessment data. Aiming at the problem of data missing in undeveloped areas of China, this paper  

proposes a methodology for conducting storm surge risk assessment quantitatively based on deep  

learning and geographic information system (GIS) techniques. Five defined storm surge  

inundation scenarios with different typhoon return periods are simulated by coupled FVCOM- 

SWAN model, the reliability of which is validated using official measurements. Building  

footprints of the study area are extracted through TransUNet deep learning model and Remote  

Sensing Image (RSI), while building heights are obtained through Unmanned Aerial Vehicle (UAV)  

measurement. Subsequently, economic losses are quantitatively calculated by combing the  

adjusted depth-damage functions and overlay analysis of the buildings exposed to storm surge  

inundation. Zonation maps of the study area are illustrated to display the risk levels according to  

the economic losses. The quantitative risk assessment and zonation maps can help the government  

to make storm surge disaster prevention measures and optimize land use planning, and thus to  

reduce the potential economic losses of the coastal area.  
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1. Introduction  

 Storm surge, defined as the abnormal rise of water over and above the normal astronomical  

tide, and is expressed in terms of height above predicted or expected tide levels. Mostly, the surge  

is generated by a strong atmospheric disturbance, and it becomes particularly catastrophic when it  

happens to coincide with an astronomical high tide. In that case, the surge-driven coastal flooding  

may inundate buildings and cropland, cause significant casualties and economic losses. Storm  



 

 

surges have caused widespread damage worldwide. In 2013, super typhoon Yolanda as the worst  

typhoon in last 30 years, pounded the Philippines. It caused 6293 individuals reported dead, 28689  

injuries and 1061 individuals missing, with estimated damages totaling 864 million US dollars  

(Mcpherson, 2015). Hurricane Harvey struck Texas in August 2017, resulting in approximately  

100 deaths and economic losses exceeding 125 billion dollars (Lee, 2021). In China, storm surges  

also pose a frequent threat in the coastal cities. In the last decade, China has experienced an  

average of 8.5 storm surge disasters annually, with an average damage amount of 6815.8 million  

yuan per year, where Guangdong and Zhejiang Provinces are the most affected coastal areas   

(China Marine disaster bulletin, 2022). For example, Typhoon Hato in 2017, Typhoon Mangkhut  

in 2018, Typhoon Lekima in 2019 has caused significant damage to coastal cities in China, and  

resulted great losses of life and property (Zhou et al., 2021; Yang et al., 2019)For example,  

Typhoon Hato in 2017, Typhoon Mangkhut in 2018, Typhoon Lekima in 2019 has caused  

significant damage to coastal cities in China, and resulted great losses of life and property. For the  

past few years, as the rapid development of population and economic in China coastal area, the  

potential monetary loss grows accordingly (Fang et al., 2021; Ji et al., 2020; Mcgranahan et al.,  

2007; Seto et al., 2011). Therefore, it is crucial to implement risk assessment and mapping  

strategies to effectively reduce these risks and mitigate the impact of storm surges.  

 Storm surge hazard assessment is an essential component of storm surge risk assessment and  

zoning, aiming to evaluate the hazard intensity of disasters, through numerical simulation of storm  

surge processes, estimation of storm surge for selected return periods, and computation of the  

probable maximum storm surge (Shi et al., 2013). Therefore, the numerical simulation of storm  

surge is a key step for storm surge risk assessment. However, Bbecause of the limitation of  

historical storms and the nondeterminacy of future storm, numerical simulation of storm surges is  

usually used to determine storm levels. Hydrodynamic model such as Advanced Circulation Mode  

(ADCIRC), Delft3D and Finite Volume Coastal Ocean Model (FVCOM) have been widely used  

(Vijayan et al., 2021; Wang et al., 2021a; Liu and Huang, 2020; Hu et al., 2022; Lyddon et al.,  

2019; Zhang et al., 2020; Zhu et al., 2022).  Advanced Circulation Mode (ADCIRC) is a widely  

used hydrodynamic model in coastal area. For example, Vijayan et al. (2021) utilized ADCIRC  

model to simulate storm surges and tides during the hurricane that land on Florida in 2018, for the  

purpose of comparing the different impact of wind model Holland 1980 and Holland 2010. Wang  

et al. (2021a) and Liu and Huang (2020) used ADCIRC and Simulating Waves Nearshore (SWAN)  

coupled model respectively simulate the storm surge and wave in the sea near Shandong Peninsula  

and Taiwan, and the hazard assessment and model verification were carried out respectively.  

Delft3D is a comprehensive numerical modeling system for simulating hydrodynamic processes.  

Hu et al. (2022) adapted a pre-validated Delft3D-based hydrodynamic model proved the impact of  

levee opening at selected locations was minor. Lyddon et al. (2019) used Delft3D-FLOW-WAVE  

model calculate the tide and wave in the Severn Estuary, the result pointed out the importance of  

locally generating winds in simulation of water level and wave height. Finite Volume Coastal  

Ocean Model (FVCOM) is another widely used numerical model for simulating hydrodynamic  

processes. Zhang et al. (2020) conducted a series of modeling experiments with the purpose of  

assessing the impact of storm and evaluated the flood protection by using FVCOM inundation  

model. Zhu et al. (2022) realized WRF-SWAN-FVCOM coupling simulation to analyze the  

spatial-temporal evolution laws, and the result demonstrate the method can predict hydroelastic  

responses of the maritime airport under the impact of typhoons, currents and waves.  



 

 

It has been demonstrated that it is critical to include tide and sea-water-level variations in shelf and  

nearshore wave simulations (Masson, 1996). Furthermore, the sea water level could be  

significantly affected by strong tide and typhoon-induced wind in complex coastal seas and then  

modulate the wave properties (Yang et al., 2020). Coupled FVCOM-SWAN model, with the  

foundation of FVCOM's finite volume method, unstructured grid, and adaptable boundary  

condition handling capability, integrating the hydrodynamic and wave processes of SWAN,  

possesses the ability to provide simulation result more quickly and accurately. In this circumstance,  

coupled FVCOM-SWAN model is used in this research for simulating the inundation of storm  

surge.  

 Coastal risk assessment can be categorized into two primary classifications: qualitative and  

quantitative. In the realm of qualitative assessment, entropy weight method, Analytic Hierarchy  

Process (AHP) and other methods are widely used. Ramkar and Yadav (2021) used AHP in  

combination with Geographic Information Systems (GIS) for proposing a flood risk map, which  

can identify the high-risk areas efficiently. Malekinezhad et al. (2021) combined the entropy  

weight method and GIS, and conducted a flood vulnerability analysis for Hamadan city. The  

results highlighted the advantages of entropy weight method comparing to normal spatial overlay  

method. Besides, Pathan et al. (2022) and Rafiei-Sardooi et al. (2021) made use of Technique for  

Order Preference of Similarity by Ideal Solution (TOPSIS). The former pointed out the  

advancement of TOPSIS by comparing with AHP, and the latter combined machine learning and  

TOPSIS to analyze urban flood vulnerability. Unlike qualitative risk assessment, quantitative risk  

assessment enables the quantification of damages and risks in monetary terms. The most  

commonly used approach to assess direct damages is based on depth-damage curves (De Moel and  

Aerts, 2011; Merz et al., 2007; Smith, 1994). Thieken et al. (2008) presented the Flood Loss  

Estimation Model for the private sector (FLEMOps) through using the Germany flood losses data  

in August 2002, and the group further established model for commercial sector in 2010 (Kreibich  

et al., 2010). Zhai et al. (2005) derived multi-factor loss functions for buildings in Nagoya, Japan  

using empirical data from Tokai flood in 2000, and Grahn and Nyberg (2014) established  

functional relationships utilizing the house insurance claims data caused by lake flooding. Except  

for buildings, Yazdi and Salehi Neyshabouri (2012) and Hess and Morris (1988) respectively built  

several uni-variable functions and multi-factor functions for kinds of crops and grassland. In  

recent years, machine learning is also introduced in quantitative loss assessment, for example,  

Merz et al. (2013) developed a tree-based approach using Regression Tree and Bagging  

Regression Tree as machine-learning methods to analysis of direct building damage to private  

homes. Paprotny et al. (2020) proposed a Bayesian Network damage model (a Ssupervised- 

Machinemachine-Learning learning method), and reached a good accuracy of predictions of  

building losses.  

The essence of quantitative risk assessment lies in analyzing the interaction between  

exposure factors and hazards (Adnan et al., 2020; Armenakis and Nirupama, 2013; Granger, 2003;  

Kron, 2005)., Ttherefore it’s crucial to quantify the direct tangible damage of elements at risk.  

Buildings are important exposure elements, as they are the gathering place of population and  

property. Building footprint data is necessary for evaluating the vulnerabilities of a building, as it  

provides essential information about the buildings, including spatial location, distribution, and  

boundaries and so on (Mharzi Alaoui et al., 2022). It’s also of great significance in risk assessment,  

primarily due to its ability to identify high-risk areas, assess building vulnerability and estimate  



 

 

potential damage (Gacu et al., 2023; Wu et al., 2019). Extracting building footprints from remote  

sensing images has been widely used in many fields, such as urban management, disaster  

management, navigation (Zhou et al., 2004; Tang et al., 2006; Liu et al., 2019; Liu et al., 2020;  

Rousell and Zipf, 2017; Chen and Gao, 2019). However, there is a lack of building footprints  

extraction and application in the realm of storm surge assessment. .   

When the building is inundated, there are a variety of factors that may influence the amount  

of monetary loss. For example, building type, building structure, private precaution, maintenance  

status, and others (Marvi, 2020; Thieken et al., 2008). Taramelli et al. (2022) pointed out that  

building’s height is one of the factors for determining the susceptibility due to flooding and  

evaluate the buildings’ potential damage by flood hazards. Hasanzadeh Nafari et al. (2016)  

developed a new loss model, in which building with different story were divided into different  

categories in the modelling process. To conclude, height is an important factor that affecting the  

vulnerability of buildings when they serve as inundation-exposed elements. Therefore, in the  

process of quantitative storm surge risk assessment, it is necessary to adjust the depth-damage  

functions to make buildings of different heights correspond to different functions.   

Besides, different from the field research and statistics required for other data acquisition, the  

data of buildings’ height is more accessible from multiple sources. For example, public data DSM  

data has been utilized for building height estimation (Huang et al., 2022), some satellite companies  

also offer services to customize DSM data for selected regions. Nonetheless, they respectively  

suffer from a lack of precision and high costs. Building height can also be obtained via remote  

sensing technique, such as Synthetic Aperture Radar (SAR) (Li et al., 2020; Frantz et al., 2021), or  

take advantage of shadow in remote sensing images (Comber et al., 2011; Shao et al., 2011).  

However, in addition to the lack of precision, the absence of data necessary for modelling and the  

crowded character of rural buildings in China make the above methods difficult to be implemented.  

Compared to methods above, acquiring building height through UAV ensures high accuracy while  

being relatively efficient, and the method is quite simple, which also reduces the required costs.  

For example, in urban planning, Zhou et al. (2004) used building footprint data and LiDAR  

point cloud data for urban 3D modeling; Tang et al. (2006) proposed a GIS-based landscape index  

combing with remote sensing to analyze urban sprawl spatial fragmentation. In disaster  

management, Liu et al. respectively evaluated seismic vulnerability in Urumqi and Weinan in  

China (Liu et al., 2019; Liu et al., 2020). In navigation, Rousell and Zipf (2017) proposed a  

prototype navigation service based on multi-index in OSM dataset and building footprints, and  

Chen and Gao (2019) merged GPS pseudorange, LiDAR odometry measurements and building  

footprint to offer a UAV navigation algorithms. However, there is a lack of building footprints  

extraction and application in the realm of storm surge assessment.   

In view of the aforementioned information, regarding storm surge qualitative risk assessment,  

there is a stringent requirement for both the quality and timeliness of land use data, which means  

that the risk assessment cannot be generated in real time, and the qualitative risk assessment also  

can’t evaluate the risk level through the intuitive value of economic loss. In the realm of  

quantitative risk assessment, building a uni-variable or multi-factor empirical model requires  

complete and substantial data, and the published models generally only provide uni-variable  

functions ignoring the building height as a factor, or have regional limitations. Additionally, for  

the coastal regions of China, which are often affected by storm surge disasters, they tend to have  

relatively low levels of economic development. Under the circumstances, the data needed to  



 

 

conduct flood risk assessment is generally in a state of absence.  

In response to the challenges mentioned above, the scientific goal of this paper is to propose a  

quantitative storm surge risk assessment method for underdeveloped areas based on deep learning  

and GIS techniques. First, on the basis of high-resolution DEM and seawall data measurement,  

five defined storm surge inundation scenarios with different typhoon return periods are simulated  

by employing the coupled FVCOM-SWAN model. Subsequently, TransUNet is introduced as a  

deep learning method to extract building footprint, and building’s height data is acquired through  

UAV measurement. Since data on relevant disaster losses in underdeveloped regions are lacking,  

empirical modeling was deemed impractical. Therefore, the adjustment of the JRC’s depth- 

damage curves by the HAZUS is chosen to take the impact building's height into consideration,  

thus to conduct a quantitative assessment with more accuracy. Finally, combining hazard map,  

exposure elements and adjusted depth-damage curves, the quantitative risk zoning maps are  

conducted. The risk zoning maps can assist decision-makers in identifying high-risk sub-zones and  

planning disaster prevention measures. Accordingly, the novelty can be seen in obtaining refined  

exposure elements data through deep learning and UAV, addressing the lack of historical storm  

surge economic loss data and considering the effect of building height on economic loss through  

the adjustment of existing depth-damage curves.  

2. Study area and datasets  

2.1. Study area  

 Being the shipping hub in the South China Sea, Guangdong province, located in southern  

China, has become the largest economic province in China since 1989, with a GDP of 129118.6  

billion yuan in 2022. Due to the seaborne trade, Guangdong has been the largest economic  

province in China since 1989, which reached a GDP of 129118.6 billion yuan in 2022. However,  

just as mentioned above, Guangdong is relatively vulnerable to storm surges, such as Typhoon  

Hato and Typhoon Mangkhut, due to its geographical characteristics.However, just as mentioned  

above, Guangdong is relatively vulnerable to storm surges because of its geographical  

characteristics, such as Typhoon Hato and Typhoon Mangkhut.  

 Huizhou is one of the cities in Guangdong province, and also one of the central cities of Pearl  

River Delta region. It’s located at on the east coast of Guangdong-Hong Kong-Macao Greater Bay  

Area, the GDP reached 540.1 billion yuan in 2022, with the highest growth rate in Guangdong.  

Pinghai Town located at the southernmost of Huizhou, and has a registered population of about  

forty thousand. Its economic source mainly depends on various crops and seafood products. Due  

to its coastal geographical characteristics and the presence of Pinghai Ancient City, the town has  

become a cultural tourist destination and can therefore be defined as a cultural tourist town.  

  In this paper, the chosen study region is the coastal area of Pinghai town, named the Double- 

Moon Bay Zone. It covers ten villages in total, including Foyuan, Dayuan, Yuye, Xinliao, Xin  

village, Shazuiwei, Cajia, Nanshe, Daao, and Harbor community. These years, the region has been  

developed in tourism and real estate project development including construction of hotels, resorts,  

and high-end business districts, which vastly prompt the financial development. It is foreseeable  

that the population and economy of the region will growth rapidly. However, the economic status  

of the region remains relatively low, which presents a challenge due to data scarcity and limited  

accessibilityHowever, the region's general economic status, which remains relatively low, and it  

consequently gives rise to the challenge of data scarcity and limited accessibility. In addition, the  

region is susceptibly affected by the tropical cyclones during the season running from April to  



 

 

November (Wang et al., 2021b). Recent years, more than ten typhoons have affected the study  

area, including Typhoon Lekima, Typhoon Haishen, Typhoon Kanuni etc. The general location  

and information about the study area is shown on Fig. 1.  

  



 

 

  

Fig. 1. The maps of locations in the study: (a) The map of Huizhou; (b) The map of study area in  

Huidong, the base map is obtained from ESRI; (c) The village map of study area, the base map is  

obtained from © GoogleMaps (map data © 2023 Google).  

  

2.2. Data source  

 In order to accomplish the research, the data used is obtained from various sources, here is  

the describe of different data:  

(1) Land Cover Types data: the data is obtained from the Department of Natural Resources of  

Huizhou Bureau. It contains multiple land cover types including forest, cropland, residential land,  

etc. It is used to calculate vulnerability level.  

(2) Remote sensing images: the remote sensing images are obtained from Chang Guang Jilin- 

1 satellite. Chang Guang Satellite technology CO., LTD was founded on December 1st 2014,  

which is the first and the largest commercial satellite corporation in China. Jilin-1 is the first self- 

developed commercial high-resolution satellite. The images from Jilin-1 satellite have a resolution  

of 50 cm, and have five spectral channels: Panchromatic band; Blue band; Red band; Green band;  

Near Infrared band. The images consisting of blue band, red band, green band are utilized to  

combine deep learning method, thus achieve the extraction of buildings.   

(3) Unmanned Aerial Vehicle (UAV) data: the UAV data is generated by oblique photography,  

and is organized by Open Scene Graph Binary format. The UAV data is obtained from Department  

of Natural Resources of Huizhou Bureau, and the data is utilized for buildings’ height calculation.  

(4) Digital elevation model (DEM) data: the DEM data is captured by manual observation in  

2018, with the resolution of 0.3m. The coordinate system and file organization are originally  

CGCS 2000 and txt file, and further transformed to WGS 1984 and raster format to make use of  



 

 

these data in the research. The data contains the elevation information for the study region.  

Besides, the seawall data is also obtained manually. Both data are used in modeling of storm  

surges for simulating the hazard maps.  

(5) Hybrid wind field: ERA5 is the fifth generation of the European Reanalysis dataset  

produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), and it  

provides the comprehensive and high-resolution atmospheric and climate data. Holland typhoon  

wind field model was proposed by Holland in 1980, which introduced Holland B parameter on the  

basis of the Schloemer exponential pressure distribution model (Holland, 1980). In this study, the  

two data are fused to generate hybrid wind field data, which is subsequently utilized for storm  

surge simulations. (5) ERA5 data: ERA5 is the fifth generation of the European Reanalysis dataset  

produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), and it  

provides the comprehensive and high-resolution atmospheric and climate data. In this study, the  

data is used in conjunction with the Holland method to generate fused wind field data, which is  

subsequently utilized for storm surge simulations.  

(6) Historical typhoon data: the historical typhoon data including typhoon track, typhoon  

pressure, and velocity are obtained through China Meteorological Administration Typhoon  

Network Website. The historical data is employed to assess the reliability and validity of the  

model.  

(7) Administrative Boundary data: the data is obtained from National Platform for Common  

Geospatial Information Services, and it contains administrative boundaries at village levelthe data  

is obtained from National geographic information public service platform, and it contains  

administrative boundaries at village level. There are ten villages in the study area.  

  

3. Method  

 The methods in this study aim to assess quantitative direct tangible damage over the study  

area consists of following steps: hazard assessment; exposure assessment; vulnerability  

assessment; risk assessment, and the flowchart of the procedure is illustrated in Fig. 2.  

 First, with respect to hazard assessment, five storm surge scenarios are defined. After  

constructing wind field through Holland model, the inundation area and depth of different typhoon  

return periods are simulated by utilizing the coupled FVCOM-SWAN model. In exposure  

assessment, building footprints and heights are extracted by introducing a deep learning method  

TransUNet and shadow calculation. Then the hazard maps are overlaid to identify the elements at  

risk. Considering the effect of building’s floor in flood monetary loss estimation, the JRC’s depth- 

damage functions are adapted representing the vulnerability of different exposed elements.  

Eventually, the economic loss of different typhoon scenarios can be summarized and the risk  

assessment is conducted through multiplying the temporal probability. Moreover, the quantitative  

zoning maps of four risk levels are generated through zonal statistic.  



 

 

  

Fig. 2. The flowchart of the presented storm surge quantitative risk assessment method. The base  

map is obtained from © GoogleMaps (map data © 2023 Google).  

  

3.1. Strom surge inundation simulation  

Finite Volume Coastal Ocean Model (FVCOM), is a coastal ocean circulation model, which  

was originally developed by Chen et al. (2003), and further improved by the University of  

Massachusetts and the Woods Hole Oceanographic Institution. The following are the governing  

equations of FVCOM, comprising momentum, continuity, temperature, salinity, and density  

equations:  
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 Where x , y  and z  respectively represent the east, north and vertical coordinate axes in the  

Cartesian coordinate system; u , v  and w  are the velocity components in x , y  , z  directions; T  ,  

S  and   are the temperature, salinity and density; P  is the pressure and f  stands for the  

Coriolis parameter; mK  is the vertical eddy viscosity coefficient and hK  is the vertical eddy  

diffusivity coefficient for heat; g  is the gravitational acceleration; uF , vF , TF , and SF  are the  

horizontal diffusion terms.  

 Simulating Waves Nearshore (SWAN) is the third-generation offshore wave model developed  

by Delft University of Technology and it was originally proposed by Booij et al. (1996). The  

governing equation of the model is shown as  
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 Where N  is the wave action density;   is the propagation direction; xC , yC  are respectively  

the x , y  components of propagation speed and C , C  are the  ,   components of propagation  

cospeed;   and S  respectively represent the frequency and the source term for the wave energy.  

 The potential storm surge inundation maps in different typhoon scenarios have been  

conducted by institutions such as the National Oceanic and Atmospheric Administration (NOAA),  

National Hurricane Center, and other departments since the 1990s (Glahn et al., 2009). In the field  

of risk assessment research, it is common to set up different typhoon scenarios using storm surge  

simulation models to obtain various scenarios of typhoon induced inundation (Zhang et al., 2023;  

Rizzi et al., 2017). The hazard maps of under various typhoon intensity scenarios are helpful for  

decision-makers and researchers in analysing multiple aspects of potential hazards in the study  

area.  

 Typhoon Mangkhut, as one of the largest typhoons to affect South China Sea region in recent  

years, has a strong representative. It is characterised by high intensity, wide area of influence, high  

wind speed, etc. In this study, the path of Typhoon Mangkhut is shifted to pass through the  

Huizhou tidal station as the input typhoon path of the coupled model to maximize the impact area  

of the simulation result. In terms of the center pressure, Wang et al. (2021b) presented statistical  

analyses of historical typhoon data in Huizhou, and designed five typhoon scenarios, which are  

respectively the typhoon minimum central pressure of 880, 910, 920, 930 and 940 hPa. Therefore,  

these five parameters are introduced as the setup for five typhoon scenarios.  

FVCOM and SWAN both use the unstructured triangular grid to subdivide the South China  

Sea, and the latitude and longitude range of the region is 13°N - 29°N, 109°E-122°E. The SWAN  

parameters are set as follows: wind input growth term and whitecap dissipation term are the  

Komen scheme; Bottom friction dissipation is parameterized using the Madsen vortex viscosity  

model; The nonlinear interactions are implemented using three-wave and four-wave nonlinear  

interaction schemes. The input wind field is the fusing wind field derived from ERA5 and the  

Holland method. The open boundary forced tidal elevation of FVCOM is conducted by calculating  

the harmonic constants for the eleven major astronomical tidal constituents, namely M2, N2, S2,  

K2, K1, O1, P1, Q1, MS4, M4, and M6. The forcing field is the fusing wind field and the wave  

data generated by SWAN. The external model time step for the model is set to 0.75 second, while  

the internal model time step is set to 7 seconds.  



 

 

In the present studysummary, FVCOM-SWAN coupling method is utilized for simulating the  

inundation caused by storm surge. Specifically, following the modification of typhoon Mangkhut's  

central pressure, velocity, and track data, the data is utilized as input for the Holland typhoon wind  

field model, subsequently yielding the wind field outcome. The hybrid wind field data extracted  

generated is fed into the SWAN model to generate wave data. Then, both the wind data and wave  

data are input into the FVCOM model to calculate the extent of inundation.  

   

3.2. Buildings extraction  

The deep learning model used in the research is TransUNet (Chen et al., 2021), which was  

originally proposed for medical images segmentation. TransUNet incorporates transformer in  

encoder within the architecture of U-shape network, consequently makes use of the advantage of  

global information extraction while fusing the superficial and deep features. On the mission of  

building extraction, the target is to segment the building’s area precisely. The TransUNet model  

can effectively identify the boundary between buildings and background, which enables the model  

to be competent for extracting the buildings in different size and shape.  

The following is relevant introduction of the structure of the model.  

3.2.1. Transformer in TransUNet  

Transformer was first proposed by Sutskever et al. (2014), which was originally utilized for  

machine translation. However, as more variants of transform were developed, people found  

transform also perform well in multiple tasks, such as natural language processing (NLP),  

computer vision (CV) and automatic speech recognition (ASR).  

The transformer encoder is composed of L layers of Multi-head Self-Attention (MSA), Layer  

normalization (LN) and Multi-Layer Perceptron (MLP), the structure is shown in the Fig. 3(a), and  

the equations of Query-Key-Value (QKV) self-attention and MSA are shown below:  

 T
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Where Q  K  V are respectively the Query, Key, Value vector. kD  is the scaled dot- - 

product attention. O
W  Q

iW  K
iW  V

iW are respectively the corresponding linear mapping, which  

convert Q  K  V  and the output to the specified dimension.  

The MSA has a positive effect on helping the model identify the target objects and  

background, thus the neutral network can learn more information form the target. LN is deemed to  

stabilize the deep network training, which can prevent unstable gradient, model degradation, etc.  

The module receives the 2d flatted patches from the image’s patches. Due to it is different from  

CNN or RNN, apart from map the vectorized patches to D-dimensional embedding space,  

transformer needs to apply additional position encoding for retaining the patch’s positional  

information.  

3.2.2. Structure of TransUNet  

 The overall structure of TransUNet is reference to U-Net, which is a U-shaped Encoder- 

Decoder structure, and the structure diagram is shown in the Fig. 3(b).   

 Encoder: the origin image is put into the CNN part for feature extraction, after the processing  

of position encoding and flatten, the patches are further put into the transformer module. The  



 

 

transformer module consists of 12 transformer layers. The CNN part is implemented through  

using resnet50, which include 3 blocks in total, and each block output the hidden feature for skip  

connection.  

 Decoder: reshape the output sequence from encoder and then cascade up-sampling after  

transforming the number of channels. During the process, the skip connection is introduced by  

using the feature map hereinbefore. In the end, the segmentation result is generated.  

 In conclusion, TransUNet is the combination of U-Net and transformer, which is designed to  

make use of the advantage from both structures. The Global Attention from transformer can  

contribute to learn the global information, while the skip connection from U-shape network can  

contribute to get more information from shallow feature map output from CNN, and also CNN  

performs better in extracting the local information. In this research, buildings images are similar to  

medical images, with the features like high complexity level, large range of gray values. The skip  

connection structure can simultaneously acquisition of low-level semantic features and high-level  

semantic features, and transformer can conduce identify the buildings from background, thus  

TransUNet achieves a high accuracy in buildings segmentation.  

  

              (a)                                                                     (b)  

Fig. 3. The overview of TransUNet framework (adapted from (Chen et al., 2021)): (a) Schematic  

diagram of Transformer layer; (b) Structure diagram of TransUNet  

  

3.3. Building’s height acquisition  

 UAV tilt photography modeling technology can combine control points encryption from  

massive image data with a small number of ground control points to obtain accurate external  

orientation elements (Kang et al., 2020). The conducted 3D model reflects the truly condition of  

the ground, and the data is selected to be in the WGS 1984 coordinate system. The ground  

resolution is one of the most intuitive and important parameters in tilt photography, and it’s also a  

key factor determining the quality of the 3D modeling. In the process of performing aerial  

triangulation for tilt-image automation, it is necessary to ensure that the resolution of the different  

images is as consistent as possible while taking into account the resolution of the side-view image,  

thus to ensure accuracy and image overlap. Hence, the combinatory analysis of image resolution at  



 

 

tilted viewing angle is required. The tilted image center point, near point and far point resolutions  

are expressed as follows:  
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 Where   is sensor cell size, h  is flight height, f  refers to the camera focal length, y
 
and  

y  are respectively dip angle and half the angle of view. Normally, the ground resolution at the  

center of the tilted and vertical images should be comparable, and the minimum resolution of tilted  

images should less than three times the resolution of a vertical image.  

There are multiple formats available for storing 3D models, including OBJ, STL, FBX,  

OSGB, etc. In this study, the generated 3D model is saved as OSGB format. OSGB format is  

originally proposed by Ordnance Survey for storing the geographic spatial data in the British. It  

combines binary encoding and compression algorithms to improve the data storage and  

transmission efficiency. Normally, the OSGB data contains information of geographic coordinates,  

elevations, texture mapping, and geometric shapes, which can be used to GIS application, virtual  

reality (VR), among others.  

 Digital surface model (DSM) is a digital terrain model that contains more elevation  

information about trees, buildings, and bridges. Compare to DEM, DSM can reflect the truly  

surface condition of earth, thus DSM has a wide range of application in city management or forest  

stewardship. In this research, the UAV data can be transformed to DSM data by using SuperMap  

software, and the DSM result is shown in Fig. 4(b). After generating the DSM, the elevations of  

the roof of the buildings and the corresponding elevations of the ground around the buildings are  

extracted by manual selection, then the height of buildings can be calculated by using equation  

(3.15).  

 Roof GroundDSM DSM H− =  (3.15) 

Where RoofDSM  is the DSM value of the building’s roof, GroundDSM  represents the  

corresponding DSM value of ground, and H  is the result of building’s height.   

                                       (a)                                                                             (b)  

Fig. 4. Building’s height acquisition: (a) The schematic diagram of UAV tilt photography data; (b)  

The generated DSM results for Building height data extraction.  

  



 

 

3.4. Exposure and vulnerability assessment  

 The process of storm surge risk assessment involves two key components: exposure and  

vulnerability. The exposure represents the elements exposed to hazardous spaces, while the  

vulnerability refers to the level of the exposure elements’ susceptibility to damage. When doing  

exposure assessment, the disaster-affected elements can be conducted by overlaying the building  

footprint data and land cover data with the hazard layer, which is the inundation data in this  

research. The process can be accomplished using overlay analysis in ArcGIS software.   

3.4.1. Adaptation of flood vulnerability functions.  

 Constructing an empirical stage-damage curve is a commonly used method for conducting  

vulnerability assessments. However, as is mentioned above, China lacks of the data about flood  

loss or insurance compensation in flood disasters, as a result, it’s not practicable to develop  

exclusive functions for the study region, so the depth-damage functions developed by Huizinga,  

Joint Research Center (JRC) (Huizinga et al., 2017) are introduced. The depth-damage functions  

manifest the loss ratio of the exposure elements in different inundation depth from 0 to 6 m, and  

the ratio range from 0 to 1, which represents no damage to fully damaged. Besides, JRC also  

provides the maximum economic losses per square meter for six different exposure element types  

including residential, industrial, infrastructure, road, agricultural land, and transport. In this study,  

the original functions and maximum loss data for China region are used, and the economic loss  

can be calculated by multiplying the loss ratio, the maximum loss, and the disaster-affected area.  

 The building’s height is an important factor in flood loss estimation, normally the damage  

ratio decreases as the number of floors increases (Taramelli et al., 2022). However, the JRC’s  

vulnerability functions do not provide the specific function of each height category. In this case,  

the depth-damage functions in HAZUS are introduced. HAZUS is first released for earthquakes in  

1997 by Federal Emergency Management Agency (FEMA), and that's when the HAZUS Flood  

Model started to be developed (Scawthorn et al., 2006). In 2004, a multi-hazard version called  

HAZUS-MH was a standardized GIS-based model that included the earthquake, flood, and  

hurricane models (Nastev and Todorov, 2013). The HAZUS-MH flood model is designed  

primarily for local and regional hazard planners and emergency managers for developing  

emergency management plans and mitigation strategies (Tate et al., 2015). However, the depth- 

damage functions in HAZUS-MH are restricted to regions within America, hence the HAZUS’s  

functions are introduced to adapt JRC’s functions.  

 The approach to modifying functions is refered to the method proposed by Dabbeek et al.  

(2020). In the process, the HAZUS loss ratios of each height category (one-story, two-story, three  

and more-story) are averaged, which is shown in equation (3.16). Then the contribution of each  

height category relative to the average loss is calculated as equation (3.17) shows. In the end,  

multiplying the value obtained in the previous step by JRC’s vulnerability functions yields the  

adapted functions for each height category.  
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Where i,hd  represents to the loss ratio at the inundation depth i  for each height category h   

iD  is the average loss ratio of all heights.  

  

3.4.2. Quantitative risk assessment  

 The quantitative financial loss estimation is accomplished by overlaying the following data:  

the inundation simulation result generated by FVCOM and SWAN modeling, the spatial  

distribution of three types of exposure elements, the depth-damage functions of industrial and  

commercial elements, and the adapted depth-damage functions for residential elements in three  

height categories. The process of loss estimation can be shown in the following equation:  
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Where C   stands for the economic loss estimation result. n  represents the total number of  

exposure elements. ( )x i  is the type of the i-th element and ( )x iD  is the maximum loss of the i-th  

element. id  is the depth of submergence of the i-th element and ( )if d  is the loss ratio of the i-th  

element. iA  refers to the area of the i-th element.  

Comparing to the 984 euros per m2 monetary loss of residential buildings in 2010, the  

monetary loss of infrastructure and agriculture are respectively 12 euros per m2 and 0.02 euro per  

m2 according to JRC, only account for 1% or less. Therefore, the monetary loss estimate of  

infrastructure and agriculture is excluded in the study.  

 In this research, five storm surge scenarios are settled, ten administrative sub-zones are given  

four different risk levels for each defined typhoon scenario.  

  

4. Results and discussions  

4.1. Validation  

 The performance of coupled FVCOM-SWAN model is evaluated. Four typical typhoons  

(Vicente, Hato, Mangkhut, Khanun) are selected to validate the coupled model for the study region.  

The measured data of each typhoon are captured by Department of Natural Resources of Huizhou  

Bureau. Fig. 5 shows the maximum predicted water level and highest measured water level of the  

chosen typhoons. Relative error and absolute error are introduced to evaluate the model and Table  

1 displays the statistical results from Huizhou tidal station. It is seen that the predicted results are  

in good agreement with the measurements. The statistic result shows that the relative errors of the  

four typhoons range from 2.1% to 19.8%, and the absolute error varies from 4 cm to 54 cm.  

Therefore, the coupled FVCOM-SWAN model demonstrates a reliable competence in  

accomplishing the storm surge simulation task.  



 

 

  

Fig. 5. The predicted water level and highest measured water level recorded by Huizhou tidal  

station during different typhoon event  

  

Table 1. The Relative error and Absolute error between maximum predicted water levels and highest  

measured water levels from Huizhou tidal station during different typhoon events  

Typhoon name Measured data (cm) Relative error (%) Absolute error (cm) 

Vicente (1208) 189 10.3 19 

Hato (1713) 274 19.8 54 

Mangkhut (1822) 329 6.5 22 

Khanun (1720) 201 2.1 4 

  

4.1. Hazard assessment  

 In the present research, five storm surge inundation scenarios are defined, which represent  

five different typhoon return periods: 10-year, 20-year, 50-year, 100-year, 1000-year respectively  

corresponding to minimum central pressure 940hPa, 930hPa, 920hPa, 910hPa, 880hPa, and the  

probability of occurrence are 10%, 5%, 2%, 1%, 0.1%. The simulation result is displayed through  

ArcGIS 10.8 software, and the inundation area and depth simulation results for each scenario is  

shown in Fig. 6. It is seen that the inundation area is spread over the coastal area in southwest of  

study area. In particular, for the 1000-year return period scenario, the inundation area exceeds 13  

km2 in the study area. Moreover, the presence of Double-Moon Bay leads to the extension of the  

inundation along the bay, contributing to severe disasters inland.  



 

 

 From the point of view of different scenarios, the area of inundation in direct proportion to  

the typhoon’s return period, and the proportion of inundation area increases from 14% to 31% of  

study area. When the return period is less than 50 years, most of the flooded area is considered to  

be in a high-level hazard zone, accounting for 75% for a 10-year return period and 67% for a 20- 

year return period, and no zone in very high-level hazard. Basically, the inundation area covers  

land such as grassland, saline land, and some buildings near the estuary as the area is more  

susceptible to flooding because of the lower elevation and drainage from the estuary. As the return  

period goes up to 100 years, 34% and 36% of the flooded area are defined at a high-level hazard  

and very high-level hazard. When it’s 1000-year, the situation worsens with approximately half of  

the inundation area being considered in very high-level hazard. Typically, the flood extends from  

the margin of terrene, however, the southernmost region of the investigated area is characterized  

by a knoll covered by forest vegetation, which serves the dual purpose of water absorption and  

flood mitigation. In addition, the construction of embankments on both sides of Double-Moon Bay  

effectively withstands flooding. Nevertheless, because of the presence of the estuary, inadequate  

water absorption ability of coastal saline soil and the hydrological system, the inundation flows in  

through the estuary and spreads inland.  

  

  

Fig. 6. The storm surge inundation simulation results of five different typhoon scenarios: return period  

(a) 1000-year, (b): 100-year, (c): 50-year, (d): 20-year, (e): 10-year. The base map is obtained from ©  

GoogleMaps (map data © 2023 Google)The storm surge inundation simulation results of different  

typhoon scenarios. The base map is obtained from © GoogleMaps (map data © 2023 Google).  

  

4.2. Buildings’ characters extraction  

 Buildings are places where human populations gather and distribute, and contain amounts of  



 

 

property, which have great significance in quantitative risk assessment.  

4.2.1 TransUNet model training  

 The dataset construction area is chosen at southwest waterfront region of Renshan Town. The  

specific location is shown in Fig. 7. The chosen area is a typical area of the Huizhou coastal area.  

Apart from the seaside bungalows, the area contains some high-rise buildings that are identified as  

commercial hotels or resorts, while dense residential area is also widely distributed throughout the  

inland region. In conclusion, the chosen area contains different kinds of buildings with strong  

representativeness. Since most of the buildings in China coastal towns have the similar characters,  

the model trained on the representative region has the ability to identify buildings in other regions  

rapidly.  

The labels of the buildings in the area are generated by manually annotation, and the image is  

cropped into small patches with a size of 256*256.The labels of the buildings in the area are  

generated by manually annotation, and the image is cropped to pixels with a size of 256*256.  

Besides, some of the images without buildings are filtered for preventing the effect of imbalance  

between the building samples and background samples. In the end, a total of 1200 labeled building  

dataset is constructed, and the dataset size is deemed sufficient when compared to previous study  

(Dixit et al., 2021; Ji et al., 2018). The dataset is then divided into a training set and a test set, with  

the ratio of 8:2. Data enhancement techniques, such as random hue saturation value, random shift  

scale rotationrotate, flip, and rotationrotate, are implemented during model training to improve the  

deep learning model's generalization performance and prevent overfitting.   

 The training’s initial learning rate is set to 1e-5, and the learning rate adjustment strategy for  

improved training. The batch size is specified as 4, and the number of training epoch is 100. The  

model is trained on a NVIDIA RTX3060 GPUs.  

  

Fig. 7. The chosen area to make the training samples. The base map is obtained from ©  

GoogleMaps (map data © 2023 Google).  

  

4.2.2. Extraction result  

 Several effective indicators are introduced, including Recall, Precision, F1-score, and mean  

Intersection-over-Union (mIoU), to evaluate the performance of the deep learning model. Recall is  

the probability of being predicted as positive among actual positive samples. Precision, on the  

other hand, is the probability of being actually positive among samples predicted as positive. F1- 

score serves as an indicator that achieves a balance point between precision and recall, essentially  



 

 

being the harmonic average of precision and recall. mIoU is the mean ratio of the intersection to  

the union between predicted and true values for each category. True positive (TP) indicates the  

true samples that are predicted correctly by the model. False positive (FP) indicates the positive  

samples that the model incorrectly predicted. True negative (TN) and false negative (FN) refer to  

the number of samples that are correctly and incorrectly predicted as negative by the model. The  

equations of Recall, Precision, F1-score, and mIoU are as follows:  
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 The quantitative evaluation result is shown in Table 2, and the visualization results are  

illustrated in Fig. 8. As Table 2 shows, the recall score reaches 87% indicating that most of the true  

building pixels are predicted correctly, and Precision indicates that 82% of all building pixels are  

correctly detected. Moreover, both the mIoU score and F1-score exceed 80% manifest that the  

model can balance well between precision and recall. These results reflect the strong performance  

of TransUNet in the building extraction task. After post-processing the result, such as boundary  

simplification, the building vectorization results can be used for further research in risk assessment.  

The overall result is shown in Fig. 9 (b,c).  

Table 2. The statistical accuracy assessment of building footprint extraction  

Evaluation metric  

Recall (%)  87.03 

Precision (%)  82.04 

F1-score (%) 84.46 

mIoU (%) 83.38 



 

 

  

Fig. 8. Building footprint extraction result in study area. (a) Remote sensing images obtained from  

Jilin-1 satellite (© Chang Guang Satellite technology CO., LTD); (b) Extraction result; (c) Ground  

truth. The building is marked in white, and the background is marked in black  

  

4.2.3. Building height calculation  

 Through combing two methods mentioned above, the height information is acquired in units  

of meters. The number of floors is derived by dividing the acquired height information by the  

specified standard height of 3 meters, according to the China residential design standards. The  

general condition of building floor is shown in Table 3. Just as mentioned above, the buildings in  

study area are mainly for residential and commercial use. Since the study area is undeveloped, the  

high buildings and large mansions is relatively less common, and most of them are built for  

seaside resort. Instead, buildings with 5 floors or less are the mainstream in study area as respected,  

which the proportion can reach 76.5%. The building footprint extraction result and building’s  

height information extraction result can be found in Fig. 9 (d,e).  

Table 3. Statistical results of building height in the study area  

Building floor Area (m2) Proportion (%) 

1-5  17537238.61 76.5 

6-10 4996897.08 21.8 

11-20 342207.82 1.5 

20+ 54083.93 0.2 



 

 

  

Fig. 9. The building characters extraction result: (a) The schematic of the display area; (b, c)  

Building footprint result in area 1 and 2; (d, e) Building height result in area 1 and 2. The base  

map is obtained from © GoogleMaps (map data © 2023 Google).  

  

4.3. qualitative risk assessment  

Risk matrix is a risk assessment approach firstly developed by Electronic System Center,  

which was originally to assess the risk in the life cycle of purchase project (Garvey and  

Lansdowne, 1998). An additional qualitative risk assessment is conducted using the risk matrix  

method, incorporating improved land use data to highlight the superiority of building extraction in  

flood risk assessment. The concrete representation of the risk matrix is shown in table 4.  

Table 4. The concrete representation of the risk matrix  

 Vulnerability 

  Low Moderate High Very High 

Hazard 

Low Low Low Moderate Moderate 

Moderate Low Moderate High High 

High Moderate High High Very High 

Very High Moderate High Very High Very High 

  

As is shown in Fig. 10(a), the concentrations of organic town of Dayuan village and  

Shazuiwei makes it in very high vulnerability level. Under the circumstance of defined 880hPa  

storm surge scenario, the inundation area spread inland which makes the majority area of Dayuan  

is regarded as moderate risk, and a fraction of the only very high risk area is distributed in  

Shazuiwei and north of Dayuan village. In the area of Yuye village, part of the south coastal area is  



 

 

considered in moderate or high risk level. That is mainly because the majority area of Yuye is  

defined as resort district except for a few areas of tidal flats, which is in high vulnerability.  

However, after referring to the result of hazard assessment, buildings in the area are not actually  

inundated, meaning the area should not be at risk level.  

Through comparing the Fig. 10(a) and Fig. 10(b), the enhanced land use data in the present  

research demonstrates a higher ability to recognize vulnerability elements, which the type is  

buildings in the present research. The two red boxes in the figure highlight the noticeable disparity  

between the original and current results. The present risk assessment provides more refined risk  

assessment result compared to the original result, as the previously identified large hazardous  

areas are replaced with more detailed and smaller zones. This refinement is conducive for  

government or decision-makers to conduct disaster prevention measures, propose quick guidance  

for personnel evacuation and organize rescue operations in the event of a disaster.  

  

Fig. 10. The risk assessment maps before (a) and after (b) improvement for storm surge scenarios  

of 1000-year return period. The base map is obtained from © GoogleMaps (map data © 2023  

Google).  

  

4.4. JRC’s depth-damage function adaption  

 Fig. 11 illustrates the damage ratio given flood-depth after adjustment, respectively for one-,  

two- and more than three-story residential buildings. After adjustment, the damage of one-story  

residential building function is significantly enhanced, and the loss ratio reach 1 early, which is  

explicable as 2m-depth flood almost submerges the entire building, resulting in a potential loss of  

the maximum property value. On the contrary, the loss ratio for multi-story residential building is  

decreased relative to the original function, it reaches the same level as in the original function  

when the water depth reaches 5 meters. Furthermore, the function of a two-story residential  

building is quite similar to that of a building with three or more stories. This can be attributed to  



 

 

the flood's effect on buildings with six meters or less depth being nearly the same, on account of  

the flood can’t overwhelm the entire buildings.  

 The Joint Research Centre provides information on the maximum damages per square for  

each type of building. This refers to the maximum monetary damage incurred when buildings are  

inundated, which is the monetary damage value when the damage ratio in the depth-damage curve  

reaches 100%. Although JRC provides the maximum monetary damages are provided, they are  

computed for Beijing in 2010. However, there is a substantial difference in the level of  

development between Beijing and the study area. For better matching the financial level in study  

area, adjustment can be achieved based on scaling the maximum monetary damage value with the  

GDP ratio according to Huizinga (2007). Based on the 2010 GDP of Beijing of 14113558 million  

yuan and the GDP of Huizhou of 172995 million yuan, the maximum monetary damage is  

adjusted by equal proportions. Besides, the price level also needs to be adjusted to the 2022 price  

level. According to the World Bank, the Chinese consumer price index (CPI) has changed from  

100 in 2010 to 131.9 in 2022, the tendency of variation and the adjusted maximum monetary  

damages are shown in Fig. 12.  

  

                                        (a)                                                                           (b)  

Fig. 11. (a) The depth-damage functions proposed by JRC; (b) The adapted depth-damage  

functions for residential buildings in different floors  

  

                                          (a)                                                                            (b)  

Fig. 12. (a) The variation trend of Consumer price index released by World Bank; (b) The  

maximum monetary damage per m2 for each type of exposed elements in China (in 2010 and in  



 

 

2022).   

  

4.5. Quantitative risk assessment  

 Loss assessments of five storm surge scenarios are computed for return periods of 10, 20, 50,  

100, and 1000 years, through employing the method in section 3. The estimate monetary damage  

is summarized in Table 45.  

 The statistical data in Table 4 5 demonstrate an increase in the affected area and total  

economic loss with an increasing return period. Comparing to the total affected area of 131533.12  

m2 and the total economic losses of 9330517.49 euros with the 10-year return period, the  

corresponding estimate result with 1000-year return period is 917437.99 m2 and 68364923.25  

euros, which is both approximately seven times higher. This indicates a proportional  

relationship between the extent of regional impairment and the return period of a typhoon.  

Although the impacted area for the 20-year and 50-year return periods exhibits relative  

proximity as the different is 24118.26 m2, there is still a significant disparity in economic  

losses. According to the inundation result above, that’s because the inundation area of two  

return period is nearly the same except for the slight difference in the northeast of the study  

region, but the flood depth of 50-year intensified, which causes more monetary damage. In  

terms of inundated building types, in case that study area is characterized as a tourism and  

fish breeding area, the proportion of economic losses in industrial is relatively low. The losses  

of residential buildings and commercial buildings is comparatively close, up until the severity  

of storm surge reach 50-year return period. At this point, the losses experienced by residential  

buildings exceed those incurred by commercial buildings by more than double. The fact can  

be explained by the commercial buildings area mainly constructed by the seaside for better  

turnover therefore both types of waterfront buildings is impacted. However, as the severity of  

the typhoon worsens, more residential settlements inland are flooded, resulting in a swift  

increase in economic losses for residential buildings.   

Table 45. The statistic result of the quantitative risk assessment for five defined typhoon scenarios.  

Scenario Elements Area (m2) 
Economic 

losses (€) 

Total losses 

(€) 
Probability Risk (€) 

10-year (940hPa) 

Residential 94847.11 4910882.27 

9330517.49 0.1 933051.75 Commercial 36163.62 4281840.09 

Industrial 522.39 137795.12 

20-year (930hPa) 

Residential 216010.31 7872861.19 

13665211.91 0.05 683260.60 Commercial 55423.59 5602828.01 

Industrial 522.39 189522.71 

50-year (920hPa) 

Residential 237572.35 16509796.15 

24607011.73 0.02 492140.23 Commercial 57979.81 7775321.70 

Industrial 522.39 321893.88 

100-year (910hPa) 

Residential 291759.48 19857901.69 

28446797.47 0.01 284467.97 Commercial 75123.51 8194736.70 

Industrial 833.39 394159.08 

1000-year (880hPa) 

Residential 762570.09 49295364.67 

68364923.25 0.001 68364.92 Commercial 149457.01 17907591.59 

Industrial 5410.89 1161967.00 

  



 

 

 Based on the economic losses estimation result for five storm surge scenarios, through using  

zonal statistics method on the data of administrative sub-zones in the study area, the quantitative  

risk assessment is conducted. The economic losses and spatial distribution of storm surge risk for  

ten sub-zones in five different scenarios are shown in Fig. 13. The zonation statistics result map of  

each sub-zone is defined at four different risk levels (very high, high, moderate, low). The  

classification of risk levels is obtained by categorizing all zonal statistic result based on quantiles.  

 As is shown in Fig. 13, Dayuan village is considered in very high risk for every defined  

typhoon scenario. Through analyzing the geographical characteristics of the study area, it can be  

found that although Dayuan is a relatively inland village, it’s surrounded by the watercourse of the  

estuary of Double-Moon Bay. Due to the existence of flood control dam, both side of the bay offer  

a measure of protective effectiveness, which result in the water level rises in inland watercourse,  

and further causes flooding of residential buildings in Dayuan village, leading to massive financial  

losses. In contrast, Foyuan village is also a village with a relatively large area, the risk is at  

moderate level for 10, 20-year return period, and the level escalates to high for 50, 100-year return  

period and reaches very high in 1000-year. Considering the presence of the knoll, the spread of  

inundation is hindered. However, as typhoon becomes more severe, the inundation hit the western  

buildings in the region, which led to the phenomenon of progressively escalating risk level. In  

terms of those villages with relatively smaller sizes, due to the protection of dam, Xinliao village,  

Xin village, Caijia village all are defined in relatively low risk level, although the regions with a  

high density of buildings. Shazuiwei and Yuye village in different return period are considered in  

different risk level, the cause of this phenomenon might be that apart from the higher density of  

buildings, the buildings in Shazuiwei are distributed in coastal area, combing the impact of  

inundation of both sides as it’s located at the outermost part of the gulf. Consequently, the risk  

level in Shazuiwei remains consistently high as opposed to gradually increasing like in Yuye  

village. Although they are located at the outermost part of the study area, the quantitative risk level  

of Daao village and Harbor community is gradually increasing for different return period, but it’s  

not as serious as the other village, which can be explained that these locations exhibit elevated  

topography.  

 Comparing the qualitative risk assessment result and the quantitative risk assessment result,  

the first difference to be noticed is that the two results focus on different scales. For the qualitative  

result, the emphasis is on delineating the regions in different risk levels, which leads to the  

prevention and control of priority areas. Whereas for quantitative result, the scale of the result is  

limited to the village level zoning, as the estimated monetary loss amounts are summarized at the  

village level. Furthermore, while the qualitative results suggest that certain regions may not be at a  

moderate or high risk level, the quantitative result reveals that the estimated monetary loss for  

those villages are not insignificant. In conclude, the qualitative risk assessment provides new  

results from a completely different perspective than qualitative risk assessment. The results can  

provide intuitive information about the potential monetary loss to the secondary government  

departments, thus to help provide constructive suggestions in terms of risk prevention and control.  

 The quantitative risk assessment and zonal risk maps can assist the government or decision-  

makers in recognizing the specific economic losses of each sub-zones, so it’s helpful to identify  

the areas that are more susceptible to experiencing significant losses, which allows them to  

develop disaster prevention measures, for example constructing disaster prevention facilities,  

budget allocation for disaster prevention and planning evacuation strategies. Besides, establishing  



 

 

the quantitative risk for different typhoon periods can enhance the decision makers understanding  

of the potential vulnerability in each sub-zone, and facilitates the implementation of appropriate  

preventive and disaster relief measures facing different typhoon intensity.  

  

Fig. 13. The zonation maps of the quantitative risk assessment for five defined typhoon scenarios:  

return period (a) 1000-year, (b): 100-year, (c): 50-year, (d): 20-year, (e): 10-year. The base map is  

obtained from © GoogleMaps (map data © 2023 Google).  

5. Conclusions  

 These years, the academic research on storm surge risk assessment has been greatly  

developed due to climate change and financial growth in coastal area. However, the quantitative  

risk assessment is inexecutable in the undeveloped area since on account of the lacks of building  

characters and damage assessment data. Target at the question above, the purpose of this paper is  

to propose a method for conducting refined storm surge risk assessment quantitatively based on  

deep learning and GIS techniques. Firstly, the reliable coupled FVCOM-SWAN model is utilized  

to simulate five defined storm surge scenarios. Facing the challenge of the absence of data, a deep  

learning method TransUNet is applied to extract the building footprint data for refined extraction  

of exposed elements, and buildings’ height data is acquired through UAV. To compensate for that  

the available depth-damage functions do not taking building’s height into account, the functions  

are adjusted for buildings with different floor and consequently to perform more refined monetary  

losses calculations in five defined scenarios. Eventually, the quantitative risk assessment and  

zonation maps of the study area are generated base on GIS techniques  

 The quantitative risk assessment result of the study region shows that on account of the  

existence of estuary and the gathering of buildings, Dayuan village presents the high-risk level in  

all defined typhoon scenario, and the economic loss risk is large. The flood control dam provides  

protection of Xinliao village, Xin village, Caijia village, which prevents the regions suffering large  



 

 

economic losses as the typhoon return period is 10-year and 20-year. However, the storm surges,  

under the typhoon scenarios that the return period is greater than 50-year, can overwhelm the  

existed dikes, and both the commercial buildings and residential buildings suffer heavy economic  

losses. Therefore, it’s necessary to make land use planning and adjustment especially in Dayuan  

and Shazuiwei as they are under very high-risk level to prevent the impact and losses caused by  

storm surges. Besides, the regions that is nearest to the sea doesn’t mean they suffer greater  

potential economic loss, as the risk level of Daao village and Harbor community are considered at  

a relatively low level because of the topographical characteristics and the distribution of buildings.  

 In the context of global warming and increased climate extremes, the occurrence of large- 

scale typhoons has become more frequent, such as Typhoon Rammasun and Typhoon Meranti  

(corresponding to 100-year return period). Therefore, the modified typhoon parameters are utilized  

for simulation five typhoon scenarios, in order to assuming the different storm surge disaster  

situation in the future. On the basis of the above, The the study provides a framework for refined  

quantitative storm surge risk assessment targeting the problem of acquiring exposure elements and  

the establishing multi-variable empirical depth-damage functions, as a consequence of missing  

data in underdeveloped regions. The generated results can help the decision-makers to identify the  

areas that are susceptible to experiencing significant losses efficiently, and help the respective  

authorities with disaster prevention, future land use planning and material deployment.  

Furthermore, it is important to remark that, the methodology of this paper has general applicability,  

since the applied models are publicly available. Thus, there is also potential for further application.  

For example, the framework can be applied in other coastal areas in China, as they have similar  

characters, which also means there is a possibility to utilize in larger scales. Furthermore, the  

framework can also be performed in other types of disasters, such as flood, earthquake, and  

mudslide. Consequently, the proposed methodology demonstrates an extensive relevance to the  

scientific community.   

There is still room for improvement in this study. The current study relied on manual labeling  

in terms of distinguishing between functional areas to conduct risk assessment. In the future study,  

efforts will be made to distinguish the types of exposure elements in a more objective way, based  

on diverse data sources such as social media Point Of Interest (POI). Additionally, exploring the  

activity patterns of the population through multiple sources of data including taxi trajectories and  

smart cards can contribute to the consideration of population risks in different storm surge  

scenarios, thereby prompting more comprehensive risk assessments.  
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