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Abstract. Different risk management activities, such as land-use planning, preparedness and emergency response, utilize sce-

narios of earthquake events. A systematic selection of such scenarios should aim at finding those that are representative of a

certain severity, which can be measured by its consequences to the exposed assets. For this reason, it has been proposed to

define a representative scenario as the most likely one leading to a loss with a specific return period, e.g., the 100-year loss. We

adopt this definition and develop enhanced algorithms for determining such scenarios for multiple return periods, based on a5

synthetic earthquake catalog. With this approach, we identify representative earthquake scenarios for the Valparaíso and Viña

del Mar communes in Chile. Because the earthquake scenarios are defined in terms of the annual loss exceedance rates, the

scenarios vary in function of the exposed system. In this contribution, we consider separately the residential building stock and

the electrical power network, and identify and compare earthquake scenarios that are representative for these systems.

1 Introduction10

Due to the complexity of earthquake events and the response of infrastructure and society to these events, risk managers analyze

potential impacts of strong seismic events and test risk management capacities through representative earthquake scenarios

(e.g., Salgado-Gálvez et al., 2018; Aguirre et al., 2018). Scenario-based analysis enables the modeling and simulation of

the complex processes and interactions during and after earthquake events, with a level of detailing that is not possible in a

complete probabilistic hazard and risk analysis. As such, the earthquake scenarios are the starting point for such a more detailed15

risk assessment and for recommendations for improving risk management (e.g., Chatelain et al., 1995; Feliciano et al., 2023).

Representative scenarios are commonly selected based on expert knowledge (e.g., Aguirre et al., 2018) and past events (e.g.,

Indirli et al., 2011). Synthetic seismic catalogs have also been used for the selection of representative scenarios (McGuire,

1995; Jayaram and Baker, 2009b; Miller and Baker, 2015). A particular approach for scenario selection is based on hazard
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disaggregation (Bazzurro and Cornell, 1999), which utilizes the conditional probability of different hazard scenarios given an20

intensity measure (e.g., peak ground acceleration, PGA) at a specific site of interest either equals or exceeds a threshold (Fox

et al., 2016; Fox, 2023). As its name suggests, classic hazard disaggregation does not explicitly consider the losses of the

affected engineering systems, which are often a function of the intensity measures at multiple locations and which are subject

to uncertainty.

The above concepts were extended to loss disaggregation to find earthquake scenarios in terms of magnitude and hypocen-25

tral distance that exceed a loss threshold for building portfolios (Goda and Hong, 2009) or infrastructure (Jayaram and Baker,

2009b). Because the spatially accumulated loss can be defined for any portfolio of buildings and infrastructure, loss disaggre-

gation implicitly considers spatially distributed intensity measures. Rosero-Velásquez and Straub (2022) proposed a definition

of a representative hazard scenario associated with a loss of return period t, e.g., the 100-year loss, which in general does

not correspond to the magnitude or intensity measure of the same return period. It is defined as the most likely scenario that30

leads to the loss value (i.e., its occurrence) associated with this return period t. They also presented a numerical procedure for

selecting the representative hazard scenario in a continuous space of source parameters with a surrogate model and active learn-

ing, thus considering the uncertainty in the conditional losses given a hazard scenario. In the context of seismic risk analysis,

earthquake scenarios that are representative of t-year loss can be different for different engineering systems, even if they are

located in the same area. The definition of Rosero-Velásquez and Straub (2022) differs from the loss disaggregation presented35

by Goda and Hong (2009) and Jayaram and Baker (2009b), because the latter defines the representative scenario as the most

likely one to exceed the t-year loss. In this contribution, we compare the two definitions and argue that a definition in terms

of the occurrence of the t-year loss is more appropriate for most applications, in line with the findings of Fox et al. (2016) for

hazard disaggregation.

Considerable work has been devoted to the study of the seismic hazard, vulnerability, and risk in the Valparaíso coastal40

area of Chile due to its high population density and economic importance in combination with strong seismic activity. Recent

earthquakes that led to significant damages occurred in 1971 with Mw = 7.8, in 1985 with Mw = 8.0 (Indirli et al., 2011),

and in 2010 with Mw = 8.8 (de la Llera et al., 2017). Recent studies on the Valparaíso area deal with seismic characterization

(e.g., Carvajal et al., 2017; Candia et al., 2020), source models (e.g., Poulos et al., 2019; Pagani et al., 2021), ground motion

models (Montalva et al., 2017), building exposure models (e.g., Yepes-Estrada et al., 2017; Jiménez et al., 2018; Gómez-Zapata45

et al., 2022b, b), damage analysis on individual buildings (e.g., Indirli et al., 2011; Jünemann et al., 2015), socio-economic

impact (Jiménez Martínez et al., 2020), and seismic risk analysis of the electric power network (Ferrario et al., 2022) and road

network (Allen et al., 2022). Additionally, Indirli et al. (2011) identified representative earthquake scenarios using historical

events and expert knowledge, for generating representative ground motion time series, but solely from the hazard point of view

and disregarding the risk component.50

This paper determines representative earthquake scenarios for different return periods for the residential building stock

and the power supply network in Valparaíso and Viña del Mar communes. We adapt and extend the methodology described

by Rosero-Velásquez and Straub (2022) for identifying scenarios associated with different return periods from a synthetic

earthquake catalog. The representative scenario is found directly by solving a stochastic optimization problem; namely the
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identification of the mode of the conditional distribution of the source parameters given the occurrence (or exceedance) of the55

t-year loss among the scenarios in the catalog. The stochastic optimization problem is solved with an active learning strategy,

whereby the uncertainty in the objective function is estimated by bootstrapping.

We introduce the definition of representative earthquake scenario more formally in Section 2. Then we present the method-

ology for computing the scenarios on a seismic catalog in Section 3, and illustrate it with idealized examples in Section 4. The

description of the study area, the utilized hazard and system models, are presented in Section 5. The results are given in Section60

6 and discussed in Section 7.

2 Definition of representative earthquake scenario

An earthquake scenario can be described by a vector θ of source parameters, including the magnitude, hypocentral distance,

source longitude, latitude and depth. In a stochastic model, the scenario is a single realization of a random vector Θ, with joint

probability density function (PDF) fΘ(θ). The PDF of Θ is obtained from one or more seismic source models (e.g., Poulos65

et al., 2019) and is conditioned on the occurrence of a seismic event, whose frequency (occurrence rate) is λH .

An earthquake catalog is a set of n earthquake scenarios θ(1), ...,θ(n), which are realizations of Θ. The catalog can be a set

of synthetic earthquake scenarios, obtained by random sampling from fΘ(θ). Alternatively, the catalog can be obtained from

past events (e.g., Poulos et al., 2019).

Synthetic earthquake catalogs have been used in event-based probabilistic seismic hazard analysis (PSHA) and earthquake70

risk assessment (e.g., Salgado-Gálvez et al., 2018; Ferrario et al., 2022; Allen et al., 2022). The aim of PSHA is to obtain

the occurrence rate and distribution of ground motions, taking into account all possible earthquake scenarios (Cornell, 1968;

Esteva, 1970); and event-based PSHA utilizes Monte Carlo simulation for sampling earthquake scenarios. Similarly, event-

based earthquake risk assessment on spatially distributed systems utilizes synthetic earthquake scenarios for computing the

losses, considering the spatial correlation in the ground motion and the vulnerability of the exposed assets (Baker et al., 2021).75

For a given earthquake scenario, ground motion models (GMMs) result in spatially distributed intensity measures, e.g., PGA

and spectral accelerations, which are input to assess the losses associated with the exposed systems. In the general case, these

predictions are stochastic. Thereafter, the model of the engineering system considers the physical and functional vulnerability

and results in a loss value L.

Because of the randomness and uncertainty in the earthquake scenario, GMM, vulnerabilities and exposure, L is a random80

variable whose cumulative distribution function (CDF) FL(l) can be obtained by performing an event-based earthquake risk

assessment for spatially distributed systems with the synthetic earthquake catalog. By combining this CDF with the earthquake

occurrence rate λH , one obtains the loss exceedance function λL(l):

λL(l) = (1−FL(l))λH . (1)

Based on the loss exceedance function, the losses lt with a specific return period t can be found as85

lt = λ−1
L

(
1

t

)
= F−1

L

(
1− 1

λHt

)
, (2)
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which is defined only for t≥ 1
λH

. The loss lt is also called the t−year loss.

Following Rosero-Velásquez and Straub (2022), the representative earthquake scenario θt, associated with a return period t,

is defined as the most likely scenario among those causing the t-year loss lt. In other words, θt is the mode of the conditional

PDF of Θ given the loss L= lt, also called the loss disaggregation of Θ given L= lt:90

θt = arg max
θ

fΘ|L(θ|lt). (3)

Eq. (3) defines the representative earthquake scenario by conditioning on the occurrence of the loss lt, whereby lt is defined in

terms of exceedance rate. The equation describes the scenario that is most likely to lead to the t-year loss lt.

An alternative definition can be formulated in terms of loss exceedance instead of loss occurrence:

θexct = arg max
θ

fΘ|L(θ|L≥ lt). (4)95

Eq. (4) defines the scenario that is most likely to exceed lt. This is the definition corresponding to the classical loss dis-

aggregation (Goda and Hong, 2009; Jayaram and Baker, 2009b). We note that with this definition, in general, the scenario

representative of a t-year loss will have a return period higher than t. Hence, we find its interpretation more difficult, and prefer

the definition in Eq. (3). Nevertheless, we propose algorithms to evaluate the representative scenarios according to the two

definitions and compare the resulting scenarios in an illustrative example.100

Figure 1 illustrates the conditional distributions fΘ|L(θ|lt) and fΘ|L(θ|L≥ lt) for two source parameters Θ = (Θ1,Θ2),

e.g., representing the magnitude Mw and the hypocentral distance R with respect to a location of interest.
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(a) Loss occurrence approach (b) Loss exceedance approach

Figure 1. Illustration of representative scenario in the source parameter space, modified after Rosero-Velásquez and Straub (2022), in terms

of loss occurrence (a), and in terms of loss exceedance (b)

By Bayes’ rule, Eq. (3) can be expressed in terms of fΘ(θ),

θt = arg max
θ

fL|Θ(lt|θ)fΘ(θ), (5)
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and similarly for the loss exceedance approach:105

θexct = arg max
θ

(
1−FL|Θ(lt|θ)

)
fΘ(θ) (6)

wherein fL|Θ(l|θ) and FL|Θ(lt|θ) are respectively the conditional PDF and CDF of the losses given the hazard scenario θ.

Eq. (5) and (6) illustrate that the scenario selection criterion balances the probability of the earthquake scenario (quantified by

fΘ(θ)) and the probability of the t-year losses to occur (or being exceeded) at that scenario.

To ease the notation in the following section, we let zt(θ) denote the objective function of Eq. (5):110

zt(θ) = fL|Θ(lt|θ)fΘ(θ), (7)

and zexct (θ) the objective function of Eq. (6):

zexct (θ) =
(
1−FL|Θ(lt|θ)

)
fΘ(θ). (8)

3 Method for using scenario selection based on a synthetic earthquake catalog

We consider the case where the randomness of earthquake events is represented through a synthetic earthquake catalog. Specif-115

ically, we aim at identifying the earthquake scenarios in the catalog that maximize the objective function in Eq. (5) and (6) for

different return periods t.

The objective functions of Eq. (5) and (6) consist of the PDF fΘ(θ), which is known from the earthquake source model,

and the conditional PDF or CDF of L given Θ evaluated at lt, which can be approximated with conditional samples of losses.

To account for the aleatory uncertainty in the modeled ground motions one can draw Monte Carlo samples from the catalog120

(Silva, 2016) and propagate them to the loss metrics. However, performing this amount of loss evaluations for an entire seismic

catalog (normally containing dozens of thousands of events) is computationally (too) expensive. As an alternative, one can

use Gaussian process models in combination with active learning to handle aleatory uncertainty more efficiently (Tomar and

Burton, 2021; Rosero-Velásquez and Straub, 2022). Furthermore, it has been proposed to pre-select scenarios by the use of

extreme value theory and the generalized Pareto distribution (Borzoo et al., 2021).125

We propose to first perform only one loss evaluation for each scenario in the catalog and use these to approximate the

loss-exceedance function and lt. The same samples are used for an initial approximation of fL|Θ(lt|θ), the second part of the

objective function. This approximation is improved by the use of active learning (AL) to identify earthquake scenarios in the

catalog for which additional loss evaluations are to be performed. This methodology is an adaptation of the one proposed in

Rosero-Velásquez and Straub (2022).130

Figure 2 illustrates the main steps of the methodology for selecting representative earthquake scenarios for nt return periods

t1 > t2... > tnt
. The earthquake model in this example is a single seismic source within a bounding volume, and the system is

a single building.

The starting point is a seismic source model (panel a in Fig. 2), which consists of the occurrence rate λH and the PDF of

the source parameters, fΘ(θ), together with an associated stochastic seismic catalog (panel b in Fig. 2). The catalog consists of135
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Figure 2. General procedure for selecting representative earthquake scenarios with a synthetic earthquake catalog in terms of loss occurrence.

Section 3.1 explains with more detail panels e and f , and Sections 3.3 and 3.4 explain panel h. The remaining panels are referred in Section

3. The procedure in terms of loss exceedance only differs in panel f , and it is explained in Section 3.2.
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a set of n random and independent earthquake scenarios θ(1), ...,θ(n) generated from fΘ(θ), possibly associated with weights

ω1, ...,ωn with
∑n
i=1ωi = 1. The generation of such catalogs for the study site is described in Section 5.2.

For each scenario, one simulates the ground motion fields in terms of the intensity measure (e.g., the peak ground acceleration

PGA) through the GMM. These intensity measures are the input to assess the performance of the system components, by

combining them with vulnerability functions. Based on the component performances, the total losses in the system, l, are140

evaluated (panel c in Fig. 2). Details on the simulation of the ground motion, the system response and loss calculation for the

study site are given in Section 5.

From these samples of the system losses, one obtains an estimate of the loss exceedance curve λ̂L(l):

λ̂L(l) = λH

n∑
i=1

ωi1(l(i) > l), (9)

where 1(·) is the indicator function. In addition, one obtains estimates of the t-year losses l̂t for all return periods of interest145

t1, ..., tnt
following Eq. (2) (panel d in Fig. 2).

Since the conditional density of the losses, fL|Θ(l|θ), is not available in analytical form, we propose to approximate it with

f̂L|Θ(l|θ) (panels e and f in Fig. 2), as detailed in Section 3.1. We utilize this approximation in the objective function of Eq. (5)

(panel g in Fig. 2) to obtain initial estimates of the objective function zt(θ) at each scenario of the catalog, which we denote

as z(1)
t , ...,z

(n)
t . To reduce the scatter in the estimates of zt, we add a smoothing step (panel h in Fig. 2), which is described in150

Section 3.3.

At this, and any later stage of the algorithm, we approximate the solution of Eq. (5) by (panel i in Fig. 2):

it = arg max
i=1,...,n

z
(i)
t (10)

θt ≈ θ(it) (11)

The initial approximation based on a single loss evaluation per scenario in the catalog is typically poor. To enhance the155

accuracy, we use an active learning strategy (panel h in Fig. 2). It intelligently selects earthquake scenarios from the catalog,

for which additional loss evaluations are performed. This is presented in Section 3.4.

For the representative earthquake scenario defined by the loss exceedance approach, we approximate the conditional CDF

of the losses with an empirical CDF F̂L|Θ(l|θ) (analogous to panel f in Fig. 2), and utilize this approximation in the objective

function Eq. (6) (analogous to panel g in Fig. 2) to obtain initial estimates of zexct (θ), denoted by zexc(1)
t , ...,z

exc(n)
t . We then160

approximate the solution of Eq. (6) by

jt = arg max
j=1,...,n

z
exc(j)
t (12)

θexct ≈ θ(jt) (13)

3.1 Approximation of the objective function zt(θ) with kernel density estimation

We approximate the conditional density fL|Θ (l|θ) using weighted kernel density estimation (KDE) (Gisbert, 2003). The KDEs165

at each scenario θ(i) are evaluated with n2 loss evaluations, which come from the closest scenarios θ(ci,1), ...,θ(ci,n2
) and have
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associated weights wi,1, ...,wi,n2
which sum up to 1, i.e.,

∑n2

j=1wi,j = 1:

f̂L|Θ(l|θ(i)) =

n2∑
j=1

wi,jκ
(
l, l(ci,j),γ

)
(14)

where κ is a kernel function and γ is the bandwidth. We define the weights as wi,j = exp(−di,j)/
∑n2

k=1 exp(−di,k), where

di,j is the Mahalanobis distance between θ(i) and θ(ci,j). This ensures that the loss values from scenarios similar to θ(i) are170

given more weight in the KDE.

A common choice for κ is the Gaussian kernel function , which employs the standard Gaussian PDF φ(·):

κ
(
l, l(ci,j),γ

)
=

1

γ
φ

(
l− l(ci,j)

γ

)
(15)

and γ computed as suggested in (Silverman, 1986). Alternatively, one can employ a lognormal kernel, excluding the zero

loss values (if any), whose probability p(i)
0 is estimated from the conditional loss samples l(ci,1), ..., l(ci,n2

). That is,175

κ
(
l, l(ci,j),γ

)
= 1

(
l(ci,j) > 0

)(
1− p(i)

0

) 1

lγ
φ

(
ln l− ln l(ci,j)

γ

)
(16)

wherein the bandwidth γ is computed as suggested in (Silverman, 1986) but only using the logarithm of the nonzero loss

samples. In consequence, the weights wi,j have to be adjusted excluding the zero loss samples, i.e.,

wi,j = 1
(
l(ci,j) > 0

) exp(−di,j)∑n2

k=11
(
l(ci,k) > 0

)
exp(−di,k)

(17)

In this case, for scenarios where all the n2 conditional loss samples are zero, the density at lt equals zero.180

The choice of n2 for the KDEs is associated with a trade-off: On the one hand, a small n2 leads to a poor density estimation,

but one that is based on loss samples coming from similar scenarios. On the other hand, a large n2 produces a biased KDE

from the true conditional density, since it incorporates loss samples of more dissimilar scenarios. However, the bias can be

reduced by additional model evaluations. In fact, n2 or more model evaluations at a scenario θ provide a more accurate KDE

than a KDE based on model evaluations coming from the n2 closest scenarios to θ.185

For each return period, we obtain an estimate of fL|Θ(lt|θ(i)) by evaluating Eq. (14) with argument l̂t. This process is

illustrated in panels e and f of Fig. 2. By multiplication with the prior, an estimate of the objective function at all scenarios in

the catalog is obtained:

z
(i)
t = f̂L|Θ(l̂t|θ(i))fΘ(θ(i)) (18)

To reduce the significant noise associated with these estimates, we update them with an additional smoothing step described in190

Sec. 3.3.

Even after the additional smoothing step, the estimates z(i)
t remain subject to uncertainty, due to the limited number of noisy

loss evaluations and the need to pool the evaluations from multiple scenarios. For the purpose of the active learning procedure

presented in Sec. 3.4, we approximate the uncertainty associated with the objective function values by modeling the estimates

z
(i)
t as Gaussian random variables Z(i)

t . We denote their mean values as µ(i)
Zt

and their standard deviations as σ(i)
Zt

. The mean195

values are set to z(i)
t . We estimate the standard deviations σ(i)

Zt
for i= 1, ...,n via bootstrapping (Efron and Tibshirani, 1993)

on their n2 nearest neighbors nb times, wherein conditional losses are resampled according to the weights wi,j .
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3.2 Approximation of the objective function zexct (θ) with weighted empirical CDF

Eq. (6) contains the conditional CDF of the losses given a scenario. It can be approximated at θ(i) with a weighted empirical

CDF based on the n2 loss evaluations coming from the closest scenarios and their associated weights:200

F̂L|Θ(l|θ(i)) =

n2∑
j=1

wi,j1(l(ci,j) < l) (19)

The objective function evaluated at scenario i is then estimated as follows:

z
exc(i)
t =

(
1− F̂L|Θ(l̂t|θ(i))

)
fΘ(θ(i)) (20)

We apply to these estimates the same uncertainty treatment described in Section 3.1 for the KDEs. Thus, we model the estimates

as Gaussian random variables Zexc(i)t with mean µ(i)
Zexc

t
= z

exc(i)
t and standard deviation σ(i)

Zexc
t

estimated via bootstrapping.205

3.3 Smoothed estimation of the objective function with Gaussian process regression

To reduce the noise in the estimates of the objective function, we perform an additional smoothing step via Gaussian process

regression (GPR) (Rasmussen and Williams, 2006). For each return period t and in each step of the active learning algorithm

described in Section 3.4, we perform a separate GPR.

A drawback of GPR is that the computational cost escalates with the size of the training set ntrain. Fitting and estimating210

the objective function using standard GPR is an O(n3) task (Rasmussen and Williams, 2006). Therefore, we perform GPR

smoothing only for estimates θ(i) near the current solution of Eq. (12), and the GPR hyperparameters are learned only once in

the first step. Specifically, we identify the ntrain = 1500 nearest scenarios using the Mahalanobis distance, train the GPR and

replace the estimate of z(i)
t (resp. zexc(i)t ) only for the training set. The other estimates of z(i)

t (resp. zexc(i)t ) are left unaltered.

3.4 Active learning215

An accurate estimation of the objective function is only important near the solution. We exploit this by employing an active

learning (AL) strategy to identify scenarios for which further model evaluations are performed.

AL selects scenarios to evaluate through the acquisition function. Here we use the augmented expected improvement (AEI)

as an acquisition function (Huang et al., 2006). It approximates for each scenario the expected value of the improvement of the

objective function over the current maximum.220

We modify the AEI of Huang et al. (2006) with a correction factor, which assesses the quality of the KDE at each scenario.

The resulting AEI at scenario θ(i) is

AEI(θ(i)) =
1

c
(i)
neigh

E
[
max

(
Z

(i)
t − z∗t ,0

)]
(21)

wherein z∗t is the estimate of the objective function at the current best solution θ∗, which is defined as (Huang et al., 2006):

θ∗ = argmax
i=1,...,n

(
z

(i)
t + cσ

(i)
Zt

)
(22)225
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with c= 1.

The factor c(i)neigh considers the KDE estimation quality at θ(i). We define it as follows:

c
(i)
neigh = max

 n2∑
j=1

exp(−di,j) ,n(i)

 (23)

wherein n(i) is the sample size of conditional loss values simulated at θ(i) and di,j is the Mahalanobis distance between θ(i)

and θ(j).230

The expected value in Eq. (21) is computed in terms of the standard normal PDF φ(·) and CDF Φ(·) (Huang et al., 2006):

E
[
max

(
Z

(i)
t − z∗t ,0

)]
=
(
µ

(i)
Zt
− z∗t

)
Φ

(
µ

(i)
Zt
− z∗t

σ
(i)
Zt

)
+σ

(i)
Zt
φ

(
µ

(i)
Zt
− z∗t

σ
(i)
Zt

)
(24)

For each return period t, we perform nl loss evaluations at the ns scenarios with the largest AEI . Taking into account the

ns×nl×nt new model evaluations, we update the KDEs, the density observations z(i)
t and the bootstrap standard deviations

σ
(i)
Zt

. At scenarios where more than n2 loss evaluations have been computed, we deviate from Eq. (14) and evaluate the KDE235

with all these evaluations (instead of only n2 evaluations).

The AL steps are repeated until convergence is achieved or the maximum number of AL iterations n3 is exceeded. Conver-

gence is achieved when theAEI of all scenarios is below a threshold ε for at least nd consecutive AL iterations, which prevents

premature stopping. A suggested value for nd is d+ 1, wherein d is the dimensionality of the source parameter random vector

Θ (Huang et al., 2006). We also choose n3 = 1000 for encouraging the AL procedure to stop by convergence. The threshold ε240

is chosen as (Huang et al., 2006):

ε= r×
(

max
i=1,··· ,n

f̂0
L|Θ(l̂t|θ(i))fΘ(θ(i))− min

i=1,··· ,n
f̂0
L|Θ(l̂t|θ(i))fΘ(θ(i))

)
(25)

f̂0
L|Θ(l̂t|θ(i)) is the initial KDE, which is computed before the AL.

An analogous derivation of theAEI is obtained for the case of the objective function in terms of loss exceedance, i.e. zexc(i)t .

4 Illustrative examples245

In this section, we present two simple examples to illustrate the methodology. The first one is a one-dimensional example,

where we focus on the performance of AL and the approximations of the objective function obtained with the noisy KDE

estimations and GPR. The second one is a two-dimensional example, where we show the variability of the scenario selection

and the solutions computed with the loss ocurrence and exceedance approaches. In both examples, the exact solution is known.

4.1 Building portfolio subjected to a single seismic source with variable magnitude250

Figure 3 illustrates the performance of the acquisition function on an one-dimensional example. In the example, the only source

parameter is the magnitude Mw, which is beta distributed distributed with shape parameters α= 1, β = 3, and scaled between
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0 and 10. The conditional distribution of the logarithm of the losses associated to the building portfolio given Mw =mw is

a normal random variable with mean µlnL(mw) =− 1
2 sin( 5

2 (mw − 5)) + exp(mw−5
7 ) + 7 and standard deviation σlnL = 0.7.

We set lt = 10 for this example.255

We generate a synthetic earthquake catalog of size n= 100. The KDEs are computed with Gaussian kernel and n2 = 70

loss samples, or more if the scenario has more than n2 conditional loss evaluations, and the bootstrap standard deviation is

computed based on nb = 100 samples. We perform the GPR on the whole catalog and learn the hyperparameters at every AL

step, since the catalog size in this example is not restrictive. For the AL stage, we select ns = 5 scenarios per AL iteration for

computing nl = 10 loss evaluations at each scenario (i.e., ns×nl = 50 damage evaluations per AL iteration). The acquisition260

function is theAEI , as introduced in Eq. (21). We also let the algorithm to achieve convergence with a maximum of n3 = 1000

AL iterations, with the convergence criterion in Eq. (25) and r = 0.001.

Figure 3 compares intermediate and final results for this example to the true results. After the initial loss evaluations at the

100 scenarios, the estimate of the objective function is poor. However, the acquisition function is able to select scenarios near

the true solution. In the final step, one can observe that estimates of the objective function values have high noise, but the GPR265

is effective in reducing this noise. The resulting estimate of the objective function is close to the true value around the optimum.

4.2 Building portfolio subjected to an earthquake with unknown magnitude and location

This simple example is adapted from Rosero-Velásquez and Straub (2022). It considers a hypothetical fault, where strong

earthquakes occur with a rate of λH = 0.3 yr−1. We consider the damages that earthquakes cause to a building portfolio in

a small town. The source parameters Θ = [Mw, lnR]ᵀ are the magnitude Mw and the average hypocentral distance R from270

the earthquake source to the buildings. The source model for Θ, fΘ(θ), is a normal distribution with mean vector µΘ and

covariance matrix ΣΘ given as follows:

µΘ =

 7.00

4.38

 , ΣΘ =

 0.36 −0.08

−0.08 0.49


A standard deviation σ represents the uncertainty in the ground motion, damage measure, and losses. The losses L are a

log-normal random variable with parameters µlnL =−3.16, σlnL =
√

2.46 +σ2. With these choices, the conditional density275

fΘ|L (θ|lt) can be evaluated analytically. It is a normal distribution, whose mean vector is the representative earthquake scenario

for a return period t.

We set σ = 0.5, and use return periods of 50, 100, 500 and 1000 years. The resulting exact representative earthquake

scenarios with the loss occurence approach are: θ50 = [7.42,3.42]ᵀ, θ100 = [7.51,3.21]ᵀ , θ500 = [7.69,2.81]ᵀ , and θ1000 =

[7.75,2.65]ᵀ. We use them to verify the proposed sampling-based algorithm.280

To estimate θt with the proposed methodology, a synthetic earthquake catalog with n= 2× 104 random scenarios is em-

ployed. We simulate the losses once at each scenario, approximate lt, and compute the KDEs at each scenario. The KDEs

are based on n2 = 200 loss values, computed with Gaussian kernel, and the bootstrap variance with nb = 100 repetitions. We

perform GPR with a training set of size ntrain = 1500, which is constructed as described in Section 3.3.
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the true solution. In the final step, one can observe that estimates of the objective function values have high noise, but the GPR

is effective in reducing this noise. The resulting estimate of the objective function is close to the true value around the optimum.
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Figure 3. Illustration of AL for maximizing the objective function zt(mw) with fixed value lt, marked with dashed line in the plots in the

left panel. The solution mw,t is approximated with the sample point m̂wt. The loss samples before and during the AL steps are shown on

the left panel. The approximations of the objective function, either with KDE or GPR, are shown in the right panel.

4.2 Single building subjected to an earthquake with unknown magnitude and location

This simple example is adapted from Rosero-Velásquez and Straub (2022). It considers a hypothetical fault, where strong

earthquakes occur with a rate of λH = 0.3 yr−1. We consider the damages that earthquakes cause to a single building. The225

source parameters Θ = [Mw, lnR]ᵀ are the magnitude Mw and the hypocentral distance R from the earthquake source to the

building. The source model for Θ, fΘ(θ), is a normal distribution with mean vector µΘ and covariance matrix ΣΘ given as

10

Figure 3. Illustration of active learning (AL) for maximizing the objective function zt(mw) with fixed value lt, marked with dashed line in

the plots in the left panel. The solution mw,t is approximated with the sample point m̂wt. The loss samples before and during the AL steps

are shown on the left panel. The approximations of the objective function, either with kernel density estimation (KDE) or Gaussian process

regression (GPR), are shown in the right panel.

The maximum number of AL iterations is n3 = 1000, where at every step the losses are evaluated at ns = 2 scenarios285

nl = 10 times, for each return period. The procedure stops after the maximum AEI is below ε, with r = 0.001, for at least

nd = 5 consecutive AL iterations. For analyzing the uncertainty in the estimation of θt, we repeat the experiment 20 times.

For the 50,100 and 500-year representative scenarios, all experiments converged in less than 10 AL iterations, whereas for

the 1000-year return period at most 30 AL iterations were required. For the loss exceedance approach, fewer iterations were

required in general.290

Figure 4 shows the resulting representative hazard scenarios for each return period and their spread, which is mainly caused

by the numerical approximation of the objective function with limited number of samples. As expected, one can observe that

the representative scenarios are more extreme when using the loss exceedance approach.
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(a) Loss occurrence approach (b) Loss exceedance approach

Figure 4. Numerical approximation of the representative earthquake scenarios. Panel (a) shows the representative scenarios computed with

the loss occurrence approach, θ̂t, and panel (b) those computed with the loss exceedance approach, θ̂exct (b). The representative earthquake

scenarios correspond to four different return periods t = 50, 100, 500, 1000 years, based on a Monte Carlo sample of scenarios. Each return

period is represented by a different color. For each return period, the 20 approximations θ̂t (resp. θ̂exct ), corresponding to 20 experiments,

are the colored empty circles, and the corresponding exact solutions are depicted by filled circles. The grey points are the scenarios of the

catalog, and the dashed contours represent the PDF of the source parameters.

5 Case study: Valparaíso and Viña del Mar communes

5.1 Context of the study area295

We apply the proposed methodology to determine representative earthquake scenarios for the communes of Valparaíso and Viña

del Mar, which are located in the Valparaíso Region of Chile on the Pacific coast. The study area is the second-largest Chilean

urban centre; based on the latest Chilean census in 2017, it is home to 630 903 inhabitants. It hosts the Port of Valparaíso,

which is an important container and the main passenger port in Chile. The area shows a heterogeneous building inventory,

ranging from apartment buildings to informal settlements, and a historic district declared a World Heritage Site by UNESCO300

in 2003 (Indirli et al., 2011; Jiménez et al., 2018).

The National Electric System (SEN) provides the area’s power supply. The SEN is the largest Chilean transmission grid,

and covers most of the national territory. The SEN connects power plants and substations with the consumer areas through

high-voltage lines. The topology of the SEN is characterized as a single-scale network with a fast decaying tail, and most of

the load substations are close to a generation unit, with a median distance of 9 km (Ferrario et al., 2022).305

Powerful earthquakes have hit the area in the past, such as the 1730 earthquake, with inferred magnitude Mw in the range

9.1—9.3, and the 1906 event, with inferred moment magnitude Mw 8.0—8.2 (Carvajal et al., 2017). More recently, the 1985
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We apply the proposed methodology to determine representative earthquake scenarios for the communes of Valparaíso and

Viña del Mar, which are located in the Valparaíso Region of Chile on the Pacific coast. The study area is the second-largest

Chilean urban centre; based on the latest Chilean census (INE, 2017), it is home to 630 903 inhabitants. It hosts the Port of

Valparaíso, which is an important container and the main passenger port in Chile. The area shows a heterogeneous building

inventory, ranging from apartment buildings to informal settlements, and a historic district declared a World Heritage Site by300

UNESCO in 2003 (Indirli et al., 2011; Jiménez et al., 2018).

The National Electric System (SEN) provides the area’s power supply. The SEN is the largest Chilean transmission grid,

and covers most of the national territory. The SEN connects power plants and substations with the consumer areas through

high-voltage lines. The topology of the SEN is characterized as a single-scale network with a fast decaying tail, and most of

the load substations are close to a generation unit, with a median distance of 9 km (Ferrario et al., 2022).305

Powerful earthquakes have hit the area in the past, such as the 1730 earthquake, with inferred magnitude Mw in the range

9.1—9.3, and the 1906 event, with inferred moment magnitude Mw 8.0—8.2 (Carvajal et al., 2017). More recently, the 1985
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Mw 8.0 event affected around 230 000 dwellings, 1 million people, and caused losses of about USD 1.4 billion (ONEMI, 1985).

The most recent Mw 8.8 Maule earthquake (2010) caused severe structural damage in buildings in Viña del Mar, including in

buildings retrofitted in 1985 (Jünemann et al., 2015).310

A hazard evaluation of the Valparaíso urban area presented by Indirli et al. (2011) selected representative earthquake scenar-

ios based on historical events, considering the seismicity around the study area, to specify an average regional seismic input

and to generate synthetic seismograms. The scenarios are summarized in Table 1; their magnitudes range from Mw = 5.7 to

Mw = 8.2.

Table 1. Representative earthquake scenarios for the urban area of Valparaíso selected by Indirli et al. (2011) from historic events. The

epicenter location is reported with a map by Indirli et al. (2011), hence their numeric values, as well as moment magnitude and depth,

are here reproduced from the earthquake records of the USGS ComCat Catalog (USGS, 2023). The 1985 Mw 8.0 earthquake event (lon =

−71.850◦, lat = −33.240◦, depth = 33km) has similar source parameters as the 1906 event, while the 2010 earthquake event occurred after

the study of Indirli et al. (2011) was submitted for publication. The event dates are in local time. The locations of the epicenters are shown in

the map of Figure 11.

Source param., θ
Event date

16/08/1906 28/03/1965 06/07/1979 16/10/1981

Longitude [◦] -72.400 -71.233 -71.321 -73.074

Latitude [◦] -32.400 -32.522 -32.148 -33.134

Depth [km] 35 70 45 33

Magnitude, Mw 8.2 7.4 5.7 7.2

5.2 Earthquake model and synthetic earthquake catalog315

We employ the earthquake model presented by Poulos et al. (2019) to generate a synthetic catalog of earthquake scenarios.

The catalog has 2×104 scenarios with magnitude larger than or equal to Mw = 5.0, which is the minimum magnitude defined

by Poulos et al. (2019) for performing the declustering on the historical seismic catalogs on which the earthquake model is

based on. The catalog covers the whole country of Chile, and consists of scenarios at the subduction interface and subduction

intraslab zones. The earthquake model utilizes the slab geometry proposed by Hayes et al. (2012) for the depth contours and320

trench geometry, and divides the Chilean subduction zone into three subduction interface and four intra-slab zones, whose

combined occurrence rate equals λH = 43.3 yr−1.

The epicentral locations of the catalog are generated randomly, based on the occurrence rate associated with the seismic

zones defined by the occurrence model. The magnitude is sampled with an importance sampling (IS) approach. We employ a

uniform distribution with minimum and maximum values defined by the magnitude range of each seismic zone, as IS density.325

The corresponding IS weights are considered when determining the loss-exceedance function and computed following the

original Gutenberg-Richter relationship at each seismic zone (Poulos et al., 2019). The resulting catalog is depicted in Figure

5, in which one can observe that events of different magnitudes have similar spread within the seven seismic zones.
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The earthquake model of Poulos et al. (2019) only considers the subduction zone, hence the independent source parameters

are the moment magnitude Mw, longitude X and latitude Y of the epicenter. Other parameters, such as the depth H , strike,330

dip and rake angles, are determined by the geometry derived by Hayes et al. (2012), depending of the epicenter location.

Therefore, the PDF of the source parameters fΘ(θ) is represented, respectively, by the conditional PDF fMw|X,Y (mw|x,y),

and the location-dependent occurrence rate λ(x,y):

fΘ(θ)∝ λ(x,y)fMw|X,Y (mw|x,y) (26)

Figure 5. Synthetic earthquake catalog with 20 000 scenarios (Poulos et al., 2019). The circle size corresponds to the scenario magnitude.

The red square contains the study area. Seismic zones 1 to 3 are of subduction interface type, and zones 4 to 7 are of subduction intra-slab

type. Basemap from ©OpenStreetMap contributors 2023. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

5.2.1 Ground motion models335

For the residential building stock, we evaluate the PGA and spectral accelerations at 0.3 s and 1.0 s with the Ground Motion

Model (GMM) presented by Montalva et al. (2017). The uncertainty in the median prediction is modelled with a Gaussian

random field, with the spatial correlation model of Jayaram and Baker (2009a). The choice of these models is based on

the epistemic uncertainty analysis of different ground motion and correlation models by Gómez-Zapata et al. (2022a), who

analyzed the same study area. For the scope of this study, we do not consider cross-correlated ground motion fields.340
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For the Chilean power network, we employ the GMM of Abrahamson et al. (2016) and the spatial correlation model de-

veloped by Goda and Atkinson (2010) for predicting the PGA. This is the same ground motion model as the one utilized by

Ferrario et al. (2022).

The functional form of both GMMs is similar, and therefore, their predictions do not differ significantly, as observed in

previous studies (e.g., Hussain et al., 2020; Gómez-Zapata et al., 2022a). In particular, Hussain et al. (2020) found negligible345

differences in direct loss estimates for the residential building stock of Santiago de Chile after using these two GMMs to

simulate the associated ground motion from subduction earthquake scenarios.

5.3 Model for the building stock in the communes of Valparaíso and Viña del Mar

We employ the Bayesian exposure model of the building stock with the building classes described in (Gómez-Zapata et al.,

2022a) and available in (Pittore et al., 2021a). The model was constructed by taking the OpenStreetMap footprint of the350

buildings in the two communes, and assigning to each footprint the most likely building class. The buildings are counted

within a regular 500× 500 m resolution grid in the urban areas, as shown in Fig. 6. Detailed building counts for each class are

presented in (Gómez-Zapata et al., 2022a)

The model considers 16 building classes (Gómez-Zapata et al., 2022a), which correspond to the ones proposed in the

SARA project (Yepes-Estrada et al., 2017), and have an associated replacement cost. Furthermore, each building class has355

an associated fragility model with five damage states (Villar-Vega et al., 2017). The fragility model for each building associates

an intensity measure (spectral acceleration at 0.3 s, 1.0 s, or the PGA) with the probabilities of achieving a damage state. We

assume the following relative replacement cost percentages for each damage level: 0% for no damage, 2% for slight damage,

10% for moderate damage, 50% for extensive, and 100% for complete damage.

We utilize the model to evaluate the ground motion and simulate the building damage. Given an intensity level of the360

ground motion, the damage is simulated randomly at each building with a discrete distribution with probabilities defined by

the fragility functions. The losses for each scenario in the catalog are computed as the accumulated reconstruction cost of the

damaged residential buildings, based on the simulated damage.

5.4 Model for the Chilean National Electric System, SEN

We model the SEN and its components, following Ferrario et al. (2022). The network model consists of 1494 nodes, repre-365

senting 500 generation units and 994 substations, and the transmission lines connecting them, with a total power generation

capacity of 21.9 GW. The model considers seismic interaction and system performance subjected to component failures. Given

a scenario with a ground motion field (in this case, the PGA), each node is randomly associated with a damage state, by means

of the fragility function, and a recovery time associated with their damage state.

The losses associated with the SEN due to an earthquake scenario are quantified in terms of the energy not supplied (ENS).370

The ENS is evaluated at each substation by solving the power in normal steady state operation through the Direct Current

- Optimal Power Flow (DCOPF) model (Wood et al., 2013), and comparing it with the power in a damaged state operation
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(a) (b)

Figure 6. (a) Exposure model of the residential building stock. Each rectangular cell shows the total count of residential buildings, indicating

the most dense areas. Source: Pittore et al. (2021a). (b) Geographic location of the SEN. The network follows the narrow shape of the country,

and the communes of Valparaíso and Viña del Mar (inside red square) are in a central location within the network. Source: Coordinador

Eléctrico Nacional (2019). Basemap from OpenStreetMap.

caused by the earthquake scenario. To quantify the loss in the power supply in the communes of Valparaíso and Viña del Mar,

we calculate the total ENS with the sum of the ENS of all substations located in the two communes (14 in total).

DCOPF is typically adopted in practice for transmission networks (Frank and Rebennack, 2016). It optimizes the power

generation cost, taking into account the capacity of the power plants and transmission lines connected to the power grid, the

generation cost associated with each power plant, and the demand from the clients. For modeling the system response to an345

earthquake, the DCOPF considers the reduced capacity of components affected by the earthquake. For the SEN, the capacities

are known from the specifications of its components (Coordinador Eléctrico Nacional, 2019; Comisión Nacional de Energía,

2019), and the demand is modelled based on the database of Coordinador Eléctrico Nacional (2018). A detailed description

and validation of the network model of the SEN can be found in (Ferrario et al., 2022).
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caused by the earthquake scenario. To quantify the loss in the power supply in the communes of Valparaíso and Viña del Mar,

we calculate the total ENS with the sum of the ENS of all substations located in the two communes (14 in total).

DCOPF is typically adopted in practice for transmission networks (Frank and Rebennack, 2016). It optimizes the power375

generation cost, taking into account the capacity of the power plants and transmission lines connected to the power grid, the

generation cost associated with each power plant, and the demand from the clients. For modeling the system response to an

earthquake, the DCOPF considers the reduced capacity of components affected by the earthquake. A detailed description and

validation of the network model of the SEN can be found in (Ferrario et al., 2022).
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6 Evaluation of representative earthquake scenarios for Valparaíso and Viña del Mar communes380

6.1 Results for the residential building stock

Figure 7 shows the annual exceedance rate of the losses. The USGS ComCat Catalog records that between 1960 and 2020

there were 12 seismic events that produced a macroseismic intensity greater or equal than VI on the Mercalli scale in the two

communes (USGS, 2023). This corresponds to an occurrence rate of 0.20 yr−1. It is reasonable to assume that events with

macroseismic intensity of VI or higher lead to losses of 106 USD and higher. This data therefore validates the lower end of the385

loss exceedance rate obtained with the synthetic earthquake catalog.
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Figure 7. Loss-exceedance function of the reparation costs (in US Dollars) associated with the residential building stock in Valparaíso y Viña

del Mar communes.

As in Section 4.2, we evaluate the representative scenarios in 20 independent runs of the algorithm, to check the robustness

of the results. In all evaluations, we found a spread of the identified representative scenarios, similar to that of Figure 4. This

spread is larger for higher return periods, but most of the numerical solutions (11 out of 20 for the 1000-year loss return period

and at least 16 out of 20 for the other loss return periods) have epicentral location within a radius of 50km around the mode, and390

the coefficient of variation of the magnitude is below 4% for all return periods. In the following, we only present the modes,

i.e., the representative scenarios that were identified the most frequently in the 20 repetitions.

Figure 8 shows the representative earthquake scenarios for the analyzed return periods with loss occurrence approach. One

can observe that large return periods are associated with scenarios that have larger magnitude. The fact that the magnitude

for the 1000-year scenario equals only Mw = 7.01 is a consequence of the size of the study area. On the one hand, among395

the 36 seismic events with Mw ≥ 8.0 registered along the Chilean coast between 1570 and 2023 (CSN, 2023), only 4 events

had an epicenter near the two communes, i.e., within a radius of approximately 70km. For comparison, the identified 1000-

year scenario is at a distance of around 20km from Valparaíso and Viña del Mar. On the other hand, the spatial correlation
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of the ground motion within a small study area leads to an increased likelihood of extreme losses in a scenario with lower

earthquake magnitude and extreme ground motion residuals. This tendency was also found by Goda and Hong (2009) with the400

loss exceedance approach.

Figure 8. Representative earthquake scenarios for the residential building portfolio in Valparaíso and Viña del Mar communes. The hypocen-

tral depth H is displayed in km. Source of the exposure morel: Pittore et al. (2021a). Basemap from ©OpenStreetMap contributors 2023.

Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

6.2 Results for the power network

Figure 9 shows the loss exceedance function in terms of the ENS obtained with the synthetic earthquake catalog. The largest

sampled ENS value is around 2× 105MWh, which is around 20% of the annual energy demand of the two communes.

The spread in epicentral locations of the representative scenarios obtained with the 20 runs is larger than the one of the405

residential building stock, but is still small. At least 13 solutions cluster around the sample mode within a radius of 100km, and

the coefficient of variation of the magnitude is below 5% for all return periods.

Figure 10 shows the resulting representative earthquake scenarios for the analyzed return periods. One can observe that the

scenarios are close to the two communes but less concentrated than those of the residential building stock, and have a different

magnitude range. This reflects the fact that the total ENS, although computed only at the substations located within the two410

communes, depends on the damage state of the components of the rest of network.

Even though the power supply network is spread out over a larger area, the representative earthquake scenarios are close to

the study area. They reflect that the most important components of the network for the two communes are in their proximity.
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Figure 9. Loss-exceedance function of the total energy in megawatt hour (MWh) not supplied in communes of Valparaíso and Viña del Mar.

Figure 10. Representative earthquake scenarios for the power supply considering the total energy not supplied (ENS) of Valparaíso and Viña

del Mar communes. The red square indicates the location of the two communes, and the hypocentral depth H is displayed in km. Source of

the power network: Coordinador Eléctrico Nacional (2019). Basemap from ©OpenStreetMap contributors 2023. Distributed under the Open

Data Commons Open Database License (ODbL) v1.0.

For example, the source location of the 100-year return period scenario lies near a main connection between the substations in

the two communes and the rest of the SEN.415
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(a) (b)

Figure 11. Representative earthquake scenarios for the (a) building stock and (b) power supply, compared with past earthquake events

selected in (Indirli et al., 2011). The location of the two communes is within the red square, and the SEN network is also displayed.

Source of the exposure model: Pittore et al. (2021a). Source of the power network: Coordinador Eléctrico Nacional 2019. Basemap from

©OpenStreetMap contributors 2023. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

6.3 Comparison with past earthquake events

Figure 11 compares the results with the historical events selected in Indirli et al. (2011). Although the representative earthquake

scenarios and the selected historical events target the same area of interest, they have different purposes. The historical events

presented by Indirli et al. (2011) aim at representing the seismicity of the most important seismic zones affecting the study

area. In contrast, the representative earthquake scenarios, as defined in Rosero-Velásquez and Straub (2022), take into account420

the performance and the losses caused by damage and failures in the analyzed engineering system. In addition, the scenarios

are selected based on different loss levels, which are attached to return periods.

6.4 Computational cost

In terms of loss evaluations, the analysis requires one evaluation per scenario in the catalog for constructing the loss exceedance

function with event-based earthquake risk assessment. That corresponds to 2×104 loss evaluations. In addition, during the AL425

stage, around 10 iterations were necessary to achieve the convergence criterion of Eq. (25), each of them consisting of 160

new loss evaluations (ns = 2 scenarios evaluated nl = 20 times, for each of the nt = 4 return periods). Therefore, 1600 loss

evaluations are needed to find the representative earthquake scenarios for 4 different return periods.

For comparison, Goda and Hong (2009) report that they use a total of 5× 106 loss evaluations for the classical loss disag-

gregation. Furthermore, they only evaluate the scenarios with the loss exceedance approach. Extending the loss disaggregation430

approach to loss occurrence will likely require additional evaluations. Additionally, the computation cost of the loss disag-

gregation approach scales exponentially with the number of parameters describing seismic scenarios. Hence, the classical

21

Figure 11. Representative earthquake scenarios for the (a) building stock and (b) power supply, compared with past earthquake events

selected in (Indirli et al., 2011). The location of the two communes is within the red square, and the National Electric System (SEN) network

is also displayed. Source of the exposure model: Pittore et al. (2021a). Source of the power network: Coordinador Eléctrico Nacional (2019).

Basemap from ©OpenStreetMap contributors 2023. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

6.3 Comparison with past earthquake events

Figure 11 compares the results with the historical events selected in Indirli et al. (2011). Although the representative earthquake

scenarios and the selected historical events target the same area of interest, they have different purposes. The historical events

presented by Indirli et al. (2011) aim at representing the seismicity of the most important seismic zones affecting the study

area. In contrast, the representative earthquake scenarios, as defined in Rosero-Velásquez and Straub (2022), take into account420

the performance and the losses caused by damage and failures in the analyzed engineering system. In addition, the scenarios

are selected based on different loss levels, which are attached to return periods.

6.4 Computational cost

In terms of loss evaluations, the analysis requires one evaluation per scenario in the catalog for constructing the loss exceedance

function with event-based earthquake risk assessment. That corresponds to 2×104 loss evaluations. In addition, during the AL425

stage, around 10 iterations were necessary to achieve the convergence criterion of Eq. (25), each of them consisting of 160

new loss evaluations (ns = 2 scenarios evaluated nl = 20 times, for each of the nt = 4 return periods). Therefore, 1600 loss

evaluations are needed to find the representative earthquake scenarios for 4 different return periods.

For comparison, Goda and Hong (2009) report that they use a total of 5× 106 loss evaluations for the classical loss disag-

gregation. Furthermore, they only evaluate the scenarios with the loss exceedance approach. Extending the loss disaggregation430

approach to loss occurrence will likely require additional evaluations. Additionally, the computation cost of the loss disag-

gregation approach scales exponentially with the number of parameters describing seismic scenarios. Hence, the classical

loss disaggregation approach will not be applicable to problems in which earthquake scenarios are described by more than 3
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or 4 parameters. By contrast, we successfully tested the proposed approach for seismic hazard models with 7 parameters in

applications not reported in this paper.435

7 Discussion

The representative earthquake scenarios summarized in Fig. 11 can provide important input to risk assessment and risk man-

agement activities. The fact that the scenarios identified with the proposed approach differ from the historical events selected in

Indirli et al. (2011) should not be surprising, as the latter are in some sense just “random samples” of earthquake events. Nev-

ertheless, the historic events can provide a useful validation of the identified scenarios. In this regard, the scenarios identified440

as representative of the power supply network appear to be in line with the historic events. The identified 500 and 1000-year

scenarios have larger magnitudes than the historical events, which is expected since the historical events come from a (roughly)

100-year period, as shown in Table 1. By contrast, the representative scenarios identified for the building stock have smaller

magnitudes than the historical events. However, they occur much closer to the considered building stock. Furthermore, ac-

cording to the employed model, extreme losses are more likely to occur by a combination of a less strong earthquake with445

larger-than-average ground motions (i.e., a large value of the inter-event term in the GMM). This effect occurs for the residen-

tial building stock due to its spatial concentration and not (or to a much smaller extent) for the power supply network, which is

spatially distributed.

The above observations lead to some important conclusions: Firstly, the scenarios, rightly, are different for different assets.

Secondly, the scenarios depend on model assumptions beyond the seismic source models. In the application here, the model of450

the ground motion variability has a distinct effect on the scenarios for the residential building stock. Given that the employed

state-of-the-art model might overestimate the event-to-event variability (Bodenmann et al., 2023), the results for the building

stock should be utilized carefully. Thirdly, because the earthquake scenario in the building case is representative of certain loss

return periods only in combination with high ground motions, it should be investigated if and how the representative scenario

should also provide ground motion fields together with the earthquake event. We note that these issues are also present for the455

classical hazard and loss disaggregation methods. Overall, for practical risk management tasks it is recommended to use the

historic events jointly with the identified scenarios, in particular for the residential building stock case.

The dependence of the results on the engineering system and the model assumptions implies that the representative scenarios

should be regularly updated, depending on how much the analyzed system changes and the models improve. According to

demographic projections of the INE, based on the 2017 Chilean Census, the population in the two communes will increase460

by around 13% by 2035 with respect to the population in 2017 (INE, 2017). This demographical change will likely cause

changes in the residential building stock and the power demand. Depending on how these changes develop, the representative

earthquake scenarios may change as well. Furthermore, the presented results do not consider the potential impact caused

by further earthquake-triggered hazards, such as tsunamis and landslides. The tsunami impact during offshore earthquake

scenarios with large magnitude should be considered in a complete loss estimation, and may affect the scenario selection465

associated with large return periods. Similarly, the scenario selection may change if one considers the landslides potential in
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the study area. Finally, cascading effects have not been considered in the power network model. Although the topology of the

SEN and the redundancy of generators along the network reduce the probability of large blackouts, hub nodes far from the two

communes may affect them through a sequence of failures triggered by earthquake scenarios impacting them. This may shift

the representative scenarios to further locations from the study area.470

We presented the evaluation of representative earthquake scenarios based on the loss occurrence and the loss exceedance

approach; the latter coincides with the classical loss disaggregation method (Goda and Hong, 2009; Jayaram and Baker, 2009b).

In the illustrative example of Section 4.2, we compare the results of the two approaches. For the case of hazard disaggregation,

it has been proposed in the literature that the results of both approaches should be reported (Fox, 2023). However, we decided

against reporting the scenarios of the exceedance approach for the Valparaíso and Viña del Mar communes, to avoid confusion.475

We find the loss occurrence approach to have a more intuitive interpretation. Scenarios identified with this approach correspond

to a loss that is the t-year loss, which can be reported jointly with the scenarios. They are the most likely scenarios leading

to this value (which on average is exceeded once in t years). By contrast, we find it difficult to communicate the meaning of

the scenarios with the loss exceedance approach – and we believe it will be mostly misunderstood. Scenarios obtained with

the loss occurrence approach can be described as “representative of a loss that is exceeded on average once in t years”. For480

the loss exceedance approach, one would need to describe scenarios as “representative of the losses that would occur when

conditioning on a loss at least as large as the one that would be exceeded once in t years”, which seems too convoluted to

communicate effectively. We also have difficulties to conceive of a risk management activity for which such a definition would

be more appropriate. However, we acknowledge that this discussion could benefit from additional comparisons of the two

approaches in future studies.485

To evaluate the representative scenarios, we adapted the methodology of Rosero-Velásquez and Straub (2022). The method-

ology leads to lower computational cost in terms of loss evaluations compared to the classical loss disaggregation. By incor-

porating active learning, the methodology concentrates the conditional loss evaluations around the scenarios that most likely

produce the t-year loss value lt. This concentration of samples around the solution and the smooth approximation of the con-

ditional density with KDE make the methodology more suitable for selecting representative scenarios with the loss occurrence490

approach. For this approach, the classical loss disaggregation has to rely on the numerical derivative of the empirical CDF

(Baker et al., 2021).

Although single representative scenarios are valuable for risk mitigation and communication purposes, they also have several

limitations. For example, designing effective risk mitigation strategies, such as resource allocation before the event, using a

single representative scenario would result in solutions tailored to the spatial distribution of damage of the specific selected495

scenario. Thus, better strategies could be defined by considering multiple scenarios, even for the same loss return period.

Possible extensions of the methodology include catalogs with multiple hazards (e.g., seismic scenarios with tsunami), loss

calculations considering indirect consequences, and high-dimensional scenarios (e.g., including the damage states of the indi-

vidual components, either buildings or power network components). For the later, however, the dimensionality of the damage

states has to be reduced (Rosero-Velásquez and Straub, 2019).500
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8 Conclusion

We present a methodology and algorithm to determine representative earthquake scenarios from a synthetic earthquake catalog.

We applied the methodology to the communes of Valparaíso and Viña del Mar in Chile. Because the identified scenarios should

be representative of extreme losses, they differ depending on the exposed assets. In this contribution, we consider the building

stock and the electrical supply network. The application shows that the methodology can work and allows the identification of505

scenarios more systematically than by selection or extrapolation from past events. However, the results for the building portfolio

also show that resulting scenarios cannot be considered independently of the resulting ground motions. Therefore, future work

should investigate scenarios that also include the ground motions. Because the description of ground motion fields requires a

large number of parameters, the existing methodology will need to be extended to be able to cope with such scenarios.
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