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Abstract. Heavy rainfall events and associated natural hazards pose a major threat to rail transport and infrastructure. In this 

study, the correlation between heavy rainfall events and three associated natural hazards were investigated using GIS analyses 

and random-effects logistic models. The spatio-temporal linkage of a damage database of DB Netz AG and the CatRaRE-

catalogue of the German Weather Service revealed that almost every part of the German rail network was affected by at least 

one heavy rainfall event between 2011–2021. Twenty-three percent of the flood events, 14 % of the gravitational mass 10 

movements and 2 % of the tree fall events occurred after a heavy rainfall event. The random effects logistic regression models 

showed that a heavy rainfall event significantly increases the odds of occurrence of a flood (tree fall) by a factor of 22.7 (3.62), 

respectively. We find no evidence of an effect for gravitational mass movements. The heavy rainfall index and the 21-days 

antecedent precipitation index were determined as characteristics of the heavy rainfall events with the strongest impact on all 

three natural hazards. The results underline the importance of gaining more precise knowledge about the impact of climate 15 

triggers on natural hazard-related disturbances in order to make rail transport more resilient. 

 

1 Introduction  

Heavy rainfall events are one of the most important triggers for flash floods, which can have catastrophic effects on the affected 

regions. A prominent recent example is the flood disaster in Western Europe in July 2021 with over 200 fatalities (Kreienkamp 20 

et al., 2021). During the period 12 to 15 July 2021 extreme rainfall occurred in Germany and the Benelux countries (Junghänel 

et al., 2021; Tradowsky et al., 2023). The resulting flash floods caused considerable damage to infrastructure such as houses 

(Korswagen et al., 2022), communication facilities, roads and railway lines (Szymczak et al., 2022), making the event the 

deadliest European flooding event in nearly three decades and the costliest on record (Aon, 2021). Damage to critical 

infrastructures such as power supply and transportation is of particular concern, as efficient infrastructure is important to ensure 25 

that affected regions can be reached and supplied with essential goods even in the event of a disaster.  

 

Fortunately, not every heavy rainfall event has such catastrophic effects as the example of July 2021. Nevertheless, at the local 

level, secondary processes triggered by heavy rainfall, such as landslides, flooding and scouring, can cause significant 
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economic damage (e.g. Kjekstad and Highland, 2009; Lehmkuhl and Stauch, 2022), especially when transport infrastructure 30 

is affected (Klose et al., 2014; Winter et al., 2016). If such events occur along transport networks and disrupt traffic and 

transport, they are documented by the infrastructure operators. However, these damage databases rarely establish a cause-

effect relationship, i.e. there is usually no precise information on which climatic or other parameter triggered the damaging 

event. This is because reactive natural hazard management, i.e. damage repair and rapid restoration of operations, is a higher 

priority for operators than a detailed documentation of the triggering event. Nevertheless, it should not be neglected that a 35 

proactive approach, which includes a detailed analysis of the cause-effect relationship between climatic triggers and resulting 

natural events, contributes significantly to increasing the long-term resilience of transport infrastructure to natural hazards.  

 

Within the framework of proactive natural hazard management, it is possible to identify regions that are particularly at risk, 

e.g. by developing hazard indication maps, or to determine climatic thresholds for the triggering of certain processes. 40 

Particularly in view of the current climate change situation, the management of climatically induced natural hazards is 

becoming increasingly important in the transportation sector (Koks et al., 2019). Which natural hazards are particularly 

relevant depends on the region and the mode of transport. In addition to the climatic conditions of the respective region, special 

features specific to the mode of transport must also be considered. For example, line closures in rail transport have a 

significantly higher impact than in road transport due to the lower number of alternative routes, and short-term bypasses of rail 45 

lines are associated with a higher logistical and personnel effort (Rachoy and Scheikl, 2006). Likewise, the risk of damage is 

higher due to the more complex infrastructure, rail-bound driving, longer braking distance and train length (Mattson and 

Jenelius, 2015).  

 

In German railroad operations, tree falls, gravitational mass movements and flood events are particularly common natural 50 

hazards that cause operational disruptions (Fabella and Szymczak, 2022). These events can be triggered by a variety or a 

combination of different factors, but heavy rainfall events are possible triggers for all of these processes, as could be observed 

for example during the event in July 2021. As an increase in the intensity of daily and especially sub-daily extremes can be 

expected in a warmer climate (e.g. Lengfeld et al., 2021; Zeder and Fischer, 2022), special attention of transport operators 

should be paid to precipitation extremes and associated hazards. In our study, we investigate the relationship between heavy 55 

rainfall events and associated natural hazards, such as floods, gravitational mass movements and tree falls, and its impact on 

the German wide rail network. For this purpose, we first perform a spatio-temporal linkage of a damage database of DB Netz 

AG (part of Deutsche Bahn, Germany‘s largest railroad company) and the catalogue of radar-based heavy rainfall events 

(CatRaRE) from the German Weather Service (DWD). This analysis should bring any spatial or temporal bias of the heavy 

rainfall events and the investigated natural hazards to light. Secondly, we set up random-effects logistic regression models to 60 

explore (1) whether the odds of the occurrence of natural hazards increase significantly with proximity to a heavy rainfall event 

and (2) which characteristics of the heavy rainfall events have the strongest impact on the occurrence of the natural hazards. 
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The logistic regression, although customarily used in data science as a forecasting tool, was used in this study in order to fully 

explore and shed light on the nuances of the complex relationship between heavy rainfall and natural hazards. 

 65 

 

2 Materials and Methods 

2.1 Datasets 

2.1.1 CatRaRE catalogue of the German Weather Service (DWD) 

For Germany, the DWD has developed the so called CatRaRE catalogue, a catalogue of heavy rainfall events collected via 70 

radar to provide a comprehensive overview on all heavy rainfall events that have occurred in Germany since 2001 (Lengfeld 

et al., 2021). Each event is described by various parameters such as time, duration, location, mean and maximum precipitation, 

severity indices as well as meteorological, geographical and demographic information. Strictly speaking, the CatRaRE 

catalogue consists of two catalogues: T5 and W3 (Lengfeld et al., 2021). As no standardized guideline for defining heavy 

rainfall exists, events for the catalogue were extracted by either (1) their intensity with Warning Level W3 (events with 25-40 75 

l/m² in 1 hour or 35-60 l/m² in 6 hours) of the official DWD warning levels used as a threshold (W3-catalogue) or (2) their 

return period taking local conditions into account (T5-catalogue). We decided to use the W3-catalogue for our analysis as it is 

more suitable for Germany-wide studies because of the uniform threshold for heavy rainfall events (Lengfeld et al., 2021). As 

event data from the database of DB Netz AG is only available for the years 2011-2021, only heavy rainfall events from these 

years were included in our analysis. A total number of 14275 heavy rainfall events occurred in these 11 years. Not all of these 80 

events are relevant for our study, since only 7722 events can be spatially intersected with the German rail network. Throughout 

the study period, the proportion of events that can be spatially intersected with the rail network remains constant per year at 

around 50%. The largest number of events affecting the rail network occurred in 2018 (1160), the lowest in 2012 (454) (Figure 

1a). According to Lengfeld et al. (2021), 2018 belongs to the years with the highest number of heavy rainfall events over the 

entire observation period (2001-2021). The monthly distribution shows a clear seasonal pattern with the majority of events 85 

(5682, 73.6%) occurring in summer (JJA, see Figure 1b). In addition, many events occurred in May and September while 

heavy rainfall events were rare during winter. This is consistent with the distribution over the entire period 2001-2021, as May-

August are the most eventful months here (Lengfeld et al. 2021). 
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Figure 1: Monthly and yearly distribution of heavy rainfall events (Datasource: CatRaRE catalogue) spatially intersected with the 90 
German rail network, and gravitational mass movement, flood and tree fall events along the German rail network recorded by the 

damage database of DB Netz AG. The darker areas of the bars (c – h) include the events where a heavy rainfall event occurred up 

to two days prior to the event.  

 

The spatial distribution of all heavy rainfall events spatially intersected with the German rail network is shown in Figure 2. 95 

The spatial reference used for this analysis were track sections as defined by the GIS-layer “geo-strecke” provided by DB Netz 

AG, resulting in a total of 15939 track sections. The events are distributed over all regions of Germany with a focus in southern 

Germany (federal states of Bavaria and Baden-Wuerttemberg). Over the 11-year period, there are very few track sections 

(437), which were not affected by at least one heavy rainfall event, while most of the pre-alpine railway lines in southern 

Germany were affected by more than 30 events. However, the “Starkregenindex” SRI, an index describing the speed at which 100 
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rainfall accumulates within a specified duration of time, of these events is in general lower. Highest mean SRI-values are 

recorded in the northern part of Germany, mainly in the federal state of Lower Saxony. 

 

Figure 2: Spatial intersection of heavy rainfall events from the CatRaRE catalogue and the German rail network for the time period 

2011-2021. a) Number of events per track section. b) Mean SRI-values (“Starkregenindex”, for definition refer to Table 1) for all 105 
events per track section. The SRI is calculated for every heavy rainfall event and ranges from 0-12. Note that in this figure mean 

values for several events are shown, limiting the resulting SRI-values to the range 2-8. Data sources: “geo-strecke” 10/2019 DB Netz 

AG (rail network), GeoBasis-DE / BKG 2023 (federal states), Deutscher Wetterdienst (heavy rainfall events). 

2.1.2 Damage database for the German rail network  

The event data of the natural hazards along the German rail network were extracted from a damage database of DB Netz AG. 110 

In the database, each disruption along the rail infrastructure is documented with a time stamp, the event location and a short 

event description. As this database and data collection is not restricted to natural hazard-specific incidents, the events relevant 

to this study were filtered using an extended text search with event-specific search terms and then checked manually for 

correctness and double notification. This procedure cannot verify that all events were actually extracted from the database 

(‘completeness’) and that there are no false negatives, as the textual descriptions do not follow a fully consistent categorization 115 
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and thus not all keywords may have been correctly identified. However, the two-step extraction with subsequent manual control 

of the data ensures the ‘correctness’ of the data insofar as there are no false positives and no events are contained in the database 

export due to incorrect assignment. The distribution of false negatives is assumed to be fairly even throughout the study period 

due to the invariant methods of data collection and filtering. 

 120 

In the following, the three resulting sub-databases for flood events, gravitational mass movements and tree falls are briefly 

described. The flood dataset contains in total 1269 events for the period 1 January 2011-31 December 2021, which include, 

but are not further categorized into river floods or local flash floods. The most eventful years were 2021 (241), 2017 (137), 

2011 (131) and 2018 (129), while the least eventful years were 2012 (55) and 2015 (28) (Figure 1c). Flood events occurred 

mainly between May and August with a high concentration in June and July, but also in January (Figure 1d). In contrast, they 125 

were rare between September and December. The gravitational mass movement dataset includes a total of 418 events for the 

period 1 January 2013-31 December 2021, with the most eventful years being 2013 (72), 2021 (64) and 2016 (59), and the 

least eventful being 2018 and 2020 (36 each) and 2017 (26) (Figure 1e). The monthly distribution showed a concentration of 

events between May and July and a second, smaller peak between January and March (Figure 1f). The tree fall dataset includes 

a total of 14461 events for the period 1 January 2017-16 December 2020. The most eventful year was 2017 (4319), the least 130 

eventful 2020 (3301) (Figure 1g). However, as the last 15 days of the year are missing in 2020, it is also possible that 2019 is 

the least eventful year (3310). The seasonal distribution of tree fall events is not as pronounced as for the other two processes. 

Tree fall events occurred mainly between January and March as well as between June and October (Figure 1h). 

2.1.3 Explanatory control variables  

Additional climatological and hydrometeorological variables related to the investigated natural hazards were used to serve as 135 

explanatory control variables and to check for other relationships in the statistical regression analysis. These variables were 

derived from publicly available datasets provided by the DWD. Daily precipitation values were used from gridded 

observational datasets of precipitation provided by the HYRAS dataset (Razafimaharo et al., 2020). This dataset is based on 

precipitation measurements for Germany and its neighboring countries and interpolates them into 5 km x 5 km grids, taking 

into account topographic and other effects. Daily values of soil moisture were used from a 1 km x 1 km grid developed by the 140 

DWD for agrometeorological applications. These values are interpolated from soil moisture in 60 cm depth under grass at a 

fixed selection of stations (Löpmeier, 1994). Also included was the hazard indication map for slope and embankment landslides 

along the German rail tracks provided by the German Centre for Rail Traffic Research at the Federal Railway Authority, which 

is modeled based on the geology, morphology and land use characteristics of the area surrounding the rail tracks (Kallmeier et 

al., 2018).  145 
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2.2 Methods 

2.2.1 Intersection of heavy rainfall events with events from the damage database  

The analysis of the spatial and temporal relationship between the heavy rainfall events and damage events along the German 

rail network was carried out by intersecting the CatRaRE polygon data provided by the DWD and the compiled railway damage 

database. First, the spatial intersection was carried out using the GIS software ArcMap, version 10.8.1. In ArcMap, the 150 

respective damage events floods, gravitational mass movements and tree falls, which are available as point information, were 

intersected with the CatRaRE heavy rainfall events (W3-catalogue) between 2011 and 2021, which are available as area 

polygons, using the tool “Spatial Join”. In the process multiple join features (heavy rainfall events) were assigned to each 

target feature (damage event (“Join one to many”)). This creates a database in which all spatially overlapping heavy rainfall 

events are assigned to the damage events. Thus, there are event locations where more than 50 heavy rainfall events from 2011 155 

to 2021 can be found. 

 

A heavy rainfall event can only be considered as a trigger for a damage event if the heavy rainfall event occurs directly or 

shortly before the damage event. As a heavy rainfall event usually is an event of short duration and high intensity, in general 

the time lag between trigger and effect is rather short (e.g. shown for shallow landslides by Zêzere et al. (2015) and for 160 

landslides during summer by Rupp (2022)). However, heavy rainfall events often occur during weather conditions that lead to 

clusters of rainfall events, so that the occurrence of several heavy rainfall events in succession can also be a possible cause 

(e.g. shown for deep landslides by Bevacqua et al. (2021) and for tree fall by Locosselli et al. (2021)). As there is no generally 

accepted threshold, we have chosen in our study to consider all heavy rainfall events that occurred up to two days before the 

damage event. This considers possible inaccuracies in the DB damage database, as the date in the damage database represents 165 

the time when the event was recorded. This does not necessarily coincide with the actual occurrence of the event, as, for 

example, events that occur at night are often not recorded until the following day during the first train journey of the day. 

Furthermore, the selected time period was supported by an analysis of the natural breaks in the data set. The selection of the 

events was conducted by temporal intersection using the function “DateDiff” in ArcMap. Since both the damage events and 

the heavy rainfall events have a day-accurate time stamp, the difference in days between the start of the heavy rainfall event 170 

and the occurrence of the damage event could be identified. 

2.2.2 Extraction of explanatory control variables 

The corresponding values from the explanatory control variables daily precipitation, daily soil moisture and hazard class of 

landslide risk were extracted from the gridded data at the location and, when applicable, for the date of the event occurrence 

using the python libraries gdal and ogr.  175 



8 

 

2.2.3 Statistical analysis and modelling  

For the statistical investigation, a panel data analysis as well as a cross-sectional analysis was carried out. The panel data 

analysis was conducted to test whether the odds of the occurrence of natural hazards is affected by a heavy rainfall event, and 

whether the odds increases with proximity to a heavy rainfall event. Panel data allows to consider observations over several 

points in time, which is crucial for measuring the temporal proximity to a heavy rainfall event at a route segment. Therefore, 180 

it is possible to compare the effects of heavy rainfall events that occur at different times before a natural hazard event, e.g. two 

days before, one day before or at the same day. The cross-sectional analysis was conducted to examine which characteristics 

of a heavy rainfall event have the strongest effect on natural hazard occurrence. In cross-sectional analyses, each observation 

is only considered at a single point in time.  

 185 

2.2.3.1 Panel data analysis   

For the panel data analysis, the dataset was created with route segments as the cross-sectional unit and day as the time-series 

unit. A route segment is defined as a section of the German rail network between two adjacent operating points. The total 

length of the German rail network owned by DB is 56939 km of tracks and was divided into 9679 route segments for our 

dataset. The segments differ in length between 140 m and 12.7 km with an average length of 3.4 km. Route segments were 190 

chosen as the cross-sectional unit as it is on the one hand the smallest operational unit used by DB that can represent the 

complete rail network. On the other hand, the number of route segments still allows for a tractable data size that does not 

inflate the calculation times in the statistical analysis, for example compared to taking 5-meter segments across the entire 

network. The period under consideration were the years between 2011 and 2021 for each route segment, for which it must be 

tested whether a heavy rainfall event has occurred or not. To calculate 30-days antecedent precipitation (one of the control 195 

variables) for each day and route segment, the period started with 1 February 2011, so that the complete dataset is available 

for 3987 days (= time-series units), resulting in a total of 38590173 route segment - day combinations, hereafter referenced as 

observations. The number of observations used in the succeeding models vary depending on the available time period of the 

natural hazard event datasets. 

 200 

Each observation was spatially intersected with the CatRaRE catalogue and the explanatory control variables based on the 

coordinates of the segment’s starting point. The segment is considered to have been affected by a heavy rainfall event on a 

given day if a heavy rainfall event from the CatRaRE database has occurred on that day up to a maximum of two days 

previously. This is then indicated by a binary variable. The flood, gravitational mass movement and tree fall events from the 

DB damage database were matched to route segments based on their reported route number and kilometer. A natural hazard 205 

event can affect more than one route segment. A binary variable was then created for each natural hazard event, which takes 

the value of one if the respective event was reported on the route segment on that day and zero otherwise. 
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To test if the odds of the occurrence of natural hazards increase with proximity to a heavy rainfall event, a random-effects 

logistic regression (logit) model was used. Although the logit approach is conventionally used with the aim of forecasting, it 210 

can also be applied to questions of inference, as in this case, where it is used to elucidate the effect of heavy rain on the 

occurrence of natural hazards. Taking 𝑝 =  𝑃𝑟(𝑌 = 1) to be the probability that a natural hazard event occurs (where 𝑌 is 

either a flood, gravitational mass movement or tree fall), the relationship between this probability 𝑝 and a heavy rainfall event 

(𝐻𝑅) was modeled using a logit link function, such that 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛 (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1 𝐻𝑅 + 𝜷𝟐

′ 𝒙 + 𝜷𝟑
′ 𝒛 + 𝜷𝟒

′ (𝐻𝑅 ∗ 𝒙) (1) 

where 𝒙 is a vector of explanatory control variables, 𝒛 is a vector of seasonal and yearly dummies, and (𝐻𝑅 ∗ 𝒙) is the 215 

interaction between heavy rainfall and the control variables. The parameters 𝛽0, 𝛽1, 𝜷𝟐
′
𝟐
, 𝜷𝟑

′ , and 𝜷𝟒
′  are the corresponding 

scalar and vector coefficients. The vector of controls 𝒙 contain the following variables 

𝒙 =

[
 
 
 

Daily precipitation
30 − Day accumulated precipitation

Daily soil moisture

(Daily soil moisture)2 ]
 
 
 
 

To account for the potential non-linear effect of soil moisture on the incidence of natural hazards due to the non-linear 

relationship between soil water content and soil matric potential (Rawls, et al. 1993; Zhu, et al. 2022; Vichta, et al. 2024), we 220 

include the square of daily soil moisture in 𝒙. Season and year dummies are included as the vector 𝒛 to control for seasonal 

effects and effects caused by particular years with climactic extremes, as well as to account for the fact that the number of 

natural hazards varies greatly in different years and seasons. To test whether there are interaction effects between the control 

variables and heavy rainfall events, the following interaction terms are added to the equations in (1): daily precipitation ∗ 𝐻𝑅, 

30-day accumulated precipitation ∗ 𝐻𝑅, daily soil moisture ∗ 𝐻𝑅, and (daily soil moisture)2 ∗ 𝐻𝑅.  225 

 

The logit function in equation (1) is simply the natural log of the odds, that is, the natural log of the probability that a natural 

hazard event occurs (𝑝) divided by the probability that it does not occur (1 − 𝑝). The basis of interpretation of the model lies 

in its exponential form, which results in the odds on the left-hand side of the equation: 

𝑝

1 − 𝑝
= 𝑒𝛽0 ∙ 𝑒𝛽1𝐻𝑅 ∙ 𝑒𝜷𝟐

′ 𝒙 ∙ 𝑒𝜷𝟑
′ 𝒛 ∙ 𝑒𝜷𝟒

′ (𝐻𝑅∗𝒙) 
 

Taking 𝐻𝑅 to be a binary variable with a value of one when heavy rainfall occurred in the last two days and zero otherwise, 230 

then the odds ratio (𝑂𝑅) between heavy rainfall and no rainfall event becomes:  

𝑂𝑅 =
(

𝑝
1 − 𝑝

| 𝐻𝑅 = 1)

(
𝑝

1 − 𝑝
| 𝐻𝑅 = 0)

= 𝑒𝛽1 ∙ 𝑒𝜷𝟒
′ 𝒙 (1.1) 
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If indeed a heavy rainfall event increases the odds of a natural hazard event occurring, then the numerator of the odds ratio 

should be greater than the denominator, hence the odds ratio should exceed one. Note that the odds ratio will depend on the 

value of the control variables that are interacting with 𝐻𝑅.  

To test if the odds of a natural hazard event increases the closer it occurs to days with heavy rainfall events, a second logistic 235 

regression model similar to (1) was also estimated,  

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛 (
𝑝

1 − 𝑝
) = 𝛽0 + 𝜷𝟏

′  𝑫𝑯𝑹 + 𝜷𝟐
′ 𝒙 + 𝜷𝟑

′ 𝒛 (2) 

where 𝑫𝑯𝑹 takes the form of a vector of dummy variables representing the number of days after the heavy rainfall occurred,  

𝑫𝑯𝑹 = [

𝑑0 = day of heavy rainfall
𝑑1 = one day after heavy rainfall 
𝑑2 = two days after heavy rainfall

] 

and 𝜷𝟏
′ = [𝛽10 𝛽11 𝛽12] are the corresponding parameter coefficients. Since interaction effects are already tested in the first 

model, interaction terms have been removed in this model for simplicity. The assumption that the odds of an event increases 240 

the closer it is in time to a heavy rainfall event is confirmed when the odds ratios follow the order 𝑂𝑅0 > 𝑂𝑅1 > 𝑂𝑅2, where 

𝑂𝑅𝑗 =
(

𝑝
1 − 𝑝

| 𝑑𝑖)

(
𝑝

1 − 𝑝
| 𝑑−1)

= 𝑒𝛽1𝑗 , 𝑗 = 0, 1, 2.  

with 𝑑−1 as the reference category representing no heavy rainfall in the last two days.  

 

Given the panel structure of the data, observations from the same route segment may be correlated with each other. To 

overcome this issue, models (1) and (2) were extended to include a random variable 𝜇𝑖  representing the unobserved individual 245 

heterogeneity of each route segment 𝑖. The final models are therefore  

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑡) = 𝑙𝑛 (
𝑝𝑖𝑡

1 − 𝑝𝑖𝑡

) = 𝛽0 + 𝛽1 𝐻𝑅𝑖𝑡 + 𝜷𝟐
′ 𝒙𝒊𝒕 + 𝜷𝟑

′ 𝒛𝒊𝒕 + 𝜷𝟒
′ (𝐻𝑅 ∗ 𝒙𝒊𝒕) + 𝜇𝑖 (3.1) 

 

(3.2)  𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑡) = 𝑙𝑛 (
𝑝𝑖𝑡

1 − 𝑝𝑖𝑡

) = 𝛽0 + 𝜷𝟏
′  𝑫𝑯𝑹𝒊𝒕 + 𝜷𝟐

′ 𝒙𝒊𝒕 + 𝜷𝟑
′ 𝒛𝒊𝒕 + 𝜇𝑖  

where the subscript 𝑡 identifies the days in the sample, which differ based on the type of natural hazard (4011 days for floods, 

3280 days for gravitational mass movement and 1461 days for tree fall). The parameters of the random-effects models are 

estimated using maximum likelihood. Given that all the explanatory variables in the models (𝐻𝑅𝑖𝑡 , 𝑫𝑯𝑹𝒊𝒕  and 𝒙𝒊𝒕 ) are 

exogenous meteorological factors, the individual-specific component 𝜇𝑖  is expected to be uncorrelated with all the regressors 250 

in the models. The variable 𝜇𝑖  therefore represents the random effect for route segment 𝑖, which is typically assumed to be 

independently and identically distributed across route segments following a normal distribution 𝑁(0, 𝜎𝜇
2). Higher variance  𝜎𝜇

2 

indicates a higher correlation between two observations within the same route segment.  

 

 255 
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2.2.3.1 Cross-sectional analysis   

Since heavy rainfall events differ considerably in intensity, duration and other features, a cross-sectional analysis was used to 

test which of these characteristics influence the occurrence of a natural hazard event. The cross-sectional dataset contains only 

those route segments hit by at least one heavy rainfall event between 2011 and 2021. This resulted in a total number of 9339 

route segments, of which 8589 were affected more than once during the eleven-year period, on average about five times. Each 260 

combination of route segment and heavy rainfall event is considered as a separate observation in the cross-sectional dataset. 

From the panel data set, it can be determined whether a natural hazard event occurred during and up to two days after a heavy 

rainfall event on this specific route segment. For each heavy rainfall event, several characteristics are available in the CatRaRE 

catalogue, of which a selection was used in this study (Table 1).  

 265 

Table 1: Abbreviations and descriptions of the characteristics of heavy rainfall events in the CatRaRE catalogue that were used for 

the analysis in this study. 

Abbreviation Description 

H Duration [h] of the heavy rainfall event 

RRmean Mean precipitation [mm] of all RADKLIM pixels within the event zone 

SRImean Mean of the heavy rainfall index (in German “Starkregenindex”): An index describing the speed at 

which rainfall accumulates within a specified duration of time. Mean of all RADKLIM-pixels within 

the event zone (Range [0,12]) 

V3_AVG Mean of the 21-days antecedent precipitation index within the event zone 

ETA A measure of the extremity of the heavy rain event as a function of the return period as well as affected 

area of an event 

VSGL_GRAD Mean degree of sealing [%]: Percentage of sealed area including road infrastructure within the event 

zone 

STRM_AVG Mean elevation [m] above sea level within the event zone 

TPI_AVG Mean of the Topographic Position Index, 2 km circular neighborhood [m], in the event zone within 

Germany 

 

 

Considering a similar logistic model as in the panel analysis, the relationship between the characteristics of the heavy rainfall 270 

events and the probability (𝑝𝑖) that a natural hazard occurs in observation 𝑖, is assumed to take the form 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑙𝑛 (
𝑝𝑖

1 − 𝑝𝑖

) = 𝛽0 + 𝜷𝟏
′ 𝑪𝒊 + 𝜷𝟐

′ 𝒛𝒊 (4) 

where 𝑪𝒊 = [𝑐𝑖1 … 𝑐𝑖9] is a vector of the eight aforementioned characteristics from the CatRaRE catalogue in Table 1, plus 

a variable for the slope and embankment landslide hazard index from the German Centre for Rail Traffic Research. The vector  

𝒛𝒊 is a vector of year and season control variables, and 𝜷𝟏 = [𝛽11 … 𝛽19] are the corresponding parameter coefficients. 

Since the variables in 𝑪𝒊 are continuous, the interpretation of the odds ratios is based on a one-unit increase in the value of the 275 

variable of interest:  
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𝑂𝑅𝑗 =
(

𝑝
1 − 𝑝

| 𝑐𝑗 + 1)

(
𝑝

1 − 𝑝
| 𝑐𝑗)

= 𝑒𝛽1𝑗 , 𝑗 = 1, 2,… ,9.  

The maximum likelihood method was used to estimate the parameters in this cross-sectional logistic model (4). 

3 Results 

3.1 Spatial intersection of heavy rainfall events and natural hazards 

Of the 1269 flooding events, a total of 296 events (23 %) can be spatially and temporally linked to a heavy rainfall event. A 280 

total of 184 (62 %) of the flooding events linked to heavy rainfall occur in June and July with July being the front-runner (111 

events) (Figure 1d). There are also a large number of coupled events in May and August, while the number is below ten events 

in the other months. The lowest number is in March and December (zero each) and January and November (two each). The 

distribution over the years varies between four (2015) and 78 (2021) events. Besides 2021, the most frequent overlaps occur 

in 2016 and 2017. Of the 418 gravitational mass movement events, a total of 59 events (14 %) can be spatially and temporally 285 

linked to a heavy rainfall event, most of them (48 or 81 %) between May and July (Figure 1f). The distribution among the 

years varies between zero (2011, 2012, 2015) and 13 (2021) events. Besides 2021, the most frequent intersections occur in 

2013, 2016, 2018 and 2019. Of the 14461 tree fall events, a total of 312 (2 %) events can be spatially and temporally linked to 

a heavy rainfall event. A total of 163 of the tree falls (35 %) linked to heavy rainfall occur in June and July with June being 

the front-runner (108 events) (Figure 1h). There are also a large number of coupled events in May (40) and August (46), 290 

followed by September (21) and February (20). The lowest number occurs in November (1) and January (2). The distribution 

across years varies between 57 (2019) and 118 (2017) events.  

 

A comparative analysis of all three natural hazards shows that in all three processes mainly the hazard events in summer are 

coupled with heavy rainfall events (Figure 3). In contrast, the hazard events in winter are predominantly not coupled with 295 

heavy rainfall events.  
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Figure 3: Seasonal distribution of natural hazard events reported for the German rail network coupled with and without heavy 

rainfall events. All three natural hazard processes are shown together in the figure, as the distribution looks similar for each process 

when viewed individually.   300 

3.2 Influence of heavy rainfall events on the occurrence of natural hazard events 

Table 2 provides the estimated odds ratios of the random effects logit models in equation (3) for the three different natural 

hazard events. The dataset of the entire period contains a total of 38590173 observations, but this number is lower for 

gravitational mass movements and tree falls because of the shorter available time period of the natural hazard event datasets. 

To evaluate model performance, several model criteria were calculated and presented in Table 2. Several values are provided 305 

to evaluate the goodness of fit for the models: The log likelihood is a function of the sample size, the higher the value the 

better. The rho value shows the contribution of the random effect to the total variance. The Akaike information criteria (AIC) 

is an estimator of the prediction error, the lower, the better a model fits the data it was generated from. The full regression 

tables with all explanatory variables and the evaluation of the model quality of the chosen model can be found in Appendix A. 

From this point forward, we will only be interpreting and discussing the results that are robust across the different models. 310 

 

The exponentiated coefficients of heavy rain in Table 2 for the two hazards flood and tree fall are greater than one and 

statistically significant at 0.1 %. For gravitational mass movements, the coefficient is not statistically different from one., 

meaning there is no evidence of a statistically significant difference between the odds of a gravitational mass movement with 

and without heavy rainfall. To further evaluate the magnitude of these effects, one must take into account the estimates of the 315 

interactions with the meteorological control variables. Since interaction terms are included in the model, the effect of heavy 

rain will depend on the level of precipitation, accumulated precipitation and daily soil moisture. In Table 3, we take the mean 
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and median values of these meteorological control variables over the whole investigated time periods and calculate the odds 

ratio of heavy rain based on equation (1.1). The large difference in magnitude between the main coefficient of heavy rain in 

Table 2 and the odds ratio of heavy rain in Table 3 particularly for tree fall and gravitational mass movements is primarily due 320 

to the exponentiated coefficient of the interaction between heavy rain and daily soil moisture. This coefficient is 1.061slightly 

greater than one for gravitational mass movements and 0.959 less than one for tree fall. Although they are close to one, wWhen 

raised to the power of the mean or median value of soil moisture, which is at least 75, the resulting number is very large for 

mass movements, and very small for tree fall. Following equation (1.1), this number is multiplied with the main coefficient, 

resulting in a substantial difference in the magnitudes. 325 

 

Table 2: Results of the random effects logit model for incidence of a natural hazard after a heavy rainfall event. The number of 

observations is lower for gravitational mass movements and tree fall events as for floods because of the shorter time period under 

consideration.  

 Dependent Variable 

 Flood Gravitational 

Mass Movement 

Tree Fall 

Heavy rain, last 3 days=1 34.29** 3.812 39.85*** 

 (41.71) (11.26) (29.91) 

Precipitation at route segment [mm] 1.079*** 1.052*** 1.069*** 

 (0.00360) (0.00691) (0.00117) 

Accumulated precipitation at route segment, 30 days [mm] 1.010*** 1.014*** 1.003*** 

 (0.000843) (0.00128) (0.000293) 

Daily soil moisture at route segment [% nFK] 0.944*** 0.957 0.931*** 

 (0.0138) (0.0233) (0.00316) 

Daily soil moisture at route segment [% nFK], squared 1.000*** 1.000* 1.001*** 

 (0.0000939) (0.000153) (0.0000226) 

Heavy rain, last 3 days=1 x Precipitation at route segment [mm] 0.943*** 0.956*** 0.942*** 

 (0.00346) (0.00792) (0.00257) 

Heavy rain, last 3 days=1 x Accumulated precipitation at route segment, 30 days 

[mm] 

0.999 0.996 0.997* 

(0.00125) (0.00280) (0.00137) 

Heavy rain, last 3 days=1 x Daily soil moisture at route segment [% nFK] 1.002 1.061 0.959* 

(0.0298) (0.0742) (0.0196) 

Heavy rain, last 3 days=1 x Daily soil moisture at route segment [% nFK], squared 0.9999 0.9995 1.0001 

(0.000179) (0.000405) (0.000128) 

Observations 38590173 31795515 14141019 

Number of route segments 9679 9679 9679 

Log likelihood -10645.3 -4322.7 -87853.1 

Rho 0.430 0.531 0.375 

AIC 21338.6 8689.5 175740.3 
Exponentiated coefficients (odds ratios); Standard errors in parentheses; All models include season and year controls. 

* p < 0.05, ** p < 0.01, *** p < 0.001 

 330 

According to Table 3, when all meteorological control variables are at their mean (median) values, the odds of a flood event 

is on average 22.7 (25) times larger if a heavy rain occurred in the last two days than if no heavy rain occurred, respectively. 

The odds of a tree fall event on the other hand is on average 3.6 (4) times larger, when the meteorological factors are at their 

means (medians). For gravitational mass movements, the odds ratio is between 17 to 19 times larger, however, since the main 

effect of heavy rain on gravitational mass movement is not statistically significant, we will not interpret these values.  335 
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Table 2.1: Odds ratios of heavy rain at the mean and median values of the precipitation, 30-day accumulated precipitation and daily 

soil moisture based on the estimates of the random effects logit model in Table 2; Odds ratios are calculated according to Eq. (31.1). 

 Dependent Variable 

 Flood Gravitational Mass 

Movement 

Tree Fall 

Number of observations 38590173 31795515 14141019 

Means    

- Precipitation 1.926 1.922 1.856 

- 30-Day accumulated precipitation 57.76 57.82 55.29 

- Daily soil moisture 79.19 79.22 75.29 

Odds ratio of heavy rain at the mean  22.70 17.90 3.616 

Medians    

- Precipitation 0.100 0.100 0 

- 30-Day accumulated precipitation 49.60 49.70 47.50 

- Daily soil moisture 82 82 77 

Odds ratio of heavy rain at the median 25.04 19.37 4.036 

 

To provide insight in the temporal relationship between heavy rainfall events and resulting natural hazards, the random effects 340 

logit models were also calculated with the vector dummy variables in equation (3.2) representing the number of days after the 

heavy rainfall occurred (Table 4). Regarding the time lag, the odds of flood events is highest when the heavy rainfall event 

occurred on the same day as the flood event, and decreases with increasing temporal distance. All values are statistically 

significant. This means that compared to a situation with no occurring heavy rainfall, a heavy rainfall event is close to 12 times 

more likely to cause a flood on the same day, while 10 times more likely to cause a flood the day after, and almost 5 times 345 

more likely to cause a flood after two days.  

 

For gravitational mass movement and tree fall events, the relationship is weaker than for flood events and even insignificant 

for heavy rainfall events occurring two days before the natural hazard event. Interestingly, the highest odds ratios can be 

observed for gravitational mass movements when the heavy rainfall event occurred one day before the natural hazard. In 350 

particular, the odds of a gravitational mass movement is close to eleven times higher one day after heavy rainfall compared to 

a situation with no heavy rainfall, and more than three times higher on the day of heavy rainfall compared to no heavy rainfall. 

After two days, the odds of a gravitational mass movement is no longer different from a situation with no heavy rainfall. For 

tree fall events, the odds ratio on the day of a heavy rainfall is 0.296 333 and statistically significant, meaning that the odds of 

a tree fall event occurring on the same day as a heavy rainfall is less than a third that of a situation when no heavy rainfall 355 

occurs. In contrast, one day after a heavy rainfall event, a tree fall event is 2.4 times more likely to occur than in days with no 

heavy rainfall. After two days, the odds ratio is no longer statistically different from one. 

 

In Tables 2 and 4, the odds ratios of the control variables precipitation and 30-day accumulated precipitation are statistically 

significant and slightly greater than one. The estimates are relatively smaller in magnitude compared to that of the heavy 360 
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rainfall variables, which is to be expected from the continuous nature of the precipitation variables. In Table 4, for example, a 

one-millimeter increase in precipitation increases the odds of a flood event by a factor of 1.023, a mass movement event by a 

factor of 1.022 and a tree fall event by a factor of 1.054. On the other hand, a one-millimeter increase in 30-day accumulated 

precipitation increases the odds of a flood event by a factor of 1.011, a mass movement event by a factor of 1.014 and a tree 

fall event by a factor of 1.004. These estimates do not vary considerably across the two models in equation (3) (Tables 2 and 365 

4). In contrast, the results for daily soil moisture is ambiguous and not robust to changes in the specification of the heavy 

rainfall variable. In Table 2, the estimates of the odds ratios for daily soil moisture are below zero, meaning a one-percentage 

point increase in soil moisture leads to lower odds of all three natural hazards. In Table 4, the opposite is the case, the estimated 

odds ratios are greater than one, meaning the odds of a natural hazard event is higher with a one-percentage point increase in 

daily soil moisture.  370 

 

Table 4: Results of the random effects logit model for incidence of a natural hazard with different numbers of days after a heavy 

rainfall event.  

 Dependent Variable 

 Flood Gravitational 

Mass Movement 

Tree Fall 

Days from heavy rainfall event    

- day of heavy rainfall 11.41*** 3.584*** 0.333*** 

 (1.869) (1.387) (0.0525) 

- 1 day after heavy rainfall 9.529*** 10.58*** 2.411*** 

 (1.620) (2.842) (0.305) 

- 2 days after heavy rainfall 4.757*** 1.120 0.963 

 (1.082) (0.810) (0.195) 

Precipitation at route segment [mm] 1.023*** 1.021*** 1.053*** 

 (0.00214) (0.00466) (0.00150) 

Accumulated precipitation at route segment, 30 days [mm] 1.011*** 1.014*** 1.004*** 

 (0.000794) (0.00127) (0.000294) 

Daily soil moisture at route segment [% nFK] 0.955*** 0.982 0.928*** 

 (0.0120) (0.0228) (0.00316) 

Daily soil moisture at route segment [% nFK], squared 1.000*** 1.000 1.001*** 
 (0.0000791) (0.000146) (0.0000228) 

Observations 38590173 31795515 14141019 

Number of route segments 9679 9679 9679 

Log likelihood -10773.6 -4343.0 -88178.9 

Rho 0.437 0.536 0.376 

AIC 21591.2 8726.0 176387.9 

Exponentiated coefficients (odds ratios); Standard errors in parentheses; All models include season and year controls 

and controls for landslide hazard. 

* p < 0.05, ** p < 0.01, *** p < 0.001 

 

The influence of the three control variables precipitation, accumulated precipitation of 30 days and daily soil moisture on the 375 

relationship between heavy rainfall and the occurrence of a natural hazard event is analyzed depicted in Figure 4. uUsing the 

results of the interaction termspredictive margins approach (Williams, 2012) and applying the regression models in Table 2 

and is depicted graphically in Figure 4,. tThe modelled predicted probability of a the occurrence natural hazard event is 
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compared calculated for each observation in the dataset for the case that of no heavy rainfall event and the case that of a heavy 

rainfall event occurred. The actual observed values of all the control variables were used to calculate the predicted probabilities. 380 

For observations with the same value of the meteorological variable, the average of the predicted probabilities were then taken. 

Therefore, for each value of, say, precipitation, two points are obtained: the average probability with heavy rain (points on the 

dashed line) and the average probability without heavy rain (points on the solid line). over a broad range of control variable 

values on the same day of the natural hazard event.  

 385 
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Figure 4: The influence of the control variables precipitation, accumulated precipitation and soil moisture on the probability of 

occurrence of flood, gravitational mass movement and tree fall events. Each box compares the probability of occurrence for the two 

cases “without heavy rainfall event” and “with heavy rainfall event”. 

 390 
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The curves and the probability for the situation “with heavy rainfall event” are above the curves “without heavy rainfall event” 

for all three types of natural hazards and all three control variables, indicating that the probability of a natural hazard occurring 

is always higher with a preceding heavy rainfall event. However, the curves have different shapes. In several subplots, both 

curves show a slight increase and the distance between them remains about the same (a), d), h)). This means that the difference 

in the probability of occurrence is independent of the amount of precipitation. In the case of b) and e), the distance becomes 395 

greater at higher values, i.e. the higher the amount of accumulated precipitation, the more a heavy rainfall event increases the 

probability of occurrence of a flood or gravitational mass movement. In the case of g), both curves slightly converge at high 

values, i.e. the higher the amount of precipitation, the less a heavy rainfall event increases the probability of occurrence of a 

tree fall event. 

For c) and i), the curve “with heavy rainfall event” has a U-shape. Thus, the probability of a natural hazard occurring during a 400 

heavy rainfall event is higher when the soil moisture takes on extreme values than when it takes on average values. In the case 

of tree fall, this is particularly the case for low soil moisture values, and in the case of floods for high soil moisture values. 

There is evidence that extremely dry and extremely wet soil are determinants of floods (Vichta et al. 2024), mainly due to the 

hydrophobic properties of soil, and oversaturation, respectively. Heavy rainfall in an environment with very dry and 

hydrophobic soil or very wet and oversaturated soil can therefore easily trigger a flood event, and this is reflected clearly in 405 

the results. In moderate soil moisture cases, where the soil can still absorb water brought about by heavy rains, the effect of 

heavy rain is then less pronounced. Similarly, it has been shown that drought stress can cause tree mortality (Grote, et al. 

2016), meanwhile, soil oversaturation can cause waterlogging stress in trees (Gill, 1970; Kreuzweiser & Rennenberg, 2014). 

With trees that are already under stress and vulnerable in very dry or very wet soil conditions, a heavy rainfall event could 

cause additional stress and be more likely to trigger tree fall. According to the data, the effect of heavy rain on tree fall is 410 

stronger for trees that are experiencing drought stress. 

The arc shape in f) indicates suggests that the probability of occurrence is highest at medium soil moisture values. However, 

since main effect of heavy rain on gravitational mass movement is insignificant, we will refrain from interpreting this result.In 

the case of g), both curves slightly converge at high values, i.e. the higher the amount of precipitation, the less a heavy rainfall 

event increases the probability of occurrence of a tree fall event. 415 

3.3 Characteristics of heavy rainfall events and their influence on the occurrence of natural hazards  

The previous section has shown that the occurrence of heavy rainfall events has a statistically significant influence on the 

occurrence of natural hazards, particularly flood and tree fall events. However, as heavy rainfall events can be described with 

various parameters, the aim of the cross-sectional analysis was to investigate which characteristics of the heavy rainfall events 

affect the odds of natural hazards occurring and how these effects differ across the three processes. Table 5 presents the 420 

resulting odds ratios of the estimated logistic regression model of the cross-sectional analysis when the parameter in question 

is increased by one unit. The duration of the heavy rainfall event and the mean precipitation throughout the area affected by 

the heavy rainfall event does not seem to have a significant effect on the odds of occurrence of a natural hazard. However, the 
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heavy rainfall index (SRImean) does significantly increase the odds of all three natural hazards. When the index increases by 

one unit, the odds increase by a factor of 1.577 (floods), 1.716 (gravitational mass movements) and 1.389 (tree falls), 425 

respectively. The table also reveals the significant effect of 21-days antecedent precipitation index (API) on all three types of 

natural hazards. A one-millimeter increase in the API increases the odds by a factor of 1.055 (flood), 1.075 (gravitational mass 

movements) and 1.025 (tree fall), respectively.  

 

The geographical characteristics within the heavy rainfall event zone that shows a significant influence on the occurrence of 430 

natural hazards are the degree of soil sealing and elevation. The degree of soil sealing has a negative effect on tree fall events 

and one percent of increased soil sealing reduces the odds by a factor of 0.936 (statistically significant at 0.1%). This could be 

due to the fact that more soil sealing means there are less trees in the area. Similarly, tThe mean elevation within the heavy 

rainfall area reduces the odds of gravitational mass movement events by a factor of 0.998 (statistically significant at 1%).  

 435 

 

Table 5: Results of the cross-sectional logit model on the components of heavy rainfall events and their effect on the odd ratios of 

the probability of occurrence of flood, gravitational mass movement and tree fall events. Note that the number of observations is 

reduced compared to Table 2 and 3, as the cross-sectional dataset contains only those route segments hit by at least one heavy rainfall 

event between 2011 and 2021.  440 

 Dependent Variable 

 Flood 
Gravitational 

Mass Movement 
Tree Fall 

Duration of heavy rain [h] 1.000 1.002 1.000 

 (0.002) (0.005) (0.002) 

Mean precipitation [mm] of all pixels within the event zone (RRmean) 1.015 1.007 1.002 

 (0.009) (0.021) (0.010) 

Mean heavy precipitation index of all pixels within the event zone (SRImean) 1.577*** 1.716*** 1.389*** 

 (0.103) (0.242) (0.089) 

21-days antecedent precipitation index - Mean within the event zone (V3_AVG) 1.055*** 1.075*** 1.025** 

 (0.008) (0.017) (0.009) 

Extremity, mean throughout event duration (Eta) 1.003 1.002 0.997 

 (0.002) (0.005) (0.002) 

Degree of soil sealing [%] within the event area, mean (VSGL_GRAD) 0.978 0.984 0.936*** 

 (0.013) (0.021) (0.014) 

Mean elevation [m] above sea level in the event zone (STRM_AVG) 1.000 0.998** 0.999 

 (0.0003) (0.001) (0.0004) 

Topographic Position Index [m] - Mean within event zone (TPI_AVG) 1.049 1.016 0.982 

 (0.037) (0.105) (0.026) 

Constant 0.0001*** 0.00001 0.0002 

 (0.0001) (0.001) (0.009) 

Observations 47605 41646 24132 

Log Likelihood -1566.481 -348.888 -1326.230 
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Akaike Inf. Crit. 3180.963 741.777 2688.459 

Exponentiated coefficients (odds ratios); Standard errors in parentheses; Season and year controls are included in all regressions. 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

4 Discussion 

4.1 Heavy rainfall events and associated natural hazards  

The heavy rainfall event in July 2021 was an exceptional event in terms of intensity and spatial extent (Tradowsky et al., 2023). 

Such devastating flash floods are therefore not to be expected with every heavy rainfall event occurring in Germany. 445 

Nevertheless, less intense heavy rainfall events are not a rare phenomenon in Germany; they can occur anywhere and are 

seasonally concentrated in the summer months. About 50 % of all heavy rainfall events between 2011 and 2021 can be spatially 

overlaid with the German rail network, and almost the entire rail network has been affected by a heavy rainfall event at least 

once during this 11-year period. Heavy rainfall events and associated natural hazards can therefore potentially affect the entire 

German rail network. However, vulnerability varies greatly from region to region and is determined, for example, by the route 450 

of the line in relation to the topography (Braud et al., 2020). Routes that follow valley courses or cross low mountain ranges 

are particularly susceptible to associated processes such as gravitational mass movements and local flooding. In order to make 

rail transport more resilient to heavy rainfall, it is important to gain a more detailed knowledge about cause-effect relationships 

between heavy rainfall events and the disruptions they trigger.  

 455 

Often it is not the heavy rainfall event itself that cause damage to transport infrastructure, but processes that are triggered by 

them. Connections between heavy rainfall events as a triggering factor for further processes such as flooding (Bernet et al., 

2019; Wake, 2013) and various types of gravitational mass movements (Araújo et al., 2022; Huggel et al., 2012; Kirschbaum 

et al., 2022; Tichavský et al., 2019) have already been established in several studies. Similarly, the regression models in our 

study show that when all meteorological variables are at their means, heavy rainfall events can in the two days following the 460 

event significantly increase the odds of occurrence of flood by a factor of 22.7 and tree fall events by a factor of 3.62 (see 

Table 3). The odds ratios of flood events decreases the more time passed after the heavy rainfall event, while the odds ratios 

of tree fall events peaks the day after a heavy rainfall event (Table 4). The increased odds of gravitational mass movement 

events is only statistically significant the day of and the day after a heavy rainfall event, but is also strongly correlated to 

precipitation and accumulated precipitation (Tables 2 and 4). It is therefore important not to consider the occurrence of different 465 

natural hazards individually, but to establish connections between the processes, for example by using climate impact chains 

(e.g. UBA, 2021) or a compound-hazard approach (e.g. Zscheischler et al., 2020).  
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About a quarter of all flood events could be coupled with a heavy rainfall event, and for gravitational mass movements it was 

as much as 17 % (Figure 1). The proportion of tree fall events connected to heavy rainfall events is very low, which could be 470 

due to the fact that storms and strong winds are considered the main trigger for this type of event (e.g. Bíl et al., 2017; Gardiner 

et al., 2010). A large proportion of the tree fall disturbances recorded in the DB damage database have been caused by a few 

large autumn and winter storms, such as Friederike in January 2018 (286 reports) or Sabine in February 2020 (513 reports), 

which were characterized by prolonged precipitation rather than heavy rainfall events. The influence of heavy rainfall on 

increasing the risk of tree fall has hardly been studied so far. Morimoto et al. (2021) found that heavy rainfall connected to 475 

typhoons increases the probability of disturbances in forest stands. Even if a spatial and temporal overlap of a heavy rainfall 

with an event from the damage database could be determined, it must be emphasized once again at this point that the heavy 

rainfall event can only be considered as a possible cause for the event and the actual causal trigger cannot be derived from the 

DB damage database. With our study, the aim is not to develop a predictive model of the natural hazards, but instead to provide 

empirical evidence of the potential relationship between heavy rainfall and the three natural hazard processes. We also 480 

demonstrated how damage data from infrastructure operators can be merged with climate data from weather services to 

establish a potential relationship. This step represents an important contribution in terms of proactive natural hazard 

management to identify the route sections that are particularly affected by certain climatic parameters and associated processes. 

Furthermore, this information can be used to prioritize adaptation needs.  

 485 

The parameters Heavy Rainfall Index (SRI) and Antecedent Precipitation Index (V3) are the properties of the heavy rainfall 

events that most strongly influence the occurrence of all three natural hazard processes considered (Table 4, Figure 4). Thus, 

it is a combination of the pre-moisture conditions of the soil due to previous rainfall events and the occurrence of a heavy 

rainfall event, which most clearly promotes the occurrence of the processes. This is in concordance with, for example, findings 

from Rupp (2022), who analyzed the triggering factors for landslides with seasonal resolution. AThe antecedent precipitation 490 

is of great importance for the occurrence of landslides all year round, but especially in winter. Locosselli et al. (2021) found a 

similar seasonal variability for the climate drivers for tree falls among urban trees in Brazil. During the wet season, temperature 

has a direct influence on tree fall, while precipitation and wind gusts can have lagged effects.  

 

No information on the magnitude of the hazard events can be obtained from the damage database. The duration of the 495 

disturbance, which is given for flood and tree fall events only, shows that for floods 33 % of the events have a disturbance 

duration of more than one day, for tree falls only 2 % (Fabella and Szymczak, 2021). From the rather short disruption durations, 

it can be deduced that most of the events must be smaller, as it is not possible to resume operations after a short time in the 

case of a larger event. In the case of smaller events, the small-scalelocal climate conditions, as represented for example by SRI 

and V3, are most important. Hence, no significant correlations could be observed with the larger-scale parameters such as 500 

mean precipitation, mean topographic position index and mean daily soil moisture. The role of the parameter degree of soil 

sealing (VSGL) on tree falls could be explained by the fact that areas with a high degree of sealing tend to have fewer trees 
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along the track that can potentially cause disturbances, while more rural and less sealed areas have more trees and therefore 

also an increased risk of tree fall events.  

4.2 Data availability and quality 505 

While the data quality of the CatRaRE catalogue is very high, it is difficult to validate the quality and completeness of the DB 

damage database. Therefore, it must be taken into account that the relatively low numbers of damage reports that could be 

linked to a heavy rainfall event are only minimum values due to the weaknesses of the data collection process. While the DWD 

is responsible for meeting the meteorological needs of all economic and social sectors in Germany, the DB damage database 

is an internal product. The main task of a railroad operator is to ensure safe railroad operations. The focus is not on the detailed 510 

recording of the damage event with exact process allocation, cause, etc., but rather on enabling a quick repair and ensuring the 

resumption of railroad operations. However, disruptions caused by natural hazards account for a substantial proportion of 

disruption events overall. In 2018, for example, weather-related disruptions were the second most frequent cause of 

cancellations according to DB data (Deutscher Bundestag, 2019). As climate change advances, it can be assumed that the 

number and extent of disruptive events is more likely to increase rather than decrease in the future, unless targeted 515 

countermeasures are taken. It is therefore essential to adapt rail transport and rail infrastructure to climate change. However, 

this requires reliable data on past damage events in order to guarantee a statistically robust consequence-based risk assessment 

and the targeted development of measures for action in the future. We therefore recommend improving the documentation 

requirements for the various modes of transport in order to create a reliable damage database in the long-term. This should 

also include a subdivision of natural hazard events according to the underlying processes. For instance, river floods are 520 

typically caused by (longer) precipitation runoff in larger areas of the river watershed, while local flash floods are caused by 

the immediate runoff of concentrated, intense heavy rainfall events (Penna et al., 2013). Gravitational mass movements should 

be classified according to their volume and type of transported materials, transportation processes and triggers, as e.g. heavy 

rainfall events typically trigger shallow landslides, while accumulated rainfall contributes more to deeper landslides (Zêzere 

et al., 2015). 525 

4.3 Future development of heavy rainfall events and associated hazards  

In Western and Central Europe, extreme rainfall has already increased in frequency and will, with high confidence, continue 

to increase further with climate change (Seneviratne et al., 2021). However, modelling current and future trends in heavy 

rainfall events on a regional scale is a challenging task. Rybka et al. (2022) used a convection-permitting regional climate 

model to estimate return levels dependent on the rainfall duration and return period for Germany. They found a 30 % mean 530 

increase in intensity for daily rainfall extremes for the end of the 21st century assuming a high-end emission scenario, but the 

model shows no further increase in intensity for sub-daily heavy rainfall estimates. Although the exact rate is a subject of 

debate, it can be assumed that with rising temperatures more water vapor can potentially be retained in the atmosphere, thus 

increasing the potential for the occurrence of heavy rainfall events (Lengfeld et al., 2021; Zeder and Fischer, 2020). Several 
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studies using observational data (e.g. Westra et al., 2013) or modeling experiments (e.g. O’Gorman, 2015) tested successfully 535 

the hypothesis that the intensity of daily extreme rainfall follows roughly the Clausis-Clapeyron relationship, e.g. an increase 

of roughly 7 % per °C ambient temperature (Allen and Ingram, 2002; Trenberth, 1999). An increase in daily (e.g. Westra et 

al., 2014; Fischer and Knutti, 2015) and sub-daily precipitation (e.g. Lenderink and Meijgaard, 2008; Guerreiro et al., 2018) 

extremes is already observed in several studies over many regions. Especially in the summer months, with a combination of 

long dry periods interrupted by single heavy precipitation periods, it can be assumed that these heavy rainfall events can lead 540 

to an increase of associated processes, e.g. landslides (Tichavský et al., 2019).  

 

The timespan of the DB damage database it too short to analyze trends in the occurrence of the three types of natural hazards. 

Access to high quality data on past natural hazard-related disruptions in the transport sector is a major limitation and one of 

the reasons while there are only few scientific studies available on this issue (e.g. Braud et al., 2020; Donnini et al., 2017; 545 

Fabella and Szymczak, 2021; Gardiner et al. (in review)). However, quantifying the impact of natural hazards on the transport 

sector is of great importance, especially with regard to climate change. A global study by Koks et al. (2019) shows that already 

today about 27 % of all road and rail assets are exposed to at least one natural hazard. Climate change has a significant impact 

on forest stability (Seidl et al., 2017), and the frequency and magnitude of several natural hazards are likely to increase with 

ongoing climate change, as shown for gravitational mass movements (e.g. Chiang and Chang, 2011; Gariano and Guzzetti, 550 

2016) or flash floods (e.g. Kundzewicz et al., 2013). It is therefore very likely that disturbances along transport routes due to 

natural hazards will occur more frequently in the future.  

5 Conclusions 

Due to the heavy rainfall event in July 2021 and the resulting flash floods and damage, awareness of vulnerability to this 

natural hazard has increased significantly and, among other things, a large number of research activities has been initiated. As 555 

the rail infrastructure was particularly hard hit, we contribute to raising awareness in the rail sector and in the transport sector 

in general with our study. We were able to show that heavy rainfall events have a significant influence on the occurrence of 

associated natural hazards. Furthermore, we demonstrate an approach to link climate data with damage data of a transport 

mode in order to establish a correlational interdependence. This can also be applied to other climate impacts and other modes 

of transport and represents an important component in the context of proactive natural hazard management.   560 
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Appendix A 

In this Appendix we show the full results of the regression models including all explanatory variables, seasonal and year 

dummies and interaction terms. This section also addresses the question of overfitting in the models presented in the main text 

by presenting simpler models and assessing the robustness of the results. 

 730 

Tables A1, A2 and A3 present the estimation results for the model in Table 2, for the natural hazards tree fall, flood and 

gravitational mass movement, respectively. Column (1) – (5) of each table are results of a random-effects logistic regression, 

beginning with a simple regression in column (1) and successively adding control variables and interaction terms in columns 

(2) – (4) until the final model is reached in (5), of which estimates are presented in the main text (Table 2). Columns (1) – (5) 

provides some insight into how sensitive the results are to changes in the selection of control variables. The simple logistic 735 

regression in column (1) would be less prone to overfitting due to having only one coefficient to estimate, but would be very 

prone to omitted variable bias. The omitted variable bias is evident from the fact that, in all three tables, the magnitude of the 

coefficient estimate for heavy rainfall dramatically changes once the control variables precipitation, accumulated precipitation 

and daily soil moisture are added to the model (column (2)), as well as when interaction terms are added to the model (column 

(4)). 740 

 

Column (6) presents the results of a pooled logistic regression model, which is a regression of panel data where the time 

dimension is not considered, i.e. the data is regarded as cross-sectional. Column (6) addresses the concern that the panel data 

analysis, due to its two-dimensional nature – with the time dimension and the individual dimension (here route segments) – 

has many fixed-effects parameters to estimate, which may lead to overfitting. For all models that include interaction terms, the 745 

odds ratios of heavy rain at the mean values of the meteorological variables are reported at the bottom of the table. 

 

In Table A1, column (1) indicates that the odds of a tree fall occurring is four times higher when there was heavy rainfall in 

the last three days versus no heavy rain. This effect, however, becomes less than one upon addition of the control variables 

precipitation, accumulated precipitation and daily soil moisture, as seen in columns (2) and (3). This means that keeping 750 

meteorological variables constant, the odds of a tree fall event is lower during heavy rain versus when no heavy rain occurs.  

In columns (4) and (5), the interactions between heavy rain and the control variables are included, and this causes an even 

bigger jump in the coefficient estimate of heavy rain, indicating that heavy rain indeed has an effect on the incidence of tree 

fall, and this effect varies depending on the meteorological situation. The pooled logit estimates in column (6) do not differ 

significantly from the results of the full model in column (5), suggesting that the unobserved individual heterogeneity of the 755 

route segments does not play a crucial role in determining the relationship between heavy rainfall and tree fall incidence. The 

odds ratios computed based on the means of the meteorological variables in columns (4) to (6) are of similar magnitude to the 

coefficient of the simple logistic regression in column (1). If a simpler model were selected to potentially avoid overfitting, 
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say the model in column (1), then the results would not differ by very much. However, model (5) is preferred because it 

overcomes the omitted variable bias and provides a more nuanced picture of the complex relationship between heavy rainfall 760 

and the incidence of tree fall. 

 

For flood hazards (Table A2), the odd ratio of heavy rain is close to or greater than 10 for all models, indicating that the result 

is robust to the choice of controls. When comparing the odds ratio in model (1) to the odds ratio at the means in models (4) – 

(6), one can observe that, although similar in magnitude, the value in model (1) is still somewhat larger. This could suggest 765 

that for floods in particular, the omitted variable bias is quite substantial, and that including meteorological controls is crucial. 

The smaller coefficient of the pooled logit in column (6) compared to the full model in column (5) suggests that for flood 

events, unobserved individual heterogeneity in the route segments (for example inclination) may influence the effect of heavy 

rain on flood incidence.  

 770 

For gravitational mass movements (Table A3), the magnitude of the odds ratio in the simple regression in column (1) are of 

the same magnitude as the odds ratios at the mean (at the bottom of columns (2) to (6)) once interactions are added. However, 

with the addition of interaction terms, the statistical significance of heavy rain disappears. One could perceive this as potentially 

indicating overfitting, but the model in column (4) with interactions is a simpler model with fewer parameters than the model 

in column (3) without interactions. Model complexity alone did not cause the coefficient of heavy rain to lose its significance, 775 

which could suggest that it is rather omitted variable bias that is at play here. Nevertheless, one could argue that a simpler 

model, say in column (1) might still be preferable, particularly for gravitational mass movements, which is at most risk of 

overfitting due to the low number of events in the data. This will not change the interpretation by very much, since the odds 

ratio in model (1) and the odds ratios at the means in model (5) are similar in magnitude. However, from these results alone, 

one cannot conclude a statistically robust effect of heavy rainfall on gravitational mass movements. More data is required to 780 

make solid conclusions. 

 

In all three tables A1, A2 and A3, the model with the best fit, i.e. the highest log likelihood and the lowest AIC, is the model 

in column (5), which are the results presented in Table 2 of the main text. 

 785 

Tables A4, A5 and A6 provide estimation results for the model in Table 3 of the main text, where a dummy variable for the 

day of the heavy rain, one day after heavy rain and two days after heavy rain are the variables of interest. In these tables, 

columns (1) – (3) have estimates of a random-effects logit with successively additional control variables, while column (4) has 

estimates of a pooled logit regression of the full model. The results in column (3) of Tables A3, A4, and A5 are the same as 

those presented in Table 3. Similar to the previous tables, a considerable jump in the odds ratios can be seen between columns 790 

(1) and (2), potentially due to omitted variable bias. However, for floods and gravitational mass movements, the direction of 

relative effects across time remains the same for all models despite the differences in magnitudes. For flood events (Table A5), 
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the odds of having a flood is highest on the same day as the heavy rainfall, and decreases the further away in time the rainfall 

occurred. For gravitational mass movements (Table A6), the odds are highest one day after heavy rainfall occurred. In the case 

where overfitting is a potential issue, such as for gravitational mass movements, a simpler model as in model (2) might be 795 

preferred to the one presented in the main text (Table 3). This would not change the result that the highest odds of a mass 

movement event comes one day after heavy rain.  

 

For tree fall (Table A4), both the magnitude of the effect and the direction across time changes once control variables are 

added. Without the control variables (column (1)), the odds of tree fall are highest on the same day as the occurrence of heavy 800 

rainfall, and decreases in succeeding days. However, once the meteorological variables are added, the odds of a tree fall event 

on the same day as the heavy rain are in fact lower than the odds of when there is no heavy rain. This can be seen in columns 

(2) – (4) of Table A4, where the odds ratios on the day of heavy rain are less than one. One day after heavy rain, on the other 

hand, the odds of a tree fall event are around twice as high as on days without heavy rain, and the effect is highest on this day. 

 805 

In all three tables A4, A5 and A6, the goodness-of-fit parameters performed best in the full model in column (3), whose results 

are presented in the main text. 

 

In summary, there is a trade-off between omitted variable bias and overfitting in this empirical analysis, and the results 

presented in the main text are the ones deemed most appropriate for the investigation of the relationship between heavy rainfall 810 

and the incidence of natural hazards along railway lines. In the cases most at risk of overfitting due to the low number of 

events, particularly for gravitational mass movements, the interpretation of the results would not change if a simpler model 

were to be selected.  

  



33 

 

Table A1. Tree fall: Random-effects and pooled logistic regressions with successive inclusion of control variables 815 

 Dependent Variable: Tree Fall 

 Random-Effects Logit  Pooled Logit 

 (1) (2) (3) (4) (5)  (6) 

Heavy rain, last 3 days=1 4.313*** 0.651*** 0.620*** 31.53*** 39.85*** 29.22*** 

 (0.282) (0.0797) (0.0739) (23.67) (29.91) (21.51) 

Precipitation at route segment [mm]  1.049*** 1.047*** 1.071*** 1.069*** 1.067*** 

  (0.00138) (0.00135) (0.00116) (0.00117) (0.00109) 

Accumulated precipitation at route segment, 30 days [mm]  1.006*** 1.004*** 1.005*** 1.003*** 1.003*** 

  (0.000266) (0.000290) (0.000269) (0.000293) (0.000305) 

Daily soil moisture at route segment [% nFK]  0.926*** 0.927*** 0.930*** 0.931*** 0.936*** 

  (0.00302) (0.00316) (0.00303) (0.00316) (0.00314) 

Daily soil moisture at route segment [% nFK], squared  1.001*** 1.001*** 1.001*** 1.001*** 1.001*** 

  (0.0000219) (0.0000228) (0.0000218) (0.0000226) (0.0000225) 

Spring   1.197***  1.189*** 1.184*** 

   (0.0331)  (0.0327) (0.0333) 

Autumn   2.056***  1.971*** 2.008*** 

   (0.0838)  (0.0796) (0.0838) 

Winter   1.231***  1.209*** 1.228*** 

   (0.0396)  (0.0388) (0.0409) 

Year=2018   1.052  1.046 1.033 

   (0.0294)  (0.0291) (0.0287) 

Year=2019   0.942*  0.940* 0.926** 

   (0.0274)  (0.0273) (0.0267) 

Year=2020   0.948  0.945* 0.936* 

   (0.0266)  (0.0263) (0.0261) 

Heavy rain, last 3 days=1 x Precipitation at route segment [mm]    0.940*** 0.942*** 0.943*** 

    (0.00257) (0.00257) (0.00250) 

Heavy rain, last 3 days=1 x Accumulated precipitation at route segment, 30 days [mm]    0.997* 0.997* 0.997* 

    (0.00130) (0.00137) (0.00135) 

Heavy rain, last 3 days=1 x Daily soil moisture at route segment [% nFK]    0.967 0.959* 0.969 

    (0.0195) (0.0196) (0.0192) 

Heavy rain, last 3 days=1 x Daily soil moisture at route segment [% nFK], squared    1.000 1.000 1.000 

    (0.000126) (0.000128) (0.000124) 

Observations 14141019 14141019 14141019 14141019 14141019 14141019 

Odds ratio of heavy rain at mean values of the meteorological variables    4.008 3.616 3.730 

Log likelihood -90610.2 -88449.3 -88238.6 -88044.4 -87853.1 -92607.7 

rho 0.385 0.377 0.376 0.376 0.375  

AIC 181226.3 176912.7 176503.2 176110.9 175740.3 185247.3 

Exponentiated coefficients (odds ratios); Standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001 

  



34 

 

Table A2. Flood: Random-effects and pooled logistic regressions with successive inclusion of control variables 

 Dependent Variable: Floods 

 Random-Effects Logit  Pooled Logit 

 (1) (2) (3) (4) (5)  (6) 

Heavy rain, last 3 days=1 76.61*** 11.31*** 9.245*** 29.19** 34.29** 19.52* 

 (5.545) (1.302) (1.105) (36.32) (41.71) (24.64) 

Precipitation at route segment [mm]  1.027*** 1.026*** 1.082*** 1.079*** 1.078*** 

  (0.00152) (0.00157) (0.00357) (0.00360) (0.00347) 

Accumulated precipitation at route segment, 30 days [mm]  1.014*** 1.011*** 1.013*** 1.010*** 1.008*** 

  (0.000628) (0.000787) (0.000703) (0.000843) (0.000782) 

Daily soil moisture at route segment [% nFK]  0.950*** 0.953*** 0.948*** 0.944*** 0.952*** 

  (0.0115) (0.0120) (0.0140) (0.0138) (0.0137) 

Daily soil moisture at route segment [% nFK] , squared  1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 

  (0.0000768) (0.0000796) (0.0000936) (0.0000939) (0.0000918) 

Spring   1.867***  1.881*** 1.706*** 

   (0.196)  (0.204) (0.183) 

Autumn   3.098***  2.812*** 2.575*** 

   (0.409)  (0.372) (0.322) 

Winter   1.156  1.155 1.022 

   (0.152)  (0.151) (0.133) 

Year=2012   1.029  1.027 0.984 

   (0.203)  (0.201) (0.190) 

Year=2013   1.151  1.208 1.290 

   (0.189)  (0.200) (0.213) 

Year=2014   1.327  1.289 1.288 

   (0.242)  (0.234) (0.230) 

Year=2015   0.610*  0.610* 0.591* 

   (0.144)  (0.143) (0.138) 

Year=2016   1.321  1.321 1.314 

   (0.233)  (0.231) (0.230) 

Year=2017   1.583**  1.569** 1.617** 

   (0.265)  (0.262) (0.269) 

Year=2018   3.169***  3.111*** 2.900*** 

   (0.554)  (0.538) (0.490) 

Year=2019   2.487***  2.479*** 2.303*** 

   (0.434)  (0.431) (0.389) 

Year=2020   2.170***  2.208*** 2.050*** 

   (0.365)  (0.369) (0.335) 

Year=2021   2.518***  2.719*** 2.795*** 

   (0.391)  (0.414) (0.422) 

Heavy rain, last 3 days=1 x Precipitation at route segment [mm]    0.942*** 0.943*** 0.944*** 

    (0.00343) (0.00346) (0.00332) 

Heavy rain, last 3 days=1 x Accumulated precipitation at route segment, 30 days [mm]    0.998 0.999 0.999 

    (0.00111) (0.00125) (0.00120) 

Heavy rain, last 3 days=1 x Daily soil moisture at route segment [% nFK]    1.006 1.002 1.017 

    (0.0300) (0.0298) (0.0310) 

Heavy rain, last 3 days=1 x Daily soil moisture at route segment [% nFK], squared    1.000 1.000 1.000 

    (0.000176) (0.000179) (0.000182) 

Observations 38590173 38590173 38590173 38590173 38590173 38590173 

Odds ratio of heavy rain at mean values of the meteorological variables    27.47 22.70 24.04 

Log likelihood -11514.0 -10923.3 -10780.6 -10787.1 -10645.3 -10907.5 

rho 0.373 0.435 0.437 0.428 0.430  

AIC 23034.0 21860.7 21601.3 21596.1 21338.6 21861.1 

Exponentiated coefficients (odds ratios); Standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table A3. Gravitational Mass Movement: Random-effects and pooled logistic regressions with successive inclusion of control 

variables 

 Dependent Variable: Gravitational Mass Movements 

 Random-Effects Logit  Pooled 

Logit 

 (1) (2) (3) (4) (5)  (6) 

Heavy rain, last 3 days=1 28.53*** 5.298*** 4.795*** 9.206 3.812 3.188 

 (4.646) (1.281) (1.184) (26.63) (11.26) (9.426) 

Precipitation at route segment [mm]  1.018*** 1.018*** 1.054*** 1.052*** 1.050*** 

  (0.00331) (0.00343) (0.00680) (0.00691) (0.00686) 

Accumulated precipitation at route segment, 30 days [mm]  1.015*** 1.014*** 1.015*** 1.014*** 1.013*** 

  (0.00105) (0.00126) (0.00113) (0.00128) (0.00124) 

Daily soil moisture at route segment [% nFK]  0.985 0.980 0.972 0.957 0.960 

  (0.0216) (0.0227) (0.0231) (0.0233) (0.0245) 

Daily soil moisture at route segment [% nFK], squared  1.000 1.000 1.000 1.000* 1.000* 

  (0.000137) (0.000145) (0.000149) (0.000153) (0.000161) 

Spring   1.845***  1.922*** 1.799*** 

   (0.300)  (0.308) (0.287) 

Autumn   1.648*  1.630* 1.488 

   (0.360)  (0.349) (0.318) 

Winter   0.819  0.844 0.778 

   (0.173)  (0.179) (0.163) 

Year=2014   0.796  0.747 0.747 

   (0.169)  (0.157) (0.158) 

Year=2015   1.054  1.007 0.948 

   (0.221)  (0.208) (0.195) 

Year=2016   1.059  0.999 0.990 

   (0.211)  (0.197) (0.194) 

Year=2017   0.434**  0.409*** 0.398*** 

   (0.111)  (0.104) (0.101) 

Year=2018   0.822  0.763 0.765 

   (0.193)  (0.177) (0.176) 

Year=2019   0.893  0.846 0.796 

   (0.201)  (0.188) (0.176) 

Year=2020   0.751  0.706 0.683 

   (0.171)  (0.159) (0.153) 

Year=2021   0.986  1.000 0.992 

   (0.196)  (0.192) (0.194) 

Heavy rain, last 3 days=1 x Precipitation at route segment [mm]    0.955*** 0.956*** 0.959*** 

    (0.00781) (0.00792) (0.00798) 

Heavy rain, last 3 days=1 x Accumulated precipitation at route segment, 30 days [mm]    0.994* 0.996 0.995 

    (0.00269) (0.00280) (0.00267) 

Heavy rain, last 3 days=1 x Daily soil moisture at route segment [% nFK]    1.036 1.061 1.070 

    (0.0707) (0.0742) (0.0749) 

Heavy rain, last 3 days=1 x Daily soil moisture at route segment [% nFK], squared    1.000 1.000 0.999 

    (0.000394) (0.000405) (0.000406) 

Observations 31795515 31795515 31795515 31795515 31795515 31795515 

Odds ratio of heavy rain at mean values of the meteorological variables    19.31 17.90 19.50 

Log likelihood -4542.7 -4379.4 -4352.0 -4351.3 -4322.7 -4462.2 

rho 0.519 0.535 0.536 0.531 0.531  

AIC 9091.4 8772.9 8740.0 8724.7 8689.5 8966.5 

Exponentiated coefficients (odds ratios); Standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table A4. Tree fall: Random-effects and pooled logistic regressions different numbers of days after a heavy rainfall event. 

 Dependent Variable: Tree Fall 

 Random-Effects Logit  Pooled 

Logit 

 (1) (2) (3)  (4) 

Days from heavy rainfall event     

- day of heavy rain 5.784*** 0.339*** 0.333*** 0.310*** 

 (0.457) (0.0547) (0.0525) (0.0511) 

- 1 day after heavy rain 4.223*** 2.702*** 2.411*** 2.252*** 

 (0.514) (0.341) (0.305) (0.282) 

- 2 days after heavy rain 1.569* 1.043 0.963 0.934 

 (0.315) (0.212) (0.195) (0.188) 

Precipitation at route segment [mm]  1.054*** 1.053*** 1.050*** 

  (0.00152) (0.00150) (0.00147) 

Accumulated precipitation at route segment, 30 days [mm]  1.006*** 1.004*** 1.003*** 

  (0.000271) (0.000294) (0.000303) 

Daily soil moisture at route segment [% nFK]  0.926*** 0.928*** 0.933*** 

  (0.00302) (0.00316) (0.00313) 

Daily soil moisture at route segment [% nFK], squared  1.001*** 1.001*** 1.001*** 

  (0.0000218) (0.0000228) (0.0000226) 

Spring   1.194*** 1.192*** 

   (0.0330) (0.0336) 

Autumn   2.035*** 2.083*** 

   (0.0829) (0.0878) 

Winter   1.224*** 1.246*** 

   (0.0395) (0.0417) 

Year=2018   1.051 1.043 

   (0.0294) (0.0292) 

Year=2019   0.944* 0.933* 

   (0.0275) (0.0270) 

Year=2020   0.948 0.939* 

   (0.0266) (0.0264) 

Observations 14141019 14141019 14141019 14141019 

Log likelihood -90585.0 -88384.7 -88178.9 -92952.3 

Rho 0.385 0.377 0.376  

AIC 181180.0 176787.4 176387.9 185932.5 

Exponentiated coefficients (odds ratios); Standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001 830 
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Table A5. Flood: Random-effects and pooled logistic regressions different numbers of days after a heavy rainfall event. 835 

 Dependent Variable: Floods 

 Random-Effects Logit  Pooled 

Logit 

 (1) (2) (3)  (4) 

Days from heavy rainfall event     

- day of heavy rain 122.6*** 13.55*** 11.41*** 11.85*** 

 (10.03) (2.159) (1.869) (1.851) 

- 1 day after heavy rain 46.04*** 12.23*** 9.529*** 9.827*** 

 (7.117) (2.058) (1.620) (1.651) 

- 2 days after heavy rain 20.44*** 5.821*** 4.757*** 4.897*** 

 (4.618) (1.328) (1.082) (1.108) 

Precipitation at route segment [mm]  1.025*** 1.023*** 1.021*** 

  (0.00212) (0.00214) (0.00186) 

Accumulated precipitation at route segment, 30 days [mm]  1.015*** 1.011*** 1.009*** 

  (0.000627) (0.000794) (0.000717) 

Daily soil moisture at route segment [% nFK]  0.952*** 0.955*** 0.970* 

  (0.0115) (0.0120) (0.0120) 

Daily soil moisture at route segment [% nFK], squared  1.000*** 1.000*** 1.000*** 

  (0.0000763) (0.0000791) (0.0000784) 

Spring   1.847*** 1.654*** 

   (0.195) (0.174) 

Autumn   3.058*** 2.827*** 

   (0.404) (0.354) 

Winter   1.150 1.019 

   (0.151) (0.134) 

Year=2012   1.034 0.989 

   (0.204) (0.191) 

Year=2013   1.151 1.184 

   (0.189) (0.192) 

Year=2014   1.332 1.326 

   (0.243) (0.236) 

Year=2015   0.615* 0.594* 

   (0.145) (0.138) 

Year=2016   1.333 1.310 

   (0.236) (0.230) 

Year=2017   1.589** 1.639** 

   (0.266) (0.272) 

Year=2018   3.199*** 2.982*** 

   (0.560) (0.507) 

Year=2019   2.496*** 2.321*** 

   (0.436) (0.392) 

Year=2020   2.185*** 2.005*** 

   (0.368) (0.328) 

Year=2021   2.563*** 2.614*** 

   (0.397) (0.398) 

Observations 38590173 38590173 38590173 38590173 

Log likelihood -11457.4 -10916.5 -10773.6 -11041.5 

Rho 0.374 0.435 0.437  

AIC 22924.8 21851.1 21591.2 22125.1 

Exponentiated coefficients (odds ratios); Standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001  
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Table A5. Gravitational Mass Movement: Random-effects and pooled logistic regressions different numbers of days after a heavy 

rainfall event. 

 Dependent Variable: Gravitational Mass Movements 

 Random-Effects  

Logit 

 Pooled 

Logit 

 (1) (2) (3)  (4) 

Days from heavy rainfall event     

- day of heavy rain 33.01*** 3.973*** 3.584*** 3.414** 

 (6.775) (1.521) (1.387) (1.316) 

- 1 day after heavy rain 44.11*** 11.71*** 10.58*** 10.16*** 

 (10.44) (3.067) (2.842) (2.760) 

- 2 days after heavy rain 4.398* 1.205 1.120 1.101 

 (3.137) (0.869) (0.810) (0.796) 

Precipitation at route segment [mm]  1.022*** 1.021*** 1.021*** 

  (0.00448) (0.00466) (0.00432) 

Accumulated precipitation at route segment, 30 days [mm]  1.015*** 1.014*** 1.013*** 

  (0.00106) (0.00127) (0.00124) 

Daily soil moisture at route segment [% nFK]  0.987 0.982 0.989 

  (0.0217) (0.0228) (0.0245) 

Daily soil moisture at route segment [% nFK], squared  1.000 1.000 1.000 

  (0.000137) (0.000146) (0.000155) 

Spring   1.829*** 1.700*** 

   (0.297) (0.273) 

Autumn   1.622* 1.502 

   (0.354) (0.327) 

Winter   0.811 0.753 

   (0.172) (0.158) 

Year=2014   0.788 0.804 

   (0.167) (0.172) 

Year=2015   1.044 1.008 

   (0.218) (0.211) 

Year=2016   1.053 1.061 

   (0.209) (0.209) 

Year=2017   0.430*** 0.427*** 

   (0.110) (0.108) 

Year=2018   0.815 0.839 

   (0.191) (0.195) 

Year=2019   0.887 0.855 

   (0.199) (0.190) 

Year=2020   0.745 0.728 

   (0.169) (0.164) 

Year=2021   0.970 0.992 

   (0.193) (0.200) 

Observations 31795515 31795515 31795515 31795515 

Log likelihood -4533.6 -4370.2 -4343.0 -4485.1 

Rho 0.519 0.535 0.536  

AIC 9077.1 8758.5 8726.0 9008.1 

Exponentiated coefficients (odds ratios); Standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001 
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