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Abstract. Accurate flood damage modelling is essential to estimate the potential impact of floods and to develop effective 

mitigation strategies. However, flood damage models rely on diverse sources of hazard, exposure and vulnerability data, 

which are often incomplete, inconsistent, or totally missing. These issues with data quality or availability introduce 

uncertainties in the modelling process and affect the final risk estimations. In this study, we present INSYDE 2.0, a flood 

damage modelling tool that integrates detailed survey and desk-based data for an enhanced reliability and informativeness of 15 

flood damage predictions, including an explicit representation of the effect of uncertainties arising from an incomplete 

knowledge on the variables characterising the system under investigation. 

1 Introduction 

In recent years, a policy shift from a mere hazard control to a more holistic flood risk management has steadily increased the 

demand for reliable quantitative flood risk assessment methodologies (Sayers et al. 2002; Merz et al., 2010). However, 20 

despite the significant advancements achieved in flood damage modelling over the past decade, the application of developed 

tools in practical decision-making for flood risk management has been limited, mainly because of concerns on modelling 

uncertainties affecting the results of loss estimations (Morgan et al., 1990; Apel et al., 2008; Wagenaar et al., 2016; Winter et 

al., 2018; Marvi, 2020).  

Uncertainty, arising from an incomplete knowledge of the system under investigation, in terms of input data and/or model 25 

assumptions, could be reduced by enhancing model complexity (i.e., better representation of modelled mechanisms) and/or 

by using high quality input data (Wagenaar et al., 2016). In this regard, recent literature has demonstrated that multi-variable 

flood damage models not only outperform simpler (stage-damage) functions (Schröter et al., 2014; Wagenaar et al., 2017; 

Amadio et al., 2019), but also provide ancillary advantages. These cover the ability to identify key variables influencing 

damage (useful, for instance, in guiding interventions for improving building resilience) and, for probabilistic models, the 30 

possibility of including the explicit treatment of uncertainty into the modelling framework, thus supporting comprehensive 

and informative damage assessments (Morgan et al., 1990; Rözer et al., 2019; Zarekarizi et al., 2020). Nevertheless, practical 

constraints, such as budget, operational timelines, computational efforts, as well as issues in data quality and availability, 

often hinder the actual implementation of such models at large (e.g., river basin) scale, with the consequent risk of providing 

decision-makers with a limited perspective on potential damage scenarios (Pappenberger and Beven, 2006; Merz et al., 35 

2008; Wagenaar et al., 2016; Albano et al., 2018; Zarekarizi et al., 2020; Razavi et al., 2021). 

With specific reference to data, for the case of residential buildings, literature has pointed out that several features 

characterising both the event (e.g., water depth, flow velocity, inundation duration, debris and contamination loads) and the 

exposed object (e.g., material and construction type, age and finishing quality of the building, in addition to its geometrical 

parameters and more micro-scale characteristics) affect the resulting flood losses (Penning-Rowsell et al., 2005; Dottori et 40 

al., 2016; Wagenaar et al., 2016; Mohor et al., 2020; Nofal et al., 2020; Malgwi et al., 2021; Paulik et al., 2022). Hence, to 
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ensure accurate flood damage assessments, based on a thorough characterisation of the building stock, it would be crucial to 

count on comprehensive vulnerability and exposure data, including relevant ancillary information. Unfortunately, the 

availability and reliability of such data is often limited, especially for large-scale applications (Papathoma-Köhle et al., 2007; 

Schröter et al., 2018; Bhuyan et al., 2022; Velez et al., 2022).  45 

To tackle this issue, a few existing tools have been designed to adapt to actual available knowledge on hazard and building 

features: an example is represented by INSYDE (Dottori et al., 2016), which is a synthetic (i.e., based on “what-if” analysis) 

multi-variable flood damage model for residential buildings, capable of handling missing input data by assigning them 

specific default values typical for the country/region of implementation (Dottori et al., 2016; Molinari et al., 2017; Scorzini 

et al., 2022). However, relying on this approach could lead to biased results, since missing and known inputs are treated as 50 

equivalent when the former are set to their corresponding built-in defaults. This challenge could be mitigated by considering 

probabilistic distributions of unknown input data within a Monte-Carlo approach, which still necessitates of representative 

empirical distributions for the relevant input variables, in order to account for the local nature of flood damage mechanisms 

and to ensure meaningful and reliable uncertainty bounds (Cammerer et al., 2013; Wagenaar et al., 2018; Sairam et al., 2019; 

Scorzini et al., 2021, 2022). However, the commonly poor availability of specific databases (particularly concerning very 55 

detailed building attributes, such as the elevation of the first floor from ground level or the perimeter of internal walls), 

coupled with the time-consuming operation of conducting surveys, are currently the main obstacles to thorough analyses of 

model’s sensitivities to uncertainties stemming from input data. 

The divergent needs of balancing modelling costs and informative results (Di Bacco et al., 2023; Sieg et al., 2023) then pose 

two questions concerning the applicability of sophisticated and data-intensive models in flood damage assessments: (i) how 60 

can multi-source data be used to provide an added value to advanced damage modelling tools in terms of output quality and 

usefulness? (ii) which are essential variables that play a key role in constraining the uncertainty bounds, making them worthy 

of investments in data collection?  

The present paper aims at answering these questions, by leveraging the updating of the INSYDE model towards an use with 

the full treatment of input data uncertainty, involving the exploitation of detailed flood hazard and building inventories, here 65 

specifically developed and/or consulted for the Po River District (northern Italy, Figure S1), but with the potential for 

replication in any other contexts.  

2 Materials and methods 

2.1 From INSYDE to INSYDE 2.0 

INSYDE is a synthetic, micro-scale, multi-variable flood damage model for the residential sector, released as an open-source 70 

R script, originally developed and validated for Italy, but also extended to Belgium (Dottori et al., 2016; Molinari et al., 

2017; Scorzini et al., 2022). In INSYDE, the calculation of direct economic damages at the building scale relies on explicit, 

physically based mathematical equations describing flood damage mechanisms for each building component (and sub-

components), as a function of more than 20 variables, including flood event (i.e., water depth, flow velocity, inundation 

duration, sediment and pollution load) and building characteristics (i.e., geometric and qualitative features (e.g.: footprint 75 

area, internal and external perimeter, building material, type and quality, etc.)), as well as prices for the reparation or 

replacement of damaged items. For some building components, the damage mechanisms affected by greater uncertainties are 

modelled probabilistically by accounting for the probability of damage occurrence as a function of certain hazard intensity 

measures.  

As stated in the Introduction, in case of missing information, the original model proposed deterministic default values for 80 

each input variable, calibrated on expert judgment and/or based on the analysis of large-scale local databases (Dottori et al., 

2016). Some of them, such as extensive variables (e.g., internal area, external and internal perimeter of the building, etc.), 
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were defined by default functional relationships calibrated on a typical configuration of a 100 m2 Italian house. According to 

Authors’ experience, the implementation of INSYDE can lead to biased results (due to the pairwise consideration of known 

and unknown input data) or inaccurate estimations, especially when applied to large buildings, like apartment blocks, 85 

implying a scalability issue (Galliani et al., 2020). For this reason, in INSYDE 2.0, following the strategy proposed for the 

Belgian version of the model (Scorzini et al., 2022), the housing unit (HU) has been chosen as the minimum calculation item 

for multifamily buildings (i.e., apartment buildings). In addition, to enhance and ease model’s usability and to mitigate the 

impact of input data quality issues on the accuracy of damage assessment, an algorithm has been implemented to 

automatically split the building’s footprint area into a suitable number of HUs if the value introduced by the user 90 

significantly exceeds a representative building size. 

 Considering the sensitivity of damage estimates to individual input variables (albeit in varying degrees, not known a-priori), 

it is crucial to conduct a comprehensive analysis of the effects of missing information on model outcomes, by accounting 

also for both mutual and non-linear relationships among the variables. Such an approach can provide practical insights for 

finding an efficient trade-off between model accuracy and efforts for input data retrieval (Di Bacco et al., 2023); at the same 95 

time, a shift from the use of fixed deterministic values to suitable distributions of input variables could enhance users’ 

awareness on damage estimation uncertainty. 

By employing a step-wise procedure, the present study then aims to address the aforementioned issues by proposing an 

updated version of INSYDE that will also enable the exploration of the two research questions outlined in the Introduction. 

In detail, the methodological approach consists of the main following phases (Figure 1): 100 

 

Figure 1. Overview of the methodological approach. Dotted-line boxes represent an alternative dataset for the analysis, while 
maintaining the same methodological flow as depicted in the solid-line boxes. 

 Data collection (Section 2.2) to acquire relevant information on hazard and building features required by INSYDE;  

 Development of INSYDE 2.0, incorporating a module for handling missing inputs in a probabilistic framework: this 105 

phase involves the generation of synthetic datasets based on the collected empirical data combined with expert-based 

knowledge concerning relationships between hazard variables (Section 2.3); 

 Assessment of model’s sensitivities to missing input data: this phase includes the analysis of the feature importance using 

the developed synthetic datasets, as well as the evaluation of the impact of individual or combined missing inputs on 

uncertainty in damage estimation. This analysis has been conducted on synthetic building portfolios and on observed 110 

datasets for two recent flood events in Italy (Sections 2.4). 
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2.2 Data collection 

Due to the local nature of damage models, the initial phase focuses on establishing the foundation for a model capable of 

accurately capturing the hazard and building-specific details of the region of implementation, here represented by the Po 

River District as an exemplificatory case. To achieve this, a “survey dataset” has been developed as a basis for the generation 115 

of empirical distribution functions (EDFs) for the variables at stake, which serve for sampling representative features of the 

populations of interest in case of unknown inputs are encountered in the application of INSYDE. Virtual surveys (Scorzini et 

al., 2022), offering in-depth insights into building vulnerability and supporting the establishment of functional relationships 

for different building features (e.g., internal and external perimeter as a function of footprint area), can be employed as an 

additional means to conventional approaches based on statistical data and building inventories. In the specific case of the Po 120 

River, while traditional datasets (derived from the Italian National Institute of Statistics (ISTAT) and OpenStreetMap 

(OSM)) provided extensive coverage of the whole district for the entire building stock, virtual surveys focused on a smaller 

sample due to limited real estate listings with complete information and the time-demanding micro-scale analysis of building 

details, photographs and floor layouts. With this virtual approach, 119 buildings were assessed, compiling comprehensive 

information on building material, systems, quality, as well as the position and dimensions of building components, among 125 

other relevant details (Huayra Mena, 2022). The EDFs describing typical inundation phenomena in terms of water depth and 

flow velocity can be instead derived from the analysis of the hazard maps included, for instance, in Flood Risk Management 

Plans or other detailed hydraulic studies existing for the investigated region. In the analysed case study, we leveraged the 

information contained in the 2021 update of the Flood Risk Management Plan of the Po River Basin District Authority 

(Autorità di Bacino del Fiume Po, 2022), which consisted of raster files obtained from 2D hydrodynamic modelling of flood 130 

scenarios across various return periods (ranging from 20 to 500 years) in specific catchments of the district. These 

catchments represent distinctive inundation types in both rural and urban areas, as well as in flat or steeper regions of district, 

where inundation phenomena typically result from riverine and artificial channel floods in the central plain area and flash 

floods in the mountainous regions located in the northern and southern parts of the basin (Figure S1). The medium-frequency 

scenario has been selected as the representative case for deriving the EDFs for water depth and flow velocity, based on its 135 

designation as the typical reference scenario for implementing mitigation measures in the Po catchment. The inclusion of 

different inundation types in the hazard dataset was driven by the goal of establishing a comprehensive model applicable to 

the entire district, aligning with exposure and vulnerability features which are representative of the whole region. Expert 

knowledge was utilised to determine suitable distributions for other hazard variables (as described in Section 2.3), like 

inundation duration and sediment load, with limited or null availability of detailed information. For instance, due to the 140 

inherent random nature of water pollution in flood events, a conservative assumption was made for the variable accounting 

for this process, by assigning a 50% probability of having contaminated floodwater. Details on data statistics derived from 

the analysis of ISTAT data, OSM building inventory, virtual surveys and flood-related data are available in the work by 

Huayra Mena (2022). 

2.3 Generation of synthetic datasets for explicit treatment of input data uncertainty 145 

The probability distributions of the different input features representative of the Po River District for INSYDE 2.0 were 

generated based on the described collected hazard and building data, while also accounting for the intrinsic interdependence 

among the variables (Tables 1 and 2). Specifically, the assumptions regarding the relationship between the building features 

relied upon the survey dataset and findings reported in Huayra Mena (2022), while a physically informed approach was 

adopted in the case of the hazard variables, depending on the features characterising both riverine (i.e., long-duration, low 150 

flow velocity) and flash (i.e., rapid on-set, greater flow velocities and shallower water depth compared to other type) 

inundation phenomena. 
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More in detail, probability distributions were first retrieved independently for the hazard variables based on detailed data, 

when available (he, v), or upon expert-based assumptions derived from aggregated or approximated data (d, s, q). Then, 

considering a set of 250,000 elements, the following functional dependencies were assumed to describe the correlation 155 

among the features, based on the values sampled for he, d and v: 

𝑑∗ = 𝑐 + 𝑐 ∙ √ℎ𝑒 ∙ 𝑁(𝜇 = 1, 𝜎 = 0.2)  

𝑣∗ = 𝑐 − 𝑑/max (𝑑) ∙ 𝑁(𝜇 = 1, 𝜎 = 𝑐 − 𝑑/max (𝑑))  

𝑠∗ = 𝑐 + 𝑐 ∙ √𝑣 ∙ 𝑁(𝜇 = 1, 𝜎 = 0.2) 

with N being a random number from a normal distribution with mean  𝜇 and standard deviation  𝜎, while the coefficients ci 160 

are constant values introduced in the expert-based approach to obtain the desired functional relationships among the 

variables. q was instead assumed independent from the other hazard features. 

Although the resulting d*, v* and s* account for the correlation among the hazard variables, they do not follow the 

probability distributions retrieved independently for the variables d, v and s; on the contrary, the latter were sampled 

independently from the correct distributions, but they do not provide information on the rank correlation among the 165 

variables. To obtain a dataset with both the mentioned properties, the values of d*, v* and s* were then ranked and replaced 

with the corresponding percentiles derived from the ordered versions of d, v and s. 

Furthermore, additional synthetic distributions (referred to as “extended synthetic dataset” hereinafter), while preserving the 

nature of the identified functional relationships among the variables, but spanning over wider ranges of them (as reported in 

the Supplementary material), were also generated to support a more comprehensive analysis of INSYDE 2.0, regardless of 170 

the specific characteristics of the Po River District.  

This dual analysis is rooted, on one hand, in the need for context-specific insights into flood damage assessment, in order to 

support efficient data retrieval efforts, allowing for a prioritisation of data collection on variables that really play a key role 

in the considered context. On the other hand, a non-region-specific scenario, encompassing a broader range of values for the 

input variables, is instead aimed at providing more general findings on the influence of the different variables on the damage 175 

estimation process.  
 

Table 1. Hazard features considered in INSYDE 2.0 and assumed probability distributions for the case of the Po River District. 

Variable Description Distribution 

he Water depth [m] Weibull minimum (shape=1.25, scale=1); if  h < 0.01 resampled from Uniform{0.01, 0.03} 

d 
Inundation duration 
[hours] 

Weibull minimum (shape=1.25, scale=36); if  d < 1 resampled from Uniform{1, 2} 

q 
Presence of pollutants 
[yes (1) / no (0)] 

P(q=0) = 0.5, P(q=1) = 0.5 

v Velocity [m/s] Weibull minimum (shape=1.15, scale=0.35); if  v < 0.05 resampled from Uniform{0.05, 0.1} 

s Sediment load [-] Uniform{0.05, 0.2} 

 

Table 2. Building features considered in INSYDE 2.0 and assumed probability distributions for the case of the Po River District . 180 

Variable Description Distributions 

BT Building type [-] 
Empirical distribution function based on ISTAT data 
P(BT=1 (Detached))=0.54; P(BT=2 (Semi-detached))=0.10; P(BT=3 (Apartment))=0.13; 
P(BT=4 (Attached corner))=0.10; P(BT=5 (Attached center))=0.13 

FA Footprint area [m2] 

Empirical distribution function based on OSM data 
Truncated normal (m = 160, s =60, min=50, max=320) if BT=1 

Truncated normal (m = 110, s =20, min=50, max=160) if BT=2 

Truncated normal (m = 95, s =20, min=60, max=160) if BT=3 

Truncated normal (m = 85, s =15, min=45, max=140) if BT=4 

Truncated normal (m = 85, s =15, min=45, max=120) if BT=5 
IA Internal area [m2]  0.9 ∙ FA 
BA Basement area [m2]  0.5 ∙ FA ∙ Normal(m= 1, s=0.2) 
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EP External perimeter [m] 

Empirical relationships identified from the analysis of OSM data  
4.1 ∙ √FA ∙ Normal(m= 1, s=0.2) if BT=1  

3 ∙ √FA ∙ Normal(m= 1, s=0.2) if BT=2 or BT=4 

−6.9729 + 0.2885 ∙ FA ∙ Normal(m= 1, s=0.2) if BT=3 

2 ∙ √FA ∙ Normal(m= 1, s=0.2) if BT=5 

IP Internal perimeter [m] 

Empirical relationships identified from the analysis of the data from the virtual surveys  
20.151 + 0.6254 ∙ FA ∙ Normal(m= 1, s=0.2) if BT=1 

20.119 + 0.6105 ∙ FA ∙ Normal(m= 1, s=0.2) if BT=2 

20.336 + 0.6576 ∙ FA ∙ Normal(m= 1, s=0.2) if BT=3 

9.709 + 0.6902 ∙ FA ∙ Normal(m= 1, s=0.2) if BT=4 

16.801 + 0.559 ∙ FA ∙ Normal(m= 1, s=0.2) if BT=5 

BP Basement perimeter [m] 
Empirical relationships identified from the analysis of the data from the virtual surveys  
4.2 ∙ √FA ∙ Normal(m= 1, s=0.2) 

NF Number of floors [-] 
Empirical distribution function based on ISTAT data 
P(NF=1) = 0.09, P(NF=2) = 0.56; P(NF=3) = 0.25; P(NF>3) = 0.10 

IH Interfloor height [m] 
Empirical distribution function based on survey data 
Virtual Survey ECDF + Truncated normal (m= 0, s=0.5, min=-0.15, max=0.15)  

BH Basement height [m] 
Empirical distribution function based on survey data 
Skewed normal (skewness= -4, m= 3, s=0.25) 

GL Ground floor level [m] 
Empirical distribution function based on survey data 
Normal(m= 0.1, s=0.09) 

BL Basement level [m] -GL-BH-0.3 

BS Building structure [-] 
Empirical distribution function based on ISTAT data 
P(BS=1 (Reinforced concrete)) = 0.33; P(BS=2 (Masonry)) = 0.67 

FL 
  Finishing level 
(i.e. building quality) [-] 

Empirical distribution function based on survey data 
P(FL=0.8 (Low)) = 0.05, P(FL=1 (Medium)) = 0.42; P(FL=1.2 (High)) = 0.53 

LM Level of maintenance [-] 
Empirical distribution function based on ISTAT data 
P(LM=0.9 (Low)) = 0.13, P(LM=1 (Medium)) = 0.47; P(LM=1.1 (High)) = 0.40 

YY Year of construction [-] Empirical distribution function based on ISTAT data  

PD 
Heating system 
distribution [-] 

Empirical distribution function based on the analysis of grey-literature and survey data 
if YY ≥ 1990: P(PD=1 (Centralised)) = 0.11, P(PD=2 (Distributed)) = 0.89  
if YY < 1990: P(PD=1) = 0.6, P(PD=2) = 0.4 

PT Heating system type [-] 
Empirical distribution function based on the analysis of grey-literature and survey data 
if YY > 2000 & FL > 1: P(PT=1 (Radiator)) = 0.2, P(PT=2 (Pavement)) = 0.8 
else P(PT=1) = 0.8, P(PT=2) = 0.2 

BE* Basement exists [-] 
Empirical distribution function based on survey data 
P(BE=0 (No)) = 0.2, P(BE=1 (Yes)) = 0.8 

* new variable introduced in INSYDE 2.0. 

2.4 Model’s sensitivities to missing input data 

2.4.1 Analysis of the feature importance 

In the new framework for missing data handling, the generated synthetic distributions can be exploited in a feature 

importance exercise aimed at a quantitative assessment of the sensitivity of damage calculations to the absence of 185 

information on certain input variables, in order to identify key features deserving attention in data collection. This analysis, 

based here on a probabilistic test performed on a complete portfolio of 250,000 hypothetically flooded buildings (generated 

from the identified distributions for the Po District as well as for the “extended case”), involved the following steps: first, 

INSYDE 2.0 is used to calculate damage on the complete dataset, where all input values are assumed to be available, and the 

resulting estimate is taken as a reference point. Next, the values of one input variable are removed at a time from the dataset, 190 

and the corresponding missing values are sampled from the generated synthetic dataset. This process is repeated for each 

variable and, each time, damage is recalculated; the difference in damage with respect to the reference value is finally 

recorded and then the variance induced by each feature on model outcome can be determined.  
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2.4.2 Analysis of damage estimation uncertainty 

In addition to assessing the possible contribution of unknown single input features to damage estimation uncertainty, a 195 

further analysis can be carried out to evaluate the impact of the combined absence of multiple input variables on the 

variability of damage estimations. 

2.4.2.1  Analysis on the synthetic dataset 

A first test has been conducted, for computational reasons, on a subsample of 5,000 buildings extracted from the complete 

building portfolio of the Po River District, this time altered to account for the presence of multiple unknown input data 200 

within the sample. The reduction in the dataset’s level of completeness was achieved by assuming different percentages of 

missing data for each feature, which were assigned based on their typical availability or ease of retrieval, as experienced by 

the Authors in the Italian context. Except for he and FA, which were considered as the minimum known variables for a 

damage assessment, the missing values were placed randomly, as follows: 10% for variables of easy retrieval, either due to 

their availability at the meso-scale (e.g., census block scale) or to their low variability (BT, IH, NF, BS, LM, FL, YY) and 205 

20% for other building features that require specific surveys for correct characterisation (EP, BE and related variables, BH, 

BA, BP); for GL, which is generally not available in databases, but potentially appraisable through (virtual) surveys, this 

percentage was increased to 50%, while 95% was assumed for the building features that are hardly ever known (or only after 

internal surveys), such as IP and PD. For the hazard variables, the percentages were assumed to be 10, 20, 50 and 80%, 

respectively for v, d, s and q, taking into account the increasing modelling costs from a simple 2D steady hydrodynamic 210 

simulation to a more complex unsteady run with the inclusion of sediment transport modelling; the very specific and detailed 

data requirements regarding the presence and propagation of pollutants instead explain the higher value assumed for q. For 

each tested object, 1,000 complete replicates were generated by filling missing input data with values sampled from the 

developed synthetic distributions and the corresponding average damage and standard deviation were calculated. 

2.4.2.2 Analysis on field data from recent flood events 215 

A similar analysis has been also carried out considering real-world, field databases compiled for two flood events that 

occurred in the Po River valley: the 2002 Adda flood in Lodi and the 2010 Bacchiglione flood in Caldogno, both of which 

have been described in previous applications of INSYDE (Dottori et al., 2016; Amadio et al., 2019; Molinari et al., 2020). 

Table 3 provides a concise overview of the available datasets, by specifically highlighting the unknown variables for 

INSYDE 2.0 in the two case studies. As typical in large-scale flood damage assessments, the missing data mainly concerned 220 

the ultra-detailed characteristics of the dwellings, while only approximate information on inundation duration was available 

from the reports of the events, which provided a rough indication of 24 hours on average for both cases. To ensure a 

reasonable level of uncertainty, while considering the available information on inundation duration, the empirical 

distribution for this variable was modified with respect to the one in Table 1, by sampling d values from an assigned 

truncated normal distribution centred at 24 hours and spanning between 16 and 48 hours. As in the previous case, the 225 

approach entailed calculating damage over 1,000 complete replicates for each affected building and registering the 

corresponding damage statistics.  

Furthermore, considering the availability of observed losses for the two case studies, we also investigated the impact of 

missing inputs on the results of classical validation exercises, prompting a broader discussion on the general interpretation of 

their results when performed for simple (e.g., univariable) or complex models without a proper treatment of uncertainties 230 

(Molinari et al., 2019, 2020). In this context, since its formulation, INSYDE has undergone continuous updates and 

validation, with reported superior performance when compared to other tested damage models (Dottori et al., 2016; Amadio 

et al., 2019; Molinari et al., 2020). Although these previous studies consistently demonstrated INSYDE’s capacity to provide 
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accurate damage estimations, the reliance on fixed default values for missing input data limited the quantitative assessment 

of the uncertainty associated with validation outcomes.   235 

Table 3. Unknown input features for INSYDE in the considered case studies of Lodi and Caldogno floods. 

Case study Unknown input features in the dataset 

Lodi 
d*, s, IP, IH, BH, PD, PT, BA, BP (for all buildings (271) in the dataset) 
GL and NF (partial availability - known, respectively, for 47 and 265 buildings) 

Caldogno d*, s, q, IP, IH, BH, GL, PD, PT, LM, BA, BP, HB (for all buildings (294) in the dataset) 

3 Results and discussion 

3.1 Generation of the synthetic datasets 

The pair plot in Figure 2 displays the pairwise relationships among the flood hazard variables, water depth (he), flow 

velocity (v), inundation duration (d) and sediment load (s), characterising the developed synthetic dataset for the Po River 240 

District. This graphical tool employs a scatter plot to illustrate the relationship between each pair of variables in the dataset, 

while the diagonal axis displays kernel density plots for each variable. 

 

Figure 2. Pairwise relationships assumed for the generation of the Po River District synthetic dataset: hazard variables (water 
depth (he), flow velocity (v), inundation duration (d) and sediment load (s)). 245 
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From the patterns represented in Figure 2, it is evident the physically informed approach adopted for describing the 

relationships among the variables: for instance, a positive relationship between he and d, as well as between v and s, with the 

latter explained by the tendency of flash floods to carry greater amounts of debris; similarly, d and v were considered to be 

negatively correlated, in consideration of the short duration typically associated with flash floods. 250 

An analogous pair plot for the extensive building variables is presented in Figure 3, which illustrates the functional 

relationships (Table 2) identified from the analysis of the building survey dataset for the region (Huayra Mena, 2022). 

For clarity, it should be noted that the distributions for the “Apartment” category are represented in Figure 3 at the building 

block scale, having assumed a number of housing units (nHU ≥1) generated from a Weibull distribution with shape and scale 

parameters equal to 2 and 4, respectively. 255 

The pair plots illustrating the extended synthetic dataset (generated for obtaining more general findings on the influence of 

input features on damage estimation beyond the specificities of the region under investigation) are provided in the 

Supplementary material (Figures S2 and S3) for comprehensive reference. 

 

Figure 3. Pairwise relationships assumed for the generation of the Po River District synthetic dataset: extensive building variables 260 
(footprint (FA) and basement (BA) area; external (EP), internal (IP) and basement perimeter (BP)). 
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3.2 Model’s sensitivities to missing input data 

3.2.1 Analysis of the feature importance 

This section reports on uncertainty in damage calculations resulting from the potential lack of knowledge on certain input 

data in INSYDE 2.0. In detail, Figure 4 summarises the results of the feature importance analysis by showing the difference 265 

in computed damage when applying the model to a reference complete synthetic set of 250,000 buildings and to their 

replicas obtained by replacing the values of one input variable at a time with a sampling from the Po River District case 

(upper panel) or from the extended synthetic dataset reported in the Supplementary material (lower panel).    

 

Figure 4. Feature importance in INSYDE 2.0: test with sampling from the Po River District synthetic dataset (upper panel); test 270 
with sampling from the extended synthetic dataset - ref. to Figures S2-S3 (lower panel). Variables are ranked based on the median 
value of the estimated absolute damage difference compared to the reference damage calculated on a complete dataset. Outliers 
are visualised as red points in the plots.  

Consistently with the literature (Kelman and Spence, 2004; Schröter et al., 2014; Dottori et al., 2016; Amadio et al., 2019; 

Scorzini et al., 2022), Figure 4 confirms the importance for flood damage modelling of relying on accurate input data for 275 

water depth, even though damage differences associated to it are limited, on average, around 10,000 Euro (upper panel), due 

to the intrinsic small variability assumed for this variable in the generation of representative distributions for the context of 

northern Italy (Figure 2). Albeit with a comparatively lower influence, sediment load, inundation duration and the indicator 

for the presence of pollutants can be ranked as other important hazard input features, with the latter two inducing more 

variability in the results, as a consequence of some damage mechanisms activated in INSYDE on the basis of thresholds on d 280 

or q (Dottori et al., 2016; for clarity, an example of such damage mechanism is reported in the Supplement). The riverine 

inundation characteristics, typical of the examined context (Figure 2) and insufficient to cause structural damages (Clausen 
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and Clark, 1990), also explain why a lack of input data on flow velocity does not induce any tangible effect on damage 

estimation. A different pattern is instead visible in the lower panel of Figure 4, obtained from a sampling based on the 

extended synthetic dataset (Figures S2 and S3), featuring larger ranges of values for the tested input variables and thus 285 

providing more general insights on model sensitivity to input data availability (regardless of the specific local characteristics 

for the context of model customisation). In this case, apart from the greater differences observed in absolute terms, Figure 4 

indicates that velocity has a far more relevant impact than inundation duration on damage estimation uncertainty when 

dealing with long-lasting flood events (as represented in the extended synthetic dataset, Figure S2), exceeding the duration 

threshold assumed for certain damage mechanisms (Dottori et al., 2016; please refer to the code of INSYDE 2.0 for details).  290 

Regarding building characteristics, the upper panel of Figure 4 reveals the significant and obvious influence of the extensive 

features (FA, IP, EP), of the binary variable BE for the presence of the basement (which masks the importance of the 

basement-related variables, BA, BP and BH), and building’s elevation with respect to the ground level (GL). Finishing level 

(FL) causes relevant variability on model outcomes, with an observed median damage difference of about 670 € for the Po 

River data, while a detailed knowledge on variables such as level of maintenance (LM), building structure (BS) and heating 295 

distribution (PD) type, and even more the number of floors (NF) and the year of construction (YY), appear to provide an 

overall negligible impact on damage estimation uncertainty. Again, such results are dependent on the specific datasets used 

for sampling missing values and, therefore, for a more general overview on the ranking of the feature importance in 

INSYDE 2.0, it is possible to refer to the lower panel of Figure 4, which illustrates how some variables (such as NF, BS, PD 

and PT) gain increasing importance when hazard parameters are set to (larger) values, capable of activating damage 300 

mechanisms to more building components. These findings then demonstrate how the importance of specific input parameters 

can vary depending on the characteristics of the study region, thus highlighting the cruciality of relying on regionally 

representative hazard and building datasets for an enhanced and efficient flood damage modelling. 

3.2.2 Analysis of damage estimation uncertainty 

3.2.2.1  Analysis on the Po River District synthetic dataset 305 

Figure 5 reports the results of the analysis aimed at evaluating the performance of INSYDE 2.0 when the absence of multiple 

inputs is considered. In detail, the figure shows the mean damage and standard deviation calculated for each of the 5,000 

modified (i.e., with multiple missing inputs) items over their 1,000 complete replicates generated by populating the missing 

information with values sampled from the Po River District synthetic dataset. Interestingly, the figure shows that, for all 

building typologies, the results tend to lie on two different trend lines corresponding to higher or lower damage variability. A 310 

closer inspection of the results revealed that these distinct patterns are not necessarily related to the quantity of missing 

variables, but rather to their role in the damage mechanisms implemented in INSYDE. Indeed, in certain instances, the 

estimated damage for certain building components depends on the occurrence of specific conditions across multiple 

variables. In such cases, when more than one of these conditions are met, the maximum resulting damage is assumed to hold, 

as the most unfavourable state is thought to dominate the damage mechanism, regardless of other conditions (Dottori et al., 315 

2016). This situation is exemplified by components related to interior or exterior plaster (details in the Supplementary 

material and in the code). Here, damage occurrence is supposed to depend on inundation duration and flow velocity, as 

expressed by the corresponding fragility functions, as well as on water quality (q) and level of maintenance (LM) of the 

building; specifically, a 100% probability of damage occurrence is assigned in case of contaminated water (q=1) or 

average/poor level of maintenance (LM≤1). These conditions applied to the latter two variables are the ones that eliminate 320 

any potential estimation uncertainties arising from missing data on other parameters involved in the damage mechanism. A 

similar uncertainty-limiting behaviour is also distinctive of damage to pavement components, which theoretically depend on 

different input features, but only when finishing level (FL) is set to certain values (FL>1).  



12 
 

 

Figure 5. Damage estimation variability observed on the altered (i.e., with randomly generated multiple missing inputs) Po River 325 
District synthetic dataset. 

3.2.2.2 Analysis on observed data from recent flood events 

Similar trend patterns to those presented in Figure 5 are also evident in Figure 6, which displays the results obtained by 

replicating the data filling procedure to the datasets for the flood events in Lodi and Caldogno, both of which originally 

characterised by the presence of some unknown input features (Table 3). The minor differences visible between the two case 330 

studies (Figure 6) are again a consequence of the type of missing variables within each dataset.  

 

 

Figure 6. Damage estimation variability observed on the datasets for the case studies of Lodi and Caldogno. 

Specifically, the points lying on the lower variability trend line for the Lodi case are representative of those buildings with 335 

available information on GL, which significantly reduces damage estimation uncertainty. If excluding these data, Lodi 

generally exhibits slightly larger standard deviations for the same calculated mean damage in Caldogno. Such difference can 

be explained by considering the input data availability in the two cases for certain key variables (q and LM) which can act as 

limiting or amplifying factors of damage estimation variability. In detail, complete information on these key variables is only 

available for the Lodi dataset, with just a restricted number of buildings exhibiting the mentioned “uncertainty limiting 340 

values” q=1 and LM≤1 (respectively in ~6% and ~15% of the elements in the dataset). 
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The two cases studies were also considered to highlight the value of the proposed approach in interpreting the results of 

model validation, particularly important for a complex multi-variable damage model like INSYDE. The outcomes of the test 

are summarised in Table 4, which compares total observed losses against damage statistics obtained by applying INSYDE 

2.0 over 1,000 replicates for each affected item in the two building portfolios containing missing input features. These 345 

findings are complemented by Figure 7, which offers a visual representation of the detected differences between estimations 

and observations at the individual building scale.  

Table 4 illustrates a general convergence between observed and estimated damages, particularly around the 75th percentile, 

where the calculated losses align with the reported values. The median estimates exhibit a satisfactory level of agreement 

with the observed losses, which is consistent with typical outcomes observed in validation exercises for models 350 

demonstrating overall good performances (e.g., Amadio et al. 2019; Molinari et al., 2020). It should be noted that the model 

tends to overestimate lower entity damages across all building types (Figure 7), but this discrepancy, rather than being a 

consequence of any model-related issue, can be primarily attributed to the limitations in the representativeness of claim data, 

particularly for minor losses, as documented in the literature (Merz et al., 2008; Molinari et al., 2020; Pinelli et al., 2020). 

 355 

Figure 7. Results of the probabilistic validation of INSYDE 2.0 for the case study of Lodi (left) and Caldogno (right). Median 
computed damage (dot) and corresponding interquartile range (line) are plotted for each building against observed damage 
(expressed in 2021 Euro). 
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 360 

Table 4. Results of the probabilistic validation of INSYDE 2.0 for the case studies of Lodi and Caldogno: statistics of total 
estimated damages versus reported damages.  

Case study 
Estimated damage [M€ 2021] Observed damage  

[M€ 2021] 5th percentile 25th percentile median 75th percentile 95th percentile 

Lodi 3.13 3.68 4.18 5.26 8.06 5.05 

Caldogno 3.46 6.44 7.53 8.54 10.34 8.35 

While confirming the performance of INSYDE 2.0 in accurately depicting the overall damage figures for the two events, the 

results of this analysis emphasise the benefits of incorporating the treatment of input data uncertainty when presenting model 

validation outcomes, also in consideration of the well-known biases and limitations of damage observations in fully 365 

capturing reality (Molinari et al., 2020). Indeed, previous validation exercises on earlier model versions, relying on a 

deterministic approach for handling unknown input features, while reporting limited errors ranging from -1.7% to +5.1% for 

Caldogno and up to +19.1% for Lodi (Dottori et al., 2016; Amadio et al., 2019), lacked insights into the uncertainty 

introduced by the selection of fixed default values for handling missing variables in the tested cases. Here, by providing a 

clear indication of the uncertainty bounds of the estimations, the new approach instead enhances model’s robustness, 370 

transparency and reliability, thus effectively mitigating the risk of conveying a false perception of certainty, which may be 

instead encountered with simpler deterministic approaches or even with more sophisticated models when used in 

combination with oversimplified assumptions (Merz et al., 2005; Pappenberger and Beven, 2006). 

4 Conclusions 

Accurately assessing flood risk is crucial for mitigating the potentially devastating effects of flooding. However, the 375 

complexity of the systems involved and the significant amount of data required, make flood damage estimation a challenging 

task, susceptible to uncertainties from input data, model structure and assumptions. Achieving a trade-off between outcome 

reliability (with a quantitative characterisation of uncertainty) and estimation efforts (in terms of time and financial resources 

for both data retrieval and modelling) is essential for efficient and comprehensive risk assessments, enabling optimal 

decision-making (Apel et al., 2008; Merz et al., 2015; Sieg et al., 2023). To strike this balance, it is important to examine the 380 

possible added value of utilising detailed data and advanced methodologies, as well as identifying critical variables that 

reduce damage estimation uncertainty, justifying investments in data collection. 

In this context, the present study aimed at addressing these issues through the development of an updated version of a multi-

variable flood damage model, INSYDE, which estimates direct economic damages at the building scale as a function of 

several flood event and building features. Given the amount and detail of required input variables, retrieving and preparing 385 

data for a multi-variable model, like INSYDE, can be resource-intensive; on the other hand, incomplete inputs, may exert a 

significant impact on the variability of calculated damages. The proposed updated version of INSYDE then incorporates a 

probabilistic module for filling missing input data, offering a transparent information on uncertainties arising from limited 

knowledge on damage explicative variables. This approach, tailored to the Po River District as an exemplificatory case, 

ensures more reliable and robust assessments, reducing the risk of conveying a false perception of certainty that can occur 390 

when using univariable, simple deterministic approaches, or even when interpreting the results of model validation exercises 

(Merz et al., 2005; Pappenberger and Beven, 2006; Amadio et al., 2019; Molinari et al., 2019, 2020). Therefore, the primary 

lesson learned from INSYDE 2.0 lies in transcending the confines of deterministic damage models. By challenging the 

conventional notion of certainty in damage assessments, our approach emphasised the importance of acknowledging 

uncertainty arising from “known-unknows”. From a decision-maker perspective, a thorough understanding of modelling 395 
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assumptions and awareness of the broad variability of model outcomes stemming from limited knowledge on certain inputs, 

can be indeed crucial for making well-informed decisions. As a second aspect, acknowledging the complex interplay of 

assumptions in model input and output as well as possible biases in observed damages, we also question the use of the term 

“validation” in damage modelling, as this may imply a level of certainty that is inherently elusive. Our idea, instead, shifts 

from just seeking convergence between estimations and observations to embracing a comprehensive understanding of the 400 

uncertainties that characterise flood damage estimations. 

In this context, the present study (even under necessary assumptions on certain variables, due to the lack of pertinent 

information) demonstrated the value of generating comprehensive local synthetic datasets of flood hazard and building 

features that can be leveraged to identify key variables worthy of specific investments in data retrieval. Additionally, the 

development and use of synthetic datasets, combined with uncertainty analysis on model outcomes, can help in bridging the 405 

data gaps and addressing the challenges associated with the availability and completeness of input variables. 

Obtained results also indicated that, beside standard hazard variables, an accurate description of building features is essential 

to derive reliable estimations of flood damage (Schröter et al., 2018; Molinari et al., 2020; Taramelli et al., 2022). While data 

retrieval on large-scale for some of the vulnerability variables can be costly (Ruggieri et al., 2021), the use of the proposed 

probabilistic missing data filling procedure, based on representative datasets of the local building stock, can be employed as 410 

an option. This can not only help to solve the problem of insufficient knowledge about certain input features (Pinelli et al., 

2020; Gómez Zapata et al., 2022), but also to provide decision makers with a better understanding of the uncertainty 

associated with the estimations (Razavi et al., 2021). Moreover, the lessons derived from the feature importance analysis 

conducted in this study highlighted the significance of relying on representative datasets capturing the characteristics of the 

investigated area for a proper identification of the key variables to be considered when modelling flood damage.  415 

The process for developing these specific datasets, here exemplified for northern Italy, but theoretically replicable, with 

adaptation, in any other region/country, mainly involves a combination of traditional methods for data collection, such as 

desk-based analysis of statistical data sources, as well as virtual surveys; even though such tasks can be time-consuming, 

especially in consideration of the possible significant regional spatial variability of the building stock, it is worth noting that 

emerging technologies, such as remote sensing and automatic image reconnaissance (Velez et al., 2022), can potentially 420 

enhance the process in the future, with a more efficient and accurate exposure and vulnerability modelling.  

In conclusion, this study demonstrated the significant added value of adopting a probabilistic approach with the explicit 

treatment of input data uncertainties, thus providing insights for more informed risk assessments, while ensuring efficient 

data collection procedures. Overall, it also emphasised the enduring importance of continuously refining data collection and 

modelling approaches, given that a comprehensive and reliable characterisation of inundation phenomena and impacted 425 

assets remains crucial for enhancing confidence in the outcomes of damage assessment processes. 
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