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Abstract. Accurate flood damage modelling is essential to estimate the potential impact of floods and to develop effective 

mitigation strategies. However, flood damage models rely on diverse sources of hazard, exposure and vulnerability data, 

which are often incomplete, inconsistent, or totally missing. These issues with data quality or availability introduce 

uncertainties in the modelling process and affect the final risk estimations. In this study, we present INSYDE 2.0, a flood 

damage modelling tool that integrates ultra-detailed survey and desk-based data for an enhanced reliability and 15 

informativeness of flood damage predictions, including an explicit representation of the effect of uncertainties arising from 

an incomplete knowledge on the variables characterizing characterising the system under investigation. 

1 Introduction 

In recent years, a policy shift from a mere hazard control to a more holistic flood risk management has steadily increased the 

demand for reliable quantitative flood risk assessment methodologies (Sayers et al. 2002; Merz et al., 2010). In this 20 

scenarioHowever, despite the significant advancements achieved in flood damage modelling over the past decade, the 

application of developed tools in practical decision-making for flood risk management has been limited, mainly because of 

concerns on modelling uncertainties affecting the results of loss estimations (Morgan et al., 1990; Apel et al., 2008; 

Wagenaar et al., 2016; Winter et al., 2018; Marvi, 2020).  

Uncertainty, arising from an incomplete knowledge of the system under investigation, in terms of input data and/or model 25 

assumptions, could be reduced by enhancing model complexity (i.e., better representation of modelled mechanisms) and/or 

by using high quality input data (Wagenaar et al., 2016). In this regard, recent literature has demonstrated that multi-variable 

flood damage models not only outperform simpler (stage-damage) functions (Schröter et al., 2014; Wagenaar et al., 2017; 

Amadio et al., 2019), but they also provide ancillary advantages., such as theThese cover the ability to identifyication of the 

most important damage explanatory variableskey variables influencing damage (useful, for instance, to in guidinge 30 

interventions for improving building resilience), and the possibility, for probabilistic models, of the possibility of including 

the explicit treatmently of handling uncertainty into the modelling framework, thus supporting comprehensive and 

informative damage assessments (Morgan et al., 1990; Rözer et al., 2019; Zarekarizi et al., 2020). HoweverNevertheless, 

practical constraints, such as budget, operational timelines, computational efforts, as well as issues on in data quality and 

availability, often hinder the actual implementation of such models at large (e.g., river basin) scale, with the consequent risk 35 

of providing decision-makers with a limited perspective on potential damage scenarios (Pappenberger and Beven, 2006; 

Merz et al., 2008; Wagenaar et al., 2016; Albano et al., 2018; Zarekarizi et al., 2020; Razavi et al., 2021). 

With specific reference to data, for the case of residential buildings, literature has pointed out that several features 

characteriszing both the event (e.g., water depth, flow velocity, inundation duration, debris and contamination loads) and the 

exposed object (e.g., material and construction type, age and finishing quality of the building, in addition to its geometrical 40 

parameters and more micro-scale characteristics) affect the resulting flood damaging processlosses (Penning-Rowsell et al., 
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2005; Dottori et al., 2016; Wagenaar et al., 2016; Mohor et al., 2020; Nofal et al., 2020; Malgwi et al., 2021; Paulik et al., 

2022). Hence, to ensure reliable accurate flood damage assessments, based on a thorough characterisation of the building 

stock, there is ait would be critical need crucial to gather count on detailed data oncomprehensive vulnerability and exposure 

featuresdata, including relevant ancillary information, in order to achieve a thorough characterization of the buildings. 45 

Unfortunately, the availability and reliability of required such data is generally lowoften limited, especially for large-scale 

applications (Papathoma-Köhle et al., 2007; Schröter et al., 2018; Bhuyan et al., 2022; Velez et al., 2022).  

To tackle this issue, a few existing tools have been designed to adapt to actual available knowledge on hazard and building 

features: an example is represented by INSYDE (Dottori et al., 2016), which is a synthetic (i.e., based on “what-if” analysis) 

multi-variable flood damage model for residential buildings, capable of handling missing input data by assigning them 50 

specific default values typical for the country/region of implementation (Dottori et al., 2016; Molinari et al., 2017; Scorzini 

et al., 2022). StillHowever, the use ofrelying on this approach could lead to biased results, since missing and known inputs 

are treated as equivalent when the former are set to their corresponding built-in defaults. Such a problemThis challenge  

could be overcome mitigated by considering probabilistic distributions of unknown input data, within a Monte-Carlo 

approach, which still necessitates of . In this case, representative empirical distributions for the relevant input variables, in 55 

order to account for  at stake are required to both consider the local nature of flood damage mechanisms and to obtain ensure 

indicative meaningful and reliable uncertainty bounds (Cammerer et al., 2013; Wagenaar et al., 2018; Sairam et al., 2019; 

Scorzini et al., 2021, 2022). These distributions should be derived based on the actual characteristics of the analyzed area, 

which implies the availability of building inventories and/or the possibility of conducting ad hoc surveys. However, the 

commonly poor availability of specific databases (especially regardingparticularly concerning very micro-scaledetailed 60 

building attributes, such as the elevation of the first floor from ground level or the perimeter of internal walls), on the one 

hand, andcoupled with the time-consuming operation of carrying outconducting surveys, on the other hand, are currently the 

main obstacles to thorough analyses of model’s sensitivities to uncertainties stemming from input data. 

The divergent needs of balancing modelling costs and informative results (Di Bacco et al., 2023; Sieg et al., 2023) then pose 

two questions concerning the applicability of sophisticated and data-intensive models in flood damage assessments: (i) how 65 

can multi-source data be used to provide an added value to advanced damage modelling toolswhat is the added value, in 

terms of output quality and usefulness?, attained by utilizing more detailed data and advanced methodologies? (ii) which are 

essential variables that play a key role in constraining the uncertainty bounds, making them worthy of investments in data 

collection?  

The present paper aims at answering these questions, by leveraging the updating of the INSYDE model towards an use with 70 

the full treatment of input data uncertainty, involving the exploitation of detailed flood hazard and building inventories, here 

specifically developed and/or consulted for the Po River District (northern Italy, Figure S1), but with the potential for 

replication in any other contexts.  

2 Materials and methods 

2.1 From INSYDE to INSYDE 2.0 75 

INSYDE is a synthetic, micro-scale, multi-variable flood damage model for the residential sector, released as an open-source 

R script, originally developed and validated for Italy, but also extended also to Belgium (Dottori et al., 2016; Molinari et al., 

2017; Scorzini et al., 2022). In INSYDE, the calculation of direct economic damages at the building scale relies on explicit, 

physically based mathematical equations describing flood damage mechanisms for each building component (and sub-

components), as a function of more than 20 variables, including flood event (i.e., water depth, flow velocity, inundation 80 

duration, sediment and pollution load) and building parameters characteristics (i.e., geometric and qualitative features (e.g.: 

footprint area, internal and external perimeter, building material, type and quality, etc.)), as well as prices for the reparation 
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or replacement of the damaged items. For some building components, the damage mechanisms affected by greater 

uncertainties are modelled probabilistically by accounting for the probability of damage occurrence as a function of certain 

hazard intensity measures.  85 

As stated in the Introduction, in case of missing information, the original model proposes proposed deterministic default 

values for each input variable, calibrated on expert judgment and/or based on the analysis of large-scale local databases 

(Dottori et al., 2016). Some of them, such as extensive parameters variables (e.g., internal area, external and internal 

perimeter of the building, etc.), are were defined by default functional relationships calibrated on a typical configuration of a 

100 m2 Italian house. According to Authors’ experience, the implementation of INSYDE can then lead to biased results (due 90 

to the pairwise consideration of known and unknown input data) or inaccurate estimations, especially when applied to large 

buildings, like apartment blocks, thus implying a scalability issue (Galliani et al., 2020). For this reason, in INSYDE 2.0, 

following the strategy proposed for the Belgian version of the model (Scorzini et al., 2022), the housing unit (HU) has been 

chosen as the minimum calculation item for multifamily buildings (i.e., apartment buildings). In addition, to enhance and 

ease model’s usability and to mitigate the impact of input data quality issues on the accuracy of damage assessment, an 95 

algorithm has been implemented to automatically split the building’s footprint area into a suitable number of HUs if the 

value introduced by the user significantly exceeds a representative building size. 

  

Considering the sensitivity of damage estimates to individual input variables (albeit in varying degrees, not known a-priori), 

it is crucial to conduct a comprehensive analysis of the effects of missing information on model outcomes, by accounting 100 

also for both mutual and non-linear relationships among the variables. Such an approach can provide practical insights for 

finding an efficient trade-off between model accuracy and efforts for input data retrieval (Di Bacco et al., 2023); and, thenat 

the same time, a shift from the use of fixed deterministic values to suitable distributions of input variables could enhance 

users’ awareness on damage estimation uncertainty. 

By employing a step-wise procedure, the present  study then aims to address the aforementioned issues by proposing an 105 

updated version of INSYDE that will also enable the exploration of the two principal research questions outlined in the 

Introduction. In detail, Tthe methodological approach consistsed of the main following phases (Figure 1): 
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Figure 1. Overview of the methodological approach. Dotted-line boxes represent an alternative dataset for the analysis, while 110 
maintaining the same methodological flow as depicted in the solid-line boxes. 

 Data collection (Section 2.2) to acquire relevant information on hazard and building features required by INSYDE;  

 Development of INSYDE 2.0, incorporating a module for handling missing inputs in a probabilistic framework: this 

phase involvesd the generation of a synthetic datasets based on the collected empirical data combined with expert-based 

knowledge concerning relationships between hazard parameters variables (Section s 2.3 and 2.43); 115 

 Assessment of model’s sensitivities to missing input data: this phase includesd the analysis of the feature importance 

using the developed synthetic datasets, as well as the evaluation of the impact of individual or combined missing inputs 

on uncertainty in damage estimation. This analysis has been conducted on a sampledsynthetic building portfolios and on 

observed datasets for two recent flood events in Italy (Sections 2.54). 

2.2 Procedure and data for updating INSYDEData collection 120 

Due to the local nature of damage models, Tthe initial phase focused focuses on establishing the foundation for a model 

capable of accurately capturing the hazard and building-specific details of the region of implementation, here represented by 

the Po River District as an exemplificatory case. To achieve this, a “survey dataset” was has been developed as a basis for 

the generation of empirical probability distribution functionss (EDFs) for the variables at stake, which serve for sampling 

representative features of the populations of interest in case of unknown inputs are encountered for in the application of 125 

INSYDE. In addition to traditional methods, such as deriving information from statistical data (Italian National Institute of 

Statistics, ISTAT), building inventories (OpenStreetMap, OSM) and field inspections, vVirtual surveys (Scorzini et al., 

2022), offering in-depth insights into building vulnerability and supporting the establishment of functional relationships for 



5 
 

different building features (e.g., internal and external perimeter as a function of footprint area), can be entailing the analysis 

of building descriptions, floor layouts and photographs from real estate listings employed as an additional means to 130 

conventional approaches based on statistical data and building inventories. In the specific case of the Po River, while 

traditional datasets (derived from the Italian National Institute of Statistics (ISTAT) and OpenStreetMap (OSM)) provided 

extensive coverage of the whole district for the entire building stock, virtual surveys focused on a smaller sample due to 

limited real estate listings with complete information and the time-demanding micro-scale analysis of building details, 

photographs and floor layouts. With this virtual approach, , were considered as useful means to collect information on micro-135 

scale building parameters influencing specific flood damage mechanisms (Scorzini et al., 2022) or to establish functional 

relationships among extensive parameters (e.g., internal and external perimeter as a function of footprint area) for different 

building typologies. 119 buildings were assessed, compiling comprehensive information on building material, systems, 

quality, as well as the position and dimensions of building components, among other relevant details (Huayra Mena, 2022). 

The EDFs for describing the typical inundation phenomena in terms of water depth and flow velocity were can be instead 140 

derived from the analysis of the hazard maps included, for instance, in Flood Risk Management Plans or other detailed 

hydraulic studies existing for the investigated region. In the analysed case study, we leveraged produced for the information 

contained in the 2021 update of the Flood Risk Management Plan of the Po River Basin District Authority (Autorità di 

Bacino del Fiume Po, 2022), which . consisted of raster files obtained from 2D hydrodynamic modelling of flood scenarios 

across various return periods (ranging from 20 to 500 years) in specific catchments of the district. These catchments 145 

represent distinctive inundation types in both rural and urban areas, as well as in flat or steeper regions of district, where 

inundation phenomena typically result from riverine and artificial channel floods in the central plain area and flash floods in 

the mountainous regions located in the northern and southern parts of the basin (Figure S1). Specifically, the selected maps 

consisted in raster files obtained from 2D hydrodynamic modelling for high to low frequency (20- to 500-year return period) 

flood scenarios in specific catchments of the district representing the distinctive inundation types occurring in rural or urban 150 

areas as well as in flat or steeper regions within the Po River district. The medium-frequency scenario has been selected as 

the representative case for deriving the EDFs for water depth and flow velocity, based on its designation as the typical 

reference scenario for implementing mitigation measures in the Po catchment. The inclusion of different inundation types in 

the hazard dataset was driven by the goal of establishing a comprehensive model applicable to the entire district, aligning 

with exposure and vulnerability features which are representative of the whole region. Given the limited availability of 155 

detailed information on inundation duration and sediment load, expert Expert knowledge was utiliszed to determine suitable 

distributions for these other hazard variables (as described in Section 2.3), like inundation duration and sediment load, with 

limited or null availability of detailed information that are able to capture the qualitative characteristics of typical flood 

events occurring in northern Italy. For instance, Ddue to the inherent random nature of water pollution in flood events, a 

conservative assumption was made for the variable accounting for this process, by assigning a 50% probability of having 160 

contaminated floodwater. Details on data statistics derived from the analysis of ISTAT data, OSM building inventory, virtual 

surveys and flood-related data are available in the work by Huayra Mena (2022). 

2.3 Major changes to the original model structure 

Based on the descriptive statistics obtained from the analysis of the data described in the previous section, the first 

modifications to the original version of INSYDE concerned the resolution of the scalability issues associated with the use of 165 

the functional relationships among extensive building parameters (Galliani et al., 2020). Following the strategy proposed for 

the Belgian version of INSYDE (Scorzini et al., 2022), the housing unit (HU) has been chosen as the minimum calculation 

item for multifamily buildings (i.e., condominiums). Typical ranges for the geometrical dimensions of individual HUs and 

empirical formulas expressing the different extensive variables as a function of the building footprint area were determined 

for each building type based on the samples gathered through the virtual survey in the investigated region. In addition, to 170 
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enhance and ease model’s usability and to mitigate the impact of input data quality issues on the accuracy of damage 

assessment, an algorithm has been implemented in INSYDE 2.0 to automatically split the building’s footprint area into a 

suitable number of HUs if the value introduced by the user significantly exceeds the maximum sizes observed in the 

empirical samples. Such approach ensures that damage calculations are always performed at the HU scale, with the correct 

tailored representative relationships among the variables at stake, even when input data are mistakenly provided at the whole 175 

building scale, as it may happen in cases with limited data availability; only after this process, the resulting damages for each 

HU are summed up to derive the overall estimate for the entire building. 

2.34 Towards an use of INSYDE 2.0 with an Generation of synthetic datasets for explicit treatment of input data 
uncertainty 

The probability distributions of the different input features representative of northern Italythe Po River District for INSYDE 180 

2.0 were generated based on the described collected the available empirical hazard and building data, while also accounting 

for the intrinsic interdependence among the variables (Tables 1 and 2). Specifically, the assumptions regarding the 

relationship between the building features relied upon the empirical survey datasetbase and findings reported in Huayra 

Mena (2022), while a physically informed approach was adopted in the case of the hazard variables, depending on the 

features characteriszing both riverine (i.e., long-duration, low flow velocity) and flash (i.e., rapid on-set, greater flow 185 

velocities and shallower water depth compared to other type) inundation phenomena. 

More in detail, probability distributions were first retrieved independently for the hazard variables based on detailed data, 

when available (he, v), or upon expert-based assumptions derived from aggregated or approximated data (d, s, q), and used to 

sample sets of 250.000 elements.; Thenfurthermore, considering a set of 250,000 elements, the following functional 

dependencies were assumed to describe the correlation among the features, based on the values sampled for he, d and v: 190 

𝑑∗ = 𝑐ଵ + 𝑐ଶ ∙ √ℎ𝑒 ∙ 𝑁(𝜇 = 1, 𝜎 = 0.2)  

𝑣∗ = 𝑐ଷ − 𝑑/max (𝑑) ∙ 𝑁(𝜇 = 1, 𝜎 = 𝑐ଷ − 𝑑/max (𝑑))  

𝑠∗ = 𝑐ସ + 𝑐ହ ∙ √𝑣 ∙ 𝑁(𝜇 = 1, 𝜎 = 0.2) 

with N being a random number from a normal distribution with mean  𝜇 and standard deviation  𝜎, while the coefficients ci 

are constant values introduced in the expert-based approach to obtain the desired functional relationships among the 195 

variables.; q was instead assumed independent from the other hazard features. 

Although Tthe resulting d*, v* and s* account for the correlation among the hazard variables, they do not follow the 

probability distributions retrieved independently for the variables d, v and s; on the contrary, the latter were sampled 

independently from the correct distributions, but they do not provide information on the rank correlation among the 

variables. To obtain a dataset with both the mentioned propertiesare auxiliary datasets describing the correlation among the 200 

hazard variables, but in general they do not follow the probability distributions retrieved independently for d, v and s; to 

obtain the correct distributions without losing information on the interdependence among the variables, the values of d*, v* 

and s* were then replaced ranked and replaced with the correspondent corresponding percentiles derived  from the ordered 

versions datasets of d, v and s. 

Furthermore, additional synthetic distributions (referred to as “extended synthetic dataset” hereinafter), while preserving the 205 

nature of the identified functional relationships among the variables, but spanning over wider ranges of them (as reported in 

the Supplementary material), were also generated to support a more comprehensive analysis of INSYDE 2.0, regardless of 

the specific characteristics of the Po River District.  

This dual analysis is rooted, on one hand, in the need for context-specific insights into flood damage assessment, in order to 

support efficient data retrieval efforts, allowing for a prioritisation of data collection on variables that really play a key role 210 

in the considered context. On the other hand, a non-region-specific scenario, encompassing a broader range of values for the 
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input variables, is instead aimed at providing more general findings on the influence of the different variables on the damage 

estimation process.  
 

Table 1. Hazard features considered in INSYDE 2.0 and assumed probability distributions for the case of northern Italythe Po 215 
River District. 

Variable Description Distribution 

he Water depth [m] Weibull minimum (shape=1.25, scale=1); if  h < 0.01 resampled from Uniform{0.01, 0.03} 

d 
Inundation duration 
[hours] 

Weibull minimum (shape=1.25, scale=36); if  d < 1 resampled from Uniform{1, 2} 

q 
Presence of pollutants 
[yes (1) / no (0)] 

P(q=0) = 0.5, P(q=1) = 0.5 

v Velocity [m/s] Weibull minimum (shape=1.15, scale=0.35); if  v < 0.05 resampled from Uniform{0.05, 0.1} 

s Sediment load [-] Uniform{0.05, 0.2} 

 

Table 2. Building features considered in INSYDE 2.0 and assumed probability distributions for the case of the Po River District of 
northern Italy. 

Variable Description Distributions 

BT Building type [-] 
ECDFEmpirical distribution function based on ISTAT data 
P(BT=1 (Detached))=0.54; P(BT=2 (Semi-detached))=0.10; P(BT=3 (Apartment))=0.13; 
P(BT=4 (Attached corner))=0.10; P(BT=5 (Attached center))=0.13 

FA Footprint area [m2] 

Empirical distribution function ECDF based on OSM data 
Truncated normal (m = 160, s =60, min=50, max=320) if BT=1 

Truncated normal (m = 110, s =20, min=50, max=160) if BT=2 

Truncated normal (m = 95, s =20, min=60, max=160) if BT=3 

Truncated normal (m = 85, s =15, min=45, max=140) if BT=4 

Truncated normal (m = 85, s =15, min=45, max=120) if BT=5 

IA Internal area [m2]  0.9 ∙ FA 
BA Basement area [m2]  0.5 ∙ FA ∙ Normal(m= 1, s=0.2) 

EP External perimeter [m] 

Empirical relationships identified from the analysis of OSM data  
4.1 ∙ √FA ∙ Normal(m= 1, s=0.2) if BT=1  

3 ∙ √FA ∙ Normal(m= 1, s=0.2) if BT=2 or BT=4 

−6.9729 + 0.2885 ∙ FA ∙ Normal(m= 1, s=0.2) if BT=3 

2 ∙ √FA ∙ Normal(m= 1, s=0.2) if BT=5 

IP Internal perimeter [m] 

Empirical relationships identified from the analysis of the data from the virtual surveys  
20.151 + 0.6254 ∙ FA ∙ Normal(m= 1, s=0.2) if BT=1 

20.119 + 0.6105 ∙ FA ∙ Normal(m= 1, s=0.2) if BT=2 

20.336 + 0.6576 ∙ FA ∙ Normal(m= 1, s=0.2) if BT=3 

9.709 + 0.6902 ∙ FA ∙ Normal(m= 1, s=0.2) if BT=4 

16.801 + 0.559 ∙ FA ∙ Normal(m= 1, s=0.2) if BT=5 

BP Basement perimeter [m] 
Empirical relationships identified from the analysis of the data from the virtual surveys  
4.2 ∙ √FA ∙ Normal(m= 1, s=0.2) 

NF Number of floors [-] 
Empirical distribution function ECDF based on ISTAT data 
P(NF=1) = 0.09, P(NF=2) = 0.56; P(NF=3) = 0.25; P(NF>3) = 0.10 

IH Interfloor height [m] 
Empirical distribution function ECDF based on survey data 
Virtual Survey ECDF + Truncated normal (m= 0, s=0.5, min=-0.15, max=0.15)  

BH Basement height [m] 
Empirical distribution function ECDF based on survey data 
Skewed normal (skewness= -4, m= 3, s=0.25) 

GL Ground floor level [m] 
Empirical distribution function ECDF based on survey data 
Normal(m= 0.1, s=0.09) 

BL Basement level [m] -GL-BH-0.3 

BS Building structure [-] 
Empirical distribution function ECDF based on ISTAT data 
P(BS=1 (Reinforced concrete)) = 0.33; P(BS=2 (Masonry)) = 0.67 

FL 
  Finishing level 
(i.e. building quality) [-] 

Empirical distribution function ECDF based on survey data 
P(FL=0.8 (Low)) = 0.05, P(FL=1 (Medium)) = 0.42; P(FL=1.2 (High)) = 0.53 

LM Level of maintenance [-] 
Empirical distribution function ECDF based on ISTAT data 
P(LM=0.9 (Low)) = 0.13, P(LM=1 (Medium)) = 0.47; P(LM=1.1 (High)) = 0.40 

YY Year of construction [-] Empirical distribution function ECDF based on ISTAT data  

PD 
Heating system 
distribution [-] 

Empirical distribution function ECDF based on the analysis of grey-literature and survey 
data 
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if YY ≥ 1990: P(PD=1 (Centraliszed)) = 0.11, P(PD=2 (Distributed)) = 0.89  
if YY < 1990: P(PD=1) = 0.6, P(PD=2) = 0.4 

PT Heating system type [-] 

Empirical distribution function ECDF based on the analysis of grey-literature and survey 
data 
if YY > 2000 & FL > 1: P(PT=1 (Radiator)) = 0.2, P(PT=2 (Pavement)) = 0.8 
else P(PT=1) = 0.8, P(PT=2) = 0.2 

BE* Basement exists [-] 
Empirical distribution function ECDF based on survey data 
P(BE=0 (No)) = 0.2, P(BE=1 (Yes)) = 0.8 

* new variable introduced in INSYDE 2.0. 220 

2.45 Model’s sensitivities to missing input data 

2.45.1 Analysis of the feature importance 

In the new framework for missing data handling, the generated synthetic datasetsynthetic distributions has can bebeen 

exploited in a feature importance exercise aimed at a quantitative assessment of the sensitivity of damage calculations to the 

absence of information on certain input variables, in order to identify key features deserving attention in data collection. This 225 

analysis, based here on a probabilistic test performed on a complete subsetportfolio of 2550,000 hypothetically flooded 

buildings (generated from the identified distributions for the Po District as well as for the “extended case”), involved the 

following steps: first, INSYDE 2.0 is used to calculate damage on this the complete dataset, where all input values are 

assumed to be available, and the resulting estimate is taken as a reference point.; Nnext, the values of one input variable are 

removed at a time from the dataset, and the corresponding missing values are sampled from the generated synthetic dataset. 230 

This process is repeated for each variable and, each time, damage is recalculated; the difference in damage with respect to 

the reference value is finally recorded and then the variance induced by each feature on model outcome can be determined.  

2.45.2 Analysis of damage estimation uncertainty 

In addition to assessing the possible contribution of unknown single input features to damage estimation uncertainty, a 

further analysis was can be carried out to evaluate the impact of the combined absence of multiple input variables on the 235 

variability of damage estimations. 

2.54.2.1  Analysis on the synthetic dataset 

A first application of INSYDE 2.0test was has been conducted, for computational reasons, on the complete synthetica 

subsample portfolio of 5,000 buildings extracted from the complete building portfolio mentioned in the previous sectionof 

the Po River District, this time altered to account for the presence of multiple unknown input data within the tested sample. 240 

The reduction in the dataset’s level of completeness was achieved by assuming different percentages of missing data for each 

feature, which were assigned based on their typical availability or ease of retrieval, as experienced by the Authors in the 

Italian context. Except for he and FA, which were considered as the minimum known variables for a damage assessment, the 

missing values were placed randomly, as follows: 10% for variables of easy retrieval, either due to their availability at the 

meso-scale (e.g., census block scale) or to their low variability (BT, IH, NF, BS, LM, FL, YY) and 20% for other building 245 

features that require specific surveys for correct characteriszation (EP, BE and related variables, BH, BA, BP); for GL, 

which is generally not available in databases, but potentially appraisable through (virtual) surveys, this percentage was 

increased to 50%, while 95% was assumed for the building features that are hardly ever known (or only after internal 

surveys), such as IP and PD. For the hazard variables, the percentages were assumed to be 10, 20, 50 and 80%, respectively 

for v, d, s and q, taking into account the increasing modelling costs from a simple 2D steady hydrodynamic simulation to a 250 

more complex unsteady run with the inclusion of sediment transport modelling; the very specific and detailed data 

requirements regarding the presence and propagation of pollutants instead explain the higher value assumed for q. For each 

tested object, 1,000 complete replicates were generated by filling missing input data with values sampled from the developed 

synthetic dataset distributions and the corresponding average damage and standard deviation were calculated. 
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2.45.2.2 Analysis on field data from recent flood events 255 

A similar analysis was has been also carried out considering real-world, field databases compiled for two flood events that 

occurred in the Po River valley: the 2002 Adda flood in Lodi and the 2010 Bacchiglione flood in Caldogno, both of which 

have been described in previous applications of INSYDE (Dottori et al., 2016; Amadio et al., 2019; Molinari et al., 2020). 

Table 3 provides a concise overview of the available datasets, by specifically highlighting the unknown variables for 

INSYDE 2.0 in the two case studies. As typical in large-scale flood damage assessments, the missing data mainly concerned 260 

the ultra-detailed characteristics of the dwellings, while only approximate information on inundation duration was available 

from the reports of the events, which provided a rough indication of 24 hours on average for both cases. To ensure a 

reasonable level of uncertainty, while considering the available information on inundation duration, the empirical 

distribution for this variable was modified with respect to the one in Table 1, by sampling d values from an assigned 

truncated normal distribution centeredcentred at 24 hours and spanning between 16 and 48 hours. As in the previous case, 265 

the approach entailed calculating damage over 1,000 complete replicates for each affected building and registering the 

corresponding damage statistics.  

Furthermore, considering the availability of observed losses for the two case studies, we also investigated the impact of 

missing inputs on the results of classical validation exercises, raising questions onprompting a broader discussion on the 

general  interpretation of their results when performed for simple (e.g., univariable) or complex models without a proper 270 

treatment of uncertainties (Molinari et al., 2019, 2020). In this context, since its formulation, INSYDE has undergone 

continuous updates and validation, with reported superior performance when compared to other tested damage models 

(Dottori et al., 2016; Amadio et al., 2019; Molinari et al., 2020). Although these previous studies consistently demonstrated 

INSYDE’s capacity to provide accurate damage estimations, the reliance on fixed default values for missing input data 

limited the quantitative assessment of the uncertainty associated with validation outcomes.   275 

Table 3. Unknown input features for INSYDE in the considered validation case studies of Lodi and Caldogno floods. 

Case study Unknown input features in the dataset 

Lodi 
d*, s, IP, IH, BH, PD, PT, BA, BP (for all buildings (271) in the dataset) 
GL and NF (partial availability - known, respectively, for 47 and 265 buildings) 

Caldogno d*, s, q, IP, IH, BH, GL, PD, PT, LM, BA, BP, HB (for all buildings (294) in the dataset) 

3 Results and discussion 

3.1 Generation of the synthetic datasets 

The pair plot shown in Figure 2 enhances the visualization ofdisplays the pairwise relationships assumed in this study among 

the flood hazard variables, water depth (he), flow velocity (v), inundation duration (d) and sediment load (s), characterising 280 

the developed synthetic dataset for the Po River District. This graphical tool employs a scatter plot to illustrate the 

relationship between each pair of variables in the dataset, while the diagonal axis displays kernel density plotsindicates the 

distribution forof each variable. From the patterns represented in Figure 2, it is evident the physically informed approach 

adopted for describinghypothesizing the relationships among the variables: for instance, a positive relationship between he 

and d, as well as between v and s, with the latter explained by the tendency of flash floods to carry greater amounts of debris; 285 

similarly, d and v were considered to be negatively correlated, in consideration of the short duration typically associated with 

flash floods. 

An analogous pair plot for the extensive building variables is presented in Figure 3, which illustrates the functional 

relationships (Table 2) identified from the analysis of the building empirical survey dataset for the region (Huayra Mena, 

2022).  290 
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Figure 2. Empirical pPairwise relationships assumed for the generation of the distributions representative of northern ItalyPo 
River District synthetic dataset: hazard parameters variables (water depth (he), flow velocity (v), inundation duration (d) and 295 
sediment load (s)). 

For the sake of clarity, it should be noted that the distributions for the “Apartment” category are represented in Figure 3 at 

the building block scale, having assumed a number of housing units (nHU ≥1) generated from a Weibull distribution with 

shape and scale parameters equal to 2 and 4, respectively. The pair plots reported in the Supplementary material (Figures S1 

and S2), while preserving the nature of the identified functional relationships among the variables, but spanning over wider 300 

ranges of them, were also generated to support a more comprehensive investigation of the feature importance within 

INSYDE 2.0, regardless of the specific characteristics of the sample representative of northern Italy. 

The pair plots illustrating the extended synthetic dataset (generated for obtaining more general findings on the influence of 

input features on damage estimation beyond the specificities of the region under investigation) are provided in the 

Supplementary material (Figures S2 and S3) for comprehensive reference. 305 
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Figure 3. Empirical pPairwise relationships assumed for the generation of the Po River District synthetic datasetof the 
distributions representative of northern Italy: extensive building parameters variables (footprint (FA) and basement (BA) area; 
external (EP), internal (IP) and basement perimeter (BP)). 310 

3.2 Model’s sensitivities to missing input data 

3.2.1 Analysis of the feature importance 

This section reports on uncertainty in damage calculations resulting from the potential lack of knowledge on certain input 

data in INSYDE 2.0. In detail, Figure 4 summariszes the results of the feature importance analysis by showing the difference 

in computed damage when applying the model to a reference complete synthetic set of 250,000 buildings and to their 315 

replicas obtained by replacing the values of one input variable at a time with a sampling from the dataset generated for the 

northern ItalyPo River District case (upper panel) or from from the extended uniform synthetic dataset reported in the 

Supplementary material (lower panel).    
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 320 

Figure 4. Feature importance in INSYDE 2.0: (upper panel) test with sampling from the Po River District synthetic dataset (upper 
panel) developed for northern Italy; (lower panel) test with sampling from the uniform extended synthetic dataset - (ref. to Figures 
S1S2-S2S3) (lower panel). The vVariables are ranked according based onto  the median value (in yellow) of the estimated absolute 
damage difference with respectcompared to the reference damage calculated on a complete dataset. Outliers are visualised as red 
points in the plots.  325 

Consistently with the literature (Kelman and Spence, 2004; Schröter et al., 2014; Dottori et al., 2016; Amadio et al., 2019; 

Scorzini et al., 2022), Figure 4 confirms the importance for flood damage modelling of relying on accurate input data for 

water depth, even though damage differences associated to it are found to belimited, on average, around only 10,.000 Euro 

(upper panel), due to the intrinsic limited small variability assumed for this variable in the generation of the 

empiricalrepresentative distributions for the context of northern Italy (Figure 2). Albeit with a comparatively lower 330 

influence, sediment load, inundation duration and the indicator for the presence of pollutants can be ranked as other 

important hazard input features, with the latter two inducing more variability in the results, as a consequence of some 

damage mechanisms activated in INSYDE on the basis of thresholds on d or q (Dottori et al., 2016; for clarity, an example 

of such damage mechanism is reported in the Supplement). The riverine inundation characteristics, typical of the examined 

context (Figure 2) and insufficient to cause structural damages (Clausen and Clark, 1990), also explain why a lack of input 335 

data on flow velocity does not induce any tangible effect on damage estimation. A different pattern is instead visible in the 

lower panel of Figure 4, obtained from a sampling based on the extended synthetic dataset (Figures S1 S2 and S2S3), 

featuring larger ranges of values for the tested input variables and thus providing more general insights on model sensitivity 

to input data availability (regardless of the specific local characteristics for the context of model customiszation). In this 

case, apart from the greater differences observed in absolute terms, the fFigure 4 indicates that velocity has a far more 340 

relevant impact than inundation duration on damage estimation uncertainty when dealing with long-lasting flood events (as 
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represented in the extended synthetic dataset, Figure S1S2), exceeding the duration threshold assumed for certain damage 

mechanisms (Dottori et al., 2016; please refer to the code of INSYDE 2.0 for details).  

Regarding building featurescharacteristics, the upper panel of Figure 4 reveals the significant and obvious influence of the 

extensive variables features (FA, IP, EP), of the binary variable BE for the presence of the basement (which masks the 345 

importance of the basement-related variables, BA, BP and BH), and building’s elevation with respect to the ground level 

(GL). Finishing level (FL) causes relevant variability on model outcomes, with an observed median damage difference of 

about 670 € for the northern ItalyPo River data, while a detailed knowledge on variables such as level of maintenance (LM), 

building structure (BS) and heating distribution (PD) type, and even more the number of floors (NF) and the year of 

construction (YY), appear to provide an overall negligible impact on damage estimation uncertainty. Again, such results are 350 

dependent on the specific datasets used for sampling missing values and, therefore, for a more general overview on the 

ranking of the feature importance in INSYDE 2.0, it is possible to refer to the lower panel of Figure 4, which illustrates how 

some variables (such as NF, BS, PD and PT) gain increasing importance when hazard parameters are set to (larger) values, 

capable of activating damage mechanisms to more building components. These findings then demonstrate how the 

importance of specific input parameters can vary depending on the characteristics of the study region, thus highlighting the 355 

cruciality of relying on regionally representative hazard and building datasets for an enhanced and efficient flood damage 

modelling. 

3.2.2 Analysis of damage estimation uncertainty 

3.2.2.1  Analysis on the Po River District synthetic dataset 

Figure 5 reports the results of the analysis aimed at evaluating the performance of INSYDE 2.0 when the absence of multiple 360 

inputs is considered. In detail, the figure shows the mean damage and standard deviation calculated for each of the 5,000 

modified (i.e., with multiple missing inputs) items over their 1,000 complete replicates generated by populating the missing 

information with values sampled from the Po River District defined synthetic dataset for northern Italy. Interestingly, the 

figure shows that, for all the building typologies, the results tend to lie on two different trend lines corresponding to higher or 

lower damage variability. A closer inspection of the results reveals revealed that these distinct patterns are not necessarily 365 

related to the quantity of missing variables, but rather to their role in the damage mechanisms implemented in INSYDE. 

Indeed, in certain instances, for certain building components, the estimated damage for certain building components depends 

on the occurrence of certain specific conditions on across multiple variables.; Iin such cases, when more than one of these 

conditions are met, the maximum resulting damage is assumed to hold, since as the most unfavorableunfavourable state is 

thought to dominate the damage mechanism, irrespective regardless of the other conditionss (Dottori et al., 2016). An 370 

example of tThis situation is represented exemplified by the components related to the interior or exterior plaster (details in 

the Supplementary material as well asand in the code)., for which Here, damage occurrence is supposed to depend on 

inundation duration and flow velocity, with aas  varying degree expressed by the corresponding fragility functions, as well as 

on water quality (q) and level of maintenance (LM) of the building; specifically,, with a 100% probability of damage 

occurrence is assigned in case of contaminated water (q=1) or average/poor level of maintenance (LM≤1).; in particular, 375 

tThese conditions applied to the last latter two variables are the ones that eliminate any potential estimation uncertainties 

arising from missing data on other parameters involved in the damage mechanism. A similar uncertainty-limiting 

behaviorbehaviour is also distinctive of damage to pavement components, which theoretically depend on different input 

features, but only when finishing level (FL) is set to certain values (FL>1).  
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 380 

Figure 5. Damage estimation variability observed on the altered (i.e., with randomly generated multiple missing inputs) Po River 
District synthetic dataset representative of northern Italy. 

3.2.2.2 Analysis on field observed data from recent flood events 

Similar trend patterns to those presented in Figure 5 are also evident in Figure 6, which displays the results obtained by 

replicating the data filling procedure to the empirical datasets for the flood events in Lodi and Caldogno, both of which 385 

originally characteriszed by the presence of some unknown input features (Table 3). The minor differences visible between 

the two case studies (Figure 6) are again a consequence of the type of missing variables within each dataset.  

 

 

Figure 6. Damage estimation variability observed on the empirical datasets for the case studies of Lodi and Caldogno. 390 

Specifically, the points lying on the lower variability trend line for the Lodi case are representative of those buildings with 

available information on GL, which significantly reduces damage estimation uncertainty. If excluding these data, Lodi 

generally exhibits slightly larger standard deviations for the same calculated mean damage in Caldogno. Such difference can 

be explained by considering the input data availability in the two cases for certain key variables (q and LM) which can act as 

limiting or amplifying factors of damage estimation variability. In detail, complete information on these key variables is only 395 

available for the Lodi dataset, with just a restricted number of buildings exhibiting the mentioned “uncertainty limiting 

values” q=1 and LM≤1 (respectively in ~6% and ~15% of the elements in the dataset). 
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The two cases studies were also considered to highlight the value of the proposed approach in interpreting the results of 

model validation, particularly important for a complex multi-variable damage model like INSYDE. The outcomes of the test 

are summariszed in Table 4, which compares total observed damages losses against damage statistics obtained by applying 400 

INSYDE 2.0 over 1,000 replicates ofor each affected item in the two building portfolios containing missing input features.  

These findings are complemented by Figure 7, which offers a visual representation of the detected differences between 

estimations and observations at the individual building scale.  

Table 4 illustrates a general convergence between observed and estimated damages, particularly around the 75th percentile, 

where the calculated losses align with the reported values. The median estimates exhibit a satisfactory level of agreement 405 

with the observed losses, which is consistent with typical outcomes observed in validation exercises for models 

demonstrating overall good performances (e.g., Amadio et al. 2019; Molinari et al., 2020). It should be noted that the model 

tends to overestimate lower entity damages across all building types (Figure 7), but this discrepancy, rather than being a 

consequence of any model-related issue, can be primarily attributed to the limitations in the representativeness of claim data, 

particularly for minor losses, as documented in the literature (Merz et al., 2008; Molinari et al., 2020; Pinelli et al., 2020). 410 

 

Figure 7. Results of the probabilistic validation of INSYDE 2.0 for the case study of Lodi (left) and Caldogno (right). Median 
computed damage (dot) and corresponding interquartile range (line) are plotted for each building against observed damage 
(expressed in 2021 Euro). 
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 415 

 

 

Table 4. Results of the probabilistic validation of INSYDE 2.0 for the case studies of Lodi and Caldogno: Statistics statistics of 
total calculated estimated damages with INSYDE 2.0 versus reported damages for the considered case studies.  

Case study 
Calculated Estimated damage [M€ 2021] Observed damage  

[M€ 2021] 5th percentile 25th percentile median 75th percentile 95th percentile 

Lodi 3.13 3.68 4.18 5.26 8.06 5.05 

Caldogno 3.46 6.44 7.53 8.54 10.34 8.35 

While confirming the performance of INSYDE 2.0 in accurately depicting the overall damage figures of for the two events 420 

(Dottori et al., 2016; Amadio et al., 2019; Molinari et al., 2020), the results of this analysis also emphasisze the advantages 

benefits of incorporating the treatment of input data uncertainty when presenting the outcomes of a model validation 

outcomes, also in consideration of the well-known biases and limitations of damage observations in fully capturing reality 

(Molinari et al., 2020). Indeed, previous validation exercises on earlier model versions, relying on a deterministic approach 

for handling unknown input features, while reporting limited errors ranging from -1.7% to +5.1% for Caldogno and up to 425 

+19.1% for Lodi (Dottori et al., 2016; Amadio et al., 2019), lacked insights into the uncertainty introduced by the selection 

of fixed default values for handling missing variables in the tested cases. Here, by providing a clear indication of the 

uncertainty bounds of the estimations, the new this approach instead enhances the model’s robustness, transparency and 

reliability of the model, by providing a clear indication of the uncertainty bounds of the estimations, thus effectively 

mitigating the risk of conveying a false perception of certainty, which instead may be instead encountered with simpler 430 

deterministic approaches or even with more sophisticated models when used in combination with oversimplified 

assumptions (Merz et al., 2005; Pappenberger and Beven, 2006). 

4 Conclusions 

Accurately assessing flood risk is crucial for mitigating the potentially devastating effects of flooding. However, the 

complexity of the systems involved, and the significant amount of data required, make flood damage estimation a 435 

challenging task, susceptible to uncertainties from input data, model structure and assumptions. Achieving a trade-off 

between outcome reliability (with a quantitative characteriszation of uncertainty) and estimation efforts (in terms of time and 

financial resources for both data retrieval and modelling) is essential for efficient and comprehensive risk assessments, 

enabling optimal decision-making (Apel et al., 2008; Merz et al., 2015; Sieg et al., 2023). To strike this balance, it is 

important to examine the possible added value of utiliszing more detailed data and advanced methodologies, as well as 440 

identifying critical variables that reduce damage estimation uncertainty, justifying investments in data collection. 

In this context, the present study aimed at addressing these issues through the development of an updated version of a multi-

variable flood damage model, INSYDE, which estimates direct economic damages at the building scale as a function of 

several flood event and building features. In consideration of theGiven the amount and detail of required input variables, the 

process of data retrieving and preparing data retrieval and preparation for a multi-variable model, like INSYDE, can be 445 

resource-intensive; on the other hand, and incomplete inputs, may exert can a significantly impact on the variability of 

calculated damages. The proposed updated version of INSYDE then incorporates a probabilistic module for filling missing 

input data, offering a transparent information on uncertainties arising from limited knowledge on damage explicative 

variables. This approach, tailored to the Po River District as an exemplificatory case, ensures more reliable and robust 

assessments, reducing the risk of conveying a false perception of certainty that can occur when using univariable,  or simple 450 

deterministic approaches, or even when interpreting the results of model validation exercises (Merz et al., 2005; 
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Pappenberger and Beven, 2006; Amadio et al., 2019; Molinari et al., 2019, 2020). Therefore, the primary lesson learned 

from INSYDE 2.0 lies in transcending the confines of deterministic damage models. By challenging the conventional notion 

of certainty in damage assessments, our approach emphasised the importance of acknowledging uncertainty arising from 

“known-unknows”. From a decision-maker perspective, a thorough understanding of modelling assumptions and awareness 455 

of the broad variability of model outcomes stemming from limited knowledge on certain inputs, can be indeed crucial for 

making well-informed decisions. As a second aspect, acknowledging the complex interplay of assumptions in model input 

and output as well as possible biases in observed damages, we also question the use of the term “validation” in damage 

modelling, as this may imply a level of certainty that is inherently elusive. Our idea, instead, shifts from just seeking 

convergence between estimations and observations to embracing a comprehensive understanding of the uncertainties that 460 

characterise flood damage estimations. 

In this context, the present study (even under necessary assumptions on certain variables, due to the lack of pertinent 

information) demonstrates demonstrated the value of generating comprehensive local synthetic datasets of flood hazard and 

building features that can be leveraged to identify key variables worthy of specific investments in data retrieval. 

IndeedAdditionally, the development and use of synthetic datasets, combined with uncertainty analysis on model outcomes, 465 

can help in bridging the data gaps and addressing the challenges associated with the availability and completeness of input 

variables. 

Obtained results also indicated that, in addition to the beside standard hazard variables, an accurate description of the 

building features is essential to derive reliable estimations of flood damage (Schröter et al., 2018; Molinari et al., 2020; 

Taramelli et al., 2022). While data retrieval on large-scale for some of the vulnerability variables can be costly (Ruggieri et 470 

al., 2021), the use of the proposed probabilistic missing data filling procedure, based on representative datasets of the local 

building stock, can be employed as an option. This can not only help to solve the problem of insufficient knowledge about 

certain input features (Pinelli et al., 2020; Gómez Zapata et al., 2022), but also to provide decision makers with a better 

understanding of the uncertainty associated with the estimations (Razavi et al., 2021). Moreover, the results lessons derived 

from of the feature importance analysis conducted in this study highlights highlighted the significance of relying on 475 

representative datasets capturing the characteristics of the investigated area for a proper identification of the key variables to 

be considered when modelling flood damage.  

The process for developing these specific datasets, here exemplified for northern Italy (Po River district), but theoretically 

replicable, with adaptation, in any other region/country, mainly involves a combination of traditional methods for data 

collection, such as desk-based analysis of statistical databases data sources, as well as virtual surveys for creating building 480 

portfolios; even though such tasks can be time-consuming, especially in consideration of the possible significant regional 

spatial variability of the building stock, it is worth noting that emerging technologies, such as remote sensing and automatic 

image reconnaissance (Velez et al., 2022), can potentially enhance the process in the future, with a more efficient and 

accurate exposure and vulnerability modelling.  

In conclusion, this study demonstrates demonstrated the significant added value of adopting a probabilistic approach with the 485 

explicit treatment of input data uncertainties, thus providing insights for more informed risk assessments, while ensuring 

efficient data collection procedures. Overall, it also emphasiszed the ongoing enduring importance of continuously refining 

data collection and modelling approaches, since given that a comprehensive and reliable characteriszation of inundation 

phenomena and impacted assets is crucialremains crucial for enhancing confidence in the outcomes of damage assessment 

processes. 490 
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