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Abstract. Extreme winds are by far the largest contributor to Norway’s insurance claims related to natural hazards. The
predictive skills of four different damage functions are assessed for Norway at the municipality and national levels on daily
and annual temporal scales using municipality level insurance data and the high-resolution Norwegian hindcast (NORA3)
wind speed data for the period 1985-2020. Special attention is given to extreme damaging events and occurrence probabilities
of wind speed induced damages. Because of the complex topography of Norway and the resulting high heterogeneity of
the population density, the wind speed is weighted with population. The largest per-capita losses and severe damages occur
most frequently in the western municipalities of Norway, more exposed to incoming storms from the North Atlantic, whilst
there are seldom any large losses further inland. There is no single damage function that outperforms others. However, a good
agreement between the observed and estimated losses at municipality and national levels for a combination of damage functions
suggests their usability in estimating severe damages associated with windstorms. Furthermore, the damage functions are able
to successfully reconstruct the geographical pattern of losses caused by extreme windstorms with a high degree of correlation.
From event occurrence probabilities, the present study devises a damage classifier that exhibits some skill at distinguishing
between daily damaging and non-damaging events at the municipality level. While large loss events are well captured, the
skewness and zero-inflation of the loss data greatly reduces the quality of both the damage functions and the classifier for

moderate and weak loss events.

1 Introduction

Wind-related damage claims account for 56% of Norway’s insurance payouts related to natural hazards from 1980 to 2017
and are by far the largest component of loss claims related to natural hazards (DSB Norway, 2019). They can affect all
sectors from forests to marine and housing infrastructures (Jensen et al., 2010; Gardiner et al., 2013). However, a detailed
investigation into the relationship between Norwegian windstorms and damage has so far not been conducted for Norway. The
comparison of different proposed storm damage models has only been conducted in a few countries due to a lack of long and
sufficiently homogeneous insurance claims data (Cole et al., 2010; Prahl et al., 2015). Determining the best storm-damage
model is important in order to make accurate predictions of future damages, whether it be in a few days (short-term forecast)

or in many years (climate change range). In this paper, we investigate the relations between windstorms and their associated



25

30

35

40

45

50

55

damage by analysing 36 years of daily insurance data on the municipality level and daily maximum wind speed data using a
set of storm-damage functions. Furthermore, we develop a probabilistic damage classifier that distinguishes between damaging
and non-damaging wind speeds to help improve early warning systems.

Establishing robust windstorm-damage relations may help predict storm damage risk in the weather forecasting context
(Merz et al., 2020), roughly estimate the storm impact directly after it occurred in order to better plan the emergency response
(Welker et al., 2021), and evaluate the change in risk on the longer term in conjunction with climate change. Moreover, under-
standing the monetary risk involved in extreme wind events is crucial from the insurer’s perspective to fix reasonable premiums
and estimate portfolio risk. Several methods in the literature assess the risk associated with extreme wind events across various
sectors such as agriculture, transport, and energy at varying spatial resolutions (Gliksman et al., 2023). Storm-damage functions
are one such method which describes the mathematical relation between the intensity of a natural hazard, here the wind speed,
and the monetary loss incurred due to the event. There are mainly two types of storm-damage functions: 1) the storm-based
approach, which links historical losses to wind speed information and 2) the hazard-based approach, which in addition makes
use of micro-scale information such as the vulnerability, exposure and value of the assets. However, as detailed information
about the damage is often proprietary, the most common approach, also used in the present study, is the storm-based approach
(Dorland et al., 1999; Klawa and Ulbrich, 2003; Prahl et al., 2012, 2015). These storm-damage functions can also be split into
deterministic and probabilistic types (Prahl et al., 2012). The deterministic damage functions do not estimate the uncertainty in
the wind speed-loss relation, whereas the probabilistic damage functions assume a statistical distribution for the model error.
To make the deterministic and probabilistic models comparable, estimates from deterministic models are treated as equivalent
to the mean of the estimates from the probabilistic models.

Storm-damage functions must be regionally fitted because they are highly dependent on local features. The number and
spatial extent of the damages caused by extreme wind strongly depend on the exposure level of assets (Cardona et al., 2012),
which is connected to demography and economy both changing over time due to a variety of reasons such as urbanisation,
higher infrastructure standards, economic growth, etc. Moreover, building types, building codes, differing insurance policies,
claims settlement practices can also influence the performance of storm-damage functions (Walker, 2011) especially if they are
not locally fitted. Norway has a complex topography with mountains and valleys and a rugged coastline with many fjords with
a major share of the population living along the coasts and in the valleys (Simensen et al., 2021). Therefore, the population
density is an important factor to take into account when establishing storm-damage functions (Donat et al., 2011a).

A number of studies have investigated storm damage and risk on residential structures and other insured losses, mainly
for Europe and more particularly Germany, using various damage functions and local information. Dorland et al. (1999)
suggested a deterministic damage function by which loss increases exponentially with wind speed such that a slight increase in
storm intensity can cause a significant increase in economic damage in the Netherlands and northwestern Europe. Meanwhile,

analysing annual insurance loss due to windstorms in Germany, Klawa and Ulbrich (2003) advocated a cubic relationship
between the deviation in wind speed from its 98th percentile and the loss. Donat et al. (2011b) estimated the losses by fittin
the Klawa and Ulbrich (2003) damage function at district level for Germany. Heneka and Ruck (2008) and Heneka and Hofherr

(2011) applied a probabilistic damage function for Germany, which incorporates extreme value theory in conjunction with a
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non-linear function. However, this probabilistic damage function requires both claim and loss ratios, which are not common
shared data and which we lack for Norway. To estimate the daily and annual losses at the district levels in Germany, Prahl
et al. (2012) proposed a power law-based probabilistic damage function where loss is proportional to a power of wind speed.
They found out that the exponents range between 8 and 12, thus highlighting the need to fit the functions locally. Welker et al.
(2016) simulated the spatial pattern of losses associated with historical windstorms that happened in Switzerland using the
asset amount and the vulnerability, the latter depending on the wind gust. The agreement between the simulated loss and the
observed insurance loss was shown to be reasonable but also case-dependent. They pointed to the uncertainty in the input data,
such as in the wind gust but also in the estimation of the assets and vulnerability. More recently, Koks et al. (2020) developed
an open-source hazard-based model that uses publicly available hazard, exposure and vulnerability data and the loss estimates
can be treated as a baseline for further research. Using three different methods, Held et al. (2013) found a steady increase in the
values associated with a 10-yr return loss by the end of the 21st century considering only the German private houses. Schwierz
et al. (2010) suggested that, with climate change and increased storm intensity, Norway can expect a 16% increase in annual
losses associated with windstorms. However, a recent study by Severino et al. (2023) indicated a significant decrease in winter
storm damage over Norway.

In the following section, we introduce the insurance loss data and NORA3 hindcast wind speed data along with the different
storm damage functions. In section 3, the climatology of the extreme winds and damages is presented in addition to the

modelling results. We summarise and discuss the results in section 4.

2 Data and methods
2.1 Insurance loss data

We use daily insurance loss data, composed of the daily accumulated number of claims and monetary loss, from the Norwegian
Natural Perils Pool for each of the 356 municipalities constituting Norway. The data span 36 years, from 1985 to 2020. The
loss data distinguish losses by natural event types, such as floods, landslides, storm surges and windstorms. The present study
focuses on the damages associated with windstorms.

Natural peril insurance is a compulsory part of the fire insurance held by almost all households in Norway (Sandberg et al.,
2020). By the Norwegian Natural Perils Pool act, all buildings and movable properties which are insured against fire damage
are also insured against natural disasters. All insurance companies underwriting fire insurance in Norway are obliged to become
members of the Norwegian Natural Perils Pool and archive their losses. The fraction of households having fire insurance has
stayed relatively constant over the period of interest; thus, the effect of varying market penetrations is small. In many previous
studies, loss ratio and claim ratio, which are dimensionless, are used to model storm damage relations (Huang et al., 2001;
Held et al., 2013; Prahl et al., 2015; Welker et al., 2016). However, Norwegian insurance does not include the total insured
value, which prevents us from using the loss and claim ratios in the present study.

For long time series of loss data, it is necessary to account for inflation. To adjust for the effect of inflation, the insurance

loss is modified using the Norwegian official consumer price index (CPI) at a fixed year (SSB Norway, 2023a). The base year
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for CPI in Norway is 2015, which we also use here. As an example, the relative difference of loss after inflation adjustment is
of +60% for the New Year Storm (1992) and +7% Dagmar (2011).

Changes in exposure is another key variable that determines the intensity of losses incurred. Many studies use population as
a proxy for exposure (see e.g., Simpson et al., 2014). Statistics Norway publishes yearly population data at municipality level
which goes back to 1951 (SSB Norway, 2023b). To address the change in exposure to a certain extent, we compute the loss per
person for each municipality by dividing the insurance loss data with the yearly population. Other factors, which may influence
exposure, such as changing building standards and wealth distribution, are not accounted for in the present study.

A few extreme events have caused the majority of the total damage associated with windstorms. The five largest events were
responsible for 4.3 bn. Norwegian Kroner (NOK) of damages (2015 values), which represents 36% of the total insurance loss
from 1985 to 2020. The top damaging events and their associated losses are given in Table S1. As expected from the more
intense cyclones reaching Norway in winter than in summer (Hoskins and Hodges, 2019), most extreme events occur between
November and April. The presence of such extreme events brings skewness in the loss distribution and the absence of losses on
most days of the year makes loss data zero-inflated (excess number of zeroes in data). The distribution skewness and the zero
inflation (Fig. S1) in loss data is challenging for conventional fitting methods, such as the least-squares or maximum likelihood.
Figure S1 highlights a record high number of claims in years 1994, 2015, and in a lesser extent 2011. This can be attributed to
the storm of 1994, the storm Dagmar in 2011 and the storms Nina and Ole in 2015 (Table S1).

2.2 The wind speed data from the NORA3 hindcast

The high-resolution hindcast NORA3 covers the period 1979-2021 (and is being extended). The spatial resolution of NORA3
is 3 kmx3 km, and surface variables are archived at hourly resolution. The non-hydrostatic, convection-permitting model
HARMONIE-AROME (Seity et al., 2011; Haakenstad et al., 2021; Haakenstad and Breivik, 2022) ingests surface observations
through a simple surface analysis scheme and blends this with initial fields from ERAS (Hersbach et al., 2020). Boundary
conditions are also taken from ERAS. The data is publicly available on the website https://thredds.met.no/thredds/catalog/
nora3/catalog.html (last access 01 October 2023). The domain covers the North Sea, the Norwegian Sea, the Barents Sea,
Svalbard and is bounded by Finland to the east. The hindcast consists in a sequence of 9-h forecasts initialised at 00, 06, 12
and 18 UTC every day from 1985 to 2020, which were the 36 years available at the time of our analysis. Aggregating the 4-9
h lead times provides an hourly dataset from which we extract the daily maximum wind speed and gust. NORA3 only slightly
underestimates the maximum observed wind speed (Haakenstad et al., 2021; Solbrekke et al., 2021) and its interquartile range
for the 10 strongest windstorms that affected Norway between 2009 and 2018 (Haakenstad et al., 2021), outperforming both the
earlier hydrostatic 10-km Norwegian Hindcast Archive (NORA10, Reistad et al., 2011) as well as the recent ERAS reanalysis.

2.3 Municipality level wind speeds

As the insurance loss is at the municipality level, we must estimate a municipality-relevant wind speed to apply the storm-
damage functions. A simple approach is to average the daily maximum wind speed over all grid points contained in a given

municipality. However, to compensate for the complex topography and disparate demography of Norway, we calculate a
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population-weighted wind speed to remove extreme wind events occurring over mountains, lakes, and other population-sparse
regions. We make use of the gridded population data at 1 kmx 1 km for Norway for the period 2001 to 2019 (https://www.ssb.no/natur-
og-miljo/geodata; Strand and Bloch (2009)). As it does not cover the whole period of the study, we compute the average of
population in each grid cell over the available period (2001-2019). Then this averaged population is remapped on the same

130 3 kmx3 km grid as the NORA3 data. To achieve this, we assign each population grid cell to the nearest NORA3 grid cell.
If more than one non-zero population grid cell corresponds to a NORA3 cell, we assign the sum of the population grid cells
to the NORA3 grid cell. Finally, in order to have the wind speed at the municipality level, as is the insurance data, we take
the population-weighted average of the daily maximum wind speed in each municipality. We repeat the process for the daily

maximum wind gusts.
135 2.4 Storm-loss models

Storm-damage functions connect the intensity of a storm event to the monetary damage caused by the storm. With the available
historical data of insurance loss and wind speed, we apply the storm-based approach to fit several storm-damage functions.
The storm-damage functions discussed here are macroscale statistical models calibrated at the municipality level. Our key
objective is to compare and assess the quality of various proposed storm-damage functions applied to our data. We employ
140 three damage functions: the deterministic exponential model (Dorland et al., 1999; Huang et al., 2001; Murnane and Elsner,
2012), the deterministic model of Klawa and Ulbrich (2003) and the probabilistic function by Prahl et al. (2012). In addition,
we suggest a modified version of the Prahl model to better simulate the very steep damage curves found in some Norwegian
municipalities. All damage models are fitted to loss per person to ensure uniformity among the storm damage approaches and
easier inter-comparison of models and parameters. Finally, we devise a simple ensemble mean of the estimates from the four
145 damage functions listed above, to check if it performs better than any of the four individual functions. In the following, we
describe in detail the damage functions applied. From now on, L refers to the insurance loss, v to the weighted wind speeds
and d to the damage function.
To fit and assess the skill of the storm damage models, we split the data into a testing and a training set. We assign the years
from 1985-1989 and 2010-2012 to the testing part. The rest of the data from 1990-2009 and 2013-2020 is the training data. A
150 necessary condition for splitting the data is that training and testing data should have identical distributions. We split the data
so that both testing and training data include extreme storm events, the storm Dagmar in the testing data, and the New Year
storm in training data.
For robust storm-damage relations, extreme care should be taken while calibrating the damage functions. To make sure that
the small losses, which are more frequent, are not better fitted than the high losses which are much less frequent, we bin the loss
155 data with respect to wind speeds to reduce the weight of low loss events. Note that we do not perform binning for the Klawa
damage function as the model is only suitable for high loss events and inherently decreases the number of zero and low losses
with the use of a high wind speed threshold. More about binning in individual models is explained in the following sections.
As many previous studies before (Donat et al., 2011b; Prahl et al., 2012, 2015; Pardowitz et al., 2016), we choose to fit the

storm-damage functions at the municipality level. Despite the issue with a larger number of zero or low losses, this method
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Figure 1. Shapes of the damage functions for an arbitrary municipality for (a) the exponential damage function where the green triangle

denotes the loss corresponding to the 95th percentile of the wind speed and the red dotted line represents the loss estimates below the 95th

ercentile of the wind speed, (b) the cubic excess over threshold damage function and the red dotted line represents the loss estimates below
the 98th percentile of the wind speed, (c) the magnitude term in the probabilistic damage function by Prahl, and (d) the magnitude term in

the modified Prahl probabilistic damage function, (e) example of sigmoid function that estimates the probability of an event occurrence for
an arbitrary municipality. The estimated parameters in this municipality are: 7=0.99, v1=0.99 and ~y2=13.75. Note that the y-axis for (a)-(d)

is on a logarithmic scale and the zero loss on the y-axis is only for reference but the zero losses are not plotted/displayed.

is more meaningful and has the potential to be more accurate than doing fits using a country-averaged population-weighted
wind speed. For example, the number of loss days when the population weighted wind speed exceeds its 98th percentile is high
along the Norwegian coast and low for further inland regions (Fig. S2a). Moreover, there are many local factors influencing the
damage, such as building rules, building types, that promote local fits of the storm-damage functions. As a test, we pooled all
municipalities together to perform the fits, but it didn’t show any improvement in the estimation of both municipal and national

level losses (Fig. S3).
2.4.1 Exponential model

The exponential damage function assumes that loss increases exponentially with increasing wind speed (Dorland et al., 1999).

It is a simple damage function with only two parameters to be estimated and is formulated as,

d(v) = ex=9 (1)
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where « is the scale parameter and j is the location parameter. The loss is estimated from the damage function as L(v) =
d(v). The exponential model, by its shape, can be extended to ewerlow wind speeds that may cause low to medium size
losses. To take advantage of this, we choose the 95th percentile wind-speed-above-which-82%-of osses-are-recorded-of the
population weighted wind speed in each municipality as the threshold for the exponential model above which the aggregated

losses represent 82% of the national losses that occurred in the training period. Such a threshold ensures that the model accounts
for low to medium losses while discarding the very small losses in the lower loss spectrum. The associated loss values are split

into ten equally spaced bins with respect to the wind speeds and with a pre-condition that at least five loss days belong to each
bin, as in Prahl etal. (2015). Note that Fig. 1a only displays 6 bins because the 4 other bins do not include the minimum of 5 loss
days required in each bin. The binned losses are log-transformed, and with the assumption of normality, least square method
are employed to estimate the model parameters. Figure 1a shows the shape of the damage function with the red line. Although

we only use the wind speed bins above the 95th percentile of the wind speed to calculate the fit, the obtained exponential model
can also be applied to the wind speeds below the 95th percentile and we can get loss estimates for those wind speeds as well
as shown in Fig. 1a (see the red dashed line).

2.4.2 Cubic-excess over threshold model

The damage function proposed by Klawa and Ulbrich (2003) suggests that the loss increases cubically for wind speeds be-
yond a certain threshold. The Klawa model was originally developed as a loss index for German-districts-and-Germany to
estimate annual national losses using the German insurance data. Later, Pinto-et-al(2012)-calibrated-the-damage funetionfor
the-using the same insurance data, the damage function was calibrated by Donat et al. (2011b) for the German districts and
by Pinto et al. (2012) for the affected areas of individual storm eventsusing-the-same-insurance-data. In the present study, we

chose to calibrate the Klawa damage damage function with insurance loss at municipality level similar to Prahl et al. (2015)

who applied it at district level on daily German insurance losses. This damage function is-takes the third power of wind speeds

above the 98th percentile of the wind speed determined using the whole study period (1980-2020) scaled by the same 98th

percentile of the wind speed:

d(v) = <””98>3 @)

V9g
The loss is obtained by linear regressing the damage function:

L(v) = Bo + prd(v) 3)

The intercept term [y in the fitted linear regression can be interpreted as the base loss, which is the loss estimate for all wind
speeds below the 98th percentile. However, using this loss offset for all wind speeds below the 98th percentile doesn’t allow to
address the randomness in the lower loss spectrum. Figure 1b shows the model fit for this damage function (see the red solid
and dashed lines). 3; is the slope of the line. The two 3 parameters are obtained using a least-squares regression method.

Several studies across Europe used the 98th percentile wind speed as a threshold for the Klawa damage function (Pinto

et al., 2012; Karremann et al., 2014a, b). Ideally, the threshold for damaging wind should be locally chosen using statistically-
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determined estimates, but for simplicity we have kept the often used 98th percentile. In Norway, 72% of the insured losses
are caused by wind speed above the 98th percentile. As the Klawa model is not designed for low loss cases, this is a fairly
reasonable simplification. Note that if grid point wind speeds are chosen, this choice of percentile can be problematic for places
with weak winds, such as southeastern Norway (see Fig. S4a).

To alleviate this, Karremann et al. (2014b) and Little et al. (2023) suggested a 9 m/s fixed threshold for wind speed causing
damage in Norway. Our studyuses_However, in our study, we do not need this 9 m/s threshold as we use the population-
weighted averaged winds-wind speeds, reducing the relative importance of grid cells with very low wind speeds and therefore
avoiding the problem of very low 98th percentile. Note that even wind speeds above the 98th percentile can be associated with
no loss. Figure S2a shows that this often happens in southern inland regions of Norway, where it contributes to the uncertainty

in the loss estimation.

Here we weight the wind speeds with population and aggregate it to the municipality-level resolution such that it corresponds
to the loss data resolution. However, other studies, such as Pinto et al. (2007), weight the loss index and ageregate it to the
district or national resolutions. As discussed later in the paper, these two methods do not give very different results.

2.4.3 Probabilistic damage function by Prahl

The power law based probabilistic damage function by Prahl et al. (2012) consists of a two-step fitting procedure: the first step
estimating the occurrence probability of damage for a given wind speed and the second step estimating the loss magnitude. For
both steps, we use wind speed bins and each bin must have at least five loss days, as (Prahl et al., 2015) did. We then fit the
following sigmoid function to the binned wind speeds.

—q__ 0
p(y) =1 1+ en(r—2) “4)

where the parameter 7; determines the steepness of the curve, 7, is the wind speed threshold beyond which the curve gets
steeper and 7y determines the base probability of losses. Figure 1e shows the fit of the probability term (Eq. 4) of the damage
function (see the red line). In addition, for a given wind speed v, the magnitude of the loss M for non-zero losses is estimated
through a power law-based function (Fig. 1c) and is related to the wind speed as follows:
v\ %t

M) =00+ (£) 8
where o2 scales the wind speed, o is the shape parameter and oy is the offset loss. The magnitude term is fitted on losses
binned with respect to wind speeds.

The probability term makes use of the whole loss range while the magnitude term only uses non-zero losses. The probability
of damage and the magnitude of loss are treated as independent variables. The damage function is then the product of the

probability and the magnitude of loss:

d(v) =p(v)M(v) (6)
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The damage function includes the assumption that the observed losses follow a log-normal distribution (M5 ~ LN(u,0),

where M, is the observed non-zero loss). Therefore, the expected loss for a given wind speed is
L=p(v)E(M(v)) ()

The probabilistic damage function by Prahl has a complex fitting procedure with eight parameters to be estimated. We refer the
readers to the work by Prahl et al. (2015) to learn more about the parameters and fitting procedures of the model. The location
(p) and scale parameters (o) of the log-normal distribution are estimated using the maximum likelihood method, and the other

parameters of the damage function are estimated with the least squares method.
2.4.4 Modified probabilistic damage function by Prahl

The rationale behind Prahl’s damage function is that the loss increases steeply for extreme wind events (Fig. 1c). However,
based on inspection of the quality of the fitted curves for very high loss events, we identified a need for an even steeper damage
function for certain municipalities in Norway. As the deterministic exponential damage function increases sharply and shows
good fits for some of the municipalities, we propose a modified version of the damage function by Prahl that combines an
exponential fit with the probabilistic aspect of the Prahl model. The magnitude term in Eq. (5) of the Prahl damage function is
modified as follows:
, v\

M(v) = oyexp (0,2) (8)
The rest of the fitting procedure and assumptions are the same as for the Prahl damage function. The shape of the magnitude

term in Eq. (8) is displayed in Fig. 1d with the red line.
2.4.5 Ensemble mean method

The four damage functions presented above have different advantages and drawbacks. The ensemble mean is calculated as the
arithmetic mean of the loss estimates of the four functions, in the hope to improve the overall accuracy, as proven for ensembles

of numerical weather/climate simulations.
2.5 Damage classifier

A damage classifier labels a given wind speed as damaging or not and adds useful information for event preparedness. The
probabilistic damage occurrence probability function in Eq. (4) gives us the opportunity to define a classifier that distinguishes
between a damaging and a non-damaging event. To build a robust classifier, it is necessary to define the probability threshold
that separates an event from a non-event. With non-event days outnumbering the event days (class imbalance), it is not straight-
forward to define the probability threshold as 0.5 or to evaluate the model performance for various probability thresholds on
the basis of traditional receiver operating characteristic (ROC) curves and the corresponding area under the curves (AUC). To

circumvent the problem of class imbalance in identifying the best probability threshold, we employ the precision-recall curve
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Figure 2. The precision-recall curve for an arbitrary municipality is shown with the orange line, the dashed blue line is the model with no
skill, and the black dot corresponds to the point where the F-Score is maximum. In this example, the highest F-score of 0.41 is achieved at

the probability threshold of 0.30. The precision and recall are shown in brackets.

and the associated F-scores (cf. section 2.6, Sokolova and Lapalme (2009)). Figure 2 shows the precision-recall curve for an
arbitrary municipality. The split point of damage classifier corresponds to the probability threshold with the highest F-score

from the precision-recall curve.
2.6 Model evaluation metrics

We evaluate the models’ performance on the training and testing parts at the municipality level using the mean absolute error
(MAE) and coefficient of variation (CV). In addition, the predictive skill of the probabilistic function in the Prahl damage
function is evaluated using accuracy, recall, precision and F-scores.

As its name indicates, MAE is the mean of absolute differences between the observations and the model fits and is formulated
as:

RS X

MAE =~ ; lys = il ©)
where y; is observed loss and y; is the estimated loss. A high MAE indicates a poor skill of the model. Another evaluation

metric used here is CV based on the root mean square error defined by Prahl et al. (2015) as follows,
1
V= 12n:( ) (10)
=—-\| - Yi —Yi
y\"i=
where ¥ is the mean of the observed loss. High values of CV indicate large loss variability compared to the mean loss.

To quantify the classification skill of the damage classifier, we employ the precision, recall, accuracy and F-scores, which

are defined as follows:

— Precision: The proportion of correctly classified positive samples to the total number of samples classified as positive.

10
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— Recall: The proportion of correctly classified positive samples to the total number of positive samples.
— Accuracy: The proportion of correctly classified samples to the total number of samples.

— F-Score: Theoretically, the F-score is defined as the harmonic mean of precision and recall. It indicates the balance
between precision and recall. F-score ranges between 0 and 1 and the higher the F-score the better. We take advantage

of the F-scores to define the probability threshold for the damage classifier.

The binary damage classifier is optimized using the precision-recall curve and associated F-scores. The precision-recall curve
is obtained by calculating the precision and recall for all potential probability thresholds obtained from the observed occurrence
probabilities. The F-scores are computed for all points of the precision-recall curve (i.e. all probability thresholds) and evaluate
the ability of each probability threshold to minimize false positives and capture true positives simultaneously. The probability

threshold at which the F-score is maximum is chosen as the split point for the event classifier.

The damage functions are sensitive to extreme loss observations and the presence of few extreme events can heavily alter the
damage functions’ shape. Therefore, different training data sets may result in differing damage function fits. Cross-validation is
an effective method to estimate the uncertainties involved in the choice of the testing and training data. We perform a seven fold
cross-validation by splitting data into seven with each set of testing data having five consecutive years of data. So, in the first
fold the testing period is 1985-1989 and the training period is 1990-2020, in the second fold the testing period is 1990-1994
and the remaining years are in the training dataset, and so on.

3 Results

In this section, we analyse the spatial and temporal spread-distribution of the insurance loss and compare the population
weighted daily maximum wind speed, population weighted daily maximum wind gust and the daily maximum wind speed at
the municipality level. We then compare the different damage functions along with the modified Prahl and ensemble mean
models. However, considering the high degree of detail involved, we emphasize the following aspects, (1) daily losses at the
municipality level, (2) top three extreme damaging wind events during the study period, (3) losses aggregated to the national
level and (4) the probability function in Prahl et al. (2012) as a classifier. Furthermore, we discuss the pitfalls of the loss data,

wind data and storm damage functions.
3.1 Overview of the windstorms losses

The municipalities on the west coast of Norway experience higher losses per person whereas there is hardly any loss further
inland in southeastern Norway (Fig. S5a). Skewness and zero inflation are especially high for some municipalities in south-
eastern Norway where wind-related losses are rare. This data-seareityrarity of loss days greatly limits the performance of the
damage functions.

The ten most damaging windstorms, in terms of cost, that reached Norway during the study period occurred between October

and March and mainly affected central and southwestern Norway and more marginally Northern Norway (Table S1). An
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example of such a damaging storm is Dagmar in 2011 that affected western Norway causing more than one billion NOK of
losses (Fig. S5b). The insurance losses caused by the ten largest events are given in Table S1 and represent a total of 5347
million NOK, which is 44% of the total losses due to windstorms between 1985 and 2020.

We find no significant temporal trends in the insurance losses caused by extreme winds. Trends in the losses time series,
should arise from inflation or changes in wealth distribution. However, the effect of inflation is nullified by adjusting the
insurance losses with the consumer price index and a change in wealth distribution is overlooked by the skewness in the losses.
Therefore, the Mann-Kendall trend test we conducted on the annual national losses (Fig. S6) fails to detect any significant trend
in losses.

The choice of wind data has the potential to influence the performance of the damage functions (Prahl et al., 2015). Also, the
98th percentile wind speed is widely regarded as critical from a damage perspective (Klawa and Ulbrich, 2003; Schwierz et al.,
2010; Donat et al., 2011a). Figure S4a shows that the west coast and Northern Norway experience high magnitude wind events
in comparison with southeastern municipalities. The 98th percentile of the population-weighted daily maximum wind speed
exhibits a high correlation with the 98th percentile of the population-weighted daily wind gust (0.91) but a lower correlation
with the 98th percentile of the unweighted daily maximum wind speed (0.61) (Fig. S4b). This difference can be attributed to
the added information of population as weights for wind speed and emphasizes the importance of accounting for demography.

From the damage perspective, extreme damaging events are of the topmost concern. Thelosses-above-the-99-7th-percentile

each-munieipatityFor each municipality, we define the losses higher than the 99.7th percentile as the extreme loss class and
losses lying between the 98th and 99.7th percentiles as the high loss class. The aggregated municipality losses in the extreme

loss class account for 85% of the total national loss, while the high loss class comprises 8% of tesses—The-the total national loss.
In each municipality, the extreme loss class represents-includes approximately 31 and-days in the training data and 9 extreme
oss-daysin-each-municipality-in-the-traininsand-testing-data; respeetivelydays in the testing data (occurring on average around

once a year). Segregation of losses into different classes helps to assess the performance of the damage functions for events of

different severity.

By applying the different damage functionsand-caleulating-the-ensemble-means, we get daily fits of insurance loss for 10227
days in the training dataset and predictions for 2922 days in the test dataset for every municipality in Norway.

3.2 Municipality level loss estimations

To demonstrate the advantage of weighting wind speed with population, damage functions were also fitted with the original
wind speed as the predictor variable. The prediction error on the test data shows that the population weighted wind speed has
lower CV in 67% of municipalities (see also Fig. S4c in supplement for the spatial distribution of where the original wind
speed data performs better). From these results, we conclude that weighting wind speeds with population tends to improve the
predictive performance of the damage functions. Therefore, from now on, we only use the population-weighted wind speeds

when fitting the damage functions.
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The deterministic damage models, that are the Klawa and exponential damage functions, perform best in nearly two thirds
of the municipalities across all losses classes in terms of MAE. Table 1 shows the performance of the four different damage
functions defined in the methods section and of the ensemble mean for different loss classes. The deterministic models exhibit
the smallest median MAE across all municipalities. Using the CV as the evaluation metric gives similar models performances
as when using the MAE. The ensemble mean method does not massively outperform the competing models, but tends to give
better results than the two Prahl’s damage functions (Table 1). A map of the best model for each municipality exhibits a high
heterogeneity with no obvious spatial pattern, that is no model performing best in certain regions (Fig. S2b). Overall, our results
suggest that the Klawa storm-damage function is the best model for a large share of municipalities (37.6%).

The spatial distribution of MAE is not uniform, but can be linked to the magnitude of the variance of losses, with municipal-
ities with large loss variance having the largest MAEs (Fig. 3). In addition, the spatially heterogeneous distribution of losses
(Fig. S5a) gives rise to spatially heterogeneous errors (Fig. 3b). The CV, which shows the extent of variability in losses in
relation to the mean losses, exhibits a relatively heterogenous structure (Fig. 3c). On the one hand, there is tendency for high
CV in some inland municipalities of southeastern Norway, where the rarity of windstorms could be part of the reason. On the
other hand, the northwest part of southern Norway also exhibits high CV although windstorms are more frequent there (Fig.
3b).

Pooling all municipality-level population-weighted wind speeds together to perform the storm-damage functions fits does
not give better municipality-level losses estimations, as expected because of local effects, such as e.g. different population
density and vulnerability. The most skilled model in each municipality is associated with a larger MAE than when the fit is
performed at municipality level (see Fig. S3a). This reduction of skill also occurs for the national-level losses (Fig. S3b).

Unlike previous studies (e.g., Pinto et al., 2007), which weighted the spatially aggregated loss index devised from cubic

exceedance of wind speed above a sufficiently high threshold (computed as in eq. 2), we here weight the wind speed with
population first and then aggregate it to a coarser resolution. We compare the Klawa damage function as in eq. 2 obtained
from the proposed methodology with the alternative methodology employed in Pinto et al. (2007). We found both the damage
estimates and its error to be strongly correlated (Fig. S7a). An independent sample t-test failed to conclude for any significant
differences between the mean of MAEs from both methodologies. A detailed comparison can be found in the supplemental
material.

The seven fold cross-validation reveals that the parameters in the storm-damage functions obtained during the fitting step

depend on the choice of the training dataset. Moreover, the model evaluation metrics are highly dependent on the choice of the
training dataset (see the range in Fig. S8 a,b,d,e,g,h). However, independent of the training dataset, the Klawa and exponential

models have the best skill in most of the municipalities (as also shown in Table 1) across the different loss classes (see Fig. S8

The fits of the four damage functions and of the probability term largely vary not only between models but also from
modified Prahl damage functions with very steep lines for some municipalities and much flatter lines for others. Figure S9b
highlights that the Klawa damage function does not increase as steeply as the other models and the variability among the
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municipalities is smaller. Finally, Fig. S9e also shows that the sigmoids depicting the probability of damage occurrence have
different shapes in different municipalities with some curves not reaching a loss probability of 1 within the wind speed range

represented. Note that the fit can lead to negative probabilities, that we set to O afterwards.

Loss class Damage function Number of municipalites MAE CV

Modified Prahl 32 31 245
Prahl 46 28 238
All loss
Klawa 134 22 212
days
Exponential 91 24 218
Ensemble mean 53 26 226
Modified Prahl 16 5 184
Prahl 25 5 176
High loss
Klawa 141 4 156
class
Exponential 99 4 134
Ensemble mean 39 5 161
Modified Prahl 53 73 153
Prahl 65 67 147
Extreme
Klawa 121 49 132
loss class
Exponential 75 55 143
Ensemble mean 42 66 143

Table 1. Number of municipalities for which a model performs the best, that is has the smallest MAE as a function of the loss class, as defined
in the text. The medians of the MAE and CV on all 356 municipalities are also given. Note that the results are based on the performances on

the unseen testing data. Also, some municipalities are not evaluated in the high loss class due to lack of data.

3.3 Extreme damaging events

As extremely damaging windstorm events are of foremost importance, for example from the insurers’ point of view, the ability
of the damage functions to reproduce the damages associated with these events has to be assessed. To compare the estimated
and observed losses caused by major storm events, we sum the loss within the date range as given by the Norwegian Natural
Perils Pool in Table S1. Using only the model exhibiting the best performance, on the whole testing period, in each municipality,
we manage to reproduce the spatial pattern of the damages for the three most damaging wind storm events (Fig. 4, see Fig. S7
S10 for estimates from individual models for the three most damaging wind storm events and Table S2 for their corresponding
correlations. Also, Fig. S8-S11 shows spatial patterns of seven other damaging events as given in Table S1.). Statistically
significant spatial correlations between the observed and estimated losses reaffirm the suitability of the damage functions to

estimate the economic impacts of extreme damaging events.

14



390

395

400

405

2500
2000
[V}
1%
5 1500
= MAE cv
; <6 <64
2 1000 6-9 64-75
S 9-15 75-89
15-28 89-109
500 o 2868 e 109130
A ® 68152 ® 130-160
o Correlation: .87 ® 152-267 ® 160-182
0 200 400 600 800 ° 267-406 o 182207
® 406< ® 207<
Mean absolute error
(a) (b) ()

Figure 3. (a) Scatter plot of the loss variance against the smallest MAE for losses above the 99.7th percentile in the testing data where
each dot represents a municipality. The orange line represents the linear trend obtained using a least squares regression with the correlation
indicated in the bottom right corner. (b) Map of the smallest MAE among the five models in the extreme loss class fitted on the test data and
(c) the corresponding coefficient of variation of the root mean square error. In (b) and (c), the legends have non-linear class boundaries at the

Sth, 10th, 20th, 40th, 60th, 80th, 90th and 95th percentiles. Note that the results are based on the performances on the unseen testing data.

In the extreme loss class, the probabilistic damage functions and the Klawa damage function perform best in a third of the
municipalities each. The Klawa damage function also shows the smallest median error in the extreme loss class which is in

agreement with previous comparison studies on storm damage functions over Germany (Prahl et al., 2015).
3.4 National level loss

Aggregating the municipality level loss observations and estimates yields a time series of daily national loss for each model
and we find an overestimation of low-magnitude losses as all damage functions are calibrated in favour of extreme losses
(Fig. 5). Moreover, the models’ estimates capture well the magnitude and temporal evolution of the observed annual losses
at the national level, with a Spearman rank correlation of 0.84 (Fig. 6). Figure 6 also reveals that the losses in the extreme
loss class are slightly overestimated in the training period in years where extreme storm events have occurred while there is an
underestimation of loss in 2011 (part of testing data) when storm Dagmar occurred. The aggregated annual national level losses
for individual models are shown in Fig. $9-S12 and Fig. S10-Figure-S9-S13. Figure S12 shows that the deterministic models
are well able to estimate losses in the extreme loss class at the national level. The probabilistic models overestimates the losses
in certain municipalities by a large margin reducing the models’ ability to estimate national level losses (Fig. S+6S13). While
fitting the probabilistic damage functions, there are not enough extreme loss observations in certain municipalities, which
prevents us from requiring a minimum number of loss observations in each bin. This is one of the reasons for the very large

differences between the observed and estimated losses for the probabilistic models.
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Figure 4. Spatial patterns of observed and estimated losses for the three most damaging events, where (a), (c) and (e) display the observed
losses of the New Year storm, storm Dagmar and storm Nina, and (b), (d) and (f) are their respective estimates from the closest model to the
observed loss in the testing period. The class boundaries of the colour bar are the 20th, 40th, 60th, 80th, 85th, 90th and 95th percentiles of
the observed losses of their respective events. The spatial Spearman rank correlation between observed and estimated losses of the New Year

storm, storm Dagmar and storm Nina are 0.67, 0.58 and 0.62 respectively. For each storm, we sum all the loss days as given in Table S1.
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Figure 5. Observed and estimated daily losses (NOK) on log-log scale at the national level. Panels (a), (b), (c), (d) and (e) correspond to the
ensemble mean method, the Klawa damage function, the exponential damage function, the Prahl damage function and the modified Prahl

damage function, respectively. The dashed blue lines represent the 1:1 line.

3.5 Probability of damage occurrence

The damage classifier, devised here from the probability term in the Prahl’s function (see section 2.6), demonstrates some skill
at predicting the most extreme events, but struggles for the weaker events. It correctly predicts the top five extreme events (Ta-
ble S3) for over 70% of the municipalities. Even though we try to address the excess number of zeroes with the precision-recall

410 curve, the classifier was only able to detect 20-40% of the actual damaging events in most municipalities (see the number of
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Figure 6. Annually-aggregated national losses using only the loss days in the extreme loss class from the insurance data (red line) along with
the annual national loss estimates (blue line), which are the sum of each municipality’s best-performing-model estimate (see also Table 1).

Note that the y-axis is logarithmic and the shaded region represents the testing period.
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Figure 7. Distributions of (a) the accuracy of the damage classifier based on the wind speed 98th percentile (median: 18%) and of (b) the
accuracy of the proposed damage classifier (section 2.5) devised from the Prahl damage function (median: 68%) for wind speeds above the

98th percentile, over all municipalities.

municipalities in the [0.2-0.4] interval in Fig. SHaS14a) and zero events in around 15% of the municipalities (~ 50 munici-
palities for the null true positive rate in Fig. SHaS14a). Moreover, the false positive rate is small (< 4%) in all municipalities
(Fig. SHbHS14b). Because of the noisy lower loss regime, the calculated probability thresholds are low (Fig. S+2515) for most
municipalities with values between 0.02 and 0.4 (median of 0.23, Fig. S$+2aS15a). Only a few municipalities exhibit probability
thresholds above 0.4, especially in southeastern Norway where damaging wind events are rare (Fig. S12bS15b).

Although its skills are relatively poor, the damage classifier defined from event occurrence probabilities clearly outperforms
a classifier that solely relies on wind speed. To demonstrate this, we define a damage classifier based on wind speed thresholds
in which all wind speeds above the 98th percentile are labelled as damaging (as is done in the Klawa model). A comparison
between these two classifiers shows far higher accuracy for the classifier using the probability threshold (Fig. 7b) than for the

classifier using the wind speed classifier threshold (Fig. 7a).
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4 Conclusions

Windstorms are the natural hazard that makes up more than half of the monetary losses in Norway. The capability of four
storm damage functions and their mean to reproduce the monetary losses associated with damaging wind events is evaluated
for the complex topography and demography of Norway. The models’ ability to reproduce spatial loss patterns of extreme
loss events with a high degree of accuracy confirms the utility of both deterministic and probabilistic damage functions in
estimating extreme loss events. However, the relatively poor performance of the damage/no-damage classifier points towards
the difficulty of developing an early warning system that encompasses also small loss events. Our results confirm the importance
of weighting wind speed with population, of locally fitting the storm-damage functions and of using various damage functions
to best estimate the windstorms losses.

The deterministic Klawa model performs best in estimating extreme losses and this result is consistent with previous studies,
such as Prahl et al. (2015). In our study, the Klawa model also exhibits the smallest error in the entire loss range. But, the Klawa
model’s inability to account for losses associated with wind speed below the 98th percentile greatly limits its applicability in
the lower loss range. The Prahl damage functions -have the ability to model the whole loss range and show the smallest error
in a third of the municipalities. The models’ performances suggest that relying on one single damage model may not be the best
strategy if all the municipalities in Norway are to be modelled. The-Due to the high spread in the fits of damage functions, the
ensemble mean method mostly fails to outperform the individual models. Although the damage/no-damage classifier does very
well at predicting extreme damaging events, more research is needed to propose a well-functioning damage classifier across

all loss ranges.

Wind speed is the most common variable used to estimate storm damages. A drawback of this approach is that the same
wind speed at the municipality level resolution may cause small damages in some cases or no damages in most cases. Such
inconsistencies occur mainly due to extremely local high wind gusts and incorrect reporting of damages. As a consequence, the
lower end of the wind speed-damage relations becomes noisy, thus making it very difficult to model. To check how the wind
gust from NORA3 compares to the wind speed, we performed the same population weighting exercise with daily maximum
wind gusts and found a high correlation (0.91) in the 98th percentiles calculated from wind speeds and wind gusts (Fig. S4b).
With insurance data being at a coarser resolution than the wind gusts, which are very local (a few hundred metres), it is
difficult to get meaningful wind gust values at municipality level because the impact of high values will be weakened by the
population-weighted averaging step.

Due to the unavailability of the gridded population data for the earlier part (1985-1999) of our study period, we had to use
a constant spatial distribution of the population to weight the wind speed at every grid point, Therefore, we cannot take into
account the spatial change in population density, such as the spatial expansion of cities with time. This is a source of uncertainty.
in our storm-damage fits.

High quality data on loss and wind speed is necessary for the calibration of damage functions. Long time series of loss
data are desired to reduce uncertainties and increase accuracy of model fitting and predictions. However, loss information as
used in this study is rarely available. In such cases, a general approach is to approximate the losses using population of the
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455 respective regions and then quantify the impact of windstorms (Donat et al., 2011a). In addition, there are open source climate
risk assessment models such as CLIMADA (Aznar-Siguan and Bresch, 2019), which can be coupled with loss data for damage

There are several limitations to the damage functions including the inability of the models to account for the duration of the

events and their tuning to model extreme losses at the expense of the low losses. Furthermore, the randomness of losses towards

460 the lower loss spectrum diminishes the damage classifier’s predictive skill. There are also certain pitfalls in the insurance data,
such as incorrect reporting of time, location and type of claims. Also, the slight underestimation of maximum wind speeds in
NORA3 may affect the shape of the damage curves. A direct comparison between other studies that employ damage functions

is not possible because the unit of loss in this study is NOK per person while most other studies use the loss ratio (insured

loss/total value of the insured assets) instead of the actual insured loss.

465 Applications of damage functions can range from impact-based forecasting of damage, to damage assessment right after
an event, as well as assessment of future losses in the context of climate change with an ensemble of wind-damage relations

roviding a measure of the uncertainty in the monetary loss amount. Previous studies suggest that with climate change the inten-
sity of future windstorms may increase {see;e-g-Pries ; see, e.g., Priestley and Catto, 2022; Michel and Sorteber.

. It would be worthwhile to assess the future changes in windstorm-induced losses using the damage functions discussed here
470 and future wind speed projections. Impact-based forecasting by which risks associated with a natural hazard are predicted on
the short term is gaining more popularity for climate risk management (Taylor et al., 2018; Zhang et al., 2019). The perfor-
mance of these damage models, especially on regional level, suggests their utility for impact-based forecasting. However, to
use trained storm-damage models on new data, one has to make sure that the distributions of the wind speed in the training

dataset and the testing dataset are identical. To ensure this, statistical adjustments methods may be required. For forecasting

475 purposes, an ideal starting point would be to apply a damage classifier to distinguish between damaging and non-damagin
winds, as part of an early warning system, followed by a prediction of losses using a variety of damage functions. Also, from

the risk modeling perspective, coupling the damage functions with the asset exposure, i.e. information on infrastructures in

addition to the population density, is a possible future direction.
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