
Reply to referee 1 
Assessment of wind-damage relations for Norway using 36 years of daily insurance data 

 

We thank the reviewer for reading our manuscript and giving thoughtful comments and 

suggestions. A detailed response to all comments is found below in blue. The lines numbers 

refer to the non-tracked version of the revised manuscript. 

The authors assess the performance of different storm damage functions, that model the 

relationship between wind speeds and insured losses, for Norway. They make use of district-

level insurance loss data from Norway, that span the time period 1985 to 2020, combined 

with regional reanalysis/hindcasts of wind speeds. The study nicely assesses the relative 

benefits of the different (previously developed) storm loss models. 

The manuscript is overall very well written and provides a very clear overview of the topic, 

and insightful explanations and discussions. I only have a few minor comments for the authors 

to take into account before publication, and congratulate on this nice piece of work. 

Comment 1 

Line 59/60: Also the Donat et al 2011b study (already cited in the manuscript) estimated the 

losses at district level in Germany, regionally adjusting the loss function by Klawa&Ulbrich 

Thanks for bringing this to our attention. We have added this reference in line 57 of the revised 

manuscript. 

Donat et al. (2011b) estimated the losses by fitting the Klawa and Ulbrich (2003) damage 

function at district level for Germany. 

Comment 2 

Line 114: maybe specify that these hindcasts are “retrospective” forecasts, to avoid any 

ambiguity 

There does not seem to be a very clear separation between a hindcast or a retrospective 

(reforecast) in the literature. Both usually uses a reanalysis or a state-of-the-art analysis for 

its boundary conditions. However a reforecast sometimes is a forecast done in hindsight using 

the same  initial conditions as the original forecast. As the terms retrospective forecast, 

reforecast and  hindcasts seem to be more or less interchangeably, we prefer to keep the 

term 'hindcast' as it is the term used in the NORA3  reference paper for the wind data we use. 



Comment 3 

Line 130-132: I note that the authors follow here a different order of operations than some of 

the studies they reference for the loss functions they use. E.g. the Klawa approach first 

calculates a loss index (i.e. the cubic exceedance of the wind speed threshold), and applies 

the population density weighting afterwards when spatially aggregating the losses. This is 

different to what the authors are doing here, as they seem to apply the population weighting 

already to the daily wind speeds. It would be good to (i) be explicit about this variation in 

approaches, and (ii) discuss/demonstrate the effects of these different orders of operations. 

The observation made by the reviewer points to an important methodological difference in 

our approach compared with previous studies. We chose to weight wind speeds with 

population first in order to have the same input for all damage functions fitting. That being 

said, it is also worthwhile to compare the proposed and the alternative methodology used in 

studies such as Pinto et al. (2007). As suggested by the reviewer, we have performed this 

additional analysis. The comparison of the damage functions and their predictive skill do not 

show any significant differences between both methodologies (Fig. R1). We have calculated 

the damage function (see eq. 2 in the manuscript) using both methodologies and found that 

there is a high correlation between the two (Fig. R1a). Upon calibrating the two damage 

functions with municipality level insurance losses using eq. 3, we observe that in the extreme 

loss class MAEs are highly correlated with each other (Fig. R1b). Moreover, we find that their 

magnitudes are similar, with about 91.6% of the municipalities having MAE differences within 

[-70, 70] NOK/person in the testing data (Fig. R1c). An independent sample t-test failed to 

conclude for any significant differences between the mean of MAEs from both methodologies. 

However, when not distinguishing loss classes, we find that the alternative method (such as 

in Pinto et al. 2007) has better skill in estimating the losses, although this result depends on 

the model evaluation metric used (not shown). In light of these results, we have added Fig. 

R1 and some text to the supplement (Fig. S7) as well as the following sentences in the revised 

manuscript: 

In section 2.4.2 (Cubic-excess over threshold model), lines 209-211: 

Here we weight the wind speeds with population and aggregate it to the municipality-level 

resolution such that it corresponds to the loss data resolution. However, other studies, such 

as Pinto et. al. (2007), weight the loss index and aggregate it to the district or national 

resolutions. As discussed later in the paper, these two methods do not give very different 

results. 

In section 3.2 (Municipality level loss estimations), lines 354-360: 

Unlike previous studies (e.g., Pinto et al., 2007), which weighted the spatially aggregated loss 

index devised from cubic exceedance of wind speed above a sufficiently high threshold 

(computed as in eq. 2), we here weight the wind speed with population first and then 



aggregate it to a coarser resolution. We compare the Klawa damage function as in eq. 2 

obtained from the proposed methodology with the alternative methodology employed in Pinto 

et al. (2007). We found both the damage estimates and its error to be strongly correlated (Fig. 

S7a). An independent sample t-test failed to conclude for any significant differences between 

the mean of MAEs from both methodologies. A detailed comparison can be found in the 

supplemental material. 

 

Pinto, J. G., Fröhlich, E. L., Leckebusch, G. C., and Ulbrich, U.: Changing European storm 

loss potentials under modified climate conditions according to ensemble simulations of the 

ECHAM5/MPI-OM1 GCM, Nat. Hazards Earth Syst. Sci., 7, 165–175, 

https://doi.org/10.5194/nhess-7-165-2007, 2007. 

Comment 4 

Line 146-150: I wonder how sensitive are the results to the specific choices of these testing 

and training samples? 

The reviewer points to an important aspect of the damage functions: they are sensitive to the 

choice of the testing and training data (Prahl et. al. 2015). To quantify uncertainties involved 

in the choice of training data, we have performed a seven fold cross-validation. The 36-year 

loss data is splitted into 7 groups in chronological order with each group containing five years 

of loss data (1985-1989, 1990-1994, 1995-1999, 2000-2004, 2005-2009, 2010-2014, 2015-

2019) and the loss data of year 2020 is not included in any of the groups. Now taking each 

group as testing data, the damage functions are trained on the rest of the data. The predictive 

skills of the damage functions are evaluated on the testing data. The large spread in the 

model skill metrics (i.e., MAE and CV) indicates that the performance of damage functions is 

highly dependent on the choice of the training data (Fig. R2). For each model, the spread in 

the number of municipalities showing the smallest MAE (such as done in Table 1) remains 

relatively low across all loss classes, as defined in section 3.1 of the manuscript (Fig. R2 c, f, 

i). The black dots in Fig. R2 shows the results present in the manuscript (Table 1) obtained 

Fig R1: (a) Distribution of the Pearson correlation coefficient between the damage functions using the 
proposed (ours) and the alternate methodologies, (b) scatter plot of the MAEs of the extreme loss 
(losses above the 99.7th percentile) estimates for the proposed and the alternate methodologies using 
the testing data. Blue dots represent individual municipalities and the dashed red line represents the 1:1 
line. (c) Distribution of MAE differences between the proposed and the alternate methodologies.   



with another set of training and testing data. We notice that they often lie outside the 

interquartile range, especially when considering all loss days and the extreme loss days (top 

and bottom rows in Fig. R2), and are sometimes even outside the range of the seven-fold 

cross-validation analysis, emphasising again the strong dependence of the results to the 

chosen training and testing periods. In light of this new analysis, we have included these 

results in the manuscript and the figure R2 in the supplement (Fig. S8).    

We have added the following sentences in the manuscript on this topic: 

 

In section 2.6 (model evaluation section), lines 285-290: 

The damage functions are sensitive to extreme loss observations and the presence of few 

extreme events can heavily alter the damage functions’ shape. Therefore, different training 

data sets may result in differing damage function fits. Cross-validation is an effective method 

to estimate the uncertainties involved in the choice of the testing and training data. We 

perform a seven fold cross-validation by splitting data into seven with each set of testing data 

having five consecutive years of data. So, in the first fold the testing period is 1985-1989 and 

the training period is 1990-2020, in the second fold the testing period is 1990-1994 and the 

remaining years are in the training dataset, and so on. 

  

In section 3.2 (Municipality level loss estimations), lines 361-365:  

The seven fold cross-validation reveals that the parameters in the storm-damage functions 

obtained during the fitting step depend on the choice of the training dataset. Moreover, the 

model evaluation metrics are highly dependent on the choice of the training dataset (see the 

range in Fig. S8 a,b,d,e,g,h). However, independent of the training dataset, the Klawa and 

exponential models have the best skill in most of the municipalities (as also shown in Table 

1) across the different loss classes (see Fig. S8 c,f,i). 

 



 
 

Prahl, B. F., Rybski, D., Burghoff, O., and Kropp, J. P.: Comparison of storm damage 

functions and their performance, Nat. Hazards Earth Syst. Sci., 15, 769–788, 

https://doi.org/10.5194/nhess-15-769-2015, 2015.  

Comment 5 

Line 170: not clear if this statement that 82% of losses are recorded above the 95th percentile 

is based on the Norwegian loss data analysed against NORA3 wind speeds? Also it is not 

clear if it refers to 82% of loss events (as count), or 82% of loss values? 

Here, 82% corresponds to the sum of the losses over all municipalities in the training period.  

We adjusted the sentence in the line 172 of the revised manuscript.   

Figure R2: Distribution of model performance metrics from cross-validation (a) coefficient of variance 

(CV), (b) mean absolute error (MAE), (c) number of municipalities with smallest MAE for four damage 

functions and their ensemble mean for all loss days. (d), (e) and (f) same as (a), (b) and (c) but for the 

high loss class. (g), (h) and (i) same as (a), (b) and (c) but for the extreme loss class. The boxes 

represent the interquartile range, the horizontal line represents the median, the whiskers represent the 

minimum and maximum and the black dots represent the results from Table 1 in the manuscript.      



To take advantage of this, we choose the 95th percentile of the population weighted wind 

speed in each municipality as the threshold for the exponential model above which the 

aggregated losses represent 82% of the national losses that occurred in the training period. 

Comment 6 

Line 178: In my understanding Klawa developed the function for Germany-wide losses (not 

districts)? 

Thanks for bringing this to our attention. We have replaced ‘German districts’ with ‘Germany’ 

in line 184 of the revised manuscript.    

Comment 7 

Line 179: As mentioned further up, Donat et al 2011b was first calibrating the Klawa function 

at district level for Germany 

We rephrase this in line 185 of the revised manuscript: 

Later, using the same insurance data, the damage function was calibrated by Donat et al. 

(2011b) for the German districts and by Pinto et al. (2012) for the affected areas of individual 

storm events. 

Donat, M. G., Pardowitz, T., Leckebusch, G., Ulbrich, U., and Burghoff, O.: High-resolution 

refinement of a storm loss model and estimation of return periods of loss-intensive storms 

over Germany, Natural Hazards and Earth System Sciences, 11, 2821–2833, 

https://doi.org/10.5194/nhess-11-2821-2011, 2011b. 

Pinto, J. G., Karremann, M. K., Born, K., Della-Marta, P. M., and Klawa, M.: Loss potentials 

associated with European windstorms under future climate conditions, Climate Research, 54, 

1–20, https://doi.org/10.3354/cr01111, 2012. 

Comment 8 

Line 182: You should specify over which time period and which seasons the percentile 

threshold was calculated (e.g. annual percentile, or percentile over the winter storm seasons 

~October to March)? 

We rephrase this in line 188 of the revised manuscript: 

This damage function takes the third power of wind speeds above the 98th percentile of the 

wind speed determined using the whole study period (1980-2020) scaled by the same 98th 

percentile [...] 



Comment 9 

Line 197: It may be useful to clarify whether this fixed threshold of 9m/s applies to maximum 

gust or maximum wind speed from the NORA3 hindcast? 

We have made this clearer in line 205 of the revised manuscript: 

However, in our study, we do not need this 9 m/s threshold as we use the population-weighted 

averaged wind speeds, reducing the relative importance of grid cells with very low wind 

speeds and therefore avoiding the problem of very low 98th percentile. 

Comment 10 

Line 276: should “spread” better be “distribution”? 

We agree that “distribution” is a better fit than “spread”. This change is made in line 291 of 

the revised manuscript.   

Comment 11 

Line 286: I think it is not really data-scarce, I understand that you have good/complete data 

but these tell you that there are only very few losses? 

With ‘data-scarcity’, we meant that there are only very few losses and the reviewers’ 

observation is correct in this context. We have replaced ‘data-scarcity’ with ‘rarity of loss days’ 

in line 302 of the revised manuscript.    

Comment 12 

Line 320-325: Based on Table 1 it may be fair to say that seems to be the best function for 

most municipalities? 

We agree with the reviewer and in line 341 we have added:  

Overall, our results suggest that the Klawa storm-damage function is the best model for a 

large share of municipalities (37.6%). 

Comment 13 

Line 361: insert “is” after “This” 

Done (line 397 in the revised manuscript). 



Comment 14 

Line 390: remove the “ ‘ “ after “functions” 

Done (line 426 in the revised manuscript). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reply to referee 2 
Assessment of wind-damage relations for Norway using 36 years of daily insurance data 

 

We thank the reviewer for reading our manuscript and giving thoughtful comments and 

suggestions. A detailed response to all comments is found below in blue. The lines numbers 

refer to the non-tracked version of the revised manuscript. 

The authors present a well crafted calibration exercise for storm-damage functions. They 

present a clear decision tree for the chosen methods and assumption. They are using a 

storm-based approach to statistically fit historical losses to wind speed information using 

different models. The basis for the calibration are high resolution insurance loss data and 

wind speed data covering a relatively long time period. The authors present and discuss the 

results in detail focusing on the high impact events and on creating a damage classifier. In 

the end, the authors provide a short broader discussion. 

General Comments: 

Comment 1 

The insurance loss data and the modelled damages are obviously very skewed and mostly 

presented using logarithmic axis to focus on relative differenced / differences in the order of 

magnitude. But in the methodology, this is not incorporated as such. I would suggest the 

authors to change or at least expand their methodology at two points: 

 

Thank you for the suggestions. We agree with the reviewer’s point that the damages both 

observed and their estimates are skewed and it is not tangible to visualise it in their absolute 

values.   

 

● Section 2.4.5 Ensemble mean method: As another option instead of using the 

arithmetic mean, I would suggest to use the mean of all the logs, as in: 

meanlog  = 10 ^ ( 1/n * sum_i_n[ log( xi ) ] ) for a n loss estimates x. 

 

Since there are zero losses present in the loss estimates, an ensemble of the 

estimates with log transformation is not possible.   

 

● Section 2.6 Model evaluation metric: I suggest to also calculate a metric that takes 

into account the very different order of magnitude. One option would be the mean 

absolute percentage error. 

 



We agree with the need of using different accuracy metrics. The mean absolute 

percentage error (MAPE) is indeed a dimensionless prediction accuracy metric. 

However, the presence of zeros in loss values restricts us from using MAPE as the 

error metric. For the same reason, we chose to calculate the coefficient of variance, 

which is also a dimensionless accuracy metric that gives the dispersion of prediction 

around the mean.     

Comment 2 

In figure 1 the damage functions for only one municipality are shown. It is expected and written 

that there is a the variability of the calibrated damage functions over all municipalities, but it is not 

shown. It would be nice to either report the range of the calibrated parameters in a table in the 

supplementary material or even better reproduce a figure similar to Figure 1 showing not the 

points of the insurance losses but only all the calibrated damage funtions in one plot. This would 

provide a much better idea of the variability between the different municipalities. 

 

We thank the reviewer for the suggestion. We have performed the proposed figure (see Fig. 

R1 below) and agree that it well illustrates the variability in the fits of the damage functions 

among the municipalities. 

 

The fit of four damage functions analogous to Fig. 1 is shown in Fig. R1 but for all 356 

municipalities. From this it is clear the fit of damage functions varies not only between models 

but also spatially. Figure R1a illustrates the variety of fits for the exponential damage function 

with very steep lines for some municipalities and much flatter lines for others. Figure R1b 

displays the fit for all the municipalities and highlights that the Klawa damage function doesn't 

increase as steeply as the other models. For the Prahl model, Fig. R1c exhibits a large 

variability in the fits from municipality to municipality. Figure R1e also shows that the sigmoids 

depicting the probability of damage occurrence have different shapes with some curves not 

reaching a probability of 1 within the wind speed range represented. Note that the fit can lead 

to negative probabilities, that we set to 0 afterwards. The shape of the magnitude term (see 

Eq. 8) in the Modified Prahl model can be very different among municipalities as shown in 

Fig. R1d with very steep or weak slopes. Therefore, we have included this figure in the 

supplement and some sentences on these results in the methods section.    

 

In the revised manuscript, we have added the following text in lines 366-372 in section 3.2 

(Municipality level loss estimations): 

 

The fits of the four damage functions and of the probability term largely vary not only between 

models but also from municipality to municipality (Fig. S9). Figure S9a,c,d illustrates the 

variety among the fits for the exponential, Prahl and modified Prahl damage functions with 

very steep lines for some municipalities and much flatter lines for others. Figure S9b highlights 

that the Klawa damage function does not increase as steeply as the other models and the 



variability among the municipalities is smaller. Finally, Fig. S9e also shows that the sigmoids 

depicting the probability of damage occurrence have different shapes in different 

municipalities with some curves not reaching a loss probability of 1 within the wind speed 

range represented. Note that the fit can lead to negative probabilities, that we set to 0 

afterwards. 

 

 

 

Comment 3 

The data is split into testing and training set, which is a very important practice. I suggest to use 

a cross-validation approach, especially as the results in Table 1 are reported only on the unseen 

testing data, and municipalities have to be excluded from the evaluation due to lack of data. 

 

The reviewer points to an important aspect of the damage functions: they are sensitive to the 

choice of the testing and training data (Prahl et. al. 2015). To quantify uncertainties involved 

in the choice of training data, we have performed a seven fold cross-validation. The 36-year 

loss data is splitted into 7 groups in chronological order with each group containing five years 

of loss data (1985-1989, 1990-1994, 1995-1999, 2000-2004, 2005-2009, 2010-2014, 2015-

2019) and the loss data of year 2020 is not included in any of the groups. Now taking each 

group as testing data, the damage functions are trained on the rest of the data. The predictive 

skills of the damage functions are evaluated on the testing data. The large spread in the 

model skill metrics (i.e., MAE and CV) indicates that the performance of damage functions is 

Figure R1: Shapes of the damage functions for all municipalities for (a) the exponential damage 

function, (b) the cubic excess over threshold damage function, (c) the magnitude term in the 

probabilistic damage function by Prahl, and (d) the magnitude term in the modified Prahl probabilistic 

damage function, (e) sigmoid function that estimates the probability of an event occurrence. Note that 

the y-axis for (a)-(d) represents the log-loss per person with units of log NOK.  



highly dependent on the choice of the training data (Fig. R2). For each model, the spread in 

the number of municipalities showing the smallest MAE (such as done in Table 1) remains 

relatively low across all loss classes, as defined in section 3.1 of the manuscript (Fig. R2 c, f, 

i). The black dots in Fig. R2 shows the results present in the manuscript (Table 1) obtained 

with another set of training and testing data. We notice that they often lie outside the 

interquartile range, especially when considering all loss days and the extreme loss days (top 

and bottom rows in Fig. R2), and are sometimes even outside the range of the seven-fold 

cross-validation analysis, emphasising again the strong dependence of the results to the 

chosen training and testing periods. In light of this new analysis, we have included these 

results in the manuscript and the figure R2 in the supplement (Fig. S8).    

We have added the following sentences in the manuscript on this topic: 

 

In section 2.6 (model evaluation section), lines 285-290: 

The damage functions are sensitive to extreme loss observations and the presence of few 

extreme events can heavily alter the damage functions’ shape. Therefore, different training 

data sets may result in differing damage function fits. Cross-validation is an effective method 

to estimate the uncertainties involved in the choice of the testing and training data. We 

perform a seven fold cross-validation by splitting data into seven with each set of testing data 

having five consecutive years of data. So, in the first fold the testing period is 1985-1989 and 

the training period is 1990-2020, in the second fold the testing period is 1990-1994 and the 

remaining years are in the training dataset, and so on. 

  

In section 3.2 (Municipality level loss estimations), lines 361-365:  

The seven fold cross-validation reveals that the parameters in the storm-damage functions 

obtained during the fitting step depend on the choice of the training dataset. Moreover, the 

model evaluation metrics are highly dependent on the choice of the training dataset (see the 

range in Fig. S8 a,b,d,e,g,h). However, independent of the training dataset, the Klawa and 

exponential models have the best skill in most of the municipalities (as also shown in Table 

1) across the different loss classes (see Fig. S8 c,f,i). 

 

 

 



 

Comment 4 

A short broader discussion is done in the section 4. “Conclusion”. I would suggest to also 

discuss the following aspects: 

● Discuss windspeed as explanatory value for damage model, is it able to represent the 

randomness of gust occurance? This is relevant for “low intensity” events, where 

damages are caused by infrequent and hard to predict stronger gusts. This is relevant 

for both damage classifier as well as estimating low intensity impacts) 

● The population distribution is not changing in the chosen model setup only the total 

number of people. Could it be that “where people live” did not only change in scale 

(represented in the model) but also in location (not represented). If yes, how would 

this influence the model performance? 

● What is the purpose of this calibration exercise, is there a foreseen application? If yes, 

it would be nice for the reader to know, especially what function would be the chosen 

Figure R2: Distribution of model performance metrics from cross-validation (a) coefficient of variance 

(CV), (b) mean absolute error (MAE), (c) number of municipalities with smallest MAE for four damage 

functions and their ensemble mean for all loss days. (d), (e) and (f) same as (a), (b) and (c) but for the 

high loss class. (g), (h) and (i) same as (a), (b) and (c) but for the extreme loss class. The boxes 

represent the interquartile range, the horizontal line represents the median, the whiskers represent the 

minimum and maximum and the black dots represent the results from Table 1 in the manuscript.      



for this specific application? Even better would be a general discussion of the metrics: 

Which function would be the best for which type of application? 

● Other readers might be needing to do a similar calibration exercise, but might lack the 

sample size used in this study or might face other shortcomings. It would be very 

interesting to discuss some learnings that could be generalized for other calibration 

exercises. 

 

Thank you for the thoughtful suggestions. Here below, we discuss the four points raised by 

the reviewer. We have expanded our discussion in the revised manuscript. 

 

In lines 432-457 we added, 

 

Wind speed is the most common variable used to estimate storm damages. A drawback of 

this approach is that the same wind speed at the municipality level resolution may cause 

small damages in some cases or no damages in most cases. Such inconsistencies occur 

mainly due to extremely local high wind gusts and incorrect reporting of damages. As a 

consequence, the lower end of the wind speed-damage relations becomes noisy, thus making 

it very difficult to model. To check how the wind gust from NORA3 compares to the wind 

speed, we performed the same population weighting exercise with daily maximum wind gusts 

and found a high correlation (0.91) in the 98th percentiles calculated from wind speeds and 

wind gusts (Fig. S4b). With insurance data being at a coarser resolution than the wind gusts, 

which are very local (a few hundred metres), it is difficult to get meaningful wind gust values 

at municipality level because the impact of high values will be weakened by the population-

weighted averaging step.  

 

Due to the unavailability of the gridded population data for the earlier part (1985-1999) of our 

study period, we had to use a constant spatial distribution of the population to weight the wind 

speed at every grid point. Therefore, we cannot take into account the spatial change in 

population density, such as the spatial expansion of cities with time. This is a source of 

uncertainty in our storm-damage fits. 

  

High quality data on loss and wind speed is necessary for the calibration of damage functions. 

Long time series of loss data are desired to reduce uncertainties and increase accuracy of 

model fitting and predictions. However, loss information as used in this study is rarely 

available. In such cases, a general approach is to approximate the losses using population 

of the respective regions and then quantify the impact of windstorms (Donat et al., 2011a). In 

addition, there are open source climate risk assessment models such as CLIMADA (Aznar-

Siguan and Bresch, 2019), which can be coupled with loss data for damage estimation. 

 

There are several limitations to the damage functions including the inability of the models to 

account for the duration of the events and their tuning to model extreme losses at the expense 

of the low losses. Furthermore, the randomness of losses towards the lower loss spectrum 



diminishes the damage classifier’s predictive skill. There are also certain pitfalls in the 

insurance data, such as incorrect reporting of time, location and type of claims. Also, the slight 

underestimation of maximum wind speeds in NORA3 may affect the shape of the damage 

curves. A direct comparison between other studies that employ damage functions is not 

possible because the unit of loss in this study is NOK per person while most other studies 

use the loss ratio (insured loss/total value of the insured assets) instead of the actual insured 

loss. 

  

In lines 458-460: 

Applications of damage functions can range from impact-based forecasting of damage, to 

damage assessment right after an event, as well as assessment of future losses in the context 

of climate change with an ensemble of wind-damage relations providing a measure of the 

uncertainty in the monetary loss amount. 

 

In lines 467-469: 

For forecasting purposes, an ideal starting point would be to apply a damage classifier to 

distinguish between damaging and non-damaging winds, as part of an early warning system, 

followed by a prediction of losses using a variety of damage functions. 

 

Aznar-Siguan, G. and Bresch, D. N. (2011) CLIMADA v1: a global weather and climate risk 

assessment platform, Geoscientific Model Development, 12, 3085-3097, 

https://doi.org/10.5194/gmd-12-3085-2019 

 

Donat, M. G., Leckebusch, G. C., Wild, S., and Ulbrich, U.: Future changes in European 

winter storm losses and extreme wind speeds inferred from GCM and RCM multi-model 

simulations, Nat. Hazards Earth Syst. Sci., 11, 1351–1370, doi:10.5194/nhess-11-1351-

2011, 2011 

Specific comments: 

Comment 1 

Title: is the phrase “in the complex terrain” justified? The only terrain specific methodology 

used in this paper is the usage of a population density that follows topographic features. 

Would “taking into account heterogenic population density” be more describing? 

 

We agree with the reviewer that our methodology does not directly involve the Norwegian 

topography, which is only implicitly taken into account in the population data, with generally 

more people living along the sea and in the valleys than over the mountains. Therefore, 

following the reviewer’s suggestion, we have changed the manuscript title in order to better 

reflect our methodology, to Assessment of wind-damage relations for Norway using 36 years 

of daily insurance data. 

https://doi.org/10.5194/gmd-12-3085-2019


Comment 2 

L29: quick impact estimation for response planning directly after the event is also an important 

application (see Welker et al. 2021) 

 

Thanks for mentioning this relevant point and bringing this paper to our attention. We have 

added this reference in line 28 of the revised manuscript as:  

 

Establishing robust windstorm-damage relations may help predict storm damage risk in the 

weather forecasting context (Merz et al., 2020), roughly estimate the storm impact directly 

after it occurred in order to better plan the emergency response (Welker et al. 2021), and 

evaluate the change in risk on the longer term in conjunction with climate change.  

 

Merz, B., Kuhlicke, C., Kunz, M., Pittore, M., Babeyko, A., Bresch, D. N., Domeisen, D. I., 

Feser, F., Koszalka, I., Kreibich, H., et al.: Impact forecasting to support emergency 

management of natural hazards, Reviews of Geophysics, 58, e2020RG000 704, 475 

https://doi.org/10.1029/2020RG000704 2020. 

 

Welker, C., Röösli, T., and Bresch, D. N.: Comparing an insurer's perspective on building 

damages with modelled damages from pan-European winter windstorm event sets: a case 

study from Zurich, Switzerland, Nat. Hazards Earth Syst. Sci., 21, 279–299, 

https://doi.org/10.5194/nhess-21-279-2021, 2021. 

 

Comment 3 

Figure 1 a) mark the threshold in the plot (compare with L170:”…,we chose  the 95th 

percentile of the wind speed […] as the threshold.” If a modelled damage of zero would be 

assumed for events with a wind speed below the threshold, it would be nice to show a doted 

line at zero similar to Figure 1 b) 

 

We have modified the figure as suggested by the reviewer. Although we only use the wind 

speed bins above the 95th percentile of the wind speed to calculate the fit, the obtained 

exponential model can also be applied to the wind speeds below the 95th percentile and we 

can get loss estimates for those wind speeds as well, as shown in Fig. 1a (red curve to the 

left of the 95th percentile line). In the revised manuscript, we have made this clear in line 179: 

 

Although we only use the wind speed bins above the 95th percentile of the wind speed to 

calculate the fit, the obtained exponential model can also be applied to the wind speeds below 

the 95th percentile and we can get loss estimates for those wind speeds as well, as shown 

in Fig. 1a (see the red dashed line). 



Comment 4 

L172: “…are split into ten equally spaced bins…” I can only see 6 bins in Figure 1 a). I assume 

it is because 4 bins did not include the minimum of at least 5 loss days. If that is the case, I 

would be nice to state that for the reader. If this is not the case it would be even more important 

to state this. 

 

The reviewer is right, it is because 4 bins did not include the minimum of at least 5 loss days 

that Fig. 1a only displays 6 bins out of the 10. We added the following sentence in line 176 of 

the revised manuscript to make this aspect clearer, 

 

Note that Fig. 1a only displays 6 bins because the 4 other bins do not include the minimum 

of 5 loss days required in each bin. 

Comment 5 

L307ff: “The extreme loss class represents 31 and 9 ….”. The structure of this sentence 

makes it hard to understand. Please consider a revision. 

 

We agree and we rephrase this sentence in lines 322-324 of the revised manuscript to better 

connect it with the previous sentences. 

 

The aggregated municipality losses in the extreme loss class account for 85% of the total 

national loss, while the high loss class comprises 8% of the total national loss. In each 

municipality, the extreme loss class includes approximately 31 days in the training data and 

9 days in the testing data (occurring on average around once a year). 

Comment 6 

Figure 3 b) and c). Please provide a reasoning for the skewed percentiles of the non-linear class 

boundaries. Why are there no 5th and 10th percentile? 

 

Figure 3a shows that most of the municipalities have a MAE between 0 and 100, whereas only a 

few have higher MAE. Therefore, the distribution of the MAE is highly skewed towards low MAEs 

and the lowest percentiles will be very similar. It is already visible in Fig. 3b, for example, with the 

difference between the 40th and 20th percentiles being of only 13 (28-15) in contrast to the 

difference between the 95th and 90th percentiles being 139 (406-267) so more than 10 times 

larger. Therefore, we chose to highlight the larger percentiles rather than the lower percentiles. 

However, we have chosen to follow the reviewer’s suggestion and the updated figure is shown 

below: 

 



  
 

 

 

 

 

 

Figure R3: (Left) Map of the smallest MAE among the five models in the extreme loss class fitted on 

the test data and (right) the corresponding coefficient of variation of the root mean square error. The 

legends have non-linear class boundaries at the 5th, 10th, 20th, 40th, 60th, 80th, 90th and 95th 

percentiles. Note that the results are based on the performances on the unseen testing data. 

 


