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 2 

Abstract. Hurricane María induced about 70,000 landslides throughout Puerto Rico, USA, including thousands each 11 

in three municipalities situated in Puerto Rico’s rugged Cordillera Central range. By combining a nonlinear soil-depth 12 

model, presumed wettest-case pore pressures, and quasi-three-dimensional (3D) slope-stability analysis we developed 13 

a landslide susceptibility map that has very good performance and continuous susceptibility zones having smooth, 14 

buffered boundaries. Our landslide susceptibility map enables assessment of (1) potential ground-failure locations, 15 

and (2) areas of potential their use as landslide sources to supportin a companion assessment of inundation and debris-16 

flow runout. The quasi-3D factor of safety, F3, showed strong inverse correlation to landslide density (high density at 17 

low F3). Area under the curve (AUC) of True Positive Rate (TPR) versus False Positive Rate (FPR) indicated success 18 

of F3 in identifying head-scarp points (AUC=0.84) and source-area polygons (0.85 £ AUC £ 0.88). The susceptibility 19 

zones enclose specific percentages of observed landslides. Thus, zone boundaries use successive F3 levels for 20 

increasing TPR of landslide head-scarp points, with zones bounded by F3 at TPR=0.75, very high; F3 at TPR=0.90, 21 

high; and the remainder moderate to low. The very high susceptibility zone, with 118 landslides/km2, covered 23% of 22 

the three municipalities. The high zone (51 landslides/km2) covered another 10%. 23 

1 Introduction 24 

Heavy rainfall from Hurricane María during September 2017 produced tens of thousands of landslides on the main 25 

island of Puerto Rico, USA (Bessette-Kirton et al. 2017, 2019a; Hughes et al. 2019). Shallow, translational failures in 26 

soil or saprolite, from decimeters to a few meters deep were the most common landslides. Deeper (up to 30 m) complex 27 

failures in soil, saprolite, and rock, as well as rock falls and rock slides also occurred (Bessette-Kirton et al. 2017). 28 

Many landslides transformed into debris flows that commonly coalesced and flowed down channels. Landslides 29 

caused fatalities as well as widespread damage to homes, roads, and other infrastructure. 30 

Landslide susceptibility maps are widely used to mitigate the major hazards landslides pose to people, public and 31 

private property, lifelines, utilities, and businesses. Reliable application of physically based models to landslide 32 

susceptibility assessment has been intensively researched since the 1990s. Many models and computer codes for such 33 

assessments exist (Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Pack et al. 1998; Simoni et al. 2008; Baum 34 

et al. 2010; Arnone et al. 2011; Rossi et al. 2013). Nevertheless, several scientific and technical challenges complicate 35 

the application of these models over large areas. These challenges exist, in part, because many geological, 36 

hydrological, and geotechnical details of the subsurface remain unknowable except at points of direct observation. 37 

Among others, the subsurface knowledge gaps include (1) relationships between soil thickness and shallow landslide 38 

depth, (2) model parameter spatial distribution and variability, (3) pore pressure and effective stress distributions, and 39 

(4) landslide failure modes. Research has made much progress in addressing these knowledge gaps. For example, 40 

many physically based and empirical soil-depth models are available (Roering, 2008; Pelletier and Rasmussen 2009; 41 

Ho et al. 2012; Catani et al. 2010; Nicótina et al. 2011; Gomes et al. 2016; Patton et al. 2018, Yan et al. 2021; Xiao et 42 

al., 2023), making it possible to estimate the field-distribution of soil depth in landslide prone areas (Godt et al. 2008a; 43 

Segoni et al. 2009; Ho et al. 2012). Some studies have combined field or laboratory measured properties with mapped 44 

lithologic characteristics and statistical analysis to describe the spatial distribution of soil properties (Godt et al. 2008b; 45 

Tofani et al. 2017). Many other studies have applied probabilistic approaches successfully to address parameter 46 
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uncertainty and improve accuracy of physically based modelling of landslide susceptibility (Raia et al. 2014; Zieher 47 

et al. 2017; Canli et al. 2018; Palacio Cordoba et al. 2020; Medina, et al. 2021). Despite these advances, accurate 48 

assessment of landslide susceptibility using physically based methods remains difficult. 49 

Most physically based landslide susceptibility models have relied on the one-dimensional (1D) infinite-slope analysis 50 

to model slope-stability. This approximation is suitable for representing shallow landslides in raster-based topography 51 

where the resolution (grid-cell spacing) is tens of meters. However, applying the 1D analysis to high-resolution (a few 52 

meters or less) topography violates the 1D assumptions of laterally uniform stress and a planar failure surface. A few 53 

spatially distributed three-dimensional (3D) (Mergilli et al. 2014a, 2014b; Reid et al. 2015) and quasi-3D (von Reutte 54 

et al. 2013; Milledge et al. 2015) methods have become available to overcome limitations of the 1D analysis. In the 55 

quasi-3D method of von Reutte et al. (2013) soil columns interact with their neighbors and load is redistributed when 56 

driving forces at the base of a column exceed basal strength. Milledge et al. (2015) used a search algorithm to identify 57 

patches of potentially unstable grid cells by assuming driving forces acting on a group of cells exceed the resisting 58 

forces at the group’s margins and that cell groups act as rigid blocks with a failure surface at the soil-bedrock interface. 59 

Mergilli et al. (2014a, 2014b) assumed 3D landslide geometry based on ellipsoidal failure surfaces and used Hovland’s 60 

(1977) force-equilibrium method to analyze stability across a digital landscape. Reid et al (2015) used spherical trial 61 

surfaces with moment-equilibrium analysis methods, which tend to be more accurate than methods based on force 62 

equilibrium alone. 63 

In the aftermath of the hurricane, the U.S. Geological Survey (USGS) began working with local partners to conduct 64 

detailed assessments of landslide and debris-flow hazards, both island-wide (Hughes and Schulz 2020a, b) and more 65 

locally (this study) for three impacted municipalities (Lares Municipio, Utuado Municipio, and Naranjito Municipio) 66 

in the central mountains of Puerto Rico. Here we describe the landslide initiation (source area) part of a landslide 67 

susceptibility assessment for these municipalities. Estimating landslide initiation potential is part of a larger effort (in 68 

progress, Brien et al. 2021) to estimate overall hazard from (1) landslide initiation (ground failure), (2) landslide 69 

runout, and (3) debris-flow inundation from future extreme rainfall, including tropical cyclones (hurricanes), as well 70 

as localized storms expected to impact these areas of Puerto Rico.  71 

One of theThe main objectives of this work is to produce integrated maps of potential landslide initiation and 72 

inundation areas. Secondary objectives are to integrate soil-depth modeling, consideration of parameter variability, 73 

and quasi-3D slope stability analysis into our assessments. Our approach to soil-depth modeling achieves a good 74 

compromise between swift, simple methods (constant depth or simple empirical methods, such as DeRose et al. 1991) 75 

and the most complicated and computationally intensive (Xiao et al. 2023). Likewise for our quasi-3D slope stability 76 

analysis. Although much progress has been made in methods for assessing landslide susceptibility (e.g., Carrara et al. 77 

1999; Chung and Fabri 2003; Lee et al. 2003; Godt et al. 2008; Baum et al. 2014; Canli et al. 2018) as well as debris-78 

flow inundation (George and Iverson 2014; Reid et al. 2016; Aaron et al. 2017; Bessette-Kirton et al. 2019b), 79 

combining these two types of assessments into a single map for an area of hundreds of square kilometers remains 80 

challenging (Ellen et al. 1993; Benda et al. 2007; Fan et al. 2017; Hsu and Liu 2019; Mergili et al. 2019). As noted 81 

previously, Oone of the challenges is estimating potential source-area extent and depth. We addressed this challenge 82 

by modelling soil depth and using it to approximate potential source-area depth in one-dimensional (1D) and quasi-83 
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three-dimensional (3D) slope stability models for use in assessing regional shallow landslide susceptibility. Such an 84 

approach helps ensure that the susceptibility model accounts for variable failure depth across the landscape and that 85 

predicted areas of potential landslide sources are acceptable for use in assessing debris-flow inundation. We compared 86 

results of several soil-depth models to find the one that performed the best in our study area. The quasi-3D model uses 87 

a simplified limit-equilibrium analysis to estimate the stability of a slab- or goldpan-shaped trial landslide. Another 88 

challenge is establishing meaningful susceptibility categories, which we addressed by delimiting the categories at 89 

quasi-3D factor of safety values, F3, that enclose specific percentages of landslide sources, rather than relying on 90 

theoretical or arbitrary factor of safety values to delimit the categories. By showing like outcomes (areas that capture 91 

specific percentages of observed landslides), maps based on this approach are directly comparable to each other.  92 

This study was conducted in stages between 2018 and 2022 and involved three study areas as well as calibration areas, 93 

study-area tiles, and validation areas. We define these here to help the reader comprehend how our presentation of the 94 

study is organized. The study areas comprise three municipalities, Lares Municipio, Utuado Municipio, and Naranjito 95 

Municipio, and are the focus of our landslide initiation susceptibility maps (Supplemental Figures S1 and S2; Baum 96 

et al. 2023). These municipalities were chosen because they were severely impacted by Hurricane María landslides 97 

and to help manage their future growth and development. We enclosed the Lares and Utuado study areas in four 98 

overlapping rectangles and enclosed Naranjito Municipio in a fifth, separate rectangle (Fig. 1a, 1b, and 1c). The 99 

rectangles extend beyond the drainage divides of basins that straddle municipality boundaries. The rectangles delimit 100 

overlapping tiles of the digital elevation models (DEM) used in the susceptibility analysis. These DEM tiles helped 101 

keep file sizes (6 gigbytes or less for ASCII input and output grids) manageable and overlap ensured that edge effects 102 

would not degrade soil-depth or slope-stability computations. The extended boundaries ensured that landslide runout 103 

and debris-flow inundation models (Brien et al. in 2021) would not be impeded by municipality boundaries or other 104 

artificial barriers. The calibration areas (Fig. 1) were placed in distinct geologic terranes where high concentrations of 105 

landslides had occurred. Previous detailed mapping and characterization (Bessette-Kirton et al. 2019c, 2020) and field 106 

studies (Baum et al. 2018) in these areas provided data for testing and calibrating soil-depth and slope-stability models 107 

(Tello 2020). From east to west, each 2-km2 calibration area was named for a nearby city: Añasco (ANA), Lares 108 

(LAR), Utuado (UTU), and Naranjito (NAR). Although ANA is about 15 km west of the study areas, it was included 109 

to provide additional calibration data in an area of high landslide density for submarine volcaniclastic lithologies 110 

because sufficient data were not available at NAR. Soils, land cover, and other characteristics (besides bedrock 111 

lithology) that influence landslide susceptibility vary between the four calibration areas (Bessette-Kirton et al. 2020; 112 

Hughes and Schulz 2020a, 2020b). We used six additional areas of detailed mapping (Einbund et al. 2021a, 2021b) to 113 

help evaluate the final maps. These validation areas are designated LAR2 and UTU2, and each includes three 114 

rectangular areas of detailed landslide mapping. (Fig. 1b). We combined detailed source area mapping of NAR 115 

(Baxstrom et al. 2021a) and UTU (Einbund et al. 2021a) with that in LAR2 and UTU2 for the validation.  116 

In the aftermath of Hurricane María, the U.S. Geological Survey (USGS) began working with local partners to conduct 117 

detailed assessments of landslide and debris-flow hazards, both island-wide (Bessette-Kirton et al. 2017; Hughes and 118 

Schulz 2020a, b) and more locally (this study) for three impacted municipalities (Lares Municipio, Utuado Municipio, 119 

and Naranjito Municipio) in the central mountains of Puerto Rico (Fig. 1). These municipalities were an ideal location 120 
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for testing and developing methods for such assessments. Here we describe the landslide initiation (source area) part 121 

of a landslide susceptibility assessment for these municipalities. Estimating landslide initiation potential is part of a 122 

larger effort (in progress, Brien et al. 2021) to estimate overall hazard from (1) landslide initiation (ground failure), 123 

(2) landslide runout, and (3) debris-flow inundation from future extreme rainfall, including tropical cyclones 124 

(hurricanes), as well as localized storms expected to impact these areas of Puerto Rico.  125 

 126 
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 127 
Figure 1. Geologic map showing municipality boundaries, study areas, calibration areas, and major lithologies (geologic 128 
terranes) for the main island of Puerto Rico. Simplified from Bawiec (1998) by combining submarine volcaniclastic rocks 129 
of various ages into a single map unit. Primary landslide-prone lithologies indicated by * in map explanation. Municipality 130 
boundaries of Lares, Utuado, and Naranjito define study areas. Digital elevation models covering the study areas were 131 
divided into five smaller tiles. Extent of Añasco (ANA), Lares (LAR), Utuado (UTU), and Naranjito (NAR) calibration areas 132 
from landslide inventories by Bessette-Kirton et al. (2019c, 2020). (a) overview of entire island, (b) details of Lares and 133 
Utuado study areas including outlines of areas of detailed landslide mapping in Utuado, (UTU2, Einbund et al. 2021a) and 134 
Lares (LAR2, Einbund et al. 2021b), (c) details of Naranjito study area. 135 
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In the following sections, we describe characteristics of the study areas, summarize our methods and results, and 136 

discuss advantages, limitations, and implications of our approach. First, we describe the setting, geology, and 137 

landslides of Puerto Rico including details specific to the study areas. Then we describe the available topographic and 138 

geotechnical data followed by a description of the workflow for assessing landslide susceptibility. Next, we describe 139 

our methods for modelling soil depth, pressure head, and slope stability along with procedures for model calibration 140 

and details of how the calibrated models were applied to and evaluated for our study areas. Then we present results of 141 

the calibration, soil-depth modelling, 1D and quasi-3D stability analyses, and the evaluation and validation of the 142 

susceptibility analysis. These results were obtained using pre-event light detection and ranging (lidar) bare-earth 143 

digital elevation models (DEM)s (U.S. Geological Survey, 2018); ). The DEMs, with uniformly spaced elevation 144 

values, were created from ground returns of lidar point clouds. DEMs are known in some countries as digital terrain 145 

models, a term with two definitions; throughout this paper we use DEM to avoid ambiguity (Heidemann, 2018). we 146 

We reran our models using calibrated input parameters and post-event lidar (U.S. Geological Survey 2020a, b, c) to 147 

estimate susceptibility to future landslides. We finish by discussing strengths and limitations of our approach as well 148 

as some unexpected findings and ways to simplify the workflow for application to areas where limited data are 149 

available.  150 

2 Study area 151 

Puerto Rico is a U.S. territory and lies at the east end of the Greater Antilles island chain in the Caribbean Sea (Fig. 152 

1). The main island is characterized by rugged topography and covers an area of 8750 km2. The study areas and 153 

calibration areas lie in the east–west-trending Cordillera Central range, which spans most of the island. The range 154 

exceeds elevations of 900 m at many places, and its highest peak reaches an elevation of 1340 m. Coastal plains and 155 

broad lowlands ring most of the island. Ongoing tectonic uplift is one of the main factors creating the rugged 156 

topography across the island (Taggart and Joyce 1991). Warm temperatures, high rainfall, and humidity contribute to 157 

deep weathering and widespread saprolite formation (Murphy et al. 2012). 158 

This study was conducted in stages between 2018 and 2022 and involved three study areas as well as calibration areas, 159 

study-area tiles, and validation areas. We define these here to help the reader comprehend how our presentation of the 160 

study is organized. The study areas comprise three municipalities, Lares Municipio, Utuado Municipio, and Naranjito 161 

Municipio, and are the focus of our landslide initiation susceptibility maps (Supplemental Figures S1 and S2; Baum 162 

et al. 2023). These municipalities were chosen because they were severely impacted by Hurricane María landslides 163 

and to help manage their future growth and development. We enclosed the Lares and Utuado study areas in four 164 

overlapping rectangles and enclosed Naranjito Municipio in a fifth, separate rectangle (Fig. 1a, 1b, and 1c). The 165 

rectangles extend beyond the drainage divides of basins that straddle municipality boundaries. The rectangles delimit 166 

overlapping tiles of the digital elevation models (DEM) used in the susceptibility analysis. These DEM tiles helped 167 

keep file sizes (6 gigabytes or less for ASCII input and output grids) manageable and overlap ensured that edge effects 168 

would not degrade soil-depth or slope-stability computations. The extended boundaries ensured that landslide runout 169 

and debris-flow inundation models (Brien et al. in 2021) would not be impeded by municipality boundaries or other 170 

artificial barriers. The calibration areas (Fig. 1) were placed in distinct geologic terranes where high concentrations of 171 
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landslides had occurred. Previous detailed mapping and characterization (Bessette-Kirton et al. 2019c, 2020) and field 172 

studies (Baum et al. 2018) in these areas provided data for testing and calibrating soil-depth and slope-stability models 173 

(Tello 2020). From east to west, each 2-km2 calibration area was named for a nearby city: Añasco (ANA), Lares 174 

(LAR), Utuado (UTU), and Naranjito (NAR). Although ANA is about 15 km west of the study areas, it was included 175 

to provide additional calibration data in an area of high landslide density for submarine volcaniclastic lithologies 176 

because sufficient data were not available at NAR. Soils, land cover, and other characteristics (besides bedrock 177 

lithology) that influence landslide susceptibility vary between the four calibration areas (Bessette-Kirton et al. 2020; 178 

Hughes and Schulz 2020a, 2020b). We used six additional areas of detailed mapping (Einbund et al. 2021a, 2021b) to 179 

help evaluate the final maps. These validation areas are designated LAR2 and UTU2, and each includes three 180 

rectangular areas of detailed landslide mapping. (Fig. 1b). We combined detailed source area mapping of NAR 181 

(Baxstrom et al. 2021a) and UTU (Einbund et al. 2021a) with that in LAR2 and UTU2 for the validation.  182 

 183 

2.1 Geology and soils  184 

Heavily faulted basement rocks, consisting mainly of oceanic crust, volcaniclastic, and intrusive rocks, underlie the 185 

Cordillera Central range (Jolly et al. 1998). A cover sequence of carbonates and associated clastic sediments 186 

unconformably overlies the basement complex. The carbonates have weathered to form tropical karst in the lowlands 187 

north of the range (Monroe 1976). Bawiec (1998) generalized the geology of Puerto Rico into twelve geologic terranes 188 

having related rock types. We have simplified the terranes slightly for purposes of this study (Fig. 1). Soil mapping 189 

and databases published by the U.S. Department of Agriculture’s Natural Resources Conservation Service (NRCS) 190 

indicate a wide range in the textures (particle-size distributions) and hydraulic properties of soils in the study areas 191 

(Soil Survey Staff 2018). Most hillside soils have developed by in-place chemical weathering of underlying bedrock 192 

or saprolite and locally derived colluvium. Despite the steep slopes, in many places the upper few meters of bedrock 193 

have weathered to saprolite (e.g., Jibson 1989; Larsen and Torres-Sanchez 1992). 194 

2.2 Landslides 195 

Heavy rainfall from Hurricane María during September 2017 produced tens of thousands of landslides on the main 196 

island of Puerto Rico, USA (Bessette-Kirton et al. 2017, 2019a; Hughes et al. 2019). Shallow, translational failures in 197 

soil or saprolite, from decimeters to a few meters deep were the most common landslides. Deeper (up to 30 m) complex 198 

failures in soil, saprolite, and rock, as well as rock falls and rock slides also occurred (Bessette-Kirton et al. 2017). 199 

Many landslides transformed into debris flows that commonly coalesced and flowed down channels. Landslides 200 

caused fatalities as well as widespread damage to homes, roads, and other infrastructure. 201 

Recent and historical studies described and characterized Puerto Rico's rainfall-induced landslides. Published studies 202 

of past landslides characterized rainfall-induced landslides in southern and eastern parts of Puerto Rico (Jibson 1989; 203 

Simon et al. 1990; Larsen and Torres-Sanchez 1992, 1998; Pando et al. 2005; Larsen 2012). Several post-Hurricane 204 

María studies documented dimensional, geologic, and topographic characteristics of landslide sources in ten 205 

representative areas of high landslide density within and near the municipality study areas (Fig. 1): Baum et al. (2018) 206 
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conducted field studies and measurements (Fig. 2), and Bessette-Kirton et al. (2019c) later mapped landslides using 207 

post-event aerial photography in the four areas denoted as ANA, LAR, NAR, and UTU (Fig. 1a). U.S. Geological 208 

Survey staff later remapped NAR (Baxstrom et al. 2021a), remapped UTU (Einbund et al. 2021a), and mapped six 209 

additional areas (UTU2 and LAR2, Fig. 1b) near UTU and LAR (Einbund et al. 2021a, 2021b). Schulz et al. (2023) 210 

expanded on earlier field studies of Baum et al. (2018). Data from some of these studies supported recent analyses of 211 

landslide susceptibility (Bessette-Kirton et al. 2019a; Hughes and Schulz 2020a) and runout characteristics (Bessette-212 

Kirton et al. 2020). 213 

 214 

 215 
Figure 2. Photographs taken in May 2018 depicting source areas of shallow landslides in (a) volcaniclastic terrane 216 
(photograph by C. Cerovski-Darriau, U.S. Geological Survey, May 2018, public domain) and (b) granitoid terrane eight 217 
one months after Hurricane María (photographs by C. Cerovski-DarriauW. Schulz, U.S. Geological Survey, October 2017, 218 
public domain). 219 

The post-Hurricane María studies cited above indicated that most source areas were fully evacuated, and shallow 220 

translational slides appear to be the most common type of movement prior to transforming to debris flows. 221 

Nevertheless, source area shapes were consistent with translational, rotational, or complex movement. Source areas 222 

exposed soil, saprolite, and bedrock (Fig. 2). Soil matrix textures ranged from sand to clay; clast content increased 223 

with depth. Differences between the landslide source sizes and depths within the different terranes (Fig. 3) seem 224 

consistent with their different lithologies and depth of weathering (volcaniclastic rocks, weathered volcanic rocks, 225 

granitic pluton).  226 

 227 
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 228 
Figure 3. Box plots summarizing landslide source dimensions obtained for three geologic terranes by field studies of 107 229 
landslides (gray, Baum et al. 2018) and by mapping 3440 landslides from aerial imagery and lidar-derived digital elevation 230 
models (white, Baxstrom 2021a; Einbund 2021a, 2021b). (a) width, (b) length, (c) plan-view area calculated directly by 231 
geographic information system for mapped polygons and estimated from field measurements as an ellipse and projected to 232 
the horizontal, p ´ (Length ´ Width ´ cos (Slope angle))/4, (d) mean slope angle, (e) mean landslide source depths. Outliers 233 
of width, length and area not shown to keep 25%, 50%, and 75% quartiles legible; box length = interquartile range (IQR), 234 
whiskers = 1.5 x IQR. [Locations (as shown in Fig. 1): ANA, Añasco; LAR, Lares; LAR2, Lares (Einbund et al. 2021b); 235 
UTU, Utuado; UTU2, Utuado (Einbund et al. 2021b, includes UTU); NAR, Naranjito (remapped by Baxstrom et al. 2021a)]. 236 

Figure 3 summarizes landslide dimensions obtained from the post-Hurricane María studies for the three main geologic 237 

terranes in the study areas (Fig. 1). The field measurements (using laser range finder, tape, and clinometer; Baum et 238 

al. 2018), though biased by purposely including several large landslides (1500 m2 – 6600 m2), represent the range of 239 
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sizes of Hurricane María landslide sources. Mapping from imagery (Baxstrom et al. 2021a; Einbund et al. 2021a, 240 

2021b) included all landslides visible in the imagery of several 2.5-km2 target areas and represent typical dimensions 241 

of landslides triggered by the hurricane on uplands and valley side slopes. Most landslide sources had lengths and 242 

widths less than 10-15 m, with median mapped length and width among the different samples in Figure 3a, 3b ranging 243 

from 6.5 m to 9 m. Many landslide sources have areas less than 100 m2 (median mapped areas range from 42 m2 to 244 

64 m2 for the different terranes), and very few have areas greater than 1000 m2 (Fig. 3c). Although landslides occurred 245 

on a wide range of slope angles, most occurred on slopes between 30º and 50º (Fig. 3d). Median DEM-derived mean 246 

slope angles of mapped landslide sources were 37° - 39° (Fig. 3d). Depths computed by differencing pre-event and 247 

post-event lidar elevation data (Baxstrom et al. 2021a; Einbund et al. 2021a, 2021b) have significant uncertainty 248 

because 14 -– 19% of the landslide sources had mean and median elevation differences indicating net gain of material 249 

(Fig. 3e). In addition, undisturbed areas outside the landslide polygons showed elevation differences that varied 250 

horizontally, which is consistent with alignment errors betweeninadequate swath adjustment in the pre- and post-event 251 

lidar point clouds. Data needed to correct the resulting mismatch between pre- and post-event lidar were unavailable. 252 

However, it seems unlikely that any of the mapped landslides had a mean depth much greater than 5.8 m (the span 253 

between the greatest elevation loss and gain, MVC/LAR2, Fig. 3e). Rare, large landslides had depths as great as 25 m 254 

according to field measurements (Fig. 3e). 255 

Puerto Rico's complex geology (Fig. 1), tropical soils, rugged terrain, land use, and landcover exert strong influences 256 

on landslide susceptibility. Lepore et al. (2012) in an island-wide assessment using frequency ratio and logistic 257 

regression concluded that aspect, slope, elevation, geological discontinuities, and geology, were “highly significant 258 

landslide-inducing factors;”; land cover and distance from roads were also significant. Bessette-Kirton et al. (2019a) 259 

showed that antecedent soil moisture was statistically correlated to densities of Hurricane-María-induced landslides 260 

and found that high landslide densities were “especially widespread across some geologic formations,” although the 261 

degree to which rainfall characteristics resulted in this correlation remained unclear. In a later post-Hurricane María, 262 

island-wide assessment using the frequency ratio method, Hughes and Schulz (2020a) found after accounting for the 263 

effects of soil moisture, there were strong correlations between landslides and slope, curvature, geologic terrane, mean 264 

annual precipitation, land cover, soil type, event soil moisture, proximity to roads, and proximity to fluvial channels 265 

for the Hurricane María event. Previous, more localized studies considered fewer geomorphic and geographic 266 

characteristics to classify landslide susceptibility using empirical and statistical methods (Larsen and Parks 1998; 267 

Larsen et al. 2004). For example, Larsen and Parks (1998) classified landslide susceptibility of Comerío Municipality 268 

based on elevation, slope, aspect, and land use. Our current study uses physics based geotechnical models of slope 269 

stability to directly assess topographic, geologic, and soil controls on landslide potential and to indirectly assess effects 270 

of roads and land use through their impacts on topography and surface drainage as expressed in the DEM as local 271 

changes in the slope characteristics.  272 

3 Methods and materials 273 

To represent the aerial extent and depths of potential landslide source areas, we undertook a multistage process to 274 

acquire data, characterize the landslides, calibrate parameters, and model potential landslide sources for both pre-275 



 12 

Hurricane María and post-Hurricane María digital topography. In Figure 4, bold capital letters mark the four main 276 

stages of the study: (A) Data acquisition and reduction, (B) Calibration, (C) Susceptibility modeling on pre-storm 277 

topography, and (D) Susceptibility modeling on post-storm topography. Each stage comprises multiple steps; numbers 278 

in Fig. 4 identify the section describing each major step. Most results of Stage A were published previously, but are 279 

described briefly in sections 2.2, 3.1, and 3.2 to provide context for this study. Stages B, C, and D (Fig. 4) repeated 280 

four distinct modelling tasks: (1) soil depth, H, (2) pressure head, y, (3) 1D factor of safety, F1, (4) quasi-3D factor 281 

of safety, F3. The landscapes of the calibration and study areas were represented digitally in the models as raster grids 282 

based on 1-m-resolution pre-event lidar-derived DEMs. Each grid cell represented a column of potential landslide 283 

material of vertical depth, H, determined at soil-depth modelling steps of stages B, C, and D (Fig. 4). Computed soil 284 

depth from these steps became input for calculation of y, (Fig. 4); then H and y became inputs for computing F1 (Fig. 285 

4) and F3. F1 was used primarily in evaluating soil-depth models and shear-strength parameters for the calibration 286 

areas depicted in Fig. 1 using receiver operating characteristic (ROC, Metz, 1978) analysis (Fig. 4). During post-287 

calibration slope-stability modelling of the study areas, F1 served as a rough check on the computed value of F3. The 288 

following sections outline the major steps depicted in Figure 4. 289 
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 290 
Figure 4. Flow chart showing four major stages (enumerated by capital letters A, B, C, D) and steps of data acquisition, 291 
calibration and modelling leading to the map of landslide initiation susceptibility (Susceptibility map, bottom of right 292 
column). Numbers (underlined, bold) identify the corresponding sections where the steps and their outputs are described. 293 
The data acquisition stage (A, top) was performed at scales ranging from island-wide to site specific. The calibration stage 294 
(B, left column) was performed using digital elevation models of roughly 2.5-km2 areas where detailed mapping and 295 
fieldwork had been conducted (Fig. 1). Landslide source depths approximated soil depth for soil-depth model calibration. 296 
The pre-Hurricane María (pre-storm) modeling stage (C, center column) was conducted using overlapping DEM tiles (Fig. 297 
1) derived from pre-Hurricane María lidar data (U.S. Geological Survey, 2018). The post-Hurricane María (post-storm) 298 
modeling stage (for generating map of future landslide susceptibility, D, right column) used overlapping DEM tiles (Fig. 1) 299 
derived from post-Hurricane María lidar data (U.S. Geological Survey, 2020a, b, c). Post-Hurricane María steps used 300 
identical input parameters to the corresponding pre-Hurricane María steps. [Chart symbols: Light-blue rounded 301 
rectangles, terminals of each major stage; rectangles with bold text, technical or computational processes; parallelograms 302 
with italic text, inputs or outputs; dashed lines, connections between outputs and model inputs. Model outputs: H, soil 303 
depth; y, pressure head; F1, 1D factor of safety; F3, quasi-3D factor of safety; TPR, true positive rate; ROC, Receiver 304 
Operating Characteristics. Model input parameters: h0, characteristic soil depth, Hmax, maximum soil depth; dc, critical 305 
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slope angle; Rd, diffusivity ratio; c¢, cohesion for effective stress; f¢, angle of internal friction for effective stress; R, radius 306 
of quasi-3D trial surface.] 307 

 308 

3.1 Topographic surveys and data 309 

In 2015 and 2016, the U.S. Geological Survey (2018) acquired airborne lidar covering the entire main island of Puerto 310 

Rico. These data were processed to create a 1-m resolution bare-earth DEM. Referred to hereafter as pre-event lidar, 311 

these data were acquired roughly one to two years before Hurricane María and constitute the best available 312 

representation of topographic conditions before the landslides associated with the hurricane occurred. Available at the 313 

beginning of our investigation, the pre-event lidar-derived DEMs have formed the topographic mainstay for U.S. 314 

Geological Survey studies of these recent landslides. We used these data for calibration and validation of our soil 315 

depth and slope stability models. After Hurricane María, the U.S. Geological Survey (2020a, b, c) acquired additional 316 

lidar data covering the entire island in 2018. These data, referred to hereafter as post-event lidar, constitute the 317 

(currently) best available representation of topographic conditions after the landslides and are useful for assessing 318 

susceptibility to future landslides. The 0.5-m post-event lidar DEMs were resampled to 1-m resolution for consistency 319 

with the pre-event lidar DEMs and computational efficiency of landslide susceptibility models. We used these post-320 

event DEMs to run our models (using the previously calibrated and evaluated input parameters) to obtain our best 321 

estimate of susceptibility to future landslides. 322 

3.2 Engineering Ddata compilation 323 

Based on findings by Bessette-Kirton et al. (2019a) and Hughes and Schulz (2020a, b) indicating strong correlation 324 

between landslide density and both bedrock and soil type, Baum (2021) compiled existing data on soil texture and 325 

engineering properties to create typical values for model calibration. Four different sources yielded soil and (or) 326 

engineering data: (1) published literature about past and recent landslides in Puerto Rico (Sowers 1971; Jibson 1989; 327 

Simon et al. 1990; Larsen and Torres-Sanchez 1992, 1998; Lepore et al. 2013; Thomas and Cerovski-Darriau 2019), 328 

(2) NRCS soil databases (Soil Survey Staff; 2018), (3) laboratory testing (Smith et al. 2020), and (4) geotechnical 329 

reports of recent landslides (Puerto Rico Department of Transportation, written commun. 2019). The NRCS soil data 330 

and geotechnical reports were summarized in spreadsheets and then analyzed to determine means, ranges, and other 331 

basic statistics to characterize the properties of soils and geologic formations found throughout the three municipalities 332 

(Baum and Lewis, 2023). The database compiled from these sources and measured using various protocols, though 333 

inhomogeneous, brackets the probable ranges of engineering properties. Baum (2021) identified dominant soil classes 334 

of the geologic terranes that had high landslide densities (Fig. 1) and estimated expected ranges of soil strength 335 

parameters, cohesion, c′, and angle of internal friction, f′, both for effective stress based on dominant Unified Soil 336 

Classification System (ASTM International, 2020) types in each terrane as follows: volcaniclastic, high-plasticity 337 

organic clay (OH), f′ 17º – 35º , c′ 5 – 20 kPa; submarine basalt and chert, low plasticity clay (CL) and high-plasticity 338 

silt (MH), f′ 27º – 35º , c′ 5 – 20 kPa; granitoid, low plasticity clay (CL) and silty sand (SM), f′ 27º – 41º , c′ 0 – 20 339 

kPa. Laboratory tests at low normal stress (Smith et al. 2020), relevant to shallow landslides, indicate higher friction 340 
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ranges: volcaniclastic, high-plasticity silt (MH) to organic clay (OH), f′ 35º – 46º, c′ 0 – 5.1 kPa; granitoid silty sand, 341 

f′ 35º – 54º, c′ 0.4 – 4.6 kPa.  342 

3.3 Strength parameter analysis 343 

Using 1D slope stability analysis, Baum (2021) estimated the ranges of soil strength parameters φ′ and c′ that explain 344 

the largest number of field-observed landslide slope and depth combinations in the calibration areas (Fig. 45). 345 

Computing 1D factor of safety using the infinite slope analysis (Taylor, 1948; Iverson, 2000), F1, for 1440 possible 346 

incremental combinations of f′ and c′ over a synthetic grid in which slope angle, δ, and landslide depth, H, varied 347 

incrementally over the observed ranges of slope (22° – 60°, in 0.5° increments) and depth (0.2 m – 15 m, in 0.1-m 348 

increments) produced F1 values for more than 1.9 × 107 combinations of H, d, φ¢, and c¢. The best fitting ranges (dark 349 

red in Fig. 65) included combinations of H, d, f¢, and c¢, where more than 75% of observed landslide scarp points 350 

were successfully predicted by F1 ³1 for y=0 (dry, where y is the pressure head at the basal slip surface) and F1 <1 351 

for y=Hcos2d (water table at the ground surface with slope-parallel flow). The example depicted in Fig. 4 5 had an 352 

overall success rate of 93% for its c¢ – f¢ combination (c¢ = 0.75 kPa  and ¢ = 54° ) in all three geologic terranes (Figs. 353 

1, 5a). Compiling the performance of every c¢-f¢ pair considered in the analysis led to Fig. 65b, 5c6c, and 5d6d, which 354 

showed the better-performing ranges of c¢ and f¢ for the granitoid (Fig. 5b6b), volcaniclastic (Fig. 5c6c), and 355 

submarine basalt and chert (Fig. 5d6d) terranes, respectively. Those combinations of c¢ and f¢ with success rates 356 

exceeding 75%, were used as inputs for computing F1 with trial soil-depth maps in subsequent calibration studies to 357 

select a single combination of c¢ and f¢ for computing F1 in each terrane. 358 

 359 
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 360 
Figure 54. Results of strength parameter testing for observed combinations of landslide slope and depth in three geologic 361 
terranes. Factor of safety, F1, results (indicated by color scale and contour lines) for a selected combination of cohesion, 362 
c¢ (c¢ = 0.75 kPa) and angle of internal friction, f¢ (f¢ = 54°), both for effective stress. Two scenarios for pore-pressure head 363 
(m=0 and m=1) are shown, where m is the ratio of pressure head to soil depth. Symbols mark observed slope angle and 364 
depth at mapped landslide sources in various geologic terranes (Fig. 1). Factor of safety, F1, at slope and depth combinations 365 
observed at marked landslide sources indicates model success (F1<1 if m=1) or failure (F1>1 if m=1). For the pair of c¢ and 366 
f¢ values shown, F1>1 for dry conditions (m=0) at about 97% of sources and F1>1 at 4% of sources for water table at the 367 
ground surface with flow parallel to the slope (m=1). These parameters, c¢ = 0.75 kPa and f¢ = 54°, had an overall success 368 
rate of about 93% (=97% - 4%) for all three terranes (revised from Baum 2021). 369 



 17 

 370 

 371 
Figure 56. Fraction of field-measured landslide sources from the calibration areas (Baum et al. 2018) predicted correctly 372 
as a function of cohesion, c¢, and angle of internal friction, f¢, for observed landslides in (a) all three terranes combined 373 
(modified from Baum 2021); (b) the volcaniclastic terrane; (c) the granitoid terrane; (d) the submarine basalt and chert 374 
terrane. Each pixel summarizes the net result of a pair of analyses like that in Figure 54. Pixel outlined by white rectangle 375 
in lower right corner of panels (a), (b), (c), and (d) indicates combination for analysis shown in Figure 45. Pixel color and 376 
contours indicate true positive rate (TPR) of predictions for each cell. Factor of safety for dry conditions is F1m=0; factor of 377 
safety for water table at ground surface with slope-parallel flow is F1m=1. Each grid cell represents the fraction (NF1m=0 – 378 
NF1m=1)/Nt, where NF1m=0 is the number of source areas for F1 ³ 1, NF1m=1 is the number of source areas for which F1 ³ 1, 379 
and Nt is the number of source areas in the geologic terrane. 380 

 381 

3.4 Workflow for shallow landslide susceptibility models 382 

To represent the aerial extent and depths of potential landslide source areas, we undertook a multistage process to 383 

calibrate and model potential landslide sources for both pre-Hurricane María and post-Hurricane María digital 384 

topography (Fig. 6). Each stage (depicted as a column in Fig. 6) repeated four distinct modelling steps: (1) soil depth, 385 

H, (2) pressure head, y, (3) 1D factor of safety, F1, (4) quasi-3D factor of safety, F3. The landscapes of the calibration 386 

and study areas were represented digitally in the models as raster grids based on 1-m-resolution pre-event lidar-derived 387 

DEMs. Each grid cell represented a column of potential landslide material of vertical depth, H, determined at soil-388 

depth modelling steps A.1, B.1, and C.1 (Fig. 6). Computed soil depth from these steps became input for calculation 389 
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of y, (steps A.2, B.2, and C.2, respectively, Fig. 6); then H and y became inputs for computing F1 (steps A.3.a, B.3, 390 

and C.3, Fig. 6) and F3 (steps A.4, B.4, and C.4, Fig. 6). F1 was used primarily in evaluating soil-depth models and 391 

shear-strength parameters for the calibration areas depicted in Fig. 1 using receiver operating characteristic (ROC) 392 

analysis (step A.3.b, Fig. 6). During post-calibration slope-stability modelling of the study areas (steps B.4 and C.4, 393 

Fig. 6), F1 served as a rough check on the computed value of F3. In this section (Sect. 3.4,1, 3.4.2, 3.4.3, and 3.4.4), 394 

we briefly describe the modelling steps and give details about the models. We describe the major stages (columns in 395 

Fig. 6) of calibration, modelling, and validation in later sections (Sect. 3.5, …, 3.11). 396 

 397 

 398 
Figure 6. Flow chart showing major stages (each column) and steps of calibration and modeling leading to the map of 399 
landslide initiation susceptibility (Susceptibility map, bottom of right column). The calibration stage (left column) was 400 
performed using digital elevation models of roughly 2.5-km2 areas where detailed mapping and fieldwork had been 401 
conducted (Fig. 1). Landslide source depths approximated soil depth for soil-depth model calibration (1.1). The pre-402 
Hurricane María (pre-storm) modeling stage (center column) was conducted using overlapping DEM tiles (Fig. 1) derived 403 
from pre-Hurricane María lidar (U.S. Geological Survey, 2018). The post-Hurricane María (post-storm) modeling stage 404 
(for generating map of future landslide susceptibility, right column) used overlapping DEM tiles (Fig. 1) derived from post-405 
Hurricane María lidar (U.S. Geological Survey, 2020a, b, c). Post-Hurricane María steps 3.1, 3.2, 3.3, and 3.4 used identical 406 
input parameters to the corresponding pre-Hurricane María steps, 2.1, 2.2, 2.3, and 2.4. [Chart symbols: Light-blue 407 
rounded rectangles, terminals of each major stage; rectangles with bold text, computational processes; parallelograms with 408 
italic text, inputs or outputs; dashed lines, connections between calibration outputs and model inputs. Model outputs: H, 409 
soil depth; y, pressure head; F1, 1D factor of safety; F3, quasi-3D factor of safety; TPR, true positive rate; ROC, Receiver 410 
Operating Characteristics. Model input parameters: h0, characteristic soil depth, Hmax, maximum soil depth; dc, critical 411 
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slope angle; Rd, diffusivity ratio; c¢, cohesion for effective stress; f¢, angle of internal friction for effective stress; R, radius 412 
of quasi-3D trial surface.] 413 

 414 

3.4.1 Step 1, modelling soil depth 415 

Estimating soil depth from a DEM was the first modelling step in all three stages (Fig. 6). Field observations indicated 416 

that the base of most landslide sources occurred near the top of weathered bedrock (Baum et al. 2018; Baum 2021), 417 

so we chose soil depth as a predictor of landslide source depth. We carried out soil-depth estimation using new open-418 

source software, REGOLITH (Baum et al. 2021) containing five empirical and four steady-state process-based soil-419 

depth models implemented in a command-line program. Each model in REGOLITH estimates soil depth from some 420 

combination of topographic variables, including slope, upslope contributing area, and curvature, as well as a few 421 

model parameters, such as characteristic depth (the soil thickness at which bedrock lowering falls to 1/e of its 422 

maximum value), h0 [L]; critical slope (angle of stability at which the slope is capable of transporting the entire soil 423 

profile by mass movement), dc [degrees]; and the ratio of maximum bedrock lowering rate to hillslope diffusivity, Rd. 424 

These parameters may vary with conditions that influence soil formation, including bedrock and climate. Predicted 425 

soil depth is treated as equivalent to and defines column height, H, in subsequent modelling steps. We used separate 426 

property zones with distinct parameters in REGOLITH to model adjoining areas of significantly different soil depth 427 

characteristics (tropical karst versus granitoid and volcaniclastic). We modified steady-state process-based models 428 

(Pelletier and Rasmussen 2009), which predict soil depth only on convex topography, to estimate soil depths in both 429 

concave and convex topography. We used a smoothing algorithm available in REGOLITH to reduce abrupt changes 430 

in soil depth that may result from DEM roughness. Further details are available in the online documentation found in 431 

the code repository (Baum et al. 2021). Our soil-depth, pressure head, and slope-stability models treated roads, cut 432 

slopes and embankments the same as other areas.  433 

3.4.2 Step 2, modelling subsurface pressure head 434 

Step 2 was performed using the Transient Rainfall Infiltration and Grid‐Based Regional Slope‐Stability Analysis 435 

(TRIGRS) program (Baum et al. 2010; Alvioli and Baum 2016), version 2.1. In most applications, TRIGRS computes 436 

pressure head and factor of safety distributed over a digital landscape to yield a series of grids representing changes 437 

in pressure head and factor of safety through time during a rainfall event. For this work, our objective was a landslide 438 

susceptibility map that shows where landslides induced by intense rainfall are most likely, so we used a presumed 439 

wettest-case pressure head, rather than simulating time-varying pressure head. This approach greatly accelerated the 440 

Step 2 pressure-head computations and eliminated the need to calibrate soil hydraulic parameters. Given the extreme 441 

rainfall during Hurricane María and other historical tropical storms, full saturation with the water table at the ground 442 

surface and groundwater flow sub-parallel to the ground surface (as determined by the permeability contrast at the 443 

soil-saprolite or soil-bedrock boundary) represented the likely wettest-case hydrologic conditions for landslide 444 

initiation. This approach neglects effects of suction stress, heterogeneity, and transient pore pressures at the cost of 445 
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making the susceptibility map more conservative (more false positives). Thus, for this assessment we estimated 446 

pressure head for these conditions using the following steady-state formula (Iverson 2000; Baum et al. 2010): 447 

 448 

𝜓(𝑍) = (𝑍 − 𝑑) ((cos 𝛿)! − "!"#
#$
-          (1) 449 

 450 

In Eq. (1), y(Z) [L] is the pressure head as a function of Z [L], the vertical coordinate direction (positive downward 451 

from the ground surface); d [L] is the steady‐state depth to the water table measured in the vertical direction (0 m in 452 

this case); IZLT [LT-1] is the steady background flux; d is the slope angle; and Ks [LT-1] is the saturated hydraulic 453 

conductivity. The dimensionless ratio IZLT/Ks in Eq. (1) accounts for downward percolation and reduces the pressure 454 

head from the slope parallel case represented by Hcos2d, where H (=Z-d) is the column height as noted previously. 455 

The average rate of downward percolation is strongly controlled by the permeability contrast between the mobile 456 

regolith (soil mantle) and underlying weathered bedrock or saprolite. For the problem considered here, IZLT/Ks = 0.028, 457 

consistent with wet initial conditions (averaging 2-25 mm/day of precipitation-induced infiltration, IZLT, for Ks in the 458 

range 10-5 – 10-6 m/s, typical of soils in the study area). This value of IZLT/Ks directs flow slightly downward and 459 

reduces the pressure head by less than 1% compared to slope-parallel flow in the 25° – 55° range of slopes where most 460 

landslides occurred. TRIGRS computes y(Z) for a series of equally spaced depths between the ground surface (Z=0) 461 

and a user-specified maximum depth, Z=Zmax. For this analysis, Zmax = H as determined by the soil depth modeled in 462 

stage A and we used a depth increment of Zmax/10. 463 

3.4.3 Step 3, 1D factor of safety 464 

TRIGRS computes the 1D factor of safety, F1, using the infinite slope analysis (Taylor 1948; Iverson 2000) according 465 

to the following formula for the saturated case:  466 

 467 
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          (2) 468 

 469 

In Eq. (2) γs is the saturated unit weight of soil; γw is the unit weight of water; and δ is the true dip of the slip surface 470 

at the base of mobile regolith (assumed parallel to the slope of the ground surface in the infinite slope analysis). 471 

TRIGRS computes F1 at the same series of depths between the ground surface and modeled soil depth as for y(Z). 472 

Eq. (2) is strictly valid for landslides much longer than their depth on planar slopes in which lateral variation in stress 473 

is negligible. With the advent of high-resolution topography, the depth-to-length ratios of soil columns at most grid 474 

cells have become much greater than 0.1, such that the small depth-to-length landslide assumption of Eq. (2) is 475 

violated. This violation reduces accuracy for nonplanar slopes and for rough DEMs (whether the roughness results 476 

from natural surface roughness or from data collection and processing errors). A slope-stability analysis that considers 477 

multiple adjacent DEM cells can improve accuracy for nonplanar slopes and rough DEMs.  478 
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3.4.4 Step 4, 3D factor of safety 479 

To overcome the limitations of F1 for high-resolution topography and to assess the stability of potential source areas 480 

similar in size to past landslides, the computed pressure head, Eq. (2), was used in a separate computer program, 481 

Slabs3D (Baum 2023), to compute the quasi-3D factor of safety, F3. Baum et al. (2012) described and tested a 482 

preliminary version of the program, which recently was further developed and tested for the work reported here. 483 

Slabs3D was designed to rapidly analyze stability of the soil mantle on hillsides to identify potential shallow landslide 484 

sources. By using a method of columns, Slabs3D overcomes some of the limitations of infinite-slope computations on 485 

high-resolution topography. However, the current version of Slabs3D relies on force equilibrium alone (not moment 486 

equilibrium). Thus, the approximations made in computing F3 are suitable only for thin (disc- or slab-shaped) 487 

landslides, such as most landslides in the study areas (Figs. 2, 3). Potential landslides can be more thoroughly analyzed 488 

with 3D slope-stability software such as Scoops3D, which considers moment equilibrium on arcuate trial surfaces 489 

(Reid et al. 2015). However, in consideration of the thin, slab-shaped landslide sources and the large area (about 1000 490 

km2) to be analyzed, we deemed the accuracy of Slabs3D sufficient and its speed to outweigh any potential 491 

improvements in accuracy offered by Scoops3D. Slabs3D computes F3 as follows (Hovland, 1977): 492 

 493 
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 495 

In Eq. (3), the sums are taken over all the columns within the potential landslide. The quantities ℓx and ℓy are the 496 

horizontal grid cell dimensions; the column height, H, is taken as the modeled soil depth from Step 1; δa is the apparent 497 

dip of the basal slip surface, b=b(x, y), along the (assumed) direction of sliding. A is the true area of the failure surface 498 

at the base of the column (Hovland 1977; Hungr et al. 1989). 499 

 500 
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 502 

The choice to take H as the modeled soil depth at each grid cell in Eq. (3) is consistent with field observations and 503 

previous modelling results. As noted previously, our field observations indicated that the base of most landslide 504 

sources occurred directly above a strength and permeability contrast. Except for cases of very rapid infiltration, 505 

TRIGRS computes the lowest factor of safety at Zmax. Smoothing the modeled soil depth reduces potential irregularities 506 

in the trial surface. Tests indicated that modest irregularities have only minor effect on F3 (Baum, 2023).  507 

In Eq. (3), the effect of pore pressure has been computed in a manner consistent with the normal application of the 508 

principle of effective stress by subtracting the pore pressure or suction stress from the gravity-induced stress rather 509 

than computing the resultants of pore pressure and gravity stress acting normal to the trial failure surface separately 510 

as in some implementations of the ordinary method of slices (Turnbull and Hvorslev 1967). Despite its limitations, 511 

Hovland’s (1977) method of columns is always able to compute a factor of safety and is not subject to the convergence 512 

problems that occasionally occur with more sophisticated limit-equilibrium methods.  513 
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As noted previously in the 1D analysis, Eq. (2) computes F1 at each grid cell for a range of depths from the ground 514 

surface down to a user-specified maximum depth, which in this case is the computed soil depth, H, from step B.1 515 

(Baum et al. 2008, 2010). For the cases tested here, the minimum F1 always occurred at the base of soil, so we limited 516 

our search for 3D potential failures to those that follow the base of soil. In computing F3, we searched the entire digital 517 

elevation model (DEM) for potential failures to a maximum depth of H using a circle of fixed diameter (in map view) 518 

centered at each grid cell to define the base of potential failure surfaces (one per grid cell, Fig. 7). Average dip direction 519 

of the base of soil within the circle determined the assumed slip direction. Potential failure surfaces enclosed by partial 520 

circles near the edges of the DEM were excluded from the analysis. Consequently, we extended the DEM grid well 521 

beyond the area needed for the final susceptibility map so that any inaccurate F3 values near the DEM grid boundaries 522 

could be discarded as described in the Sect. 3.10, "Removing edge effects." This approach of using map-view-circular 523 

trial failure surfaces resulted in potential landslides having the shape of an oblong slab or disc of variable thickness 524 

with tapered edges and rounded ends (Fig. 7), such that the trial surface was shaped somewhat like a gold pan. Beyond 525 

the limits of the search circle, the slab thins as the potential failure surface slopes from the approximate base of soil 526 

toward the ground surface. The failure surface at the head and flanks of the potential slides was assumed (based on 527 

Rankine theory, Lambe and Whitman 1969; Terzaghi et al. 1996) to slope 90°-f′/2 and beneath the toe to slope δg–528 

f′/2 (where δg is the slope of the ground surface) from the ground surface down to the edge of the circle (Fig. 7). We 529 

estimated the contributions of wedges of material at the head, toe, and sides to total driving and resisting force by 530 

substituting formulas for height, length, width, average pressure head, and basal area (H, ℓx, ℓy, ψ, and A) of each side 531 

wedge, into Eq. (3) (Fig. 7), rather than subdividing the wedges into their component square columns or partial 532 

columns and summing their individual contributions. The size of these wedges is negligible with a grid resolution 533 

greater than the depth, H, as is often the case for our study areas, with soil depth commonly less than the 1-m resolution 534 

of our DEM. The wedge formulas are exact only for constant H. Although variable H across the trial surface introduces 535 

minor uncertainty into F3, the formulas are sufficiently accurate for estimating the value of F3 for assessing stability 536 

of the soil mantle over large areas.  537 

 538 
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 539 
Figure 7. Sketch showing moving circle search strategy and trial surface geometry used in computing approximate 3D 540 

factor of safety, F3. All grid cells whose center is inside the circle are included in the computation of F3, and cells in 541 

the head scarp, flank, and toe areas are combined to form wedges for computational purposes. The trial surface has a 542 

map-view radius R; dg is the slope of the ground surface; da is the apparent dip of the trial surface in the assumed 543 

direction of sliding (average slope direction of grid cells centered within the horizontal circle); H is height of a grid-544 

cell centered column from the trial surface to the ground surface; and f¢ is the angle of internal friction of the soil for 545 

effective stress (modified from Baum et al. 2012). For the case depicted in Section A-A¢ (above), H is constant and 546 
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1.5 times the horizontal width, w, of the square grid cells. As the average value of H/w decreases and as R increases, 547 

the perimeter of the trial surface contracts toward the projection of the horizontal circle onto the ground surface. For 548 

variable soil-depth models, H may vary from cell to cell and the value of H for the grid cell closest to the upslope or 549 

downslope edge of the horizontal circle is used in the formulas shown in the cross section for horizontal dimensions 550 

of the scarp and toe respectively.   551 

 552 

3.5 4 Soil-depth model calibration 553 

Field observations indicated that the base of most landslide sources occurred near the top of weathered bedrock (Baum 554 

et al. 2018; Baum 2021), so we chose soil depth as a predictor of landslide source depth. We carried out soil-depth 555 

estimation from DEMs using new open-source software, REGOLITH (Baum et al. 2021) containing five empirical 556 

and four steady-state process-based soil-depth models implemented in a command-line program. Each model in 557 

REGOLITH estimates soil depth from some combination of topographic variables, including slope, upslope 558 

contributing area, and curvature, as well as a few model parameters, such as characteristic depth (the soil thickness at 559 

which bedrock lowering falls to 1/e of its maximum value), h0 [L]; critical slope (angle of stability at which the slope 560 

is capable of transporting the entire soil profile by mass movement), dc [degrees]; and the ratio of maximum bedrock 561 

lowering rate to hillslope diffusivity, Rd. These parameters may vary with conditions that influence soil formation, 562 

including bedrock and climate. Predicted soil depth is treated as equivalent to and defines column height, H, in 563 

subsequent modelling steps. We modified steady-state process-based models (Pelletier and Rasmussen 2009), which 564 

predict soil depth only on convex topography, to estimate soil depths in both concave and convex topography. We 565 

used a smoothing algorithm available in REGOLITH to reduce abrupt changes in soil depth that may result from DEM 566 

roughness. Further details are available in the online documentation found in the code repository (Baum et al. 2021). 567 

Our soil-depth, pressure head, and slope-stability models treated roads, cut slopes and embankments the same as other 568 

areas.  569 

Soil-depth model calibration proceeded first by fitting soil-depth models to depth observations followed by checking 570 

how the best-fitting models performed as input for computing F1 to predict landslide locations (see Sect. 3.65). Both 571 

calibration and checking made use of pre-event 1-m bare-earth lidar digital elevation models for the four ~2-km2 572 

calibration areas representing the dominant (three) geologic terranes affected by landslides in the study areas (Fig. 1). 573 

Landslides had previously been mapped (Bessette-Kirton et al. 2019c) and characterized (Baum et al. 2018) in these 574 

four calibration areas (Sec. 2.2, Fig. 3). Tello (2020) described the soil-depth calibration procedures in detail, including 575 

parameter ranges considered in the calibration. We summarize important steps here:  Field-measured landslide scars 576 

on unmodified hillsides (no obvious cut or fill) served as calibration points for soil depth. Only about 7-8 such scars 577 

were available for each calibration area. Tello (2020) adjusted GPS location of each calibration point to the center of 578 

its corresponding landslide polygon mapped from imagery by Bessette-Kirton et al. (2019c). A 5-m buffer around 579 

each point ensured adequate sampling of model depths to be compared with the field-measured maximum depth. Tello 580 

(2020) used a provisional version of the soil-depth code, REGOLITH (Baum et al. 2021), to model trial soil-depth 581 

distributions for the calibration areas. Multiple runs to incrementally sample the parameter spaces of several different 582 
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soil models implemented in REGOLITH produced hundreds of trial soil depth grids for each of the four calibration 583 

areas. Soil models tested include a linear area- and slope-dependent model (LASD) (Ho et al. 2012) and modified 584 

forms of Pelletier and Rasmussen’s (2009) non-linear slope- (NSD), area- and slope- (NASD), and slope- and depth-585 

dependent (NDSD) models. Testing these against the field-measured landslide-scar maximum depths resulted in 586 

optimized input parameters for each model and area (Tello 2020).  587 

Tello (2020) used a range of statistical metrics identified by Gupta et al. (2009) to determine predictive success of the 588 

model outputs. Most important of these was the Euclidian distance from the ideal point, ED. The ideal point is 589 

characterized by perfect correlation between observed and simulated points and by perfect agreement between the 590 

means and standard deviations of the observed and simulated point distributions,  591 

 592 

𝐸𝐷 = 8(𝑟 − 1)! + (𝛼 − 1)! + (𝛽 − 1)!         (51) 593 

 594 

where the ideal point is at r=1, a=1, b=1 so that ED=0. The linear correlation coefficient, r, relative variability, a, and 595 

the bias relative to the observed sample, b, define the ED in eq. (15) (Gupta et al. 2009). In eq. (15) the relative 596 

variability is the ratio of the standard deviation of the simulated values, ss, to the standard deviation of the observed 597 

values, so, (a=ss/so). Likewise, the bias is the ratio of mean of the simulated values, µs, to the mean of the observed 598 

values, µo (b=µs/µo). The linear correlation coefficient, r, indicates the quality of a least-squares fit of the simulated 599 

values to the observed values, with r=1 indicating a perfect fit. The model run having the lowest ED usually had the 600 

best fit, unless ED > 1 (Tello 2020). Where ED>1, we chose the model run with b closest to 1 so that the mean 601 

simulated depth would be as close as possible to the mean of depth observations (Gupta et al. 2009). The best-fit soil-602 

depth distribution corresponded in turn to a best-fit parameter set for each soil-depth model type. Comparison of best 603 

scores for each model type identified the overall best fit of all models tested.  604 

3.6 5 Soil model evaluation and one-dimensional slope-stability model calibration 605 

To further evaluate the soil-depth modelling results and finish calibrating the slope-stability model, we computed y 606 

and F1 as implemented in TRIGRS (Baum et al. 2010; Alvioli and Baum (2016) for dry and steady saturated soil 607 

conditions (supplemental text S1 and S2) using the better performing soil-depth models for each calibration area. 608 

Previously defined better performing (TPR ³ 75%) ranges of φ′ (38°-60°) and c′ (0-4 kPa) (Baum 2021; Fig. 65b, 609 

5c6c, 5d6d) defined the parameter space for computing F1 with a well-performing subset of trial soil-depth 610 

distributions. In addition, we required F1 > 1 in 99.9% of grid cells for y(H)=0 to ensure slope stability under dry 611 

conditions. Computing F1 over the calibration areas using the best-fit distributions for each soil-depth model type and 612 

f′ and c′ combinations produced many F1 grids. Receiver Operator Characteristics (ROC) analysis (Metz, 1978; 613 

Fawcett 2006; Begueria 2006) of these F1 grids against mapped landslide scarp points indicated which combinations 614 

of trial soil-depth distribution and strength parameters predicted the most observed landslides, based on the area under 615 

the ROC curve. Using parameters from the highest performing F1 distribution, we selected the preferred soil depth 616 

model and f′ and c′ values for modelling F1 in the large study areas enclosing Lares, Utuado, and Naranjito 617 
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municipalities. The calibration areas represented different geologic terranes having the highest densities of landslides 618 

in the study areas so that the calibration procedure yielded separate model and parameter values relevant to each of 619 

these terranes. 620 

3.6 Quasi-three-dimensional slope stability calibration 621 

After H and F1 values had been improved as much as possible by calibration, we began test calculations of F3 as 622 

implemented in the new open-source code Slabs3D (Baum, 2023; supplemental text S3) and worked to further refine 623 

potential landslide source areas. We varied the size of the trial surface from a 3.5-m radius to a 10.5-m radius (Fig. 7) 624 

and used ROC analysis along with information about observed source-area sizes to determine the optimum F3 radius. 625 

In addition to these quantitative assessments, we inspected the maps to confirm that the susceptibility zones and 626 

potential source areas made sense topographically, mechanically, and geologically. These inspections helped ensure 627 

that potential landslide source areas were consistent with observations and expectations for hillsides whether they 628 

were relatively undisturbed or modified by roads, cut slopes, and embankments. The inspections led to some minor 629 

revisions of the computer code to correct map errors (such as spurious spots of low factor of safety), followed by 630 

repeated model runs.  631 

Due to insufficient data, rigorous calibration was not possible for some parameter zonesareas, such as the karst areas 632 

of Bawiec’s (1998) Limey sediment terrane. We adjusted model parameters (reduced maximum soil depth, Hmax, and 633 

characteristic soil depth, h0, for the soil-depth model and increased c′ for computing F1 and F3) for the Limey sediment 634 

terrane's parameter zone to account for the terrane'’s low landslide density during Hurricane María. 635 
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 636 
Figure 7. Sketch showing moving circle search strategy and trial surface geometry used in computing approximate 3D 637 
factor of safety, F3. All grid cells whose center is inside the circle are included in the computation of F3, and cells in the head 638 
scarp, flank, and toe areas are combined to form wedges for computational purposes. The trial surface has a map-view 639 
radius R; dg is the slope of the ground surface; da is the apparent dip of the trial surface in the assumed direction of sliding 640 
(average slope direction of grid cells centered within the horizontal circle); H is height of a grid-cell centered column from 641 
the trial surface to the ground surface; and f¢ is the angle of internal friction of the soil for effective stress (modified from 642 
Baum et al. 2012). For the case depicted in Section A-A¢ (above), H is constant and 1.5 times the horizontal width, w, of the 643 
square grid cells. As the average value of H/w decreases and as R increases, the perimeter of the trial surface contracts 644 
toward the projection of the horizontal circle onto the ground surface. For variable soil-depth models, H may vary from 645 
cell to cell and the value of H for the grid cell closest to the upslope or downslope edge of the horizontal circle is used in the 646 
formulas shown in the cross section for horizontal dimensions of the scarp and toe respectively.   647 
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3.7 Geologic mapping and parameter zonation 648 

Bawiec (1998) compiled published 1:20,000-scale geologic mapping of Puerto Rico and (as noted previously) 649 

combined related formations into geologic terranes (Fig. 1 and Bawiec 1998). Based on the results of early studies 650 

(Bessette-Kirton et al. 2019a) and our calibration efforts, the geologic terranes became the basis for subdividing the 651 

study areas into parameter zones. The topographic base maps available at the time of geologic mapping lacked the 652 

detail of the pre-event lidar-derived topography used in this study. Trial computations of F1 and F3 on the study area 653 

DEM tiles indicated that a uniform soil depth model across the highly susceptible geologic terranes resulted in a more 654 

accurate susceptibility map than a zoned model using the calibrated soil- depth parameters. This was likely a 655 

consequence of (1) having few soil-depth observations available from unmodified hillsides in each zone (section 3.4) 656 

as well as (2) a high degree of land surface modification from past agricultural activities, and road and residential 657 

construction resulting in weak calibration of the volcaniclastic and submarine basalt and chert geologic terranes. 658 

Consistent with results in Fig. 6a, Uniform uniform values of f¢ and c′ for the highly susceptible geologic terranes 659 

likewise resulted in good performance so we used the same soil depth and strength parameters for all three terranes 660 

(Supplemental Figures S1 and S2). Consequently, slight uncertainty in locations of boundaries between these terranes 661 

had no effect on computed F1 and F3 values. However, a large difference in landslide susceptibility and model 662 

parameters (maximum soil depth, h0, c′) existed between the Limey sediment terrane with its cone karst and the highly 663 

susceptible terranes of the basement complex (submarine basalt, volcaniclastic, and granitoid). Offsets as great as tens 664 

of meters in the contact between the Limey sediment terrane and its neighbors along a prominent escarpment in Lares 665 

and Utuado resulted in errors in F1 and F3 along the escarpment. Consequently, Perkins et al. (2022) remapped the 666 

Limey sediment contact using lidar-derived shaded relief images and optical imagery to accurately delineate the 667 

transition from high to low landslide susceptibility across the contact. The contact was discerned based on the visually 668 

distinct differences between the closed basins and rugged karst cones of the Limey sediment terrane and the steep 669 

ridges and narrow branching valleys of the basement rocks. 670 

3.8 Soil-depth modelling 671 

After completing the calibration process, we created the overlapping rectangular tiles (described previously, Sec. 1.0, 672 

3.1) from the pre-event lidar bare-earth DEMs (Fig. 6Fig. 4, stage B C and Fig. 1b, 1c). We created additional input 673 

files from the lidar-derived DEM tiles: flow accumulation grids for use with the area-dependent soil-depth models and 674 

parameter-zone grids for specifying different model input parameters (Sec. 3.6, 3.7 and step B.1, Fig. 6Fig. 4). The 675 

parameter zones ensured a thinner and less continuous modeled soil mantle in the karst (Limey sediment terrane) than 676 

in areas underlain by the landslide-prone geologic terranes (Fig. 1). For comparison with the soil-depth models, we 677 

also used constant soil depth equal to the average depth, 1.4 m, observed at landslide scars. 678 

3.9 Pressure-head and slope-stability modelling 679 

Raster grids created from the soil-depth modelling defined soil depth (H) and slope of the ground surface at each grid 680 

cell in TRIGRS. We computed y and F1 using TRIGRS (Baum et al. 2010; Alvioli and Baum 2016), version 2.1, as 681 

described previously using the same lidar-derived DEM tiles and parameter zones as for soil-depth modelling (steps 682 
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B.2 and B.3, Fig. 6Fig. 4). Then, using y(H) computed with TRIGRS (supplemental text S1) along with the same lidar 683 

tiles, parameter zones, and f′ and c′ values used in computing F1 as input for Slabs3D, we computed F3 (step B.4, Fig. 684 

6Fig. 4). The radius of each trial surface, as constrained by earlier testing in the calibration areas (Sect. 3.6, 4.5), was 685 

held constant at 3.5 m for all model runs on study area tiles.   686 

After modelling potential source areas on pre-event topography, we recomputed the models using post-event 1-m lidar 687 

topography (U.S. Geological Survey, 2020a, b, c). We generated new slope, zone, and flow-accumulation grids from 688 

the post-event lidar and then ran REGOLITH, TRIGRS, and Slabs3D in succession (Fig. 6, steps C.1, C.2, C.3, and 689 

C.4) to indicate our best estimate of susceptibility to future landslide initiation.  690 

3.10 Removing edge effects 691 

To reduce edge effects (Fig. 6, step C.5) when joining the four overlapping tiles for Lares and Utuado to create a final 692 

map (based on post-event lidar), we first removed a 100-m buffer along all edges of each tile. At grid cells where two 693 

tiles overlapped, differences in F3 tended to be small and we retained the greater F3 value. For the single tile covering 694 

Naranjito, we removed only the 100-m buffer along all tile edges. 695 

3.11 10 Model testing and evaluation 696 

We used ROC analysis of F3 grids based on pre-event lidar topographic data compared to landslide head-scarp points 697 

mapped by Hughes et al. (2019) as a basis for testing performance and then defining susceptibility categories (step 698 

B.5, Fig. 6Fig. 4). Selecting the minimum F3 value within a 3-m radius around the scarp points accounted for 699 

uncertainty in their mapped locations. Validating F3 for pre-event topography was appropriate because it most 700 

accurately portrayed conditions at the time of Hurricane María. We computed true positive rate (TPR), false positive 701 

rate (FPR), and area under the TPR-FPR curve (AUC) and distance to perfect classification, D2PCfrom the ideal point 702 

(dIP), (0,1), (Formetta et al. 2016) to evaluate performance of pre-event F3 as a predictor of observed landslide scarp 703 

points. Analyzing landslide density distribution across F3 provided a further check on model accuracy. We computed 704 

landslide densities in 0.1 increments of F3 to check for a general trend of decreasing observed density with increasing 705 

F3. We also continued map inspections as described in Section 3.6.In addition to these quantitative assessments, we 706 

inspected the maps to confirm that the susceptibility zones and potential source areas made sense topographically, 707 

mechanically, and geologically. These inspections helped ensure that potential landslide source areas were consistent 708 

with observations and expectations for hillsides whether they were relatively undisturbed or modified by roads, cut 709 

slopes, and embankments. The inspections led to some minor revisions of the computer code to correct errors, followed 710 

by repeated model runs.  711 

 712 

As an additional check we computed ROC statistics for minimum F3 values within source areas mapped by Baxstrom 713 

et al. (2021a) and Einbund et al. (2021a, 2021b). Their detailed landslide source mapping covers only a fraction of the 714 

study areas (Fig. 1), whereas the scarp points mapped by Hughes et al. (2019) cover the entire island. However, source 715 

area polygons enclose pixels that are more relevant to testing performance of F3 than circles centered at the scarp 716 

points.  717 
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Evaluating the model to address the need for a conservative landslide susceptibility map led us to select threshold 718 

values of F3 enclosing specific percentages (or TPR) of landslide points. Our reason for doing so rather than placing 719 

the category break at F3 = 1 is to account for model and parameter uncertainty. Every F3 contour on the map encloses 720 

a specific percentage of landslide points. Contours at high F3 values enclose more landslide points than low F3 721 

contours. We selected F3 contours corresponding to TPR of 0.75 and 0.90 of Hurricane María-produced landslide 722 

head-scarp points (Hughes et al. 2019) to define the limits of very high (TPR £ 0.75), high (0.75 £ TPR £ 0.90), and 723 

moderate (TPR > 0.90) landslide source susceptibility zones. The high and very high susceptibility zones both indicate 724 

significant danger from landslides but allow users to distinguish areas having greater potential for long runout (Brien 725 

et al. 2021). These classes include most mapped landslide points as well as the adjacent steep slopes where they 726 

occurred, while limiting the overall areal extent of the very high and high susceptibility classes. Using the same F3 727 

thresholds at TPR £ 0.75 and TPR £ 0.90 determined for the pre-event topography (step B.5, Fig. 6), we then defined 728 

landslide susceptibility zones using post-event topography across the three municipalities (step C.5, Fig. 6). These 729 

zones estimate the potential for future shallow landslides. 730 

3.11 Modelling potential landslides on post-storm topography 731 

After modelling potential source areas on pre-event topography, we recomputed the soil depth, pressure head, and 732 

factor of safety using post-event 1-m lidar topography (U.S. Geological Survey, 2020a, b, c). We generated new slope, 733 

zone, and flow-accumulation grids from the post-event lidar and then ran REGOLITH, TRIGRS, and Slabs3D in 734 

succession (Fig. 4) to indicate our best estimate of susceptibility to future landslide initiation.  735 

3.12 Removing edge effects and applying susceptibility categories  736 

We joined the four overlapping tiles for Lares and Utuado to create a final landslide susceptibility map (based on post-737 

event lidar). To reduce edge effects (Fig. 4) when joining the four tiles, we first removed a 100-m buffer along all 738 

edges of each tile. At grid cells where two tiles overlapped, differences in F3 tended to be small and we retained the 739 

greater F3 value. For the single tile covering Naranjito, we removed only the 100-m buffer along all tile edges.  740 

We then classified landslide susceptibility for post-event topography across the three municipalities using the same 741 

F3 thresholds at TPR £ 0.75 and TPR £ 0.90 determined for the pre-event topography (Fig. 4). These thresholds divide 742 

the map area into zones of varying susceptibility to landslide initiation. The resulting susceptibility zones estimate the 743 

potential for future shallow landslides (Fig. S1 and S2). 744 

4 Results 745 

4.1 Soil-depth calibration 746 

We calibrated soil depth to field measurements (Fig. 6Fig. 4, step A.1section 3.4) for three (ANA, LAR, UTU) of the 747 

four calibration areas and calculated Euclidian distance from the ideal point, ED (Eq. 51), correlation coefficient, r 748 

(and other statistical parameters as outlined in Tello 2020) to determine which models and parameter sets gave the 749 

closest match to field observations (Fig. 8a, b). No soil depth calibration was performed for NAR as depth 750 
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measurements in Naranjito were mainly outside the area mapped by Bessette-Kirton et al. (2019c). Limiting the 751 

observed depths to landslide scars on relatively unmodified slopes resulted in sample sizes of only seven or eight 752 

observation points (landslide sources) per calibration area. Most soil-depth models for the Utuado calibration area 753 

(UTU) had acceptable performance as indicated by positive correlation between observed and simulated depths (0.08 754 

£ r £ 0.78), and ED ranging from 0.28 to 0.99 (Fig. 8a; Tello 2020). Of these, the modified nonlinear area and slope 755 

(NASD) model had the smallest ED, 0.28, and the largest r, 0.78 (Fig. 8a). Other better-performing models were a 756 

nonlinear slope-dependent model with linear area dependance (NSDA) and a linear area- and slope-dependent model 757 

(LASD) based on the wetness index (Ho et al. 2012). In contrast, most soil-depth models for the Añasco (ANA) and 758 

Lares (LAR) calibration areas performed poorly, with negative or small positive correlation (r < 0.16) and 0.69 < ED 759 

<1.8 (Fig. 8a). The poor correlation probably resulted from the small sample sizes of observed depths in these areas. 760 

At LAR, only the nonlinear slope dependent model (NSD, see Pelletier and Rasmussen 2009) had acceptable 761 

performance with r = 0.78 and ED=0.69 (Fig. 8a). The NASD model had a and b closest to 1, for both ANA and LAR 762 

(Fig. 8b).  763 

 764 
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 765 
Figure 8. Soil-depth model calibration measures for Anasco (ANA), Lares (LAR) and Utuado (UTU) calibration areas (Fig. 766 
1). Performance is based on comparing maximum landslide depth at field-mapped landslide points from unmodified 767 
hillsides against modeled depths within a 5-m radius of the point for all field-mapped points in the calibration area. GPS 768 
point locations were corrected as needed by moving them to the centers of corresponding landslide polygons mapped by 769 
Bessette-Kirton et al. (2019c). (a) Primary metrics, Euclidian distance from the ideal point, ED (smaller is better), versus 770 
correlation coefficient, r, (b) bias relative to the observed sample, b, versus relative variability, a. The ideal point is at r=1, 771 
a=1, b=1. [Soil-depth models: LASD, linear area- and slope-dependent model; NASD, nonlinear area- and slope-dependent 772 
model; NDSD, nonlinear depth- and slope-dependent model; NSD, nonlinear slope-dependent model; NSDA, nonlinear 773 
slope-dependent model with linear area dependence].  774 
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 775 

4.2 Soil-depth model evaluation and slope-stability calibration results 776 

Slope stability parameter calibration compared F1 values for previously determined ranges of c¢ and f¢ (Fig. 65) for 777 

each of the soil depth models to find the best-performing combination of soil model and strength parameters for 778 

predicting landslide source locations in each calibration area (Fig. 6Fig. 4, steps A.3.aand A.3.bsection 3.5). For UTU, 779 

the NASD model performed best with the NSDA model close behind (Tello 2020) based on area under the TPR – 780 

FPR curve and minimum distance of the curve from the ideal pointperfect classification. Parameter combinations and 781 

ROC results for the best-performing model in each area appear in Table 1. Despite poor soil depth model performance 782 

metrics for ANA and LAR (Fig. 8), the F1 calculations for the three calibration areas indicated that the NASD soil 783 

depth model had the greatest predictive strength for locations of landslide source areas in ANA, LAR, and UTU with 784 

similar results (Table 1). Despite lack of soil-depth calibration in NAR, results in this study area were like the other 785 

three calibration areas (Table 1). Values of dc near 60° gave the best soil-depth model results (Table 1), despite 786 

variability in the steepest slopes where landslides occurred in the different terranes (Fig. 3d, 4). 787 

 788 
Table 1. Calibration results for 1D factor of safety, F1, with soil depth models by calibration area (Fig. 1). Positives and 789 
negatives in the ROC analysis based on total pixels within and outside the estimated source areas of landslide polygons 790 
mapped by Bessette-Kirton et al. (2019c) and whether the pixels have F1>1 or F1<1 (Tello 2020). [Symbols and 791 
abbreviations: NASD, non-linear area and slope dependent soil-depth model of Pelletier and Rasmussen (2009) as modified 792 
by Baum et al. (2021); Hmax, maximum soil depth; dc, critical slope angle; Rd, diffusivity ratio; c¢, soil cohesion for effective 793 
stress; f¢, angle of internal friction for effective stress; AUC, area under the curve of true-positive-rate (TPR) and false 794 
positive rate (FPR) (larger is better); dIPD2PC, distance from the ideal pointperfect classification, (0,1), to nearest point on 795 
the TPR-FPR curve (smaller is better); Best F1, 1D factor of safety at point on the TPR-FPR curve nearest to the ideal 796 
point, (0,1), and therefore the most accurate F1 classifier of landslide versus non-landslide grid cells for the particular model 797 
(closer to one is better); °, degrees.] 798 

 799 

Calibration 

area 

Soil 

Model 

Hmax 

(m) 

dc    (°) Rd  c¢ (kPa) f¢    (°) AUC  dIPD2PC  Best F1  

Utuado 

(UTU) 

NASD 2.0 60 1.0 2.5 45° 0.67 0.48 1.5 

Añasco 

(ANA) 

NASD 3.0 60 0.16 4.5 45° 0.70 0.46 1.1 

Lares 

(LAR) 

NASD 3.0 60 0.25 4.5 45° 0.66 0.52 1.1 

Naranjito 

(NAR) 

NASD 3.0 60 0.2 4.0 45° 0.65 0.54 1.2 

 800 
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4.3 Modeled soil depth 801 

Having completed the soil-depth model calibration (Sec. 4.1) and testing (Sec. 4.2), we modeled soil depth in the 802 

larger map tiles preparatory to analyzing slope stability (Fig. 6Fig. 4, step B.1section 3.8). Each tile covers hundreds 803 

of km2, so we illustrate results using the NAR area, chosen to demonstrate that our susceptibility workflow can achieve 804 

very good results even with limited landslide source depths observations. As noted previously, insufficient field-805 

measured landslide points prevented soil-depth model calibration (Sec. 4.1), but not model evaluation and slope 806 

stability calibration (Sec. 4.2) for NAR. Figure 9 shows predicted soil depth for the best performing soil-depth model 807 

(based on the slope-stability evaluations, Sec. 4.2) in NAR (see Fig. 1 for location). The model shown in Fig. 9 predicts 808 

greater soil depth in hollows than on ridges. Other models that were tested (not shown) produced somewhat similar 809 

results. Differences in model structure produce different responses to topographic features, including flat areas, road 810 

cuts, and steep slopes. For example, the modified NASD and NSDA models predicted deep soils (£3 m for parameters 811 

chosen) in convergent areas, on steep slopes, including road cuts and embankments; thin soils on ridge crests, and thin 812 

or no soil on downslope flat areas (see large flat area on east edge of Fig. 9). In contrast, the LASD and NDSD models 813 

predicted deep soils (£3 m for parameters chosen) in convergent areas and on flats and thin soils on ridge crests and 814 

steep slopes (except where they occur in strongly convergent topography). These topographic Ffeatures were more 815 

distinct in the three nonlinear models, NASD, NSDA, and NDSD, than in the linear LASD model.  816 
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 817 
Figure 9. Best-performing version of soil depth maps from soil-depth models tested for the Naranjito (NAR) calibration 818 
area in volcaniclastic terrane (Fig. 1). Topographic base derived from lidar by U.S. Geological Survey (2018), scarp points 819 
from Bessette-Kirton et al. (2019c). The modified Nonlinear Area- and Slope-dependent (NASD) model (modified from 820 
Pelletier and Rasmussen 2009, as implemented by Baum et al. 2021) depicted here, was the overall best-fitting soil-depth 821 
model for this terrane. Inset shows details of a 150 m by 150 m area, with thicker soil accumulation in concave areas.  822 

 823 

4.4 One-dimensional factor of safety 824 

Figure 10 shows F1 optimized for NAR and calculated using TRIGRS and the soil model results in Fig. 9, as well as 825 

F1 for constant soil depth. Slopes steeper than 60°, the estimated critical slope angle, were treated as barren (zero or 826 

negligible soil thickness) and stable because landslides were very rare on slopes steeper than 60° (Fig. 3d). On slopes 827 

flatter than 60°, Soil soil strength parameters are within the ranges obtained by sensitivity analysis of F1 parameters 828 

f′ and c′ over observed ranges of slope and depth of landslides characterized in the field at ANA, LAR, UTU, and 829 

NAR (Fig. 65). The only landslide source locations available throughout the three municipalities are the scarp points 830 
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of Hughes et al. (2019). Due to location uncertainty, we used a 3-m radius around the scarp points for defining true 831 

positives. Color thresholds on the maps (Fig. 10) are based on F1 at TPR of 0.75, 0.90, and 0.95. Consequently, 832 

thresholds for F1 differ for each panel in Fig. 10. The same TPR values (0.75, 0.90, 0.95) were used for picking F3 833 

thresholds for landslide initiation susceptibility across the entire study area covering Naranjito, Utuado, and Lares 834 

Municipalities in the final maps (Supplemental Figures S1 and S2).  835 

 836 

 837 
Figure 10. Maps of Naranjito (NAR) calibration area in volcaniclastic terrane (Fig. 1) showing 1D factor of safety (F1) 838 
results for a) soil-depth model shown in Figure 9 as well as b) constant average soil depth. Topographic base derived from 839 
lidar by U.S. Geological Survey (2018), scarp points from Bessette-Kirton et al. (2019c). True positives determined by 840 
minimum F1 within a 3-m radius of the scarp points. (a) F1 for NASD, the modified nonlinear area- and slope-dependent 841 
soil-depth model depicted in Fig. 9, (b) F1 for constant soil depth of 1.4 m. Inset shows details of a 150 m by 150 m area. 842 

 843 
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Areas of low F1 are similar in overall pattern between the two maps shown in Fig. 10 but differ in detail. These details 844 

include small areas of low F1 unique to each model as well as variation in the extent of major areas of low F1. Many 845 

boundaries of the areas of low F1 are ragged and small patches of yellow, indicating higher F1, occur within the larger 846 

red and orange areas of low F1. Differences in F1 between the maps are attributable mainly to variation in soil depth 847 

and partly to variation in c′. The optimum value of c¢ varied depending on the characteristics of each soil model (Table 848 

2). The results shown in Fig. 10 are for the best-performing combination of c′ and f′ for the soil-depth model at NAR 849 

(Fig. 9 and Sec. 4.2) and for constant average depth of 1.4 m.  850 

 851 

The different F1 patterns shown in Fig. 10 correspond to slightly different levels of predictive success. The AUC and 852 

distance from the ideal pointperfect classification (0,1) to the nearest point on the TPR-FPR curve, dIPD2PC indicate 853 

that F1 for constant depth has the highest predictive skill (AUC=0.88, dIPD2PC=0.26, F1 value nearest the ideal 854 

pointperfect classification, F1=0.9). Next, F1 for the NASD model performed almost as well (AUC=0.86, 855 

dIPD2PC=0.30, F1 value nearest the ideal pointperfect classification, F1=1.0). When applied to the entire DEM tile 856 

covering Naranjito municipality, F1 for constant depth and NASD tied with AUC = 0.86 and dIPD2PC = 0.30 (constant 857 

depth) and dIPD2PC = 0.29 (NASD). Thus, the performance edge of constant depth is localized at NAR and does not 858 

extend across the entire Naranjito DEM tile. Other soil-depth models performed slightly worse (Table 2) consistent 859 

with results obtained by Tello (2020) for UTU. The slightly higher performance for F1 with constant depth at NAR 860 

comes at the cost of the area classified as very high, high, or moderate susceptibility (TPR = 0.95) being more diffuse, 861 

with more ragged boundaries, than for F1 with NASD (Fig. 10a, b). Varying the amount of cohesion used with a 862 

particular soil model caused small changes in the AUC, dIPD2PC, and best F1 as shown by the two entries for NDSD 863 

in Table 2. 864 

 865 
Table 2. Key inputs and performance measures for factor of safety calculations based on the infinite slope model (F1), as 866 
implemented by TRIGRS, in the Naranjito calibration area (NAR). Performance is based on minimum F1 within a 3-m 867 
radius of landslide scarp points mapped by Hughes et al. (2019). [Symbols and abbreviations: NASD, non-linear area and 868 
slope dependent soil-depth model of Pelletier and Rasmussen (2009) as modified by Baum et al. (2021); NSDA, non-linear 869 
slope dependent model of Pelletier and Rasmussen (2009) modified by Baum et al. (2021) to include linear area dependence; 870 
NDSD, non-linear slope and depth dependent model of Pelletier and Rasmussen (2009); LASD, linear area and slope 871 
dependent model of Ho et al. (2012); Hmax, maximum soil depth; dc, critical slope angle; Rd, diffusivity ratio; C0, empirical 872 
constant used in LASD; c¢, soil cohesion for effective stress; f¢, angle of internal friction for effective stress; AUC, area 873 
under the curve of true-positive-rate (TPR) and false positive rate (FPR) (higher is better); dIPD2PC, distance from the 874 
ideal pointperfect classification, (0,1), to nearest point on the TPR-FPR curve (smaller is better); Best F1, 1D factor of safety 875 
at point nearest to the ideal pointperfect classification, (0,1), and therefore the most accurate F1 classifier of landslide versus 876 
non-landslide grid cells for the particular model (closer to 1.0 is better); °, degrees ; -- not applicable.] 877 

Soil 

Model 

Hmax 

(m) 

dc    (°) Rd or C0 c¢ (kPa) f¢    (°) AUC  dIPD2PC  Best F1  TPR at 

dIPD2PC  

NASD 3.0 60 0.20 4.0 45° 0.86 0.30 1.0 0.82 

LASD 3.0 60 0.45 3.5 45° 0.85 0.31 1.1 0.84 

NDSD 3.0 60 0.10 4.5 45° 0.82 0.36 1.2 0.75 

NDSD 3.0 60 0.10 2.5 45° 0.86 0.32 1.0 0.89 

NSDA 3.0 60 0.10 4.5 45° 0.85 0.30 1.1 0.80 
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Constant 1.4 60 -- 4.0 45° 0.88 0.26 0.9 0.79 

 878 

4.5 Quasi-three-dimensional factor of safety 879 

Figure 11 shows F3 computed using the soil-depth model in Fig. 9 and constant soil depth of 1.4 m. Predictive skill 880 

for F3 is somewhat less than F1; AUC is 0.05 – 0.08 less for F3 than corresponding F1 (Tables 2 and 3). The only 881 

exception is for the constant soil depth model results where F3 has the highest AUC, 0.94, of all cases tested (Fig. 12a 882 

and 12b). Despite the overall slightly worse performance of F3 it provided smoother boundaries on the landslide 883 

susceptible areas (Fig. 11a, b), which also are more continuous than corresponding F1 landslide susceptible areas (Fig. 884 

10). The lower AUC values resulted from the F3 susceptible areas covering slightly more land area than the 885 

corresponding F1 areas at the same TPR. Therefore, the F3 susceptibility maps are more conservative than their F1 886 

counterparts.  887 

 888 
Table 3. Key inputs and performance measures for factor of safety calculations based on a quasi-3D limit-equilibrium slope 889 
stability model (F3) in the Naranjito calibration area (NAR). Performance is based on minimum F3 within a 3-m radius of 890 
landslide scarp points mapped by Hughes et al. (2019). [Symbols and abbreviations: NASD, non-linear area and slope 891 
dependent soil-depth model of Pelletier and Rasmussen (2009) as modified by Baum et al. (2021); NSDA, non-linear slope 892 
dependent model of Pelletier and Rasmussen (2009) modified by Baum et al. (2021) to include linear area dependence; 893 
NDSD, non-linear slope and depth dependent model of Pelletier and Rasmussen (2009); LASD, linear area and slope 894 
dependent model of Ho et al. (2012); Hmax, maximum soil depth; dc, critical slope angle; Rd, diffusivity ratio; C0, empirical 895 
constant used in LASD; c¢, soil cohesion for effective stress; f¢, angle of internal friction for effective stress; AUC, area 896 
under the curve of true-positive-rate (TPR) and false positive rate (FPR); dIPD2PC, distance from the ideal pointperfect 897 
classification, (0,1), to nearest point on the TPR-FPR curve; Best F3, 3D factor of safety at point nearest to the ideal 898 
pointperfect classification, (0,1), and therefore the most accurate F1 classifier of landslide versus non-landslide grid cells 899 
for the particular model (closer to 1.0 is better); °, degrees.] 900 

Soil 

Model 

Hmax 

(m) 

dc    

(°) 

Rd or 

C0 
c¢ 

(kPa) 

f¢    

(°) 

Trial 

surface 

radius 

(m) 

AUC  dIPD2P

C  

Best F3  TPR at 

dIPD2P

C  

NASD 3.0 60 0.20 0.5 45° 3.5 0.80 0.38 0.9 0.86 

NASD 3.0 60 0.20 0.5 45° 6.5 0.75 0.45 0.9 0.66 

NASD 3.0 60 0.20 0.5 45° 9.5 0.71 0.50 1.0 0.86 

LASD 3.0 60 0.45 0.5 45° 3.5 0.78 0.44 1.0 0.89 

NDSD 3.0 60 0.10 0.5 45° 3.5 0.78 0.40 0.9 0.71 

NSDA 3.0 60 0.10 0.5 45° 3.5 0.80 0.37 0.9 0.78 

Constant 1.4 60 -- 0.5 45° 3.5 0.92 0.23 1.0 0.94 

 901 

Tests indicated that trial surfaces having a map-view radius of 3.5 m provided more accurate estimates of susceptible 902 

areas than larger trial surfaces (6.5-m and 9.5-m radius). Other things being equal, larger trial surfaces resulted in 903 

smaller AUC and larger dIPD2PC (Table 3, Fig. 12b). The larger trial surfaces tended to widen the susceptible areas 904 

and smooth their boundaries, with the result that a larger percentage of the calibration area was classified as susceptible 905 
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(9.5-m radius, 85%; 6.5-m radius, 83%; 3-m radius, 78% for examples in Table 3). In addition, the 3.5-m radius 906 

produced a trial surface close in size (7.5 – 7.9 m wide, with an area of 46 – 48 m2 at the ground surface for 1-m depth 907 

on 30° – 40° slopes) to the median horizontal areas of landslide sources mapped in NAR, 51 m2, in UTU2, 42 m2, and 908 

in LAR2 64 m2 (Fig. 3c). 909 

 910 

 911 
Figure 11. Maps of Naranjito (NAR) calibration area in volcaniclastic terrane (Fig. 1) showing quasi-3D factor of safety, 912 
F3, results for the soil depth models shown in Figure 9. (a) F3 for the modified nonlinear area and slope dependent (NASD) 913 
soil-depth model depicted in Fig. 9, (b) F3 for constant soil depth of 1.4 m. Inset shows details of a 150 m by 150 m area. The 914 
calculation of F3 used a trial surface of 3.5-m map-view radius (Fig. 7). Topographic base derived from lidar by U.S. 915 
Geological Survey (2018), scarp points from Bessette-Kirton et al. (2019c).   916 

 917 
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 918 
Figure 12. Graphs of true positive rate (TPR) versus false positive rate (FPR) for factor of safety maps in Naranjito 919 
calibration area (NAR in Fig. 1a, 1c). Inset shows confusion matrix and formulas defining true positive rate and false 920 
positive rate. Double-headed arrow indicates distance from ideal pointto perfect classification (dIPD2PC) for the results of 921 
the factor of safety with the smallest dIPD2PC. (a) TPR-FPR results for 1D factor of safety (F1) in Fig. 10, as well as results 922 
for F1 using other soil-depth models that were tested during the calibration process. (b) TPR-FPR results for quasi-3D 923 
factor of safety (F3) in Fig. 11, as well as results for F3 using other soil depth models and one with a larger (NASD, 9.5-m 924 
radius) trial surface. [Soil-depth models: LASD, linear area- and slope-dependent model (Ho et al. 2012); NASD, modified 925 
nonlinear area- and slope-dependent model (modified from Pelletier and Rasmussen 2009); NDSD, nonlinear depth- and 926 
slope-dependent model (Pelletier and Rasmussen 2009); NSD, nonlinear slope-dependent model (Pelletier and Rasmussen 927 
2009); NSDA, nonlinear slope-dependent model with linear area dependence (modified by Baum et al. 2021 from NSD 928 
model of Pelletier and Rasmussen 2009)]. 929 

 930 

4.6 Susceptibility categories and predictive strength 931 

Computing F3 over the combined study areas of Lares, Utuado, and Naranjito municipalities produced somewhat 932 

different results than in the calibration areas. Calibration areas have very high landslide densities, with average density 933 

of 182 scarps/km2 at NAR. However, landslide density varies considerably across each municipality. Based on positive 934 

correlation between low F3 and landslide scarp points mapped by Hughes et al. (2019), we established susceptibility 935 

categories based on percentages of landslides enclosed by successive susceptibility categories as noted previously and 936 

as shown in Table 4. Increasing density of observed landslides is consistent with increasing susceptibility. Very high 937 

susceptibility (typically > 118 scarp points/km2) characterizes 23% of the total study area and 21%, 43%, and 45% of 938 

the area underlain by marine volcaniclastic, submarine basalt, and granitoid rocks, respectively. Almost all karst areas 939 

underlain by limey sediments had low susceptibility (< 2 scarp points/km2) (Baxstrom et al. 2021b). Based on the 940 

information in Table 4, the AUC for the entire map area is 0.84, and dIPD2PC is 0.34. 941 
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Due to physical (subsurface conditions, ground-failure mechanisms) and conceptual (parameters, models) 942 

uncertainties, the F3 value at the boundary between high and moderate susceptibility is slightly less than 1 (0.97, Table 943 

4). Although the strength parameters could be increased to achieve F3 = 1.0 at TPR = 0.90, we also wanted to keep F3 944 

at TPR = 0.95 relatively low while keeping F3 > 1 under dry conditions for as much area as possible. Our final model 945 

parameters represent a compromise between stable slopes (F3 > 1) under dry conditions and low factor of safety (F3 946 

< 1) for highly susceptible slopes under presumed wettest conditions. 947 

 948 

Recent, detailed mapping of source areas provided an opportunity to further test performance of the pre-Hurricane 949 

María F3 map (output from step B.5section 3.9, Fig. 6Fig. 4). Figure 13 shows TPR-FPR curves for the pre-Hurricane 950 

María F3 map tested against Hurricane María landslide source polygons (Baxstrom et al. 2021a; Einbund et al. 2021a, 951 

2021b) and against scarp points (Table 4). The AUC range, 0.85 – 0.88, is somewhat greater than obtained by testing 952 

within a 3-m radius of the scarp points, 0.84.  953 

 954 
Table 4. Landslide susceptibility categories based on minimum value of quasi-3D factor of safety, F3, within a 3-m radius 955 
of landslide scarp points mapped by Hughes et al. (2019) for all three municipalities. For consistency, F3 thresholds below 956 
are based on F3 calculated using pre-Hurricane María lidar topography and scarp locations of landslides induced by 957 
Hurricane María.  958 

Landslide 

Susceptibility 

F3 

threshold  

Landslide 

scarp points 

enclosed 

(percent) 

Landslide scarp 

points enclosed 

within 

increment 

(number) 

Area within 

increment 

(km2) 

Landslide 

points 

within 

increment 

(percent) 

Incremental 

Landslide 

density 

(scarps/km2) 

Very High £ 0.87 75 27370 232 75 118 

High £ 0.97 90 5474 108 15 51 

Moderate £ 1.05 95 1825 68 5 27 

Low > 1.05 100 1824 610 5 3 

Total 0 < F3 £ 10 100 36493 1018 100 36 

 959 
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 960 
Figure 13. Graph of true positive rate versus false positive rate for pre-Hurricane María susceptibility models across the 961 
study area tiles tested against head-scarp points (Hughes et al. 2019) and source polygons for Lares (Einbund et al. 2021b), 962 
Naranjito (Baxstrom et al. 2021a), and Utuado (Einbund et al. 2021a) with confusion matrix and formulas defining true 963 
positive rate (TPR) and false positive rate (FPR). Double-headed arrow indicates distance from ideal pointto perfect 964 
classification (dIPD2PC) for Naranjito source polygons and F3 computed using NDSD soil depth. True positive rates are 965 
based on minimum value of the quasi-3D factor of safety, F3, within the mapped source polygons or within a 3-m radius of 966 
the scarp points. Results for scarp points cover the final pre-Hurricane María susceptibility maps of Lares, Utuado, and 967 
Naranjito municipalities. Results for the landslide source polygons cover parts of the component tiles (Fig. 1). Landslide 968 
source mapping for Lares and Utuado (Einbund et al. 2021a, b) are near LAR and UTU (LAR2, UTU2, Fig. 1b). The graph 969 
compares F3 performance based on the modified nonlinear area- and slope-dependent (NASD, modified from Pelletier and 970 
Rasmussen 2009) soil-depth model and two alternates: constant depth of 1.4 m, and the nonlinear depth- and slope-971 
dependent soil-depth model (NDSD, Pelletier and Rasmussen 2009), with strength parameters and other inputs held 972 
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constant. AUC denotes area under the curve of TPR versus FPR, Np is the number of landslide source polygons, and NSc is 973 
the number of scarp points. 974 

 975 

5 Discussion 976 

Our analyses presented in the previous section (Sect. 4.6) indicate that the landslide susceptibility assessment 977 

successfully identifies areas where high percentages of Hurricane María landslides occurred. In succeeding 978 

paragraphs, we discuss some of the strengths, limitations, and unexpected findings of our approach and results. 979 

Optimum ranges of internal friction angles for all three terranes (Fig. 65) are higher than commonly reported, but 980 

consistent with measured values of f¢ for low normal stress (Likos et al. 2010). Most reported values of f¢ for soils 981 

like those in the study area range from 17° to 41° as noted previously (Sec. 3.2) and are usually based on tests at 982 

normal stress greater than 100 kPa. In contrast, samples collected at two field monitoring sites tested at low and 983 

moderate normal stresses (Smith et al. 2020) using equipment and procedures described by Likos et al. (2010) had 984 

high friction angles for low normal stress. Smith et al. (2020) reported f¢ = 34.8° – 35.5° (c¢ = 0 – 4.4 kPa) for two 985 

samples tested at effective normal stress, s¢n, less than 120 kPa, f¢ = 45.6° for a sample tested at s¢n £ 30 kPa, and f¢ 986 

= 53.9° for another sample tested at s¢n, £ 7 kPa. Significantly, shear stress was considerably higher than normal stress 987 

for nearly all individual tests at s¢n £ 15 kPa, and many at s¢n £ 30, consistent with f¢ > 45° at low normal stress. In 988 

addition to evidence for high internal friction angles at low normal stress, which is particularly relevant to abundant 989 

thin (< 0.5 m) landslides in Utuado, three other factors could contribute to stability and reduce the magnitude of f¢ 990 

required to explain stability during dry conditions: (1) Soil suction measured at the sites between rainfall (Smith et al. 991 

2020) indicates that suction stress probably contributes to stability. Preliminary tests indicate that considering modest 992 

amounts of suction stress (less than a few tens of kilopascals) during dry conditions in the analysis depicted by Fig. 993 

65 shifts the cells having high TPR toward lower ranges of f¢. For example, increasing initial suction stress by -1 kPa 994 

shifts the optimum range of f¢ to 35° – 40° for the submarine basalt and chert landslides compared to the 45° – 50° 995 

range in Fig. 5d6d. (2) Root resistance also likely contributes to slope stability to depths of about 0.5 – 0.6 m. Due to 996 

high annual rainfall, vegetation in the study areas tends to be shallow-rooted so that significant root resistance would 997 

decline rapidly below about 0.4 – 1.1 m depth (Simon et al. 1990; Larsen 2012). (3) Lateral stress variation also 998 

contributes to slope stability. Even in quasi-3D limit-equilibrium as used in computing F3, combined resistance of 999 

neighboring grid cells (columns) and toe wedge contributes to stability and reduces the values of f¢ and (or) c¢ needed 1000 

to achieve stability of a potential landslide under dry conditions (Tables 2 and 3). Quantifying the contributions of 1001 

these three factors (soil suction, root resistance, and lateral stress) to slope stability could lead to greater refinement 1002 

of our approach to mapping landslide susceptibility. 1003 

Our modelling workflow makes a few trade-offs to create a relatively conservative map of potential landslide sources 1004 

that accounts for uncertainties. These trade-offs are between speed and simplicity of the assessment, statistical 1005 

accuracy, and continuity of susceptibility zones. Some of the modelling steps (soil depth and F3) add complexity, 1006 

increase time needed to model susceptibility, and slightly reduce performance metrics (AUC and dIPD2PC) compared 1007 
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to F1 with constant soil depth. In exchange, soil depth and F3 create more continuous susceptibility zones, join 1008 

neighboring groups of high-susceptibility pixels, and eliminate isolated, commonly errant, pixels of high landslide 1009 

susceptibility (Fig. 10 and 11). The increased continuity of the susceptibility zones makes them easier to implement 1010 

in land use and emergency management. In addition, the potential source areas delineated on the map by the high and 1011 

very high susceptibility areas provide areas susceptible to shallow landslides for estimating potential landslide runout 1012 

and debris-flow inundation (Brien et al. 2021). Much of the reduction in AUC for F3 results from using the minimum 1013 

factor of safety value computed for any trial landslide that includes a grid cell. Consequently, very high and high 1014 

susceptibility zones for F3 are broader than for F1 and thereby have a buffer along their edges. Nevertheless, as 1015 

indicated by various performance metrics and landslide densities in the susceptibility classes, the landslide assessment 1016 

successfully distinguishes areas having different levels of susceptibility to landslide initiation (Tables 3, 4) despite 1017 

these trade-offs.  1018 

Although F1 for constant depth has slightly better performance metrics (the highest AUC and smallest dIPD2PC) than 1019 

F1 for any of the soil depth models calibrated to landslide source depths (Table 2, Fig. 12a) at NAR, its performance 1020 

metrics are comparable to the nonlinear soil-depth models elsewhere. Our field observations indicate that depth of 1021 

shallow, rainfall-induced landslides is well correlated to depth of mobile regolith ("soil") due to strength and 1022 

permeability contrasts at its base. Soil-depth models represent the distribution of soil depth more consistently with 1023 

field conditions than constant depth in many settings (Pelletier and Rasmussen 2009; Ho et al. 2012; Catani et al. 1024 

2010; Nicótina et al. 2011; Gomes et al. 2016; Patton et al. 2018). Performance metrics (ED = Ö2; mean-squared error, 1025 

MSE = so2) indicate average depth was a poorer predictor of observed landslide depth than any of the models Tello 1026 

(2020) tested for Utuado. Despite odd differences in how the models estimate soil depth on mid-slope benches and 1027 

flat valley bottoms, the models we tested (NASD, NSDA, NDSD, LASD) predict thinner soils on ridge crests and 1028 

thicker soils in hillside hollows, consistent with patterns observed in Puerto Rico and elsewhere for dissected 1029 

topography (Roering 2008). For example, mean depths of landslide sources from field mapping in Puerto Rico were 1030 

3.25 m (for concave slopes), 2.5 m (for convex slopes), 2.7 m (for planar slopes; Schulz et al. 2023). The unexpected, 1031 

good performance of F1 for constant soil depth at NAR points out limitations of soil depth models and may result in 1032 

part from widespread modifications to the landscape resulting from agriculture, road (e.g., Ramos-Scharrón et al. 1033 

2021) and building construction, and other activities. Effects of these activities may have influenced the locations of 1034 

shallow landslides sufficiently to weaken correlation between landslide location and topographic features that 1035 

influence soil depth (as at LAR and ANA, Fig. 8a). The high degree of slope modification (roads and terraces) in the 1036 

NAR calibration area is likely a determining factor in F1 performance there (Fig. 10). Identifying specific areas or 1037 

features where constant-depth F1 classifies susceptibility differently than F1 with other soil-depth models might reveal 1038 

potential improvements. 1039 

Computing F1 using the modified NASD soil-depth model resulted in the areas assigned to the moderate, high, and 1040 

very high susceptibility classes being more clearly delineated with little or no loss of performance compared to using 1041 

constant depth. The susceptibility zones in the constant-depth F1 susceptibility map (Fig. 10b) are more diffuse or 1042 

fragmented (less continuous) than for the NASD soil depth (Fig. 10a) and other soil models we tested. Fragmentation 1043 

also occurred for susceptibility zones defined by slope categories (Fig. S3a). As noted previously, this improved 1044 
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delineation came with only a slight reduction in AUC (0.88 to 0.86) and small increase in dIPD2PC (0.26 to 0.30) for 1045 

NAR. When applied to the entire DEM tile covering Naranjito municipality, performance of F1 for constant depth and 1046 

F1 for NASD tied with each other and with slope categories (AUC = 0.87, dIPD2PC = 0.29 - 0.30). As noted previously, 1047 

when checked against detailed source mapping, the performance metrics for F3 are better than when compared against 1048 

the scarp points (Fig. 13). In addition, differences in performance metrics between constant depth and the NDSD 1049 

model and modified NASD model are negligible. 1050 

Due to physical (subsurface conditions, ground-failure mechanisms) and conceptual (parameters, models) 1051 

uncertainties, the F3 value at the boundary between high and moderate susceptibility is slightly less than 1 (0.97, Table 1052 

4). Although the strength parameters could be increased to achieve F3 = 1.0 at TPR = 0.90, we also wanted to keep F3 1053 

at TPR = 0.95 relatively low while keeping F3 > 1 under dry conditions for as much area as possible. Our final model 1054 

parameters represent a compromise between stable slopes (F3 > 1) under dry conditions and low factor of safety (F3 1055 

< 1) for highly susceptible slopes under presumed wettest conditions. 1056 

Other things being equal, the quasi-3D stability analysis, F3, has a somewhat smaller AUC and larger dIPD2PC, 1057 

compared to F1 (Tables 2 and 3), but improves the final map. The improvements are better separation between the 1058 

different susceptibility classes (Fig. 10 and 11) and a slightly more conservative map compared to F1, which is helpful 1059 

for life-safety based land use planning and emergency response scenarios. With AUC=0.80 and dIPD2PC=0.38 for F3 1060 

based on the modified NASD soil-depth and 3.5 m radius for the trial surface (Table 3), F3 successfully identifies 1061 

potential landslide sources at NAR. For the entire map area, the AUC (0.84) and dIPD2PC (0.33) scores are slightly 1062 

better (Table 4, Fig. 13), due in part to the large area of low landslide susceptibility that is underlain by limey sediments 1063 

and characterized by cone karst. By considering slope stability at the scale of representative landslide sources (median 1064 

area, Fig. 3c), F3 eliminates isolated grid cells and tiny clusters of 2 – 4 cells that likely are classified incorrectly by 1065 

F1 as highly or very highly susceptible due to locally steep slopes at the pixel scale (1 m). Such isolated cells and 1066 

clusters could be eliminated after analysis, but boundaries of susceptible areas would remain somewhat ragged. In 1067 

contrast our approach provides an objective method for eliminating the isolated pixels and smoothing the boundaries. 1068 

F3 bridges gaps between neighboring areas of low F1 and thereby maps susceptible areas that are more continuous and 1069 

with smoother, more definite boundaries than F1. Thus, F3 further improves delineation of susceptible areas beyond 1070 

improvements achieved by using the modified NASD soil-depth model with F1. Maps having continuous, clearly 1071 

delineated areas assigned to each susceptibility class such as those obtained by using F3 reduce guesswork in making 1072 

land use and emergency management decisions by eliminating the ragged, transitional boundaries obtained with F1. 1073 

For example, to compare the insets in Figs. 10 and 11 to each other as well as slope categories (Fig. S3a) and F3 based 1074 

on the NDSD soil-depth model (Fig. S3d), see Fig. S3b, c, e and f. Alternately continuous, clear delineation can be 1075 

achieved by aggregating raster maps to slope units (Alvioli et al. 2016; Woodard et al. 2024). Nevertheless, an added 1076 

benefit of using F3 is creation of Wellwell-defined potential landslide source areas also that allow estimation of areas 1077 

susceptible to potential downslope runout and downstream inundation (Brien et al. 2021). Performance metrics for F3 1078 

considering detailed source mapping (Fig. 13) are sufficiently high (0.85 £ AUC £ 0.88) to consider F3 a very 1079 

successful indicator of landslide susceptibility in our study area. As the basis for our final susceptibility maps, we 1080 

selected the F3 map derived from the modified NASD soil depth model (Fig. 11a) because of its high AUC combined 1081 
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with its well-defined source areas and the realistic modeled soil depths for estimating potential landslide volumes.  1082 

Visual comparison indicates only slight differences between F3 maps based on pre-event and post-event DEMs (Fig. 1083 

S4). Model input parameters for the final maps are summarized in Supplemental Figures S1 and S2. 1084 

The susceptibility analysis portrayed in Fig. 11 and our final maps (Supplemental Figures S1 and S2) are valid 1085 

throughout the three municipalities despite the variable density of Hurricane María landslides throughout the map area 1086 

(Bessette-Kirton et al. 2017; Hughes et al. 2019) and within each susceptibility class. High landslide density generally 1087 

corresponds to low F3 (Table 4); however, not all susceptible areas were equally affected by Hurricane María. Thus, 1088 

although some areas of low F3, particularly in Naranjito, had low landslide density, the low density does not invalidate 1089 

the susceptibility assessment of the potential for future landslides. Factors such as antecedent soil moisture are known 1090 

to have affected the density of landslides induced by Hurricane María (Bessette-Kirton et al. 2019a) and were 1091 

addressed in the statistically based island-wide landslide susceptibility assessment of Hughes and Schulz (2020a). 1092 

Notably Naranjito had much lower root-zone soil moisture immediately after the hurricane than Utuado and Lares 1093 

(Fig. 26 of Hughes and Schulz 2020a). Variable rainfall intensity and duration are also known to affect landslide 1094 

response of susceptible areas (Larsen and Simon 1993; Pando et al. 2005). Intensity and duration are known to have 1095 

varied during Hurricane María, causing further differences in landslide density. Our assessment considered fully 1096 

saturated conditions with the water table at the ground surface to depict likely wettest-case soil moisture effects, 1097 

including high antecedent soil wetness, as well as high intensity and long-duration rainfall. Thus, it was not necessary 1098 

to specifically model antecedent soil moisture conditions. Less-severe conditions may produce landslides in the same 1099 

general areas as predicted by our assessment, however, in lower numbers than observed following Hurricane María. 1100 

Setting the boundaries between susceptibility classes based on F1 or F3 corresponding to specific values of TPR rather 1101 

than setting boundaries based on theoretical values of F1 or F3 (such as F3 = 1.0) reduces uncertainty and ensures 1102 

correspondence between landslide density and degree of landslide susceptibility. Soil, saprolite, and bedrock are 1103 

inherently heterogenous. Their hydraulic and strength properties (and corresponding parameters) vary spatially at all 1104 

scales (Terzaghi et al. 1996). Other studies have applied probabilistic approaches and sensitivity analyses have been 1105 

applied successfully to address parameter uncertainty and improve accuracy of physically based modelling of landslide 1106 

susceptibility (Raia et al. 2014; Zieher et al. 2017; Canli et al. 2018). Many parameter combinations (c¢ and f¢) can 1107 

achieve similar levels of predictive accuracy in computing F1 for observed distributions of landslide slope and depth 1108 

(Baum et al. 2019; Baum 2021). These and other uncertainties such as transient pore-water pressures, subsurface 1109 

features, heterogeneity, and other factors, weaken the link between theoretical values of F1 or F3 and estimated 1110 

likelihood of failure for site-specific cases when applying limit-equilibrium slope stability analysis over wide areas. 1111 

On the other hand, maps classified based on TPR have a strong link to susceptibility. Such maps are readily comparable 1112 

to each other when F1 or F3 values are computed with different parameters, as they show like outcomes (areas that 1113 

capture 75%, 90% and 95% of observed landslides in this study). Comparing like outcomes focuses on differences 1114 

and uncertainties that affect the quality of the susceptibility assessment that might be masked by comparing the maps 1115 

when classified using the same F1 or F3 values. In this study, low values of F1 and F3 correspond to high observed 1116 

Hurricane María landslide density (Table 4), as would be expected. The selected boundaries for susceptibility classes 1117 

ensure a meaningful distinction between average landslide density in the successive classes (Table 4). 1118 
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The susceptibility map correctly predicts locations of most landslides that are deeper than 3 m, despite the maximum 1119 

modeled soil depth of 3 m more typical of shallow landslides. Ten of the landslides summarized in Fig. 3e are deeper 1120 

than 3 m. Most (nine) are within the Naranjito tile (Fig. 1), and the other is in Lares. The mapped point on each 1121 

landslide headscarp and adjoining or surrounding slope was within the high or very high susceptibility zone for seven 1122 

of the ten deep landslides. The other three had head scarps on a gently sloping area (road or pad) that was set back a 1123 

few meters from the steep slope, but the adjoining slope with the landslide body was within the high and very high 1124 

susceptibility zones. Although the predicted locations might be right for the wrong reason (predicting a shallow 1125 

translational landslide rather than a deeper, translational, or rotational landslide), it is nevertheless encouraging that 1126 

the locations of even the deep landslides are identified for the sake of hazard assessment and planning. This probably 1127 

occurred because the deep landslides occurred well within the same slope range as other mapped landslides (Fig. 3, 1128 

4). 1129 

Despite the simplicity of soil and water parameters, the maps successfully predicted the effects from Hurricane María. 1130 

Calibrating with field data from the small calibration areas (ANA, LAR, UTU, and NAR, Fig. 1) and then testing with 1131 

the island-wide scarp points (Hughes et al. 2019) confirmed the successes of our approach (Supplemental Figures S1 1132 

and S2). Testing with detailed landslide source maps (Baxstrom et al. 2021a; Einbund et al. 2021a, 2021b) strengthens 1133 

our results even though they cover only a fraction of the study area.  1134 

The workflow outlined in Fig. 6Fig. 4 can be simplified in areas where few data are available. An accurate digital 1135 

elevation model and accurate landslide inventory with measurements of source area size, depth, and slope (Fig. 3) are 1136 

the most critical data for a landslide susceptibility analysis. Strength parameter ranges can be estimated from landslide 1137 

source depth and slope (Fig. 54, 56). Soil model calibration can be bypassed by assuming constant average landslide 1138 

source depth. Strength parameters can then be refined using the procedure described in Sect. 3.5. Alternately a soil 1139 

model and strength parameters can be calibrated simultaneously to the inventory as we did for the NAR calibration 1140 

area. Calculation of pressure head, F1 and F3 can then proceed as outlined in Sect. 3.4.2, 3.4.3, 3.4.4, and 3.9, followed 1141 

by validation and evaluation (Sect. 3.11). Compared to a map based on the simplest of landslide susceptibility 1142 

approach, slope ranges with its ragged, fragmented susceptibility zones, our procedure creates cohesive landslide 1143 

susceptibility zones that have smooth, buffered boundaries with only a slightly lower AUC score (0.84) than for slope 1144 

(0.87) across the entire study area.  1145 

6 Conclusions 1146 

We defined a workflow for assessing landslide susceptibility using multiple modelling stages and successfully applied 1147 

it using high-resolution (1-m) topography over a large (about 1000 km2) geographic area in the central mountains of 1148 

Puerto Rico (Fig. 1). The workflow includes modelling soil depth, pressure head, and limit-equilibrium slope stability 1149 

(Fig. 6Fig. 4). Although calibration studies showed that assuming constant average soil depth as input for 1D (infinite-1150 

slope) factor of safety against landsliding, F1, gave the best performance metrics in a 2.5 km2 calibration area, use of 1151 

a soil-depth model more clearly delineated areas susceptible to landslide initiation with only a modest reduction in the 1152 

AUC from 0.88 to 0.86. Using a quasi-3D limit-equilibrium slope stability analysis, the factor of safety, F3, further 1153 

refined the susceptibility assessment by more clearly delineating boundaries between the different susceptibility 1154 
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classes and by assessing stability at the scale of the observed median-sized landslides. Despite further reduction in 1155 

AUC to 0.80 for the NAR calibration area, the map based on F3 is more readily usable in certain applications than a 1156 

map based on F1, and it still performs well as a classifier of landslide susceptibility. Performance metrics for the F3 1157 

map of the entire ~1000 km2 study area, AUC = 0.84 and dIPD2PC = 0.34, are slightly better than results at the NAR 1158 

calibration area. Performance measured against detailed source mapping of selected areas is even better: 0.85 £ AUC 1159 

£ 0.88 and 0.27 £ dIPD2PC £ 0.33. These metrics indicate the map is suitable for planning, regulation, and emergency 1160 

preparedness decisions at the municipality scale. The map may also be used to assess hazards, such as ground collapse, 1161 

resulting from landslide initiation. Source area delineation as shown on maps may also be used for defining landslide 1162 

starting locations and surface area needed to assess areas with potential downslope movement of sediment mobilized 1163 

by future landslides. 1164 
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