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Abstract. The impact of assimilating GNSS-ZTD (Global Navigation Satellite Systems - Zenith Total Delay) on the 15 

precipitable water vapor and precipitation forecast over Italy is studied for the month of October 2019, characterized by several 

moderate to intense precipitation events. The WRF (Weather Research and Forecasting) model 4.1.3 is used with its 3DVar 

data assimilation system to assimilate ZTD observations from 388 GNSS receivers distributed over the country. The dataset 

was built collecting data from all the major national and regional GNSS permanent networks, achieving dense coverage over 

the whole area. 20 

Results show that WRF underestimates the atmospheric water vapor content for the period, and GNSS-ZTD data assimilation 

improves this underestimation. 

The water vapor forecast is verified for the forecast hours 1-6h after the last data assimilation time, while the precipitation 

forecast is verified in the phases 0-3h and 3-6h after the last data assimilation time. More than 3000 rain gauges spread over 

Italy were used to verify the precipitation forecast.  25 

The application of GNSS-ZTD data assimilation to a case study showed an improvement of the precipitation forecast in 

different ways, the main drawback being the prediction of false alarms. 

Considering the study over the whole period, GNSS-ZTD data assimilation had a positive impact on the precipitable water 

vapor and rainfall forecast, with an improvement of the performance up to 6 hours, and with statistically significant results for 

moderate to intense rainfall thresholds (25-30 mm/3h). 30 
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1 Introduction 

The Mediterranean area is often struck by severe weather and deep convective events because of the presence of the warm sea, 

the complex orography of the area, and the specific synoptic scale environment. This scenario is worsened by the climate 

change, which is affecting many weather and climate extremes, and the frequency and intensity of heavy precipitation events 35 

have increased in most of the world (Masson-DelMotte et al., 2021). 

Over the past years, the use of Numerical Weather Prediction (NWP) models, along with an increasing availability of 

computing power, led to an improvement of the forecast accuracy. However, NWPs have well-known difficulties in 

representing the physical processes at small spatial and temporal scales, which are involved in convective or severe weather 

events (Stensrud et al., 2009).  40 

One of the common problems of NWP-based nowcasting and short-term forecasting is the spin up time, because the model 

needs a few hours to balance the inconsistencies between the initial and boundary conditions to properly reproduce the small-

scale dynamic (Lagasio et al., 2019). Data assimilation of local observations in NWP has been reported as a key factor to 

reduce this issue and to improve the prediction of high impact weather events (Federico et al., 2021). Among local observations, 

water vapor plays a key role for its importance in humid and energetic exchanges in the atmosphere. Therefore, a good 45 

knowledge of water vapor distribution in space and time is a fundamental requirement for improving NWP forecasts of 

convective and severe weather events. 

Global Navigation Satellite System (GNSS – collective term used to address all global and regional satellite navigation 

systems, including GPS, Galileo, GLONASS and BeiDou) routine observations processing for geodetic and geophysical 

purposes can provide estimates of the tropospheric delays (generally ZTD-Zenith Total Delay), directly connected to the water 50 

vapor content in the atmosphere, which can be very useful to improve the NWP forecast. Relevant, albeit non exhaustive, 

experiences are shortly summarized hereafter: 

• Vedel and Huang (2004) assimilated GNSS-ZTD into the HIgh Resolution Limited Area Model using 3DVar and 

found improvements for the forecast of geopotential height and high precipitations.  

• Poli et al. (2007), assimilated the GNSS-ZTD using 4DVar and the ARPEGE (Action de Researche Petite Echelle 55 

Grande Echelle) global model. Results show the positive impact of the GNSS-ZTD data assimilation on the forecast 

of synoptic-scale circulations and precipitation in spring and summer. Other studies followed in France (Boniface et 

al., 2009; Yan et al., 2009) and found a positive impact of GNSS-ZTD data assimilation on the NWP forecast. 

• Bennitt and Jupp (2012) assimilated GNSS-ZTD observations by both 3DVar and 4DVar using the Met Office NAE. 

The assimilation of GNSS-ZTD resulted in an improvement of the cloud forecast. 60 

• Lindskog et al (2017) performed GNSS-ZTD data assimilation into the HARMONIE-AROME model at 2.5 km 

horizontal resolution. The assimilation was performed by 3DVar and improved the forecast up to one and a half day.  

• Rohm et al. (2019) assimilated GNSS (both ZTD and Precipitable Water) in the WRF model at 4 km horizontal 

resolution over Poland for two months. They found an improvement in predicting both water vapor and precipitation. 
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• Giannaros et al. (2020) showed the positive impact of GNSS-ZTD data assimilation on both precipitation and water 65 

vapor forecast over Greece, and Caldas-Alvarez et al. (2020), showed similar results with the climatic setting of the 

COSMO model over a large portion of the Mediterranean and Central Europe. 

Other works showed the positive impact of assimilating GNSS data for precipitation forecasts in different countries (Risanto 

et al., 2021; Singh et al., 2019; Trzcina et al., 2020; Yang et al., 2020). 

The assimilation of GNSS data is also used in the operational context. The Rapid Refresh model over US assimilates GPS-70 

derived Integrated Water Vapor (IWV) every hour from 300 stations across the US (Benjamin et al. 2016). The study shows 

that there is a clear benefit in using GNSS observations in rapid refresh weather forecast. 

Considering the GNSS data assimilation over Italy, Faccani et al. (2005), using MM5 model at 9 km horizontal resolution and 

3DVar to assimilate GNSS-ZTD over Italy, found improvements in the precipitation forecast during the transition from winter 

to spring. 75 

By assimilating a wide range of Sentinel-1 and GNSS-ZTD observations in the WRF model, Lagasio et al. (2019) found that 

the forecasts benefit the most when the model is provided with information on the wind field and/or the water vapor content. 

Mascitelli et al. (2019, 2021) reported two successful experiments of GNSS-ZTD and Precipitable Water Vapor (PWV) data 

assimilation with the RAMS@ISAC model. The 3DVar was used to assimilate GNSS-ZTD, while nudging was used to 

assimilate the PWV. In both cases the assimilation showed a significant improvement in the short-term prediction of water 80 

vapor with smaller impact on the precipitation forecast.  

This paper goes in a similar direction in the sense that it uses the GNSS-ZTD data assimilation to improve the precipitation 

and water vapor forecast over Italy. Compared to similar studies, however, it uses a longer period and/or a larger number of 

GNSS receivers widespread over the country, giving a robust assessment on the impact that GNSS-ZTD data assimilation can 

have on the forecast at the local scale.  85 

This paper is organized as follows: Section 2 shows the data and methods used including the model setting, the GNSS-ZTD 

dataset, and the statistics for the verification. Section 3 discusses the results showing the impact of GNSS-ZTD data 

assimilation on the WRF analyses (both ZTD and PWV), on the precipitation forecast for a case study, and on the PWV and 

precipitation forecast for the whole period. Conclusions are given is Section 4. Finally, more details on the statistics used in 

the paper as well as the resampling test are reported in two appendices. 90 

2 Data and methods 

2.1 WRF model configuration and assimilation method 

The model used in this study is the Weather Research and Forecasting with advanced WRF dynamic (WRF-ARW, Version 

4.1.3, Skamarock et al., 2019). The model was run over one domain covering the whole Italian territory and the Central Europe 

(Figure 1) with a spatial horizontal resolution of 3km. The model grid has 635x635 grid points and 50 vertical levels, with the 95 

model top at 50 hPa. The main physical parameterization used are the following: the Thompson scheme (Thompson et al. 
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2008) for microphysics, the Mellor-Yamada-Janjic (Eta) TKE scheme for boundary layer (Janjic, 1994) the Dudhia scheme 

(Dudhia, 1989) and the Rapid Radiative Transfer Model (RRTM, Mlawer et al.  1997) for short wave and longwave radiation, 

respectively. 

 100 

 
Figure 1: WRF model domain and GNSS receivers height ([m]) above sea level. 

The experiment aims at evaluating the impact of GNSS-ZTD data assimilation on the precipitation prediction at the short-term 

(up to 6h in this paper). For this purpose, we considered a one-month period, from 02 to 31 October 2019. The choice of the 

period is due to two main reasons: on the one hand, this month was characterized by both widespread and localized precipitation 105 

events over Italy, on the other hand, a dense network of GNSS receivers (about 500) is available for the country. It is important 

to note that the number of receivers actually used for data assimilation was reduced to 388 by applying data thinning as 

discussed in Sect. 2.2.  

GNSS-ZTD data assimilation was performed using the 3DVar tool distributed with WRF model, which is one of the 

components of WRFDA system, that includes also 4DVar and Ensemble data assimilation systems (Barker et al., 2004; Barker 110 

et al. 2012; Huang et al., 2009).   

We consider two kinds of simulations: background simulations, without GNSS-ZTD data assimilation, hereafter also BCKG, 

and simulations assimilating GNSS-ZTD, hereafter also GPS. 

The temporal scheme used for the simulations uses a Very Short-term Forecast (VSF) approach, with a 6h update (Figure 2).  

 115 
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Figure 2: Rapid Update Cycle at 6h. Red dots denote analysis times. 

In this scheme, for each day, we run four simulations starting from a cold start.  Each simulation lasts 12 hours. The first 6h of 

each run are used for the model spin-up and for data assimilation (the latter for GPS simulations only), while the last 6h are 

used as forecast. Therefore, 4 runs are necessary to cover a whole day. The European Centre for Medium range Weather 120 

Forecast (ECMWF) Integrated Forecast System (IFS) 3-hourly operational analysis/forecast cycle at 0.25° starting at 12 UTC 

on the day before the actual day to forecast is used for initial and boundary conditions, to simulate a real forecasting context. 

In the assimilation phase, we considered an analysis every 1 hour (red points of Figure 2), starting from the beginning of the 

simulation and reaching the 6th hour, so a total of 7 analyses are performed for each run. 

GNSS-ZTD observations are assimilated by 3DVar, which is a variational approach involving the calculation of the analysis 125 

that minimizes a cost function by measuring its distances from background and observations. The cost function is given by: 

𝐽(𝑥) =
1
2
(𝒙 − 𝒙𝒃)"𝑩#$(𝒙 − 𝒙𝒃) + [𝒚𝐨 −𝐻(𝒙)]"𝑹#$[𝒚𝐨 −𝐻(𝒙)] 

where x is the state vector, xb is the background field, H is the forward observational operator which transforms the x vector 

in the observational space, yo is the observations vector, B and R are the error covariance matrices, respectively for background 

and observations.  130 

The R matrix is given by the sum of instrumental and representation errors. To prepare observational data for 3DVar, the 

OBSPROC tool was employed for GNSS-ZTD observations. Data for each analysis were considered on a 1-hour time range, 

centered at the hour of the analysis. The R matrix is diagonal, which requires data thinning (see next section), and the ZTD 

error is set to 5 mm. 

As regards the B matrix, the calculation for this study is performed via the GEN_BE tool, employing the NMC method (Parrish 135 

and Derber, 1992) for the month of October and the option CV5, which accounts for five control variables.  

2.2 Observational datasets and verification procedure 

2.2.1 GNSS data 

To achieve a good spatial density of the ZTD measurements, the GNSS data have been collected from all major Italian national 

and regional GNSS networks. To derive ZTDs, GPS L1 and L2 pseudorange and phase measurements were adjusted in PPP 140 
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mode (Bevis et al., 1992; Zumberge et al., 1997), by using the GNSS data processing suite Breva, developed by GReD, based 

on the open-source software goGPS (Herrera et al., 2016).  

Several of the used stations tracked only GPS satellites, thus we decided to process only GPS observations, disregarding data 

from other GNSS constellations. Table 1 describes the corrections applied to the observations, as well as the stochastic model. 

 145 
Table 1: Corrections applied to the observations and stochastic model. 

Ionospheric delay Pre-eliminated through the iono-free linear combination of L1 and L2 

Ephemerides IGS final combination 

Coordinates  Estimated, one set per station per day 

ZTD Estimated epoch wise, with random walk model (noise 0.003 𝑚/√ℎ) 

ZTD North and East gradient Estimated epoch wise, with random walk model (noise 0.0001 𝑚/√ℎ) 

Solid Earth  Corrected according to IERS 2010 

Ocean loading effects Corrected using coefficient computed from FES 2004 model 

Mapping function Vienna Mapping Function 

 

Figure 1 presents the locations and the heights of the 388 GNSS stations used over the Italian peninsula and its surroundings 

after a reduction of their number. Although the initial number of GNSS receivers was about 500, more than 100 GNSS receivers 

were discarded considering the following two requirements: a) the difference between the receiver and WRF model height at 150 

the closest grid point to the GNSS receiver must be less than 300 m (similarly to Bennitt and Jupp, 2012; Rohm et al., 2019; 

and Mascitelli et al., 2019) and b) in case two or more receivers fell in the same WRF grid cell, the one whose height was 

closer to the model orographic height was retained. At the end of the process, 388 GNSS receivers were used for data 

assimilation and the closest distance between any two receivers was larger than 10 km. No further data thinning was applied. 

2.2.2 Forecast verification 155 

As regards the evaluation of the precipitation forecast performances, five precipitation scores are calculated, i.e.  Frequency 

Bias (FBIAS), Probability of Detection (POD), Threat Score (TS), Equitable Threat Score (ETS) and False Alarm Rate (FAR). 

A detailed description of these scores is provided in Appendix A.  

In the following, we will show the results of the scores summarizing them through the Performance Diagram (Roebber, 2009), 

with the exception of ETS. In this diagram the perfect score is the one that reaches the upper right corner of the diagram. The 160 

x-axis represents the Success Ratio (SR) which is defined as 1-FAR, while the POD is on the y-axis. The straight lines from 

the origin represent the FBIAS while the hyperboles branches are the TS.  
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We considered the forecast for both types of run, BCKG and GPS, taking into account two main periods after the last analysis 

time, in order to evaluate the impact of GNSS-ZTD data assimilation on the precipitation forecast at different ranges: the first 165 

3h (from the 6th to the 9th hour of run) and the second 3h of forecast (from the 9th to the 12th of run). Model forecast in 

correspondence of a given rain gauge is computed using the nearest-neighbour method. By this method, we consider all WRF 

precipitation values at grid points in a radius of  2∆𝑥√2  from the rain gauge,  ∆𝑥	being the WRF model grid spacing, and we 

select the grid point with closest rainfall value to the rain gauge observation. 

Precipitation data come from the Italian rain gauge network, with more than 4000 rain gauges over Italy. This network belongs 170 

to the Italian regional administrations and data are collected nationwide by the Department of Civil Protection (Davolio et al., 

2015).       

Furthermore, a test to assess the statistical significance of the differences between BCKG and GPS precipitation forecasts is 

performed. The resampling test of Hamill (1999) is used (see Appendix B for details).  

For precipitable water vapor verification, we focused on both the assimilation and forecast phases. Verification is made 175 

calculating two main scores: 

- BIAS, which measures the mean differences between forecast (F) and observation (O): 

𝐵𝐼𝐴𝑆 = $
&
∑ (𝐹' − 𝑂')&
'($                                                             (1) 

 

- Root Mean Square Error (RMSE), which measures the mean of the squared differences between forecast and 180 

observation: 

𝑅𝑀𝑆𝐸 = A$
&
∑ (𝐹' − 𝑂'))&
'($                                                       (2) 

with N number of forecast-observation pairs considered in the statistics. 

3 Results and discussion 

3.1 ZTD and precipitable water vapor results for the analysis phase 185 

In this section we consider the differences between the first guess (FG) and the observations, and between the analyses (ANL) 

and the observations. Statistics are presented considering all simulations (30*4). For each simulation, six times are considered 

for first guess and analysis, one for each time (red dots of Figure 2), except for the analysis at the initial time of each simulation 

because it is coincident with the last analysis time of the previous simulation, the latter being considered in the results.  

Two types of statistics are shown. In the first statistics we present the time series of the BIAS and RMSE errors aggregating 190 

all receives together for each analysis time; in this case, referring to the Eqn. (1) and (2), N is the number of GNSS receivers 

considered at the analysis time. In the second statistics, we show the PWV BIAS and RMSE computed for each receiver; in 

https://doi.org/10.5194/nhess-2023-18
Preprint. Discussion started: 22 February 2023
c© Author(s) 2023. CC BY 4.0 License.



8 
 

this case, referring to Eqn. (1) and (2), N is the number of analyses done for the whole period (30*4*6=720 first guess and 

analysis pairs).  

Figure 3 shows the time series for ZTD BIAS (Figure 3a) and ZTD RMSE (Figure 3b) calculated for the whole period.  From 195 

Figure 3a it is apparent that the ANL BIAS (blue curve) has lower absolute values compared to that of FG (red curve) for all 

times considered. The better results obtained by ANL is confirmed also by the BIAS values calculated over all times together, 

shown in the upper right part of the figure, which is halved after the analysis (BIAS_A, -0.1 cm) compared to the first guess 

(BIAS_F, -0.2 cm). Interestingly, the WRF first guess bias is mainly negative showing an underestimation of the water vapor 

content in the atmosphere. This underestimation is reduced by GNSS-ZTD data assimilation that increases the water vapor in 200 

the model. The positive impact of the GNSS-ZTD data assimilations is confirmed by the RMSE calculation (Figure 3b). The 

RMSE for the whole period for the analyses (RMSE_A) is 0.7 cm, compared to the value of 1.3 cm for the first guess 

(RMSE_F).   

a) 

 205 
 
b) 
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Figure 3: Time series of ZTD BIAS (a) and of ZTD RMSE (b) calculated for all sensors together for first guess (red curve) and 
analysis (blue curve) during the analysis phase. Dates are shown along the x-axis.  210 

It is important to discuss the impact of GNSS-ZTD data assimilation over the Italian territory. This is shown considering the 

PWV estimated by the ZTD. The PWV in millimeters is given by: 

𝑃𝑊𝑉 = 𝑄(𝑍𝑇𝐷*&++ − 𝑍𝐻𝐷,-.) 

where ZHDWRF is the hydrostatic delay calculated using the Saastamoinen (1972) equation given the WRF surface pressure 

(psfc), latitude (f) and height (h):  215 

𝑍𝐻𝐷,-. =
0.0022767𝑝/01

1.0 − 0.0266 cos(2𝜙) − 0.00000029	ℎ 

The proportionality factor Q is computed as follows: 

𝑄 =
102

𝑅,(
𝑘3
𝑇4

+ 𝑘)5 )
 

where Rw=461 J/(kgK) is the gas constant for water vapor, 𝑘)5=22.9726 K/hPa and k3=375463 K2/(hPa) are the refractivity 

constants from Reuger (2002) and Tm is the mean temperature given by: 220 

𝑇4 = 70.2 + 0.72𝑇,-. 

where TWRF is the WRF surface temperature. 

Figure 4 shows the PWV RMSE (panels a) and b), for first guess and analysis, respectively) and the BIAS (panels c) and d) 

for first guess and analysis, respectively) for the whole period at each GNSS receiver. Both statistics are improved by data 

assimilation. The impact of GNSS-ZTD data assimilation on PWV RMSE is apparent as most of the green-orange-red colors 225 

(RMSE between 1.0 and 2.5 mm, Figure 4a) are reduced to dark green-green colors (RMSE between 0.5 and 1.5 cm, Figure 

4b).  
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For the BIAS the improvement is less apparent, but it is clearly shown by the increase of the orange, red and yellow dots in 

panel d) compared to panel c) of Figure 4.  

 230 

a) 

 
b) 

 
   235 
c) 
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d) 240 

 
Figure 4: PWV RMSE for FG (a) and ANL (b) and PWV BIAS for FG (c) and ANL (d) calculated for each sensor over all times of 
analysis. 

All in all, the results of this section show a positive impact of GNSS-ZTD data assimilation on the ZTD and PWV over the 

period, and the net result is the increase of the model water vapor content over the area, because the first guess underestimation 245 

of the ZTD (and PWV) is reduced by data assimilation.  
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3.2 Rainfall forecast for a case study 

The selected date is the 15 October 2019, in the 3 hours between 18 and 21 UTC. This phase was selected because it is 

representative of the improvement that the assimilation of GNSS-ZTD had for several cases on the 3h precipitation forecast. 

During this time period, three main thunderstorms developed: the first two over the North-East and North-West of Italy, 250 

respectively, with a precipitation maximum between 60 and 70 mm/3h, and the third in Southern Italy, with precipitation 

ranging between 40 and 50 mm/3h. We start examining the innovations, i.e. the analysis minus first guess fields, at 18 UTC 

on 15 October (Figure 5a) because the precipitation between 18 and 21 UTC is predicted just after the 18 UTC analysis, and 

some correspondence between the analysis and the precipitation forecast is found. 

Figure 5a shows the innovations at 18 UTC on 15 October 2019 at about 1800 m above the ground surface. A complex pattern 255 

of positive and negative innovations is shown thanks to the many observations available, which add information on the water 

vapor field at the subregional scale (the distance between two closest maxima or minima of Figure 5a can be roughly estimated 

in 50-70 km). 

Figure 5b shows the latitude-height cross section of the innovations at the same time of Figure 5a. The cross section is for the 

longitude 12.6°E. Water vapour values in the range 0.4-1.0 g/kg are shown in several parts of the cross section at about 1600 260 

m height a.g.l. in western Sicily (37.5 °N) revealing a considerable impact of GNSS-ZTD data assimilation (> 10% of the first 

guess value) on the water vapor field.  

 
a) 

 265 
b) 
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Figure 5: Innovations of water vapor at 18 UTC on 15 October 2019; a) horizontal map around 1800 m above the surface; b) 
latitude-height cross-section of water vapor innovations with the first guess temperature (black contours). 

Between 18 and 21 UTC, moderate to intense precipitation are shown in NE and NW of Italy by rain gauge observations, with 270 

maximum intensities larger than 60 mm/3h (Figure 6a). Some areas of moderate precipitation are apparent in Central and 

Southern Italy with maxima between 20 and 50 mm/3h.  

The BCKG, Figure 6b, has a good forecast because it represents the two main precipitation areas over NW and NE of Italy. 

There are, however, less satisfactory points in the BCKG rainfall forecast: first, the maximum over NE of Italy is composed 

by two branches and one of them is displaced close to the sea, starting from Venice and going toward NE. This branch is a 275 

false alarm, at least in its southernmost part. Second, the maximum over Central Italy, starting from Tuscany and displaced in 

the SW-NE direction is displaced to the North, compared to observations. Third, the precipitation over Southern Italy is missed.  

The assimilation of GNSS-ZTD improves the precipitation forecast. The pattern of the precipitation over NE is more in 

agreement with observations because precipitation does not appear separated in two branches as in the BCKG and the 

precipitation amount for GPS simulations is higher, better catching the observation maximum. This agrees with the increase 280 

of the water vapor over NE of Italy given by the last assimilation (Figure 5a). A similar improvement is apparent in the South 

of Italy, where the precipitation was missed by the BCKG. In this case the observed precipitation is well forecast by GPS and 

the increase of precipitation is determined by the increase of water vapor over the area (Figure 5a). The maximum over Central 

Italy is not much improved by the assimilation of GNSS-ZTD because, even if there is better superposition with observations 

compared to the background, there are more false alarms in the GPS forecast. 285 

 
a) 
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b) 290 
 

 
c) 
 
 295 
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Figure 6: Precipitation between 18 and 21 UTC on 15 October 2019: a) Rain gauges observations; b) BCKG forecast; c) GPS forecast. 

3.3 Results for the water vapor forecast for the whole period 

In this section we show the impact of GNSS-ZTD data assimilation on the PWV forecast. Three different statistics are 

considered: the time series of the differences between the PWV RMSE of BCKG and GPS simulations for different forecasting 300 

times; the time series of the difference between the PWV absolute value of the BIAS of BCKG and GPS simulations for 

different forecasting times; the RMSE maps of PWV for BCKG and GPS on two different forecasting times. The PWV is 

computed as shown in Sect. 3.1, replacing 𝑍𝑇𝐷*&++ with 𝑍𝑇𝐷,-. .  

The first two statistics are shown in Figure 7 for the first (red curve), third (blue curve) and sixth hour of forecast (green curve). 

Considering the differences between BCKG and GPS PWV RMSE, positive values show better performance of the forecasts 305 

assimilating GNSS-ZTD and, from Figure 7a, it is apparent that the GNSS-ZTD data assimilation improves the PWV forecast 

at different forecast ranges, with the exceptions of few cases. The RMSE of the GPS simulations can have a RMSE lower than 

BCKG simulations up to 2.5 mm and, from Figure 7a, it is also notable a decrease of the improvement of GNSS-ZTD data 

assimilation for longer forecasting times as the red curve shows, with some exceptions, larger values than the blue curve, 

which, in turn, has larger values that the green curve. However, it is important to note that the positive impact of GNSS-ZTD 310 

data assimilation on the PWV forecast is still apparent after six hours of forecast. 

The bias is also improved by the GNSS-ZTD data assimilation as the difference of the absolute value of the bias for BCKG 

and GPS simulations shows positive values. As for RMSE, the bias improvement decreases with forecasting time. 

 

a) 315 
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b) 

 
Figure 7: Time series of the differences between PWV-RMSE for BCKG and GPS (a) and of the difference of the absolute value of 
the Bias for the BCKG and GPS simulations (b). Red curve is for the first forecast hour, blue curve is for the 3rd forecast hour 320 
and the green curve is for the 6th forecast hour. 
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It is interesting to evaluate the spatial distribution of the improvement of GNSS-ZTD data assimilation on the PWV forecast 

over Italy. This is shown in Figure 8 for the first hour of forecast (panels a) and b) for BCKG and GPS, respectively) and for 

the sixth hour of forecast (panels c) and d) for BCKG and GPS, respectively). Figure 8 shows that the improvement of RMSE 

is not limited to a specific area, thanks to the good coverage of the GNSS receivers used in this work, but it is widespread with 325 

RMSE more than halved in correspondence of most receivers.  

The RMSE for the sixth forecast hour increases for both BCKG and GPS simulations compared to the first forecast hour, as 

expected because the forecast error increases with forecasting time. However, the increase of the RMSE error is larger for the 

GPS simulations (comparison between panels b) and d)) than for the BCKG simulation (panels a) and c)), and the impact of 

GNSS-ZTD data assimilation decreases with the forecasting time over the whole Italian territory.  330 

 
a) 

 
b) 
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 335 
c) 

 
d) 
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Figure 8: Maps of the PWV RMSE for the first (a, b) and sixth (c, d) forecasting hour. Panels a) and c) are for BCKG simulations, 340 
panels b) and d) are for GPS simulations. 

3.4 Results for the precipitation forecast over the whole period 

In this section we show the impact of GNSS-ZTD data assimilation on the precipitation forecast statistics for the whole period 

(2-31 October 2019). Two precipitation phases are considered: the first 3h of each simulation after the last assimilation time 

(also 0-3h) and the following 3h, i.e. from the 3rd to the 6th hour of each simulation after the last assimilation time (hereafter 345 

3-6h), to evaluate for how long the GNSS-ZTD data assimilation impacts the precipitation forecast. 

Performance diagrams are shown in Figure 9 for both BCKG and GPS and for three different precipitation thresholds, namely 

1 mm/3h, 10 mm/3h and 30 mm/3h. Starting from the analysis of the 0-3h forecast, the following four points can be noticed: 

a) the GNSS-ZTD assimilation improves the precipitation forecast for all precipitation thresholds as the GPS symbols are 

always closer to the upper right corner compared to the BCKG; b) the FBIAS of the BCKG is underestimated for all 350 

precipitation thresholds; c) the FBIAS, POD, FAR and the TS of the GPS are always larger than the corresponding BCKG; d) 

the performance of both GPS and BCKG decreases with the increasing precipitation thresholds. The point a) shows that the 

precipitation forecast is improved by GNSS-ZTD data assimilation; the points b) and c) show that the assimilation of GNSS-

ZTD improves the BCKG underestimation of the precipitation events for all thresholds. The point c) shows that, while the 

performance of GPS is improved compared to BCKG, the added value of GNSS-ZTD data assimilation is reduced by the FAR 355 

increase. This point will be confirmed by the results of the statistical test shown later in this section. The point d) shows the 

well-known difficulties to correctly predict the correct amount, location, and timing of precipitation events as their intensity 

increases. 

Results for the 3-6h phase are like those of the 0-3h period, highlighted in the four points above, with the exception that the 

FAR for the 30 mm/3h threshold is reduced by GNSS-ZTD data assimilation. In addition, the comparison of Figures 9a and 360 
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9b shows that the improvement of the model performance decreases with increasing forecasting time because the GPS and 

BCKG symbols are closer for the 3-6h phase compared to the 0-3h forecast. This is in agreement with the analysis of the PWV 

presented in the previous section. 

All in all, there are two important points to remark for the 0-3h and 3-6h performance diagrams: a) the performance of BCKG 

is improved by GNSS-ZTD data assimilation; b) the impact of assimilating GNSS-ZTD on the precipitation forecast lasts at 365 

least 6h. 

 

a) 

 
 370 
b) 
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Figure 9: Performance diagram showing precipitation scores over the whole period for BCKG (squares) and GPS (circles) for the 
0-3h period (a) and for the 3-6h period (b) after the assimilation phase for three different precipitation thresholds: 1 mm/3h (in 
red), 10 mm/3h (in green) and 30 mm/3h (in magenta). 375 

To better examine the difference of the statistical scores of the BCKG and GPS forecasts shown in Figure 9, the results of a 

bootstrap statistical test (see Appendix B for details) are shown in Table 2 for the 0-3h and 3-6h forecast phases. The level of 

statistical significance is shown in plain text (90, 95, 99%) if the GPS simulations perform better than BCKG, in bolded italic 

for the opposite case. The statistical test was computed for 1mm/3h, 5mm/3h and then every 5mm/3h up to 50 mm/3h 

thresholds. Results are shown up to 30 mm/3h thresholds because differences were not statistically significant for larger 380 

precipitations. From Table 2, it is apparent that the assimilation of GNSS-ZTD has a good and significant impact on the 

precipitation forecast because FBIAS and POD are improved for several thresholds. The FAR is worsened by the data 

assimilation because of the larger number of false alarms predicted by GPS compared to BCKG. This limits the improvement 

of ETS, which accounts for both hits and false alarms; however, the ETS has statistically significant improvements at 25 and 

30 mm/3h showing a significant and positive impact of GNSS-ZTD data assimilation for moderate-intense precipitation 385 

forecast. It is finally noticed the improvement of the FBIAS, POD, and ETS scores for both 0-3h and 3-6h phases, showing 

that the impact of GNSS-ZTD data assimilation lasts at least 6h into the forecast.  
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Table 2: Results of the resampling statistical test. Statistical significance of 90, 95 and 99% is shown in plain-text when GNSS-ZTD 
data assimilation improves the statistics, while it is shown in bolded italic when the GNSS-ZTD data assimilation has a negative 390 
impact on the statistics. Significant values less than 90% are not shown. The first number in each cell refers to the first 3h of 
forecast (0-3h), while the second number refers to the second 3h of forecasts (3-6h). 

 
 

1mm/3
h 

5mm/3
h 

10mm/3
h 

15mm/3
h 

20mm/3
h 

25mm/3
h 

30mm/3
h 

FBIAS 99;99 99;99 99;99 99;/ 99;/ 95;90 95;/ 

ETS 90;/ /;/ /;/ /;/ /;/ 90;90 95;/ 

POD 99;99 99;99 99;99 99;/ 99;/ 90;90 95;/ 

FAR 99;99 99;95 99;/ 95;/ 90;/ /;/ /;/ 
 

 

4 Conclusions 

In this paper we studied the impact of GNSS-ZTD data assimilation on the short-term (up to 6h) forecast over Italy for the 395 

month of October 2019, using the WRF model. A dense dataset of 388 GNSS receivers was used. 

The comparison between first guess and ZTD observations showed that the forecast without data assimilation underestimates 

the water vapor content for the period. The GNSS-ZTD data assimilation partially compensates for this underestimation 

increasing the water vapor content in the atmosphere. The data assimilation roughly halves both the BIAS and the RMSE 

statistics for the ZTD. The analysis over the Italian territory shows a general reduction of BIAS and RMSE of the PWV thanks 400 

to the rather homogeneous and widespread coverage of GNSS receivers.  

A case study on 15 October 2019 was chosen to show the impact of assimilating GNSS-ZTD on the precipitation forecast. The 

analysis at 18 UTC shows that 3DVar spreads the water vapor innovations both horizontally and vertically, and the 

improvement of the short-term precipitation forecast is notable, the main drawback being the increase of false alarms over 

Central Italy. 405 

Considering the statistics over the whole period, the analysis of the PWV forecast shows a clear improvement for the 

simulations with data assimilation. This improvement is widespread over the Italian territory. The PWV RMSE is almost 

halved for the first forecasting time. As expected, the improvement of the PWV RMSE decreases with forecasting time as the 

effects caused by data assimilation are partially advected out of Italy. 

Assimilating GNSS-ZTD increases the precipitation of the short-term forecast compared to BCKG, which shows a systematic 410 

underestimation of the FBIAS. Two 3h periods were considered after the last analysis time: 0-3h and 3-6h. For both periods, 

the FBIAS and the POD are increased by data assimilation and the background forecast is improved. As a drawback, the 

number of false alarms was increased by GNSS-ZTD data assimilation. ETS is also improved by data assimilation, even if the 

increase in the number of false alarms limits the impact of data assimilation on this score.  
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The results of the resampling statistical test show that the improvement for the FBIAS and POD are statistically significant for 415 

several thresholds up to 30 mm/3h. The FAR increase is statistically significant up to 20 mm/3h, while ETS has significant 

improvements for 1, 25 and 30 mm/3h. 

All in all, the statistical analysis reveals a positive impact of GNSS-ZTD and the improvement is apparent up to 6h.  

While the results of this paper are encouraging, there are several points that need future studies. First, the Mediterranean 

climate has an important seasonal variability and the impact of assimilating GNSS-ZTD must be studied in different seasons. 420 

Second, this study refers to only one month: longer periods must be considered to give a more robust assessment of the impact 

of GNSS-ZTD data assimilation on the forecast over Italy. Third, other techniques to assimilate GNSS data, as assimilating 

the precipitable water vapor (PWV) and the sensitivity of the results to the background error matrix and to the data thinning 

should be considered in future studies. Fourth, assimilating GNSS-ZTD in real-time over Italy and assimilating the ZTD 

gradients are two subjects that deserves detailed future research. 425 
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Appendix A: Precipitation scores 

Scores are computed starting from contingency tables (Table A1) for dichotomous events, i.e. events that can have only two 

values. In this case the two values are “yes” or “no” and the event is: ‘‘precipitation is above or equal a certain threshold”.  

 
Table A1. Contingency table for dichotomous events. 435 

 Forecast 

Yes No 

Observation Yes a c 

No b d 

 

In Table A1, a, b, c and d have the following meaning: 

- a represents the hits. A hit occurs when both the precipitation forecast and the corresponding rain gauge observation 

are above or equal to a rainfall threshold; 

- b represents the false alarms. A false alarm occurs when the precipitation forecast is above or equal to a rainfall 440 

threshold, while the corresponding rain gauge observation is below the same threshold; 
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- c represents the misses, i.e. when the precipitation forecast is below a rainfall threshold, while the corresponding rain 

gauge observation is above or equal to the same threshold; 

- d represents the correct no forecasts, i.e. when both the precipitation forecast and the corresponding observation are 

below a rainfall threshold. 445 

Starting from the values in Table A1, the following scores can be defined: 

- Frequency Bias (FBIAS)  

𝐹𝐵𝐼𝐴𝑆 =
𝑎 + 𝑏
𝑎 + 𝑐 

which represents the frequency of the predicted events above a rainfall threshold with respect to observed events and can 

assume values between 0 and ∞, 1 being the best value possible. 450 

- Probability of Detection (POD): 

𝑃𝑂𝐷 =
𝑎

𝑎 + 𝑐 

which is the ratio between the number of correctly predicted events and the number of observed events and can assume values 

between 0 and 1, with 1 the best value possible. 

- Threat Score (TS):  455 

𝑇𝑆 =
𝑎

𝑎 + 𝑏 + 𝑐 

which is given by the ratio between the number of events correctly predicted and the sum of observed and predicted events. 

TS assumes values between 0 and 1, and 1 is the best value that can be obtained. 

- Equitable Threat Score (ETS):   

𝐸𝑇𝑆 = 6#6!
67871#6!

,       where 𝑎9 =
(678)(671)
678717<

 460 

ETS is similar to TS, but takes into account for the possibility of correctly forecasting an event by chance. It varies in the range 

between -1/3 and 1, being 1 the best value. A value of zero represents a useless forecast, in which the probability of correctly 

predicting an event is random.   

- False Alarm Rate (FAR): 

𝐹𝐴𝑅 =
𝑏

𝑎 + 𝑏 465 

which is the ratio between false alarms and number of predicted events and can assume values between 0 and 1. In this case 

the best value possible is 0. Scores were computed after summing contingency table elements for each model over all 

simulations (4x30=120 times in this paper, both for the 0-3h and 3-6h forecast interval). 
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Appendix B: The resampling method 

The resampling method from Hamill (1999) is used for assessing if score differences are statistically significant in a confidence 470 

interval. For this purpose, an hypothesis test is performed. The null hypothesis is that the scores of the considered models do 

not differ.  

In our case, the null hypothesis is that the differences between the two model scores, i.e. BCKG and GPS, are zero. Let 𝑆$and 

𝑆) be a generic score, namely FBIAS, ETS, POD and FAR (see Appendix 1 for details), for the two model types, BCKG and 

GPS, respectively. The null hypothesis can be then written as: 475 

 
𝐻=:  𝑆$ − 𝑆) = 0 

 
The test statistic is calculated after summing contingency table elements for each model over all simulations (4x30=120 times 

in this paper, both for the 0-3h and 3-6h forecast intervals). The contingency tables can be written as a vector: 480 

 
𝑥!,# = (𝑎, 𝑏, 𝑐, 𝑑)!,# 

Where i is the model type (BCKG or GPS) and j=1, …,120 is the contingency table for each time interval. 

The contingency table elements are then summed over all times for both model forecasts BCKG and GPS: 

𝑆! = 𝑓,-𝑥!,#

$

#%&

. 485 

and the test statistic is given by the difference between S1 and S2.  

Resampled sums can be done after randomly choosing either one or the other model for each time. Let 𝐼>	be a random number 

which can assume values 1 or 2 for BCKG and GPS, respectively, with j=1,…,120. We can then sum the shuffled vectors over 

all times: 

𝑆&∗ = 𝑓,-𝑥(#,#

$

#%&

. 490 

and sum separately data not selected for the first sum, given by the index (3 – 𝐼>): 

𝑆)∗ = 𝑓/∑ 𝑥(+,(#),#$
#%& 1. 

Each sample is produced to be consistent with a null distribution, i.e. score differences (𝑆$∗ − 𝑆)∗) are zero. 

This random sampling is performed many times (10 000).  

We consider the significance levels of α= 0.01, α= 0.05 and α= 0.1 and we test the null hypothesis 𝐻= with the percentiles. Let 495 

𝑡A =
B
)
	and 𝑡C =

($#B)
)

. 

The null hypothesis 𝐻= is rejected at the level 90 % (α=0.1), 95%(α=0.05) or 99% (α=0.01) if  

𝑆$ − 𝑆) < 𝑡A 
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or 

𝑆$ − 𝑆) > 𝑡C 500 
where 𝑆$ and 𝑆) are the non-resampled scores. 
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