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Abstract. Hurricane María induced about 70,000 landslides throughout Puerto Rico, USA, including thousands each 11 

in three municipalities situated in Puerto Rico’s rugged Cordillera Central range. By combining a nonlinear soil-depth 12 

model, presumed wettest-case pore pressures, and quasi-three-dimensional (3D) slope-stability analysis we developed 13 

a landslide susceptibility map that has very good performance and continuous susceptibility zones having smooth, 14 

buffered boundaries. Our landslide susceptibility map enables assessment of potential ground-failure locations and 15 

their use as landslide sources in a companion assessment of inundation and debris-flow runout. The quasi-3D factor 16 

of safety, F3, showed strong inverse correlation to landslide density (high density at low F3). Area under the curve 17 

(AUC) of True Positive Rate (TPR) versus False Positive Rate (FPR) indicated success of F3 in identifying head-scarp 18 

points (AUC=0.84) and source-area polygons (0.85 £ AUC £ 0.88). The susceptibility zones enclose specific 19 

percentages of observed landslides. Thus, zone boundaries use successive F3 levels for increasing TPR of landslide 20 

head-scarp points, with zones bounded by F3 at TPR=0.75, very high; F3 at TPR=0.90, high; and the remainder 21 

moderate to low. The very high susceptibility zone, with 118 landslides/km2, covered 23% of the three municipalities. 22 

The high zone (51 landslides/km2) covered another 10%. 23 

1 Introduction 24 

Landslide susceptibility maps are widely used to mitigate the major hazards landslides pose to people, public and 25 

private property, lifelines, utilities, and businesses. Reliable application of physically based models to landslide 26 

susceptibility assessment has been intensively researched since the 1990s. Many models and computer codes for such 27 

assessments exist (Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Pack et al. 1998; Simoni et al. 2008; Baum 28 

et al. 2010; Arnone et al. 2011; Rossi et al. 2013). Nevertheless, several scientific and technical challenges complicate 29 

the application of these models over large areas. These challenges exist, in part, because many geological, 30 

hydrological, and geotechnical details of the subsurface remain unknowable except at points of direct observation. 31 

Among others, the subsurface knowledge gaps include (1) relationships between soil thickness and shallow landslide 32 

depth, (2) model parameter spatial distribution and variability, (3) pore pressure and effective stress distributions, and 33 

(4) landslide failure modes. Research has made much progress in addressing these knowledge gaps. For example, 34 

many physically based and empirical soil-depth models are available (Roering, 2008; Pelletier and Rasmussen 2009; 35 

Ho et al. 2012; Catani et al. 2010; Nicótina et al. 2011; Gomes et al. 2016; Patton et al. 2018, Yan et al. 2021; Xiao et 36 

al., 2023), making it possible to estimate the field-distribution of soil depth in landslide prone areas (Godt et al. 2008a; 37 

Segoni et al. 2009; Ho et al. 2012). Some studies have combined field or laboratory measured properties with mapped 38 

lithologic characteristics and statistical analysis to describe the spatial distribution of soil properties (Godt et al. 2008b; 39 

Tofani et al. 2017). Many other studies have applied probabilistic approaches successfully to address parameter 40 

uncertainty and improve accuracy of physically based modelling of landslide susceptibility (Raia et al. 2014; Zieher 41 

et al. 2017; Canli et al. 2018; Palacio Cordoba et al. 2020; Medina, et al. 2021). Despite these advances, accurate 42 

assessment of landslide susceptibility using physically based methods remains difficult. 43 

Most physically based landslide susceptibility models have relied on the one-dimensional (1D) infinite-slope analysis 44 

to model slope-stability. This approximation is suitable for representing shallow landslides in raster-based topography 45 

where the resolution (grid-cell spacing) is tens of meters. However, applying the 1D analysis to high-resolution (a few 46 



 3 

meters or less) topography violates the 1D assumptions of laterally uniform stress and a planar failure surface. A few 47 

spatially distributed three-dimensional (3D) (Mergilli et al. 2014a, 2014b; Reid et al. 2015) and quasi-3D (von Reutte 48 

et al. 2013; Milledge et al. 2015) methods have become available to overcome limitations of the 1D analysis. In the 49 

quasi-3D method of von Reutte et al. (2013) soil columns interact with their neighbors and load is redistributed when 50 

driving forces at the base of a column exceed basal strength. Milledge et al. (2015) used a search algorithm to identify 51 

patches of potentially unstable grid cells by assuming driving forces acting on a group of cells exceed the resisting 52 

forces at the group’s margins and that cell groups act as rigid blocks with a failure surface at the soil-bedrock interface. 53 

Mergilli et al. (2014a, 2014b) assumed 3D landslide geometry based on ellipsoidal failure surfaces and used Hovland’s 54 

(1977) force-equilibrium method to analyze stability across a digital landscape. Reid et al (2015) used spherical trial 55 

surfaces with moment-equilibrium analysis methods, which tend to be more accurate than methods based on force 56 

equilibrium alone. 57 

The main objective of this work is to produce integrated maps of potential landslide initiation and inundation areas. 58 

Secondary objectives are to integrate soil-depth modeling, consideration of parameter variability, and quasi-3D slope 59 

stability analysis into our assessments. Our approach to soil-depth modeling achieves a good compromise between 60 

swift, simple methods (constant depth or simple empirical methods, such as DeRose et al. 1991) and the most 61 

complicated and computationally intensive (Xiao et al. 2023). Likewise for our quasi-3D slope stability analysis. 62 

Although much progress has been made in methods for assessing landslide susceptibility (e.g., Carrara et al. 1999; 63 

Chung and Fabri 2003; Lee et al. 2003; Godt et al. 2008; Baum et al. 2014; Canli et al. 2018) as well as debris-flow 64 

inundation (George and Iverson 2014; Reid et al. 2016; Aaron et al. 2017; Bessette-Kirton et al. 2019b), combining 65 

these two types of assessments into a single map for an area of hundreds of square kilometers remains challenging 66 

(Ellen et al. 1993; Benda et al. 2007; Fan et al. 2017; Hsu and Liu 2019; Mergili et al. 2019). As noted previously, 67 

one of the challenges is estimating potential source-area extent and depth. We addressed this challenge by modelling 68 

soil depth and using it to approximate potential source-area depth in 1D and quasi-3D slope stability models for use 69 

in assessing regional shallow landslide susceptibility. Such an approach helps ensure that the susceptibility model 70 

accounts for variable failure depth across the landscape and that predicted areas of potential landslide sources are 71 

acceptable for use in assessing debris-flow inundation. We compared results of several soil-depth models to find the 72 

one that performed the best in our study area. The quasi-3D model uses a simplified limit-equilibrium analysis to 73 

estimate the stability of a slab- or goldpan-shaped trial landslide. Another challenge is establishing meaningful 74 

susceptibility categories, which we addressed by delimiting the categories at quasi-3D factor of safety values, F3, that 75 

enclose specific percentages of landslide sources, rather than relying on theoretical or arbitrary factor of safety values 76 

to delimit the categories. By showing like outcomes (areas that capture specific percentages of observed landslides), 77 

maps based on this approach are directly comparable to each other.  78 

In the aftermath of Hurricane María, the U.S. Geological Survey (USGS) began working with local partners to conduct 79 

detailed assessments of landslide and debris-flow hazards, both island-wide (Bessette-Kirton et al. 2017; Hughes and 80 

Schulz 2020a, b) and more locally (this study) for three impacted municipalities (Lares Municipio, Utuado Municipio, 81 

and Naranjito Municipio) in the central mountains of Puerto Rico (Fig. 1). These municipalities were an ideal location 82 

for testing and developing methods for such assessments. Here we describe the landslide initiation (source area) part 83 
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of a landslide susceptibility assessment for these municipalities. Estimating landslide initiation potential is part of a 84 

larger effort (in progress, Brien et al. 2021) to estimate overall hazard from (1) landslide initiation (ground failure), 85 

(2) landslide runout, and (3) debris-flow inundation from future extreme rainfall, including tropical cyclones 86 

(hurricanes), as well as localized storms expected to impact these areas of Puerto Rico.  87 

 88 

 89 
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Figure 1. Geologic map showing municipality boundaries, study areas, calibration areas, and major lithologies (geologic 90 
terranes) for the main island of Puerto Rico. Simplified from Bawiec (1998) by combining submarine volcaniclastic rocks 91 
of various ages into a single map unit. Primary landslide-prone lithologies indicated by * in map explanation. Municipality 92 
boundaries of Lares, Utuado, and Naranjito define study areas. Digital elevation models covering the study areas were 93 
divided into five smaller tiles. Extent of Añasco (ANA), Lares (LAR), Utuado (UTU), and Naranjito (NAR) calibration areas 94 
from landslide inventories by Bessette-Kirton et al. (2019c, 2020). (a) overview of entire island, (b) details of Lares and 95 
Utuado study areas including outlines of areas of detailed landslide mapping in Utuado, (UTU2, Einbund et al. 2021a) and 96 
Lares (LAR2, Einbund et al. 2021b), (c) details of Naranjito study area. 97 

In the following sections, we describe characteristics of the study areas, summarize our methods and results, and 98 

discuss advantages, limitations, and implications of our approach. First, we describe the setting, geology, and 99 

landslides of Puerto Rico including details specific to the study areas. Then we describe the available topographic and 100 

geotechnical data followed by a description of the workflow for assessing landslide susceptibility. Next, we describe 101 

our methods for modelling soil depth, pressure head, and slope stability along with procedures for model calibration 102 

and details of how the calibrated models were applied to and evaluated for our study areas. Then we present results of 103 

the calibration, soil-depth modelling, 1D and quasi-3D stability analyses, and the evaluation and validation of the 104 

susceptibility analysis. These results were obtained using pre-event light detection and ranging (lidar) bare-earth 105 

digital elevation models (DEM) (U.S. Geological Survey, 2018). The DEMs, with uniformly spaced elevation values, 106 

were created from ground returns of lidar point clouds. DEMs are known in some countries as digital terrain models, 107 

a term with two definitions; throughout this paper we use DEM to avoid ambiguity (Heidemann, 2018). We reran our 108 

models using calibrated input parameters and post-event lidar (U.S. Geological Survey 2020a, b, c) to estimate 109 

susceptibility to future landslides. We finish by discussing strengths and limitations of our approach as well as some 110 

unexpected findings and ways to simplify the workflow for application to areas where limited data are available.  111 

2 Study area 112 

Puerto Rico is a U.S. territory and lies at the east end of the Greater Antilles island chain in the Caribbean Sea (Fig. 113 

1). The main island is characterized by rugged topography and covers an area of 8750 km2. The study areas and 114 

calibration areas lie in the east–west-trending Cordillera Central range, which spans most of the island. The range 115 

exceeds elevations of 900 m at many places, and its highest peak reaches an elevation of 1340 m. Coastal plains and 116 

broad lowlands ring most of the island. Ongoing tectonic uplift is one of the main factors creating the rugged 117 

topography across the island (Taggart and Joyce 1991). Warm temperatures, high rainfall, and humidity contribute to 118 

deep weathering and widespread saprolite formation (Murphy et al. 2012). 119 

This study was conducted in stages between 2018 and 2022 and involved three study areas as well as calibration areas, 120 

study-area tiles, and validation areas. We define these here to help the reader comprehend how our presentation of the 121 

study is organized. The study areas comprise three municipalities, Lares Municipio, Utuado Municipio, and Naranjito 122 

Municipio, and are the focus of our landslide initiation susceptibility maps (Supplemental Figures S1 and S2; Baum 123 

et al. 2023). These municipalities were chosen because they were severely impacted by Hurricane María landslides 124 

and to help manage their future growth and development. We enclosed the Lares and Utuado study areas in four 125 

overlapping rectangles and enclosed Naranjito Municipio in a fifth, separate rectangle (Fig. 1a, 1b, and 1c). The 126 

rectangles extend beyond the drainage divides of basins that straddle municipality boundaries. The rectangles delimit 127 
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overlapping tiles of the DEM used in the susceptibility analysis. These DEM tiles helped keep file sizes (6 gigabytes 128 

or less for ASCII input and output grids) manageable and overlap ensured that edge effects would not degrade soil-129 

depth or slope-stability computations. The extended boundaries ensured that landslide runout and debris-flow 130 

inundation models (Brien et al. 2021) would not be impeded by municipality boundaries or other artificial barriers. 131 

The calibration areas (Fig. 1) were placed in distinct geologic terranes where high concentrations of landslides had 132 

occurred. Previous detailed mapping and characterization (Bessette-Kirton et al. 2019c, 2020) and field studies (Baum 133 

et al. 2018) in these areas provided data for testing and calibrating soil-depth and slope-stability models (Tello 2020). 134 

From east to west, each 2-km2 calibration area was named for a nearby city: Añasco (ANA), Lares (LAR), Utuado 135 

(UTU), and Naranjito (NAR). Although ANA is about 15 km west of the study areas, it was included to provide 136 

additional calibration data in an area of high landslide density for submarine volcaniclastic lithologies because 137 

sufficient data were not available at NAR. Soils, land cover, and other characteristics (besides bedrock lithology) that 138 

influence landslide susceptibility vary between the four calibration areas (Bessette-Kirton et al. 2020; Hughes and 139 

Schulz 2020a, 2020b). We used six additional areas of detailed mapping (Einbund et al. 2021a, 2021b) to help evaluate 140 

the final maps. These validation areas are designated LAR2 and UTU2, and each includes three rectangular areas of 141 

detailed landslide mapping. (Fig. 1b). We combined detailed source area mapping of NAR (Baxstrom et al. 2021a) 142 

and UTU (Einbund et al. 2021a) with that in LAR2 and UTU2 for the validation.  143 

2.1 Geology and soils  144 

Heavily faulted basement rocks, consisting mainly of oceanic crust, volcaniclastic, and intrusive rocks, underlie the 145 

Cordillera Central range (Jolly et al. 1998). A cover sequence of carbonates and associated clastic sediments 146 

unconformably overlies the basement complex. The carbonates have weathered to form tropical karst in the lowlands 147 

north of the range (Monroe 1976). Bawiec (1998) generalized the geology of Puerto Rico into twelve geologic terranes 148 

having related rock types. We have simplified the terranes slightly for purposes of this study (Fig. 1). Soil mapping 149 

and databases published by the U.S. Department of Agriculture’s Natural Resources Conservation Service (NRCS) 150 

indicate a wide range in the textures (particle-size distributions) and hydraulic properties of soils in the study areas 151 

(Soil Survey Staff 2018). Most hillside soils have developed by in-place chemical weathering of underlying bedrock 152 

or saprolite and locally derived colluvium. Despite the steep slopes, in many places the upper few meters of bedrock 153 

have weathered to saprolite (e.g., Jibson 1989; Larsen and Torres-Sanchez 1992). 154 

2.2 Landslides 155 

Heavy rainfall from Hurricane María during September 2017 produced tens of thousands of landslides on the main 156 

island of Puerto Rico, USA (Bessette-Kirton et al. 2017, 2019a; Hughes et al. 2019). Shallow, translational failures in 157 

soil or saprolite, from decimeters to a few meters deep were the most common landslides. Deeper (up to 30 m) complex 158 

failures in soil, saprolite, and rock, as well as rock falls and rock slides also occurred (Bessette-Kirton et al. 2017). 159 

Many landslides transformed into debris flows that commonly coalesced and flowed down channels. Landslides 160 

caused fatalities as well as widespread damage to homes, roads, and other infrastructure. 161 
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Recent and historical studies described and characterized Puerto Rico's rainfall-induced landslides. Published studies 162 

of past landslides characterized rainfall-induced landslides in southern and eastern parts of Puerto Rico (Jibson 1989; 163 

Simon et al. 1990; Larsen and Torres-Sanchez 1992, 1998; Pando et al. 2005; Larsen 2012). Several post-Hurricane 164 

María studies documented dimensional, geologic, and topographic characteristics of landslide sources in ten 165 

representative areas of high landslide density within and near the municipality study areas (Fig. 1): Baum et al. (2018) 166 

conducted field studies and measurements (Fig. 2), and Bessette-Kirton et al. (2019c) later mapped landslides using 167 

post-event aerial photography in the four areas denoted as ANA, LAR, NAR, and UTU (Fig. 1a). U.S. Geological 168 

Survey staff later remapped NAR (Baxstrom et al. 2021a), remapped UTU (Einbund et al. 2021a), and mapped six 169 

additional areas (UTU2 and LAR2, Fig. 1b) near UTU and LAR (Einbund et al. 2021a, 2021b). Schulz et al. (2023) 170 

expanded on earlier field studies of Baum et al. (2018). Data from some of these studies supported recent analyses of 171 

landslide susceptibility (Bessette-Kirton et al. 2019a; Hughes and Schulz 2020a) and runout characteristics (Bessette-172 

Kirton et al. 2020). 173 

 174 

 175 
Figure 2. Photographs depicting source areas of shallow landslides in (a) volcaniclastic terrane (photograph by C. Cerovski-176 
Darriau, U.S. Geological Survey, May 2018, public domain) and (b) granitoid terrane one month after Hurricane María 177 
(photograph by W. Schulz, U.S. Geological Survey, October 2017, public domain). 178 

The post-Hurricane María studies cited above indicated that most source areas were fully evacuated, and shallow 179 

translational slides appear to be the most common type of movement prior to transforming to debris flows. 180 

Nevertheless, source area shapes were consistent with translational, rotational, or complex movement. Source areas 181 

exposed soil, saprolite, and bedrock (Fig. 2). Soil matrix textures ranged from sand to clay; clast content increased 182 
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with depth. Differences between the landslide source sizes and depths within the different terranes (Fig. 3) seem 183 

consistent with their different lithologies and depth of weathering (volcaniclastic rocks, weathered volcanic rocks, 184 

granitic pluton).  185 

 186 

 187 
Figure 3. Box plots summarizing landslide source dimensions obtained for three geologic terranes by field studies of 107 188 
landslides (gray, Baum et al. 2018) and by mapping 3440 landslides from aerial imagery and lidar-derived digital elevation 189 
models (white, Baxstrom 2021a; Einbund 2021a, 2021b). (a) width, (b) length, (c) plan-view area calculated directly by 190 
geographic information system for mapped polygons and estimated from field measurements as an ellipse and projected to 191 
the horizontal, p ´ (Length ´ Width ´ cos (Slope angle))/4, (d) mean slope angle, (e) mean landslide source depths. Outliers 192 
of width, length and area not shown to keep 25%, 50%, and 75% quartiles legible; box length = interquartile range (IQR), 193 
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whiskers = 1.5 x IQR. [Locations (as shown in Fig. 1): ANA, Añasco; LAR, Lares; LAR2, Lares (Einbund et al. 2021b); 194 
UTU, Utuado; UTU2, Utuado (Einbund et al. 2021b, includes UTU); NAR, Naranjito (remapped by Baxstrom et al. 2021a)]. 195 

Figure 3 summarizes landslide dimensions obtained from the post-Hurricane María studies for the three main geologic 196 

terranes in the study areas (Fig. 1). The field measurements (using laser range finder, tape, and clinometer; Baum et 197 

al. 2018), though biased by purposely including several large landslides (1500 m2 – 6600 m2), represent the range of 198 

sizes of Hurricane María landslide sources. Mapping from imagery (Baxstrom et al. 2021a; Einbund et al. 2021a, 199 

2021b) included all landslides visible in the imagery of several 2.5-km2 target areas and represent typical dimensions 200 

of landslides triggered by the hurricane on uplands and valley side slopes. Most landslide sources had lengths and 201 

widths less than 10-15 m, with median mapped length and width among the different samples in Figure 3a, 3b ranging 202 

from 6.5 m to 9 m. Many landslide sources have areas less than 100 m2 (median mapped areas range from 42 m2 to 203 

64 m2 for the different terranes), and very few have areas greater than 1000 m2 (Fig. 3c). Although landslides occurred 204 

on a wide range of slope angles, most occurred on slopes between 30º and 50º (Fig. 3d). Median DEM-derived mean 205 

slope angles of mapped landslide sources were 37° - 39° (Fig. 3d). Depths computed by differencing pre-event and 206 

post-event lidar elevation data (Baxstrom et al. 2021a; Einbund et al. 2021a, 2021b) have significant uncertainty 207 

because 14 – 19% of the landslide sources had mean and median elevation differences indicating net gain of material 208 

(Fig. 3e). In addition, undisturbed areas outside the landslide polygons showed elevation differences that varied 209 

horizontally, consistent with inadequate swath adjustment in the pre- and post-event lidar point clouds. Data needed 210 

to correct the resulting mismatch between pre- and post-event lidar were unavailable. However, it seems unlikely that 211 

any of the mapped landslides had a mean depth much greater than 5.8 m (the span between the greatest elevation loss 212 

and gain, MVC/LAR2, Fig. 3e). Rare, large landslides had depths as great as 25 m according to field measurements 213 

(Fig. 3e). 214 

Puerto Rico's complex geology (Fig. 1), tropical soils, rugged terrain, land use, and landcover exert strong influences 215 

on landslide susceptibility. Lepore et al. (2012) in an island-wide assessment using frequency ratio and logistic 216 

regression concluded that aspect, slope, elevation, geological discontinuities, and geology, were “highly significant 217 

landslide-inducing factors”; land cover and distance from roads were also significant. Bessette-Kirton et al. (2019a) 218 

showed that antecedent soil moisture was statistically correlated to densities of Hurricane-María-induced landslides 219 

and found that high landslide densities were “especially widespread across some geologic formations,” although the 220 

degree to which rainfall characteristics resulted in this correlation remained unclear. In a later post-Hurricane María, 221 

island-wide assessment using the frequency ratio method, Hughes and Schulz (2020a) found after accounting for the 222 

effects of soil moisture, there were strong correlations between landslides and slope, curvature, geologic terrane, mean 223 

annual precipitation, land cover, soil type, event soil moisture, proximity to roads, and proximity to fluvial channels 224 

for the Hurricane María event. Previous, more localized studies considered fewer geomorphic and geographic 225 

characteristics to classify landslide susceptibility using empirical and statistical methods (Larsen and Parks 1998; 226 

Larsen et al. 2004). For example, Larsen and Parks (1998) classified landslide susceptibility of Comerío Municipality 227 

based on elevation, slope, aspect, and land use. Our current study uses physics based geotechnical models of slope 228 

stability to directly assess topographic, geologic, and soil controls on landslide potential and to indirectly assess effects 229 

of roads and land use through their impacts on topography and surface drainage as expressed in the DEM as local 230 

changes in the slope characteristics.  231 
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3 Methods and materials 232 

To represent the aerial extent and depths of potential landslide source areas, we undertook a multistage process to 233 

acquire data, characterize the landslides, calibrate parameters, and model potential landslide sources for both pre-234 

Hurricane María and post-Hurricane María digital topography. In Figure 4, bold capital letters mark the four main 235 

stages of the study: (A) Data acquisition and reduction, (B) Calibration, (C) Susceptibility modeling on pre-storm 236 

topography, and (D) Susceptibility modeling on post-storm topography. Each stage comprises multiple steps; numbers 237 

in Fig. 4 identify the section describing each major step. Most results of Stage A were published previously, but are 238 

described briefly in sections 2.2, 3.1, and 3.2 to provide context for this study. Stages B, C, and D (Fig. 4) repeated 239 

four distinct modelling tasks: (1) soil depth, H, (2) pressure head, y, (3) 1D factor of safety, F1, (4) quasi-3D factor 240 

of safety, F3. The landscapes of the calibration and study areas were represented digitally in the models as raster grids 241 

based on 1-m-resolution pre-event lidar-derived DEMs. Each grid cell represented a column of potential landslide 242 

material of vertical depth, H, determined at soil-depth modelling steps of stages B, C, and D (Fig. 4). Computed soil 243 

depth from these steps became input for calculation of y, (Fig. 4); then H and y became inputs for computing F1 (Fig. 244 

4) and F3. F1 was used primarily in evaluating soil-depth models and shear-strength parameters for the calibration 245 

areas depicted in Fig. 1 using receiver operating characteristic (ROC, Metz, 1978) analysis (Fig. 4). During post-246 

calibration slope-stability modelling of the study areas, F1 served as a rough check on the computed value of F3. The 247 

following sections outline the major steps depicted in Figure 4. 248 
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 249 
Figure 4. Flow chart showing four major stages (enumerated by capital letters A, B, C, D) and steps of data acquisition, 250 
calibration and modelling leading to the map of landslide initiation susceptibility (Susceptibility map, bottom of right 251 
column). Numbers (underlined, bold) identify the corresponding sections where the steps and their outputs are described. 252 
The data acquisition stage (A, top) was performed at scales ranging from island-wide to site specific. The calibration stage 253 
(B, left column) was performed using digital elevation models of roughly 2.5-km2 areas where detailed mapping and 254 
fieldwork had been conducted (Fig. 1). Landslide source depths approximated soil depth for soil-depth model calibration. 255 
The pre-Hurricane María (pre-storm) modeling stage (C, center column) was conducted using overlapping DEM tiles (Fig. 256 
1) derived from pre-Hurricane María lidar data (U.S. Geological Survey, 2018). The post-Hurricane María (post-storm) 257 
modeling stage (for generating map of future landslide susceptibility, D, right column) used overlapping DEM tiles (Fig. 1) 258 
derived from post-Hurricane María lidar data (U.S. Geological Survey, 2020a, b, c). Post-Hurricane María steps used 259 
identical input parameters to the corresponding pre-Hurricane María steps. [Chart symbols: Light-blue rounded 260 
rectangles, terminals of each major stage; rectangles with bold text, technical or computational processes; parallelograms 261 
with italic text, inputs or outputs; dashed lines, connections between outputs and model inputs. Model outputs: H, soil 262 
depth; y, pressure head; F1, 1D factor of safety; F3, quasi-3D factor of safety; TPR, true positive rate; ROC, Receiver 263 
Operating Characteristics. Model input parameters: h0, characteristic soil depth, Hmax, maximum soil depth; dc, critical 264 
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slope angle; Rd, diffusivity ratio; c¢, cohesion for effective stress; f¢, angle of internal friction for effective stress; R, radius 265 
of quasi-3D trial surface.] 266 

 267 

3.1 Topographic surveys and data 268 

In 2015 and 2016, the U.S. Geological Survey (2018) acquired airborne lidar covering the entire main island of Puerto 269 

Rico. These data were processed to create a 1-m resolution bare-earth DEM. Referred to hereafter as pre-event lidar, 270 

these data were acquired roughly one to two years before Hurricane María and constitute the best available 271 

representation of topographic conditions before the landslides associated with the hurricane occurred. Available at the 272 

beginning of our investigation, the pre-event lidar-derived DEMs have formed the topographic mainstay for U.S. 273 

Geological Survey studies of these recent landslides. We used these data for calibration and validation of our soil 274 

depth and slope stability models. After Hurricane María, the U.S. Geological Survey (2020a, b, c) acquired additional 275 

lidar data covering the entire island in 2018. These data, referred to hereafter as post-event lidar, constitute the 276 

(currently) best available representation of topographic conditions after the landslides and are useful for assessing 277 

susceptibility to future landslides. The 0.5-m post-event lidar DEMs were resampled to 1-m resolution for consistency 278 

with the pre-event lidar DEMs and computational efficiency of landslide susceptibility models. We used these post-279 

event DEMs to run our models (using the previously calibrated and evaluated input parameters) to obtain our best 280 

estimate of susceptibility to future landslides. 281 

3.2 Engineering data compilation 282 

Based on findings by Bessette-Kirton et al. (2019a) and Hughes and Schulz (2020a, b) indicating strong correlation 283 

between landslide density and both bedrock and soil type, Baum (2021) compiled existing data on soil texture and 284 

engineering properties to create typical values for model calibration. Four different sources yielded soil and (or) 285 

engineering data: (1) published literature about past and recent landslides in Puerto Rico (Sowers 1971; Jibson 1989; 286 

Simon et al. 1990; Larsen and Torres-Sanchez 1992, 1998; Lepore et al. 2013; Thomas and Cerovski-Darriau 2019), 287 

(2) NRCS soil databases (Soil Survey Staff; 2018), (3) laboratory testing (Smith et al. 2020), and (4) geotechnical 288 

reports of recent landslides (Puerto Rico Department of Transportation, written commun. 2019). The NRCS soil data 289 

and geotechnical reports were summarized in spreadsheets and then analyzed to determine means, ranges, and other 290 

basic statistics to characterize the properties of soils and geologic formations found throughout the three municipalities 291 

(Baum and Lewis, 2023). The database compiled from these sources and measured using various protocols, though 292 

inhomogeneous, brackets the probable ranges of engineering properties. Baum (2021) identified dominant soil classes 293 

of the geologic terranes that had high landslide densities (Fig. 1) and estimated expected ranges of soil strength 294 

parameters, cohesion, c′, and angle of internal friction, f′, both for effective stress based on dominant Unified Soil 295 

Classification System (ASTM International, 2020) types in each terrane as follows: volcaniclastic, high-plasticity 296 

organic clay (OH), f′ 17º – 35º , c′ 5 – 20 kPa; submarine basalt and chert, low plasticity clay (CL) and high-plasticity 297 

silt (MH), f′ 27º – 35º , c′ 5 – 20 kPa; granitoid, low plasticity clay (CL) and silty sand (SM), f′ 27º – 41º , c′ 0 – 20 298 

kPa. Laboratory tests at low normal stress (Smith et al. 2020), relevant to shallow landslides, indicate higher friction 299 
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ranges: volcaniclastic, high-plasticity silt (MH) to organic clay (OH), f′ 35º – 46º, c′ 0 – 5.1 kPa; granitoid silty sand, 300 

f′ 35º – 54º, c′ 0.4 – 4.6 kPa.  301 

3.3 Strength parameter analysis 302 

Using 1D slope stability analysis, Baum (2021) estimated the ranges of soil strength parameters φ′ and c′ that explain 303 

the largest number of field-observed landslide slope and depth combinations in the calibration areas (Fig. 5). 304 

Computing 1D factor of safety using the infinite slope analysis (Taylor, 1948; Iverson, 2000), F1, for 1440 possible 305 

incremental combinations of f′ and c′ over a synthetic grid in which slope angle, δ, and landslide depth, H, varied 306 

incrementally over the observed ranges of slope (22° – 60°, in 0.5° increments) and depth (0.2 m – 15 m, in 0.1-m 307 

increments) produced F1 values for more than 1.9 × 107 combinations of H, d, φ¢, and c¢. The best fitting ranges (dark 308 

red in Fig. 6) included combinations of H, d, f¢, and c¢, where more than 75% of observed landslide scarp points were 309 

successfully predicted by F1 ³1 for y=0 (dry, where y is the pressure head at the basal slip surface) and F1 <1 for 310 

y=Hcos2d (water table at the ground surface with slope-parallel flow). The example depicted in Fig. 5 had an overall 311 

success rate of 93% for its c¢ – f¢ combination (c¢ = 0.75 kPa and ¢ = 54° ) in all three geologic terranes (Figs. 1, 5a). 312 

Compiling the performance of every c¢-f¢ pair considered in the analysis led to Fig. 6b, 6c, and 6d, which showed the 313 

better-performing ranges of c¢ and f¢ for the granitoid (Fig. 6b), volcaniclastic (Fig. 6c), and submarine basalt and 314 

chert (Fig. 6d) terranes, respectively. Those combinations of c¢ and f¢ with success rates exceeding 75%, were used 315 

as inputs for computing F1 with trial soil-depth maps in subsequent calibration studies to select a single combination 316 

of c¢ and f¢ for computing F1 in each terrane. 317 

 318 
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 319 
Figure 5. Results of strength parameter testing for observed combinations of landslide slope and depth in three geologic 320 
terranes. Factor of safety, F1, results (indicated by color scale and contour lines) for a selected combination of cohesion, 321 
c¢ (c¢ = 0.75 kPa) and angle of internal friction, f¢ (f¢ = 54°), both for effective stress. Two scenarios for pore-pressure head 322 
(m=0 and m=1) are shown, where m is the ratio of pressure head to soil depth. Symbols mark observed slope angle and 323 
depth at mapped landslide sources in various geologic terranes (Fig. 1). Factor of safety, F1, at slope and depth combinations 324 
observed at marked landslide sources indicates model success (F1<1 if m=1) or failure (F1>1 if m=1). For the pair of c¢ and 325 
f¢ values shown, F1>1 for dry conditions (m=0) at about 97% of sources and F1>1 at 4% of sources for water table at the 326 
ground surface with flow parallel to the slope (m=1). These parameters, c¢ = 0.75 kPa and f¢ = 54°, had an overall success 327 
rate of about 93% (=97% - 4%) for all three terranes (revised from Baum 2021). 328 
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 329 

 330 
Figure 6. Fraction of field-measured landslide sources from the calibration areas (Baum et al. 2018) predicted correctly as 331 
a function of cohesion, c¢, and angle of internal friction, f¢, for observed landslides in (a) all three terranes combined 332 
(modified from Baum 2021); (b) the volcaniclastic terrane; (c) the granitoid terrane; (d) the submarine basalt and chert 333 
terrane. Each pixel summarizes the net result of a pair of analyses like that in Figure 5. Pixel outlined by white rectangle in 334 
lower right corner of panels (a), (b), (c), and (d) indicates combination for analysis shown in Figure 5. Pixel color and 335 
contours indicate true positive rate (TPR) of predictions for each cell. Factor of safety for dry conditions is F1m=0; factor of 336 
safety for water table at ground surface with slope-parallel flow is F1m=1. Each grid cell represents the fraction (NF1m=0 – 337 
NF1m=1)/Nt, where NF1m=0 is the number of source areas for F1 ³ 1, NF1m=1 is the number of source areas for which F1 ³ 1, 338 
and Nt is the number of source areas in the geologic terrane. 339 

 340 

3.4 Soil-depth model calibration 341 

Field observations indicated that the base of most landslide sources occurred near the top of weathered bedrock (Baum 342 

et al. 2018; Baum 2021), so we chose soil depth as a predictor of landslide source depth. We carried out soil-depth 343 

estimation from DEMs using new open-source software, REGOLITH (Baum et al. 2021) containing five empirical 344 

and four steady-state process-based soil-depth models implemented in a command-line program. Each model in 345 

REGOLITH estimates soil depth from some combination of topographic variables, including slope, upslope 346 

contributing area, and curvature, as well as a few model parameters, such as characteristic depth (the soil thickness at 347 

which bedrock lowering falls to 1/e of its maximum value), h0 [L]; critical slope (angle of stability at which the slope 348 
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is capable of transporting the entire soil profile by mass movement), dc [degrees]; and the ratio of maximum bedrock 349 

lowering rate to hillslope diffusivity, Rd. These parameters may vary with conditions that influence soil formation, 350 

including bedrock and climate. Predicted soil depth is treated as equivalent to and defines column height, H, in 351 

subsequent modelling steps. We modified steady-state process-based models (Pelletier and Rasmussen 2009), which 352 

predict soil depth only on convex topography, to estimate soil depths in both concave and convex topography. We 353 

used a smoothing algorithm available in REGOLITH to reduce abrupt changes in soil depth that may result from DEM 354 

roughness. Further details are available in the online documentation found in the code repository (Baum et al. 2021). 355 

Our soil-depth, pressure head, and slope-stability models treated roads, cut slopes and embankments the same as other 356 

areas.  357 

Soil-depth model calibration proceeded first by fitting soil-depth models to depth observations followed by checking 358 

how the best-fitting models performed as input for computing F1 to predict landslide locations (see Sect. 3.5). Both 359 

calibration and checking made use of pre-event 1-m bare-earth lidar digital elevation models for the four ~2-km2 360 

calibration areas representing the dominant (three) geologic terranes affected by landslides in the study areas (Fig. 1). 361 

Landslides had previously been mapped (Bessette-Kirton et al. 2019c) and characterized (Baum et al. 2018) in these 362 

four calibration areas (Sec. 2.2, Fig. 3). Tello (2020) described the soil-depth calibration procedures in detail, including 363 

parameter ranges considered in the calibration. We summarize important steps here: Field-measured landslide scars 364 

on unmodified hillsides (no obvious cut or fill) served as calibration points for soil depth. Only about 7-8 such scars 365 

were available for each calibration area. Tello (2020) adjusted GPS location of each calibration point to the center of 366 

its corresponding landslide polygon mapped from imagery by Bessette-Kirton et al. (2019c). A 5-m buffer around 367 

each point ensured adequate sampling of model depths to be compared with the field-measured maximum depth. Tello 368 

(2020) used a provisional version of the soil-depth code, REGOLITH (Baum et al. 2021), to model trial soil-depth 369 

distributions for the calibration areas. Multiple runs to incrementally sample the parameter spaces of several different 370 

soil models implemented in REGOLITH produced hundreds of trial soil depth grids for each of the four calibration 371 

areas. Soil models tested include a linear area- and slope-dependent model (LASD) (Ho et al. 2012) and modified 372 

forms of Pelletier and Rasmussen’s (2009) non-linear slope- (NSD), area- and slope- (NASD), and slope- and depth-373 

dependent (NDSD) models. Testing these against the field-measured landslide-scar maximum depths resulted in 374 

optimized input parameters for each model and area (Tello 2020).  375 

Tello (2020) used a range of statistical metrics identified by Gupta et al. (2009) to determine predictive success of the 376 

model outputs. Most important of these was the Euclidian distance from the ideal point, ED. The ideal point is 377 

characterized by perfect correlation between observed and simulated points and by perfect agreement between the 378 

means and standard deviations of the observed and simulated point distributions,  379 

𝐸𝐷 = $(𝑟 − 1)! + (𝛼 − 1)! + (𝛽 − 1)!         (1) 380 

where the ideal point is at r=1, a=1, b=1 so that ED=0. The linear correlation coefficient, r, relative variability, a, and 381 

the bias relative to the observed sample, b, define the ED in eq. (1) (Gupta et al. 2009). In eq. (1) the relative variability 382 

is the ratio of the standard deviation of the simulated values, ss, to the standard deviation of the observed values, so, 383 

(a=ss/so). Likewise, the bias is the ratio of mean of the simulated values, µs, to the mean of the observed values, µo 384 

(b=µs/µo). The linear correlation coefficient, r, indicates the quality of a least-squares fit of the simulated values to the 385 
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observed values, with r=1 indicating a perfect fit. The model run having the lowest ED usually had the best fit, unless 386 

ED > 1 (Tello 2020). Where ED>1, we chose the model run with b closest to 1 so that the mean simulated depth would 387 

be as close as possible to the mean of depth observations (Gupta et al. 2009). The best-fit soil-depth distribution 388 

corresponded in turn to a best-fit parameter set for each soil-depth model type. Comparison of best scores for each 389 

model type identified the overall best fit of all models tested.  390 

3.5 Soil model evaluation and one-dimensional slope-stability model calibration 391 

To further evaluate the soil-depth modelling results and finish calibrating the slope-stability model, we computed y 392 

and F1 as implemented in TRIGRS (Baum et al. 2010; Alvioli and Baum (2016) for dry and steady saturated soil 393 

conditions (supplemental text S1 and S2) using the better performing soil-depth models for each calibration area. 394 

Previously defined better performing (TPR ³ 75%) ranges of φ′ (38°-60°) and c′ (0-4 kPa) (Baum 2021; Fig. 6b, 6c, 395 

6d) defined the parameter space for computing F1 with a well-performing subset of trial soil-depth distributions. In 396 

addition, we required F1 > 1 in 99.9% of grid cells for y(H)=0 to ensure slope stability under dry conditions. 397 

Computing F1 over the calibration areas using the best-fit distributions for each soil-depth model type and f′ and c′ 398 

combinations produced many F1 grids. Receiver Operator Characteristics (ROC) analysis (Metz, 1978; Fawcett 2006; 399 

Begueria 2006) of these F1 grids against mapped landslide scarp points indicated which combinations of trial soil-400 

depth distribution and strength parameters predicted the most observed landslides, based on the area under the ROC 401 

curve. Using parameters from the highest performing F1 distribution, we selected the preferred soil depth model and 402 

f′ and c′ values for modelling F1 in the large study areas enclosing Lares, Utuado, and Naranjito municipalities. The 403 

calibration areas represented different geologic terranes having the highest densities of landslides in the study areas 404 

so that the calibration procedure yielded separate model and parameter values relevant to each of these terranes. 405 

3.6 Quasi-three-dimensional slope stability calibration 406 

After H and F1 values had been improved as much as possible by calibration, we began test calculations of F3 as 407 

implemented in the new open-source code Slabs3D (Baum, 2023; supplemental text S3) and worked to further refine 408 

potential landslide source areas. We varied the size of the trial surface from a 3.5-m radius to a 10.5-m radius (Fig. 7) 409 

and used ROC analysis along with information about observed source-area sizes to determine the optimum F3 radius. 410 

In addition to these quantitative assessments, we inspected the maps to confirm that the susceptibility zones and 411 

potential source areas made sense topographically, mechanically, and geologically. These inspections helped ensure 412 

that potential landslide source areas were consistent with observations and expectations for hillsides whether they 413 

were relatively undisturbed or modified by roads, cut slopes, and embankments. The inspections led to some minor 414 

revisions of the computer code to correct map errors (such as spurious spots of low factor of safety), followed by 415 

repeated model runs.  416 

Due to insufficient data, rigorous calibration was not possible for some areas, such as the karst areas of Bawiec’s 417 

(1998) Limey sediment terrane. We adjusted model parameters (reduced maximum soil depth, Hmax, and characteristic 418 

soil depth, h0, for the soil-depth model and increased c′ for computing F1 and F3) for the Limey sediment terrane to 419 

account for the terrane’s low landslide density during Hurricane María. 420 
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 421 
Figure 7. Sketch showing moving circle search strategy and trial surface geometry used in computing approximate 3D 422 
factor of safety, F3. All grid cells whose center is inside the circle are included in the computation of F3, and cells in the head 423 
scarp, flank, and toe areas are combined to form wedges for computational purposes. The trial surface has a map-view 424 
radius R; dg is the slope of the ground surface; da is the apparent dip of the trial surface in the assumed direction of sliding 425 
(average slope direction of grid cells centered within the horizontal circle); H is height of a grid-cell centered column from 426 
the trial surface to the ground surface; and f¢ is the angle of internal friction of the soil for effective stress (modified from 427 
Baum et al. 2012). For the case depicted in Section A-A¢ (above), H is constant and 1.5 times the horizontal width, w, of the 428 
square grid cells. As the average value of H/w decreases and as R increases, the perimeter of the trial surface contracts 429 
toward the projection of the horizontal circle onto the ground surface. For variable soil-depth models, H may vary from 430 
cell to cell and the value of H for the grid cell closest to the upslope or downslope edge of the horizontal circle is used in the 431 
formulas shown in the cross section for horizontal dimensions of the scarp and toe respectively.   432 
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3.7 Geologic mapping and parameter zonation 433 

Bawiec (1998) compiled published 1:20,000-scale geologic mapping of Puerto Rico and (as noted previously) 434 

combined related formations into geologic terranes (Fig. 1 and Bawiec 1998). Based on the results of early studies 435 

(Bessette-Kirton et al. 2019a) and our calibration efforts, the geologic terranes became the basis for subdividing the 436 

study areas into parameter zones. The topographic base maps available at the time of geologic mapping lacked the 437 

detail of the pre-event lidar-derived topography used in this study. Trial computations of F1 and F3 on the study area 438 

DEM tiles indicated that a uniform soil depth model across the highly susceptible geologic terranes resulted in a more 439 

accurate susceptibility map than a zoned model using the calibrated soil-depth parameters. This was likely a 440 

consequence of (1) having few soil-depth observations available from unmodified hillsides in each zone (section 3.4) 441 

as well as (2) a high degree of land surface modification from past agricultural activities, and road and residential 442 

construction resulting in weak calibration of the volcaniclastic and submarine basalt and chert geologic terranes. 443 

Consistent with results in Fig. 6a, uniform values of f¢ and c′ for the highly susceptible geologic terranes likewise 444 

resulted in good performance so we used the same soil depth and strength parameters for all three terranes 445 

(Supplemental Figures S1 and S2). Consequently, slight uncertainty in locations of boundaries between these terranes 446 

had no effect on computed F1 and F3 values. However, a large difference in landslide susceptibility and model 447 

parameters (maximum soil depth, h0, c′) existed between the Limey sediment terrane with its cone karst and the highly 448 

susceptible terranes of the basement complex (submarine basalt, volcaniclastic, and granitoid). Offsets as great as tens 449 

of meters in the contact between the Limey sediment terrane and its neighbors along a prominent escarpment in Lares 450 

and Utuado resulted in errors in F1 and F3 along the escarpment. Consequently, Perkins et al. (2022) remapped the 451 

Limey sediment contact using lidar-derived shaded relief images and optical imagery to accurately delineate the 452 

transition from high to low landslide susceptibility across the contact. The contact was discerned based on the visually 453 

distinct differences between the closed basins and rugged karst cones of the Limey sediment terrane and the steep 454 

ridges and narrow branching valleys of the basement rocks. 455 

3.8 Soil-depth modelling 456 

After completing the calibration process, we created the overlapping rectangular tiles (described previously, Sec. 1.0, 457 

3.1) from the pre-event lidar bare-earth DEMs (Fig. 4, stage C and Fig. 1b, 1c). We created additional input files from 458 

the lidar-derived DEM tiles: flow accumulation grids for use with the area-dependent soil-depth models and 459 

parameter-zone grids for specifying different model input parameters (Sec. 3.6, 3.7, Fig. 4). The parameter zones 460 

ensured a thinner and less continuous modeled soil mantle in the karst (Limey sediment terrane) than in areas underlain 461 

by the landslide-prone geologic terranes (Fig. 1). For comparison with the soil-depth models, we also used constant 462 

soil depth equal to the average depth, 1.4 m, observed at landslide scars. 463 

3.9 Pressure-head and slope-stability modelling 464 

Raster grids created from the soil-depth modelling defined soil depth (H) and slope of the ground surface at each grid 465 

cell. We computed y and F1 using TRIGRS (Baum et al. 2010; Alvioli and Baum 2016), version 2.1, using the same 466 

lidar-derived DEM tiles and parameter zones as for soil-depth modelling (Fig. 4). Then, using y(H) computed with 467 
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TRIGRS (supplemental text S1) along with the same lidar tiles, parameter zones, and f′ and c′ values used in 468 

computing F1 as input for Slabs3D, we computed F3 (Fig. 4). The radius of each trial surface, as constrained by earlier 469 

testing in the calibration areas (Sect. 3.6, 4.5), was held constant at 3.5 m for all model runs on study area tiles.   470 

3.10 Model testing and evaluation 471 

We used ROC analysis of F3 grids based on pre-event lidar topographic data compared to landslide head-scarp points 472 

mapped by Hughes et al. (2019) as a basis for testing performance and then defining susceptibility categories (Fig. 4). 473 

Selecting the minimum F3 value within a 3-m radius around the scarp points accounted for uncertainty in their mapped 474 

locations. Validating F3 for pre-event topography was appropriate because it most accurately portrayed conditions at 475 

the time of Hurricane María. We computed true positive rate (TPR), false positive rate (FPR), and area under the TPR-476 

FPR curve (AUC) and distance to perfect classification, D2PC, (0,1), (Formetta et al. 2016) to evaluate performance 477 

of pre-event F3 as a predictor of observed landslide scarp points. Analyzing landslide density distribution across F3 478 

provided a further check on model accuracy. We computed landslide densities in 0.1 increments of F3 to check for a 479 

general trend of decreasing observed density with increasing F3. We also continued map inspections as described in 480 

Section 3.6. 481 

As an additional check we computed ROC statistics for minimum F3 values within source areas mapped by Baxstrom 482 

et al. (2021a) and Einbund et al. (2021a, 2021b). Their detailed landslide source mapping covers only a fraction of the 483 

study areas (Fig. 1), whereas the scarp points mapped by Hughes et al. (2019) cover the entire island. However, source 484 

area polygons enclose pixels that are more relevant to testing performance of F3 than circles centered at the scarp 485 

points.  486 

Evaluating the model to address the need for a conservative landslide susceptibility map led us to select threshold 487 

values of F3 enclosing specific percentages (or TPR) of landslide points. Our reason for doing so rather than placing 488 

the category break at F3 = 1 is to account for model and parameter uncertainty. Every F3 contour on the map encloses 489 

a specific percentage of landslide points. Contours at high F3 values enclose more landslide points than low F3 490 

contours. We selected F3 contours corresponding to TPR of 0.75 and 0.90 of Hurricane María-produced landslide 491 

head-scarp points (Hughes et al. 2019) to define the limits of very high (TPR £ 0.75), high (0.75 £ TPR £ 0.90), and 492 

moderate (TPR > 0.90) landslide source susceptibility zones. The high and very high susceptibility zones both indicate 493 

significant danger from landslides but allow users to distinguish areas having greater potential for long runout (Brien 494 

et al. 2021). These classes include most mapped landslide points as well as the adjacent steep slopes where they 495 

occurred, while limiting the overall areal extent of the very high and high susceptibility classes. 496 

3.11 Modelling potential landslides on post-storm topography 497 

After modelling potential source areas on pre-event topography, we recomputed the soil depth, pressure head, and 498 

factor of safety using post-event 1-m lidar topography (U.S. Geological Survey, 2020a, b, c). We generated new slope, 499 

zone, and flow-accumulation grids from the post-event lidar and then ran REGOLITH, TRIGRS, and Slabs3D in 500 

succession (Fig. 4) to indicate our best estimate of susceptibility to future landslide initiation.  501 
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3.12 Removing edge effects and applying susceptibility categories  502 

We joined the four overlapping tiles for Lares and Utuado to create a final landslide susceptibility map (based on post-503 

event lidar). To reduce edge effects (Fig. 4) when joining the four tiles, we first removed a 100-m buffer along all 504 

edges of each tile. At grid cells where two tiles overlapped, differences in F3 tended to be small and we retained the 505 

greater F3 value. For the single tile covering Naranjito, we removed only the 100-m buffer along all tile edges.  506 

We then classified landslide susceptibility for post-event topography across the three municipalities using the same 507 

F3 thresholds at TPR £ 0.75 and TPR £ 0.90 determined for the pre-event topography (Fig. 4). These thresholds divide 508 

the map area into zones of varying susceptibility to landslide initiation. The resulting susceptibility zones estimate the 509 

potential for future shallow landslides (Fig. S1 and S2). 510 

4 Results 511 

4.1 Soil-depth calibration 512 

We calibrated soil depth to field measurements (Fig. 4, section 3.4) for three (ANA, LAR, UTU) of the four calibration 513 

areas and calculated Euclidian distance from the ideal point, ED (Eq. 1), correlation coefficient, r (and other statistical 514 

parameters as outlined in Tello 2020) to determine which models and parameter sets gave the closest match to field 515 

observations (Fig. 8a, b). No soil depth calibration was performed for NAR as depth measurements in Naranjito were 516 

mainly outside the area mapped by Bessette-Kirton et al. (2019c). Limiting the observed depths to landslide scars on 517 

relatively unmodified slopes resulted in sample sizes of only seven or eight observation points (landslide sources) per 518 

calibration area. Most soil-depth models for the Utuado calibration area (UTU) had acceptable performance as 519 

indicated by positive correlation between observed and simulated depths (0.08 £ r £ 0.78), and ED ranging from 0.28 520 

to 0.99 (Fig. 8a; Tello 2020). Of these, the modified nonlinear area and slope (NASD) model had the smallest ED, 521 

0.28, and the largest r, 0.78 (Fig. 8a). Other better-performing models were a nonlinear slope-dependent model with 522 

linear area dependance (NSDA) and a linear area- and slope-dependent model (LASD) based on the wetness index 523 

(Ho et al. 2012). In contrast, most soil-depth models for the Añasco (ANA) and Lares (LAR) calibration areas 524 

performed poorly, with negative or small positive correlation (r < 0.16) and 0.69 < ED <1.8 (Fig. 8a). The poor 525 

correlation probably resulted from the small sample sizes of observed depths in these areas. At LAR, only the nonlinear 526 

slope dependent model (NSD, see Pelletier and Rasmussen 2009) had acceptable performance with r = 0.78 and 527 

ED=0.69 (Fig. 8a). The NASD model had a and b closest to 1, for both ANA and LAR (Fig. 8b).  528 
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 529 
Figure 8. Soil-depth model calibration measures for Anasco (ANA), Lares (LAR) and Utuado (UTU) calibration areas (Fig. 530 
1). Performance is based on comparing maximum landslide depth at field-mapped landslide points from unmodified 531 
hillsides against modeled depths within a 5-m radius of the point for all field-mapped points in the calibration area. GPS 532 
point locations were corrected as needed by moving them to the centers of corresponding landslide polygons mapped by 533 
Bessette-Kirton et al. (2019c). (a) Primary metrics, Euclidian distance from the ideal point, ED (smaller is better), versus 534 
correlation coefficient, r, (b) bias relative to the observed sample, b, versus relative variability, a. The ideal point is at r=1, 535 
a=1, b=1. [Soil-depth models: LASD, linear area- and slope-dependent model; NASD, nonlinear area- and slope-dependent 536 
model; NDSD, nonlinear depth- and slope-dependent model; NSD, nonlinear slope-dependent model; NSDA, nonlinear 537 
slope-dependent model with linear area dependence].  538 
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4.2 Soil-depth model evaluation and slope-stability calibration results 539 

Slope stability parameter calibration compared F1 values for previously determined ranges of c¢ and f¢ (Fig. 6) for 540 

each of the soil depth models to find the best-performing combination of soil model and strength parameters for 541 

predicting landslide source locations in each calibration area (Fig. 4, section 3.5). For UTU, the NASD model 542 

performed best with the NSDA model close behind (Tello 2020) based on area under the TPR – FPR curve and 543 

minimum distance of the curve from the perfect classification. Parameter combinations and ROC results for the best-544 

performing model in each area appear in Table 1. Despite poor soil depth model performance metrics for ANA and 545 

LAR (Fig. 8), the F1 calculations for the three calibration areas indicated that the NASD soil depth model had the 546 

greatest predictive strength for locations of landslide source areas in ANA, LAR, and UTU with similar results (Table 547 

1). Despite lack of soil-depth calibration in NAR, results in this study area were like the other three calibration areas 548 

(Table 1). Values of dc near 60° gave the best soil-depth model results (Table 1), despite variability in the steepest 549 

slopes where landslides occurred in the different terranes (Fig. 3d, 4). 550 

 551 
Table 1. Calibration results for 1D factor of safety, F1, with soil depth models by calibration area (Fig. 1). Positives and 552 
negatives in the ROC analysis based on total pixels within and outside the estimated source areas of landslide polygons 553 
mapped by Bessette-Kirton et al. (2019c) and whether the pixels have F1>1 or F1<1 (Tello 2020). [Symbols and 554 
abbreviations: NASD, non-linear area and slope dependent soil-depth model of Pelletier and Rasmussen (2009) as modified 555 
by Baum et al. (2021); Hmax, maximum soil depth; dc, critical slope angle; Rd, diffusivity ratio; c¢, soil cohesion for effective 556 
stress; f¢, angle of internal friction for effective stress; AUC, area under the curve of true-positive-rate (TPR) and false 557 
positive rate (FPR) (larger is better); D2PC, distance from the perfect classification, (0,1), to nearest point on the TPR-FPR 558 
curve (smaller is better); Best F1, 1D factor of safety at point on the TPR-FPR curve nearest to the ideal point, (0,1), and 559 
therefore the most accurate F1 classifier of landslide versus non-landslide grid cells for the particular model (closer to one 560 
is better); °, degrees.] 561 

Calibration 

area 

Soil 

Model 

Hmax 

(m) 

dc    (°) Rd  c¢ (kPa) f¢    (°) AUC  D2PC  Best F1  

Utuado 

(UTU) 

NASD 2.0 60 1.0 2.5 45° 0.67 0.48 1.5 

Añasco 

(ANA) 

NASD 3.0 60 0.16 4.5 45° 0.70 0.46 1.1 

Lares 

(LAR) 

NASD 3.0 60 0.25 4.5 45° 0.66 0.52 1.1 

Naranjito 

(NAR) 

NASD 3.0 60 0.2 4.0 45° 0.65 0.54 1.2 

4.3 Modeled soil depth 563 

Having completed the soil-depth model calibration (Sec. 4.1) and testing (Sec. 4.2), we modeled soil depth in the 564 

larger map tiles preparatory to analyzing slope stability (Fig. 4, section 3.8). Each tile covers hundreds of km2, so we 565 

illustrate results using the NAR area, chosen to demonstrate that our susceptibility workflow can achieve very good 566 

results even with limited landslide source depth observations. As noted previously, insufficient field-measured 567 

landslide points prevented soil-depth model calibration (Sec. 4.1), but not model evaluation and slope stability 568 



 24 

calibration (Sec. 4.2) for NAR. Figure 9 shows predicted soil depth for the best performing soil-depth model (based 569 

on the slope-stability evaluations, Sec. 4.2) in NAR (see Fig. 1 for location). The model shown in Fig. 9 predicts 570 

greater soil depth in hollows than on ridges. Other models that were tested (not shown) produced somewhat similar 571 

results. Differences in model structure produce different responses to topographic features, including flat areas, road 572 

cuts, and steep slopes. For example, the modified NASD and NSDA models predicted deep soils (£3 m for parameters 573 

chosen) in convergent areas, on steep slopes, including road cuts and embankments; thin soils on ridge crests, and thin 574 

or no soil on downslope flat areas (see large flat area on east edge of Fig. 9). In contrast, the LASD and NDSD models 575 

predicted deep soils (£3 m for parameters chosen) in convergent areas and on flats and thin soils on ridge crests and 576 

steep slopes (except where they occur in strongly convergent topography). These topographic features were more 577 

distinct in the three nonlinear models, NASD, NSDA, and NDSD, than in the linear LASD model.  578 

 579 
Figure 9. Best-performing version of soil depth maps from soil-depth models tested for the Naranjito (NAR) calibration 580 
area in volcaniclastic terrane (Fig. 1). Topographic base derived from lidar by U.S. Geological Survey (2018), scarp points 581 
from Bessette-Kirton et al. (2019c). The modified Nonlinear Area- and Slope-dependent (NASD) model (modified from 582 
Pelletier and Rasmussen 2009, as implemented by Baum et al. 2021) depicted here, was the overall best-fitting soil-depth 583 
model for this terrane. Inset shows details of a 150 m by 150 m area, with thicker soil accumulation in concave areas.  584 
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4.4 One-dimensional factor of safety 585 

Figure 10 shows F1 optimized for NAR and calculated using TRIGRS and the soil model results in Fig. 9, as well as 586 

F1 for constant soil depth. Slopes steeper than 60°, the estimated critical slope angle, were treated as barren (zero or 587 

negligible soil thickness) and stable because landslides were very rare on slopes steeper than 60° (Fig. 3d). On slopes 588 

flatter than 60°, soil strength parameters are within the ranges obtained by sensitivity analysis of F1 parameters f′ and 589 

c′ over observed ranges of slope and depth of landslides characterized in the field at ANA, LAR, UTU, and NAR (Fig. 590 

6). The only landslide source locations available throughout the three municipalities are the scarp points of Hughes et 591 

al. (2019). Due to location uncertainty, we used a 3-m radius around the scarp points for defining true positives. Color 592 

thresholds on the maps (Fig. 10) are based on F1 at TPR of 0.75, 0.90, and 0.95. Consequently, thresholds for F1 differ 593 

for each panel in Fig. 10. The same TPR values (0.75, 0.90, 0.95) were used for picking F3 thresholds for landslide 594 

initiation susceptibility across the entire study area covering Naranjito, Utuado, and Lares Municipalities in the final 595 

maps (Supplemental Figures S1 and S2).  596 
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 597 
Figure 10. Maps of Naranjito (NAR) calibration area in volcaniclastic terrane (Fig. 1) showing 1D factor of safety (F1) 598 
results for a) soil-depth model shown in Figure 9 as well as b) constant average soil depth. Topographic base derived from 599 
lidar by U.S. Geological Survey (2018), scarp points from Bessette-Kirton et al. (2019c). True positives determined by 600 
minimum F1 within a 3-m radius of the scarp points. (a) F1 for NASD, the modified nonlinear area- and slope-dependent 601 
soil-depth model depicted in Fig. 9, (b) F1 for constant soil depth of 1.4 m. Inset shows details of a 150 m by 150 m area. 602 

Areas of low F1 are similar in overall pattern between the two maps shown in Fig. 10 but differ in detail. These details 603 

include small areas of low F1 unique to each model as well as variation in the extent of major areas of low F1. Many 604 

boundaries of the areas of low F1 are ragged and small patches of yellow, indicating higher F1, occur within the larger 605 

red and orange areas of low F1. Differences in F1 between the maps are attributable mainly to variation in soil depth 606 

and partly to variation in c′. The optimum value of c¢ varied depending on the characteristics of each soil model (Table 607 

2). The results shown in Fig. 10 are for the best-performing combination of c′ and f′ for the soil-depth model at NAR 608 

(Fig. 9 and Sec. 4.2) and for constant average depth of 1.4 m.  609 



 27 

The different F1 patterns shown in Fig. 10 correspond to slightly different levels of predictive success. The AUC and 610 

distance from the perfect classification (0,1) to the nearest point on the TPR-FPR curve, D2PC indicate that F1 for 611 

constant depth has the highest predictive skill (AUC=0.88, D2PC=0.26, F1 value nearest the perfect classification, 612 

F1=0.9). Next, F1 for the NASD model performed almost as well (AUC=0.86, D2PC=0.30, F1 value nearest the perfect 613 

classification, F1=1.0). When applied to the entire DEM tile covering Naranjito municipality, F1 for constant depth 614 

and NASD tied with AUC = 0.86 and D2PC = 0.30 (constant depth) and D2PC = 0.29 (NASD). Thus, the performance 615 

edge of constant depth is localized at NAR and does not extend across the entire Naranjito DEM tile. Other soil-depth 616 

models performed slightly worse (Table 2) consistent with results obtained by Tello (2020) for UTU. The slightly 617 

higher performance for F1 with constant depth at NAR comes at the cost of the area classified as very high, high, or 618 

moderate susceptibility (TPR = 0.95) being more diffuse, with more ragged boundaries, than for F1 with NASD (Fig. 619 

10a, b). Varying the amount of cohesion used with a particular soil model caused small changes in the AUC, D2PC, 620 

and best F1 as shown by the two entries for NDSD in Table 2. 621 
Table 2. Key inputs and performance measures for factor of safety calculations based on the infinite slope model (F1), as 622 
implemented by TRIGRS, in the Naranjito calibration area (NAR). Performance is based on minimum F1 within a 3-m 623 
radius of landslide scarp points mapped by Hughes et al. (2019). [Symbols and abbreviations: NASD, non-linear area and 624 
slope dependent soil-depth model of Pelletier and Rasmussen (2009) as modified by Baum et al. (2021); NSDA, non-linear 625 
slope dependent model of Pelletier and Rasmussen (2009) modified by Baum et al. (2021) to include linear area dependence; 626 
NDSD, non-linear slope and depth dependent model of Pelletier and Rasmussen (2009); LASD, linear area and slope 627 
dependent model of Ho et al. (2012); Hmax, maximum soil depth; dc, critical slope angle; Rd, diffusivity ratio; C0, empirical 628 
constant used in LASD; c¢, soil cohesion for effective stress; f¢, angle of internal friction for effective stress; AUC, area 629 
under the curve of true-positive-rate (TPR) and false positive rate (FPR) (higher is better); D2PC, distance from the perfect 630 
classification, (0,1), to nearest point on the TPR-FPR curve (smaller is better); Best F1, 1D factor of safety at point nearest 631 
to the perfect classification, (0,1), and therefore the most accurate F1 classifier of landslide versus non-landslide grid cells 632 
for the particular model (closer to 1.0 is better); °, degrees ; -- not applicable.] 633 

Soil 

Model 

Hmax 

(m) 

dc    (°) Rd or C0 c¢ (kPa) f¢    (°) AUC  D2PC  Best F1  TPR at 

D2PC  

NASD 3.0 60 0.20 4.0 45° 0.86 0.30 1.0 0.82 

LASD 3.0 60 0.45 3.5 45° 0.85 0.31 1.1 0.84 

NDSD 3.0 60 0.10 4.5 45° 0.82 0.36 1.2 0.75 

NDSD 3.0 60 0.10 2.5 45° 0.86 0.32 1.0 0.89 

NSDA 3.0 60 0.10 4.5 45° 0.85 0.30 1.1 0.80 

Constant 1.4 60 -- 4.0 45° 0.88 0.26 0.9 0.79 

 634 

4.5 Quasi-three-dimensional factor of safety 635 

Figure 11 shows F3 computed using the soil-depth model in Fig. 9 and constant soil depth of 1.4 m. Predictive skill 636 

for F3 is somewhat less than F1; AUC is 0.05 – 0.08 less for F3 than corresponding F1 (Tables 2 and 3). The only 637 

exception is for the constant soil depth model results where F3 has the highest AUC, 0.94, of all cases tested (Fig. 12a 638 

and 12b). Despite the overall slightly worse performance of F3 it provided smoother boundaries on the landslide 639 

susceptible areas (Fig. 11a, b), which also are more continuous than corresponding F1 landslide susceptible areas (Fig. 640 

10). The lower AUC values resulted from the F3 susceptible areas covering slightly more land area than the 641 
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corresponding F1 areas at the same TPR. Therefore, the F3 susceptibility maps are more conservative than their F1 642 

counterparts.  643 
Table 3. Key inputs and performance measures for factor of safety calculations based on a quasi-3D limit-equilibrium slope 644 
stability model (F3) in the Naranjito calibration area (NAR). Performance is based on minimum F3 within a 3-m radius of 645 
landslide scarp points mapped by Hughes et al. (2019). [Symbols and abbreviations: NASD, non-linear area and slope 646 
dependent soil-depth model of Pelletier and Rasmussen (2009) as modified by Baum et al. (2021); NSDA, non-linear slope 647 
dependent model of Pelletier and Rasmussen (2009) modified by Baum et al. (2021) to include linear area dependence; 648 
NDSD, non-linear slope and depth dependent model of Pelletier and Rasmussen (2009); LASD, linear area and slope 649 
dependent model of Ho et al. (2012); Hmax, maximum soil depth; dc, critical slope angle; Rd, diffusivity ratio; C0, empirical 650 
constant used in LASD; c¢, soil cohesion for effective stress; f¢, angle of internal friction for effective stress; AUC, area 651 
under the curve of true-positive-rate (TPR) and false positive rate (FPR); D2PC, distance from the perfect classification, 652 
(0,1), to nearest point on the TPR-FPR curve; Best F3, 3D factor of safety at point nearest to the perfect classification, (0,1), 653 
and therefore the most accurate F1 classifier of landslide versus non-landslide grid cells for the particular model (closer to 654 
1.0 is better); °, degrees.] 655 

Soil 

Model 

Hmax 

(m) 

dc    

(°) 

Rd or 

C0 
c¢ 

(kPa) 

f¢    

(°) 

Trial 

surface 

radius 

(m) 

AUC  D2PC  Best F3  TPR at 

D2PC  

NASD 3.0 60 0.20 0.5 45° 3.5 0.80 0.38 0.9 0.86 

NASD 3.0 60 0.20 0.5 45° 6.5 0.75 0.45 0.9 0.66 

NASD 3.0 60 0.20 0.5 45° 9.5 0.71 0.50 1.0 0.86 

LASD 3.0 60 0.45 0.5 45° 3.5 0.78 0.44 1.0 0.89 

NDSD 3.0 60 0.10 0.5 45° 3.5 0.78 0.40 0.9 0.71 

NSDA 3.0 60 0.10 0.5 45° 3.5 0.80 0.37 0.9 0.78 

Constant 1.4 60 -- 0.5 45° 3.5 0.92 0.23 1.0 0.94 

 656 

Tests indicated that trial surfaces having a map-view radius of 3.5 m provided more accurate estimates of susceptible 657 

areas than larger trial surfaces (6.5-m and 9.5-m radius). Other things being equal, larger trial surfaces resulted in 658 

smaller AUC and larger D2PC (Table 3, Fig. 12b). The larger trial surfaces tended to widen the susceptible areas and 659 

smooth their boundaries, with the result that a larger percentage of the calibration area was classified as susceptible 660 

(9.5-m radius, 85%; 6.5-m radius, 83%; 3-m radius, 78% for examples in Table 3). In addition, the 3.5-m radius 661 

produced a trial surface close in size (7.5 – 7.9 m wide, with an area of 46 – 48 m2 at the ground surface for 1-m depth 662 

on 30° – 40° slopes) to the median horizontal areas of landslide sources mapped in NAR, 51 m2, in UTU2, 42 m2, and 663 

in LAR2 64 m2 (Fig. 3c). 664 

 665 
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 666 
Figure 11. Maps of Naranjito (NAR) calibration area in volcaniclastic terrane (Fig. 1) showing quasi-3D factor of safety, 667 
F3, results for the soil depth models shown in Figure 9. (a) F3 for the modified nonlinear area and slope dependent (NASD) 668 
soil-depth model depicted in Fig. 9, (b) F3 for constant soil depth of 1.4 m. Inset shows details of a 150 m by 150 m area. The 669 
calculation of F3 used a trial surface of 3.5-m map-view radius (Fig. 7). Topographic base derived from lidar by U.S. 670 
Geological Survey (2018), scarp points from Bessette-Kirton et al. (2019c).   671 

 672 
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 673 
Figure 12. Graphs of true positive rate (TPR) versus false positive rate (FPR) for factor of safety maps in Naranjito 674 
calibration area (NAR in Fig. 1a, 1c). Inset shows confusion matrix and formulas defining true positive rate and false 675 
positive rate. Double-headed arrow indicates distance to perfect classification (D2PC) for the results of the factor of safety 676 
with the smallest D2PC. (a) TPR-FPR results for 1D factor of safety (F1) in Fig. 10, as well as results for F1 using other soil-677 
depth models that were tested during the calibration process. (b) TPR-FPR results for quasi-3D factor of safety (F3) in Fig. 678 
11, as well as results for F3 using other soil depth models and one with a larger (NASD, 9.5-m radius) trial surface. [Soil-679 
depth models: LASD, linear area- and slope-dependent model (Ho et al. 2012); NASD, modified nonlinear area- and slope-680 
dependent model (modified from Pelletier and Rasmussen 2009); NDSD, nonlinear depth- and slope-dependent model 681 
(Pelletier and Rasmussen 2009); NSD, nonlinear slope-dependent model (Pelletier and Rasmussen 2009); NSDA, nonlinear 682 
slope-dependent model with linear area dependence (modified by Baum et al. 2021 from NSD model of Pelletier and 683 
Rasmussen 2009)]. 684 

4.6 Susceptibility categories and predictive strength 685 

Computing F3 over the combined study areas of Lares, Utuado, and Naranjito municipalities produced somewhat 686 

different results than in the calibration areas. Calibration areas have very high landslide densities, with average density 687 

of 182 scarps/km2 at NAR. However, landslide density varies considerably across each municipality. Based on positive 688 

correlation between low F3 and landslide scarp points mapped by Hughes et al. (2019), we established susceptibility 689 

categories based on percentages of landslides enclosed by successive susceptibility categories as noted previously and 690 

as shown in Table 4. Increasing density of observed landslides is consistent with increasing susceptibility. Very high 691 

susceptibility (typically > 118 scarp points/km2) characterizes 23% of the total study area and 21%, 43%, and 45% of 692 

the area underlain by marine volcaniclastic, submarine basalt, and granitoid rocks, respectively. Almost all karst areas 693 

underlain by limey sediments had low susceptibility (< 2 scarp points/km2) (Baxstrom et al. 2021b). Based on the 694 

information in Table 4, the AUC for the entire map area is 0.84, and D2PC is 0.34. 695 

Recent, detailed mapping of source areas provided an opportunity to further test performance of the pre-Hurricane 696 

María F3 map (section 3.9, Fig. 4). Figure 13 shows TPR-FPR curves for the pre-Hurricane María F3 map tested 697 

against Hurricane María landslide source polygons (Baxstrom et al. 2021a; Einbund et al. 2021a, 2021b) and against 698 
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scarp points (Table 4). The AUC range, 0.85 – 0.88, is somewhat greater than obtained by testing within a 3-m radius 699 

of the scarp points, 0.84.  700 

 701 
Table 4. Landslide susceptibility categories based on minimum value of quasi-3D factor of safety, F3, within a 3-m radius 702 
of landslide scarp points mapped by Hughes et al. (2019) for all three municipalities. For consistency, F3 thresholds below 703 
are based on F3 calculated using pre-Hurricane María lidar topography and scarp locations of landslides induced by 704 
Hurricane María.  705 

Landslide 

Susceptibility 

F3 

threshold  

Landslide 

scarp points 

enclosed 

(percent) 

Landslide scarp 

points enclosed 

within 

increment 

(number) 

Area within 

increment 

(km2) 

Landslide 

points 

within 

increment 

(percent) 

Incremental 

Landslide 

density 

(scarps/km2) 

Very High £ 0.87 75 27370 232 75 118 

High £ 0.97 90 5474 108 15 51 

Moderate £ 1.05 95 1825 68 5 27 

Low > 1.05 100 1824 610 5 3 

Total 0 < F3 £ 10 100 36493 1018 100 36 

 706 
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 707 
Figure 13. Graph of true positive rate versus false positive rate for pre-Hurricane María susceptibility models across the 708 
study area tiles tested against head-scarp points (Hughes et al. 2019) and source polygons for Lares (Einbund et al. 2021b), 709 
Naranjito (Baxstrom et al. 2021a), and Utuado (Einbund et al. 2021a) with confusion matrix and formulas defining true 710 
positive rate (TPR) and false positive rate (FPR). Double-headed arrow indicates distance to perfect classification (D2PC) 711 
for Naranjito source polygons and F3 computed using NDSD soil depth. True positive rates are based on minimum value 712 
of the quasi-3D factor of safety, F3, within the mapped source polygons or within a 3-m radius of the scarp points. Results 713 
for scarp points cover the final pre-Hurricane María susceptibility maps of Lares, Utuado, and Naranjito municipalities. 714 
Results for the landslide source polygons cover parts of the component tiles (Fig. 1). Landslide source mapping for Lares 715 
and Utuado (Einbund et al. 2021a, b) are near LAR and UTU (LAR2, UTU2, Fig. 1b). The graph compares F3 performance 716 
based on the modified nonlinear area- and slope-dependent (NASD, modified from Pelletier and Rasmussen 2009) soil-717 
depth model and two alternates: constant depth of 1.4 m, and the nonlinear depth- and slope-dependent soil-depth model 718 
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(NDSD, Pelletier and Rasmussen 2009), with strength parameters and other inputs held constant. AUC denotes area under 719 
the curve of TPR versus FPR, Np is the number of landslide source polygons, and NSc is the number of scarp points. 720 

5 Discussion 721 

Our analyses presented in the previous section (Sect. 4.6) indicate that the landslide susceptibility assessment 722 

successfully identifies areas where high percentages of Hurricane María landslides occurred. In succeeding 723 

paragraphs, we discuss some of the strengths, limitations, and unexpected findings of our approach and results. 724 

Optimum ranges of internal friction angles for all three terranes (Fig. 6) are higher than commonly reported, but 725 

consistent with measured values of f¢ for low normal stress (Likos et al. 2010). Most reported values of f¢ for soils 726 

like those in the study area range from 17° to 41° as noted previously (Sec. 3.2) and are usually based on tests at 727 

normal stress greater than 100 kPa. In contrast, samples collected at two field monitoring sites tested at low and 728 

moderate normal stresses (Smith et al. 2020) using equipment and procedures described by Likos et al. (2010) had 729 

high friction angles for low normal stress. Smith et al. (2020) reported f¢ = 34.8° – 35.5° (c¢ = 0 – 4.4 kPa) for two 730 

samples tested at effective normal stress, s¢n, less than 120 kPa, f¢ = 45.6° for a sample tested at s¢n £ 30 kPa, and f¢ 731 

= 53.9° for another sample tested at s¢n, £ 7 kPa. Significantly, shear stress was considerably higher than normal stress 732 

for nearly all individual tests at s¢n £ 15 kPa, and many at s¢n £ 30, consistent with f¢ > 45° at low normal stress. In 733 

addition to evidence for high internal friction angles at low normal stress, which is particularly relevant to abundant 734 

thin (< 0.5 m) landslides in Utuado, three other factors could contribute to stability and reduce the magnitude of f¢ 735 

required to explain stability during dry conditions: (1) Soil suction measured at the sites between rainfall (Smith et al. 736 

2020) indicates that suction stress probably contributes to stability. Preliminary tests indicate that considering modest 737 

amounts of suction stress (less than a few tens of kilopascals) during dry conditions in the analysis depicted by Fig. 6 738 

shifts the cells having high TPR toward lower ranges of f¢. For example, increasing initial suction stress by -1 kPa 739 

shifts the optimum range of f¢ to 35° – 40° for the submarine basalt and chert landslides compared to the 45° – 50° 740 

range in Fig. 6d. (2) Root resistance also likely contributes to slope stability to depths of about 0.5 – 0.6 m. Due to 741 

high annual rainfall, vegetation in the study areas tends to be shallow-rooted so that significant root resistance would 742 

decline rapidly below about 0.4 – 1.1 m depth (Simon et al. 1990; Larsen 2012). (3) Lateral stress variation also 743 

contributes to slope stability. Even in quasi-3D limit-equilibrium as used in computing F3, combined resistance of 744 

neighboring grid cells (columns) and toe wedge contributes to stability and reduces the values of f¢ and (or) c¢ needed 745 

to achieve stability of a potential landslide under dry conditions (Tables 2 and 3). Quantifying the contributions of 746 

these three factors (soil suction, root resistance, and lateral stress) to slope stability could lead to greater refinement 747 

of our approach to mapping landslide susceptibility. 748 

Our modelling workflow makes a few trade-offs to create a relatively conservative map of potential landslide sources 749 

that accounts for uncertainties. These trade-offs are between speed and simplicity of the assessment, statistical 750 

accuracy, and continuity of susceptibility zones. Some of the modelling steps (soil depth and F3) add complexity, 751 

increase time needed to model susceptibility, and slightly reduce performance metrics (AUC and D2PC) compared to 752 

F1 with constant soil depth. In exchange, soil depth and F3 create more continuous susceptibility zones, join 753 

neighboring groups of high-susceptibility pixels, and eliminate isolated, commonly errant, pixels of high landslide 754 
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susceptibility (Fig. 10 and 11). The increased continuity of the susceptibility zones makes them easier to implement 755 

in land use and emergency management. In addition, the potential source areas delineated on the map by the high and 756 

very high susceptibility areas provide areas susceptible to shallow landslides for estimating potential landslide runout 757 

and debris-flow inundation (Brien et al. 2021). Much of the reduction in AUC for F3 results from using the minimum 758 

factor of safety value computed for any trial landslide that includes a grid cell. Consequently, very high and high 759 

susceptibility zones for F3 are broader than for F1 and thereby have a buffer along their edges. Nevertheless, as 760 

indicated by various performance metrics and landslide densities in the susceptibility classes, the landslide assessment 761 

successfully distinguishes areas having different levels of susceptibility to landslide initiation (Tables 3, 4) despite 762 

these trade-offs.  763 

Although F1 for constant depth has slightly better performance metrics (the highest AUC and smallest D2PC) than F1 764 

for any of the soil depth models calibrated to landslide source depths (Table 2, Fig. 12a) at NAR, its performance 765 

metrics are comparable to the nonlinear soil-depth models elsewhere. Our field observations indicate that depth of 766 

shallow, rainfall-induced landslides is well correlated to depth of mobile regolith ("soil") due to strength and 767 

permeability contrasts at its base. Soil-depth models represent the distribution of soil depth more consistently with 768 

field conditions than constant depth in many settings (Pelletier and Rasmussen 2009; Ho et al. 2012; Catani et al. 769 

2010; Nicótina et al. 2011; Gomes et al. 2016; Patton et al. 2018). Performance metrics (ED = Ö2; mean-squared error, 770 

MSE = so2) indicate average depth was a poorer predictor of observed landslide depth than any of the models Tello 771 

(2020) tested for Utuado. Despite odd differences in how the models estimate soil depth on mid-slope benches and 772 

flat valley bottoms, the models we tested (NASD, NSDA, NDSD, LASD) predict thinner soils on ridge crests and 773 

thicker soils in hillside hollows, consistent with patterns observed in Puerto Rico and elsewhere for dissected 774 

topography (Roering 2008). For example, mean depths of landslide sources from field mapping in Puerto Rico were 775 

3.25 m (for concave slopes), 2.5 m (for convex slopes), 2.7 m (for planar slopes; Schulz et al. 2023). The unexpected, 776 

good performance of F1 for constant soil depth at NAR points out limitations of soil depth models and may result in 777 

part from widespread modifications to the landscape resulting from agriculture, road (e.g., Ramos-Scharrón et al. 778 

2021) and building construction, and other activities. Effects of these activities may have influenced the locations of 779 

shallow landslides sufficiently to weaken correlation between landslide location and topographic features that 780 

influence soil depth (as at LAR and ANA, Fig. 8a). The high degree of slope modification (roads and terraces) in the 781 

NAR calibration area is likely a determining factor in F1 performance there (Fig. 10). Identifying specific areas or 782 

features where constant-depth F1 classifies susceptibility differently than F1 with other soil-depth models might reveal 783 

potential improvements. 784 

Computing F1 using the modified NASD soil-depth model resulted in the areas assigned to the moderate, high, and 785 

very high susceptibility classes being more clearly delineated with little or no loss of performance compared to using 786 

constant depth. The susceptibility zones in the constant-depth F1 susceptibility map (Fig. 10b) are more diffuse or 787 

fragmented (less continuous) than for the NASD soil depth (Fig. 10a) and other soil models we tested. Fragmentation 788 

also occurred for susceptibility zones defined by slope categories (Fig. S3a). As noted previously, this improved 789 

delineation came with only a slight reduction in AUC (0.88 to 0.86) and small increase in D2PC (0.26 to 0.30) for 790 

NAR. When applied to the entire DEM tile covering Naranjito municipality, performance of F1 for constant depth and 791 
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F1 for NASD tied with each other and with slope categories (AUC = 0.87, D2PC = 0.29 - 0.30). As noted previously, 792 

when checked against detailed source mapping, the performance metrics for F3 are better than when compared against 793 

the scarp points (Fig. 13). In addition, differences in performance metrics between constant depth and the NDSD 794 

model and modified NASD model are negligible. 795 

Due to physical (subsurface conditions, ground-failure mechanisms) and conceptual (parameters, models) 796 

uncertainties, the F3 value at the boundary between high and moderate susceptibility is slightly less than 1 (0.97, Table 797 

4). Although the strength parameters could be increased to achieve F3 = 1.0 at TPR = 0.90, we also wanted to keep F3 798 

at TPR = 0.95 relatively low while keeping F3 > 1 under dry conditions for as much area as possible. Our final model 799 

parameters represent a compromise between stable slopes (F3 > 1) under dry conditions and low factor of safety (F3 800 

< 1) for highly susceptible slopes under presumed wettest conditions. 801 

Other things being equal, the quasi-3D stability analysis, F3, has a somewhat smaller AUC and larger D2PC, compared 802 

to F1 (Tables 2 and 3), but improves the final map. The improvements are better separation between the different 803 

susceptibility classes (Fig. 10 and 11) and a slightly more conservative map compared to F1, which is helpful for life-804 

safety based land use planning and emergency response scenarios. With AUC=0.80 and D2PC=0.38 for F3 based on 805 

the modified NASD soil-depth and 3.5 m radius for the trial surface (Table 3), F3 successfully identifies potential 806 

landslide sources at NAR. For the entire map area, the AUC (0.84) and D2PC (0.33) scores are slightly better (Table 807 

4, Fig. 13), due in part to the large area of low landslide susceptibility that is underlain by limey sediments and 808 

characterized by cone karst. By considering slope stability at the scale of representative landslide sources (median 809 

area, Fig. 3c), F3 eliminates isolated grid cells and tiny clusters of 2 – 4 cells that likely are classified incorrectly by 810 

F1 as highly or very highly susceptible due to locally steep slopes at the pixel scale (1 m). Such isolated cells and 811 

clusters could be eliminated after analysis, but boundaries of susceptible areas would remain somewhat ragged. In 812 

contrast our approach provides an objective method for eliminating the isolated pixels and smoothing the boundaries. 813 

F3 bridges gaps between neighboring areas of low F1 and thereby maps susceptible areas that are more continuous and 814 

with smoother, more definite boundaries than F1. Thus, F3 further improves delineation of susceptible areas beyond 815 

improvements achieved by using the modified NASD soil-depth model with F1. Maps having continuous, clearly 816 

delineated areas assigned to each susceptibility class such as those obtained by using F3 reduce guesswork in making 817 

land use and emergency management decisions by eliminating the ragged, transitional boundaries obtained with F1. 818 

For example, to compare the insets in Figs. 10 and 11 to each other as well as slope categories (Fig. S3a) and F3 based 819 

on the NDSD soil-depth model (Fig. S3d), see Fig. S3b, c, e and f. Alternately continuous, clear delineation can be 820 

achieved by aggregating raster maps to slope units (Alvioli et al. 2016; Woodard et al. 2024).Nevertheless, an added 821 

benefit of using F3 is creation of well-defined potential landslide source areas that allow estimation of areas susceptible 822 

to potential downslope runout and downstream inundation (Brien et al. 2021). Performance metrics for F3 considering 823 

detailed source mapping (Fig. 13) are sufficiently high (0.85 £ AUC £ 0.88) to consider F3 a very successful indicator 824 

of landslide susceptibility in our study area. As the basis for our final susceptibility maps, we selected the F3 map 825 

derived from the modified NASD soil depth model (Fig. 11a) because of its high AUC combined with its well-defined 826 

source areas and the realistic modeled soil depths for estimating potential landslide volumes.  Visual comparison 827 



 36 

indicates only slight differences between F3 maps based on pre-event and post-event DEMs (Fig. S4). Model input 828 

parameters for the final maps are summarized in Supplemental Figures S1 and S2. 829 

The susceptibility analysis portrayed in Fig. 11 and our final maps (Supplemental Figures S1 and S2) are valid 830 

throughout the three municipalities despite the variable density of Hurricane María landslides throughout the map area 831 

(Bessette-Kirton et al. 2017; Hughes et al. 2019) and within each susceptibility class. High landslide density generally 832 

corresponds to low F3 (Table 4); however, not all susceptible areas were equally affected by Hurricane María. Thus, 833 

although some areas of low F3, particularly in Naranjito, had low landslide density, the low density does not invalidate 834 

the susceptibility assessment of the potential for future landslides. Factors such as antecedent soil moisture are known 835 

to have affected the density of landslides induced by Hurricane María (Bessette-Kirton et al. 2019a) and were 836 

addressed in the statistically based island-wide landslide susceptibility assessment of Hughes and Schulz (2020a). 837 

Notably Naranjito had much lower root-zone soil moisture immediately after the hurricane than Utuado and Lares 838 

(Fig. 26 of Hughes and Schulz 2020a). Variable rainfall intensity and duration are also known to affect landslide 839 

response of susceptible areas (Larsen and Simon 1993; Pando et al. 2005). Intensity and duration are known to have 840 

varied during Hurricane María, causing further differences in landslide density. Our assessment considered fully 841 

saturated conditions with the water table at the ground surface to depict likely wettest-case soil moisture effects, 842 

including high antecedent soil wetness, as well as high intensity and long-duration rainfall. Thus, it was not necessary 843 

to specifically model antecedent soil moisture conditions. Less-severe conditions may produce landslides in the same 844 

general areas as predicted by our assessment, however, in lower numbers than observed following Hurricane María. 845 

Setting the boundaries between susceptibility classes based on F1 or F3 corresponding to specific values of TPR rather 846 

than setting boundaries based on theoretical values of F1 or F3 (such as F3 = 1.0) reduces uncertainty and ensures 847 

correspondence between landslide density and degree of landslide susceptibility. Soil, saprolite, and bedrock are 848 

inherently heterogenous. Their hydraulic and strength properties (and corresponding parameters) vary spatially at all 849 

scales (Terzaghi et al. 1996). Other studies have applied probabilistic approaches and sensitivity analyses have been 850 

applied successfully to address parameter uncertainty and improve accuracy of physically based modelling of landslide 851 

susceptibility (Raia et al. 2014; Zieher et al. 2017; Canli et al. 2018). Many parameter combinations (c¢ and f¢) can 852 

achieve similar levels of predictive accuracy in computing F1 for observed distributions of landslide slope and depth 853 

(Baum et al. 2019; Baum 2021). These and other uncertainties such as transient pore-water pressures, subsurface 854 

features, heterogeneity, and other factors, weaken the link between theoretical values of F1 or F3 and estimated 855 

likelihood of failure for site-specific cases when applying limit-equilibrium slope stability analysis over wide areas. 856 

On the other hand, maps classified based on TPR have a strong link to susceptibility. Such maps are readily comparable 857 

to each other when F1 or F3 values are computed with different parameters, as they show like outcomes (areas that 858 

capture 75%, 90% and 95% of observed landslides in this study). Comparing like outcomes focuses on differences 859 

and uncertainties that affect the quality of the susceptibility assessment that might be masked by comparing the maps 860 

when classified using the same F1 or F3 values. In this study, low values of F1 and F3 correspond to high observed 861 

Hurricane María landslide density (Table 4), as would be expected. The selected boundaries for susceptibility classes 862 

ensure a meaningful distinction between average landslide density in the successive classes (Table 4). 863 
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The susceptibility map correctly predicts locations of most landslides that are deeper than 3 m, despite the maximum 864 

modeled soil depth of 3 m more typical of shallow landslides. Ten of the landslides summarized in Fig. 3e are deeper 865 

than 3 m. Most (nine) are within the Naranjito tile (Fig. 1), and the other is in Lares. The mapped point on each 866 

landslide headscarp and adjoining or surrounding slope was within the high or very high susceptibility zone for seven 867 

of the ten deep landslides. The other three had head scarps on a gently sloping area (road or pad) that was set back a 868 

few meters from the steep slope, but the adjoining slope with the landslide body was within the high and very high 869 

susceptibility zones. Although the predicted locations might be right for the wrong reason (predicting a shallow 870 

translational landslide rather than a deeper, translational, or rotational landslide), it is nevertheless encouraging that 871 

the locations of even the deep landslides are identified for the sake of hazard assessment and planning. This probably 872 

occurred because the deep landslides occurred well within the same slope range as other mapped landslides (Fig. 3, 873 

4). 874 

Despite the simplicity of soil and water parameters, the maps successfully predicted the effects from Hurricane María. 875 

Calibrating with field data from the small calibration areas (ANA, LAR, UTU, and NAR, Fig. 1) and then testing with 876 

the island-wide scarp points (Hughes et al. 2019) confirmed the successes of our approach (Supplemental Figures S1 877 

and S2). Testing with detailed landslide source maps (Baxstrom et al. 2021a; Einbund et al. 2021a, 2021b) strengthens 878 

our results even though they cover only a fraction of the study area.  879 

The workflow outlined in Fig. 4 can be simplified in areas where few data are available. An accurate digital elevation 880 

model and accurate landslide inventory with measurements of source area size, depth, and slope (Fig. 3) are the most 881 

critical data for a landslide susceptibility analysis. Strength parameter ranges can be estimated from landslide source 882 

depth and slope (Fig. 5, 6). Soil model calibration can be bypassed by assuming constant average landslide source 883 

depth. Strength parameters can then be refined using the procedure described in Sect. 3.5. Alternately a soil model 884 

and strength parameters can be calibrated simultaneously to the inventory as we did for the NAR calibration area. 885 

Calculation of pressure head, F1 and F3 can then proceed as outlined in Sect. 3.4.2, 3.4.3, 3.4.4, and 3.9, followed by 886 

validation and evaluation (Sect. 3.11). Compared to a map based on the simplest of landslide susceptibility approach, 887 

slope ranges with its ragged, fragmented susceptibility zones, our procedure creates cohesive landslide susceptibility 888 

zones that have smooth, buffered boundaries with only a slightly lower AUC score (0.84) than for slope (0.87) across 889 

the entire study area.  890 

6 Conclusions 891 

We defined a workflow for assessing landslide susceptibility using multiple modelling stages and successfully applied 892 

it using high-resolution (1-m) topography over a large (about 1000 km2) geographic area in the central mountains of 893 

Puerto Rico (Fig. 1). The workflow includes modelling soil depth, pressure head, and limit-equilibrium slope stability 894 

(Fig. 4). Although calibration studies showed that assuming constant average soil depth as input for 1D (infinite-slope) 895 

factor of safety against landsliding, F1, gave the best performance metrics in a 2.5 km2 calibration area, use of a soil-896 

depth model more clearly delineated areas susceptible to landslide initiation with only a modest reduction in the AUC 897 

from 0.88 to 0.86. Using a quasi-3D limit-equilibrium slope stability analysis, the factor of safety, F3, further refined 898 

the susceptibility assessment by more clearly delineating boundaries between the different susceptibility classes and 899 
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by assessing stability at the scale of the observed median-sized landslides. Despite further reduction in AUC to 0.80 900 

for the NAR calibration area, the map based on F3 is more readily usable in certain applications than a map based on 901 

F1, and it still performs well as a classifier of landslide susceptibility. Performance metrics for the F3 map of the entire 902 

~1000 km2 study area, AUC = 0.84 and D2PC = 0.34, are slightly better than results at the NAR calibration area. 903 

Performance measured against detailed source mapping of selected areas is even better: 0.85 £ AUC £ 0.88 and 0.27 904 

£ D2PC £ 0.33. These metrics indicate the map is suitable for planning, regulation, and emergency preparedness 905 

decisions at the municipality scale. The map may also be used to assess hazards, such as ground collapse, resulting 906 

from landslide initiation. Source area delineation as shown on maps may also be used for defining landslide starting 907 

locations and surface area needed to assess areas with potential downslope movement of sediment mobilized by future 908 

landslides. 909 
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