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Abstract.  

Coastal and riverine floods are major concerns worldwide as they can impact highly populated areas and result in significant 10 

economic losses. In a river mouth environment, interacting hydrological and oceanographical processes can enhance the 

severity of floods. The compound flood hazards from high sea levels and high river discharge are often estimated using copulas 

among other methods. Here, we systematically investigate the influence of different data sources coming from observations 

and models as well as the choice of copula on extreme water level estimates. While we focus on the river mouth at Halmstad 

city (Sweden), the approach presented is easily transferable to other sites. Our results show that the compound occurrence of 15 

high sea levels and river runoff may lead to heightened flood risks as opposed to considering them as independent processes 

and that in the current study, this is dominated by the hydrological driver. We also show that the choice of data sources can 

considerably impact the results up to 10% and 15% for the river time series and 3% to 4.6% for the sea level time series under 

the 5- and 30-year return periods respectively. The choice of copula can also strongly influence the outcome of such analyses 

up to 13% and 9.5% for the 5-year and 30-year return periods. Each percentage refers to the normalized difference in return 20 

levels’ results we can expect when choosing a certain copula or input dataset. The copulas found to statistically best fit our 

datasets are the Clayton, BB1 and Gaussian (once) ones. Our findings contribute to framing existing studies, which typically 

only consider selected copulas and data sets, by demonstrating the importance of considering uncertainties. 

1 Introduction 

Floods can cause severe damage and disrupt activities and infrastructures in harbours and coastal communities. 25 

Flooding can result from meteorological, hydrological and oceanographic sources such as storm surges, extreme river runoff 

or precipitation. Storm surges correspond to seawater being pushed by the wind stress and the barometric pressure effect under 

deep low-pressure weather systems. Heavy precipitation can form under different conditions such as intense cyclonic activity, 

sometimes during the same deep low-pressure systems that cause the storm surge, or sometimes in convective weather 

conditions. River runoff can also have different origins, such as snow melting upstream or intense precipitation, either related 30 
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to the same large-scale weather system that could cause the storm surge or separately. Hence, several processes could 

contribute to compound effects, but also independently cause damage and disruption to activities in the coastal zone. River 

runoff and precipitation may take some time to drain into the sea, and the flow from land to the sea can therefore be slowed 

down or even momentarily become blocked when storm surges happen (Wahl et al., 2015). This process can be referred as 

coastal backwater effects while the water level at the river mouth increases due to high river discharge or high sea level or 35 

compounding effects (Feng et al., 2022). 

Settlements and infrastructure located in river mouth environments are inherently susceptible to all of the above. The 

combination of multiple factors, extreme or not, happening at the same place simultaneously, successively, or consecutively, 

can potentially lead to larger, compounded floods, and more severe impacts on the environment and society. Compound 

flooding can also result when preceding conditions amplify the impact of the event (Andrée et al., 2023; Zscheischler et al.,  40 

2020; AghaKouchak et al., 2020). Even if trends over the last forty to sixty years are estimated with high uncertainties, it is 

likely that extremes including compound events are becoming more severe in Northern Europe in a changing climate 

(Rutgersson et al., 2021).  

Couasnon et al. (2020) highlight the importance of considering interactions referred to their co-occurrence 

probabilities between river discharge and storm surge extremes in river mouth environments. They demonstrate that 45 

dependencies between these drivers are not random and may result from relations between weather systems at the synoptic 

scale with local conditions such as the topography. Ward et al. (2018) study the dependence between river discharge and skew 

surge at the global scale where significant dependency is found in several stations in Europe, mainly located around the UK 

coastline. Hendry et al. (2019) also highlighted those dependencies around the UK coast and linked the spatial variability found 

with differences in storm characteristics. In Northwestern Europe, it has been shown that the fluvial flood hazard increases 50 

with high sea levels and stronger storms, and that this may be critical in populated and low-elevation coastal areas (Ganguli 

and Merz, 2019). Increasing trends within the last decades in the magnitude and frequency of coastal compound floods between 

river discharge and sea levels are found for gauges between 47°N and 60°N latitude while decreasing trends are highlighted 

for gauges > 60°N in Northwestern Europe (Ganguli and Merz, 2019), where rare occurrences of compound floods are reported 

due to a decrease in relative sea level rise across Nordic countries due to vertical crustal movement (Weisse et al., 2021). For 55 

example, Eilander et al. (2020) find the Baltic Sea and the Kattegat basin to be particularly susceptible to compound flood 

hazards based on the dependency between skew surge levels and river discharge. Without considering the occurrence of storm 

surges, Eilander et al. (2020) further show that flood depths are underestimated and subsequently so is the estimated number 

of people exposed to river floods in this area. Meanwhile, Moftakhari et al. (2017) demonstrate that sea level rise (SLR) is 

likely to increase the impacts from compound flooding by 2030 and 2050 under the Representative Concentration Pathways 60 

(RCPs) 4.5 and 8.5 for eight major cities around the US coastline.  

Compound flooding in coastal areas can also be caused by a combination of heavy precipitation inducing large runoff 

and high sea levels (Bevacqua et al., 2019). Hence, the probability of compound flooding is expected to significantly increase 

in the Baltic and North Sea areas, where an event with a current return period (RP) of around sixty years is projected to occur 
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every ten years in 2100 due to the combination of SLR and increased extreme precipitation (Bevacqua et al., 2019). However, 65 

Ganguli et al. (2020), in a coupled statistical-hydrodynamic modelling framework showed that projected changes in compound 

flood hazard are limited to 34% of the sites with a substantial role of SLR in modulating compound flood hazard in 

Northwestern Europe. 

Not taking compound flooding effects into account may result in an underestimation of the flood hazards in the coastal 

zone, including river mouths (Ward et al., 2018). Thus, analyzing and understanding these events is of high relevance to coastal 70 

communities. In this study, we evaluate the potential impact of extreme hydrological and oceanographic coastal events on the 

coastal city of Halmstad (Sweden), which is a port, industrial, and recreational city at the mouth of the Nissan river. Halmstad 

is located on the west coast of Sweden (fig. 1) and has been chosen as it is naturally prone to coastal, fluvial, and pluvial 

flooding. The area is subject to extratropical cyclones (Hoskins and Hodges, 2002; Dacre et al., 2012), resulting in rather high 

sea levels by storm surges for the area (Wolski et al., 2014). According to the Swedish Meteorological and Hydrological 75 

Institute (SMHI), Halmstad recorded the highest ever sea level measured in Sweden of 235 cm on the 29th of November 2015 

during the wind storm “Gorm”. Halmstad has also been severely impacted by river floods. While Nissan is the main river 

crossing the city of Halmstad, smaller rivers are also present and can create floods, such as Fylleån’s river. Finally, the West 

Coast of Sweden is found to be one of the areas in Sweden expecting the most significant impacts due to SLR during this 

century (Hieronymus and Kalén, 2020). Thus, nearby studies have stressed the necessity to update coastal protection measures 80 

along the Swedish (Hieronymus and Kalén, 2022) and the German Baltic Sea shorelines (Kiesel et al., 2023). To help guiding 

and communicating with the local municipalities about their continued work to protect coastal areas from flooding we 

considered it useful to pick one site in this area as an example to showcase the applied methods and their results. 

The main goal of the current study is to investigate the impact of different data sources, methodology, and 

representation of compound extremes on estimates of extreme water levels. Our main focus is to evaluate the sensitivity to 85 

data sources of compound flood hazards from river discharge and sea level, potential sources of uncertainties. Using Halmstad 

as an example, we explore the potential influence on flood hazard assessments related to compound effects from river flooding 

within the coastal area. 
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 90 

Figure 1: Regional map of southern and central Sweden with a zoom around our study area and the city of Halmstad (Pawlowicz, 

2020; Sentinel 2 cloudless, 2021) 

2 Data and Methods 

In the following, compound effects are defined in terms of the co-occurrence probabilities between coastal sea level 

and river discharge when at least one of the two is subject to an “extreme” value. An event is considered in the extreme range 95 

when a studied variable reaches its annual maximum value. The annual maximum values will differ between different years 

in a range between 84 to 235 cm for sea level and 88 to 271 m3 s-1 for river discharge. The correlation between co-occurring 

events has been studied as it provides insight into the relationship between each set of two variables. The exceedance 

probability of getting an extreme river discharge associated with a high sea level and the opposite permits the assessment of 

the potential compound effects between those two processes but it does not determine impacts from compound flooding either 100 

in terms of estimating water level or computing inundation depths. Hybrid statistical-hydraulic modeling frameworks have 

been introduced to answer such issue and study compound flood impacts (Jane et al., 2022; Moftakhari et al., 2019; Gori et 

al., 2020; Olbert et al., 2023). 

Figure 2 presents the main steps of the workflow describing the methodology; this is described in the following sub-sections. 

Firstly, we analyzed different time-series records of sea level and Nissan River discharge data from models and observations 105 

at Halmstad using extreme value theory and a Generalized Extreme Value (GEV) distribution (Coles, 2001) – hereby referred 

to as the “univariate approach” - to estimate Return Levels (RLs) on every driver independently. Secondly, we defined sets of 

coupled events based on single variables. Thirdly, we analyzed the correlation between sea level and river discharge events. If 

this analysis indicated potential for compound events, we studied the co-dependency between the two variables by fitting a 

copula distribution function (Sadegh et al., 2018). We finally performed a statistical analysis of the compound events to study 110 

the differences between each data source and its associated uncertainties. 



 

5 

 

 

Figure 2: Workflow describing the methodology used in this paper, starting from the oceanographic and hydrological data (in 

purple) to the univariate (in blue and dashed arrows) and bivariate (in orange) approaches used for flood hazards analysis. 

 115 

2.1 Data 

An analysis of time-series records of sea level and river discharge at Halmstad was carried out. As mentioned above, 

a univariate distribution was initially fitted based on the GEV distribution and extreme value theory (Coles, 2001) for each 

time series collected. The temporal differences in the lengths of each dataset induce substantial differences and associated 

uncertainties, which dominate in the case of extreme RP. Consequently, a moderately extreme 30-year RP event was chosen 120 

as the maximum value considered. For comparison, we also consider more frequent events with a 5-year RP. 

2.1.1 Sea level data 

Figure 3 displays the different sea level datasets used (fig. 3-a) and their corresponding univariate extreme value 

analysis (fig. 3-b). 
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125 
Figure 3: Halmstad sea level time series and annual maxima from different sources: observations (”obs sea level”), reconstructed 

(”rec Halmstad“) and predicted (”pred Halmstad“) derived from a machine learning model trained on data from the Viken station, 

and reanalysis (“reanalysis”) datasets (panel a). RLs estimated from corresponding GEV fits of each dataset and the associated 95th 

percentile confidence intervals (background colours). The dots depict empirical data (panel b). 

  130 
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- Observations 

Hourly sea level observations data were obtained from SMHI at Halmstad’s tide gauge denoted as the station “HALMSTAD 

SJÖV” with station number 35115 in the open database provided by SMHI (fig. 1). This hourly sea level time series is 

transformed to a daily time series using the maximum hourly data within the day. However, to carry out this analysis, the 

period with sea level observations (titled “obs sea level”) was insufficient as only 13 years (from 2009 to 2021) are available. 135 

To extend this sea level record, a set of reanalysis data and a machine learning approach have been investigated and used. 

 

- Reanalysis 

Hourly sea surface variations (in m) covering the period from 1993 to 2020 with a spatial resolution of approximately two 

nautical miles have been provided by the Copernicus Marine Environment Monitoring Service’s (CMEMS) Baltic Monitoring 140 

and Forecasting Centre (BAL MFC) (CMEMS, 2022). This reanalysis uses the ice-ocean model NEMO-NORDIC (Pemberton 

et al., 2017), and the data are assimilated with the Localized Singular Evolutive Interpolated Kalman (LSEIK) method (Nerger 

et al., 2005). Data is extracted from the closest grid point to Halmstad’s tide gauge and the hourly data was changed to a time 

series of daily maxima for our purpose to focus on extremes. This sea level dataset is named: “reanalysis”. 

 145 

- Machine learning model 

A probabilistic machine learning method, Random Forest (RF), is used (Breiman, 2001). Sea level records from the 

neighbouring station of Viken (station named “VIKEN”, number 2228 in the SMHI database) is used to train the RF model 

over an eight year-period, where it is correlated with Halmstad's observed sea level. The resulting sea level estimates at 

Halmstad include both mean predictions and standard deviation to assess uncertainties and variability following the 150 

methodology introduced by Dubois et al. (2024). The last three years of available data at Halmstad are used to validate the RF 

model, emphasizing extreme events predictions. The RF model is used to produce a first dataset called: “predicted Halmstad” 

(“pred Halmstad”) and a second one named: “reconstructed Halmstad” (“rec Halmstad”).  

The predicted Halmstad dataset provides daily sea level (in cm) for the full period of available sea level observations from the 

station at Viken, here from 1977 to 2021.  155 

The reconstructed Halmstad dataset provides daily sea level (in cm). It joins both sets, i.e., combines observations 

from Halmstad from 2009 to 2021 and the predicted Halmstad data from the RF model from 1977 to 2009. Thus, it also covers 

the period from 1977 to 2021. Further attempts to enrich the RF model by including reanalysis data (i.e., as part of the training) 

did not improve the predicted sea levels in the reconstructed data sets significantly, which emphasized the need for local 

observations. These were fortunately available, even if not for the entire more extended period. Similar findings, that is, 160 

significant improvements when using local observations as means to train a machine learning of sea level were previously 

found in this region (e.g. Hieronymus et al., 2019). 
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It is not only the length of the observation period that is short. Also, the reanalysis dataset exhibits a bias and does 165 

not predict the observed extreme sea levels. Accordingly, the uncertainty estimated from both univariate GEV analyses are 

large (fig. 3-b). The predicted and reconstructed data sets yields result with a smaller uncertainty range. Hence, the 

reconstructed data set, which is based on observations when available, was chosen as the best source of sea level information 

for the bivariate analysis.  

2.1.2 River runoff data 170 

Figure 4 presents the different river discharge datasets obtained (fig. 4-a) and their corresponding univariate extreme 

value analysis (fig. 4-b). 

 

- Observations 

River discharge data were obtained from SMHI at station 2471: “Nissaström” (fig. 1), covering a basin of 2437 km2. 175 

Observations of daily river discharge in m3 s-1 (obs Nissan) have been provided from 1997 to 2021. 

 

- E-Hype model 

Modelled river discharge data are taken from the Hydrological Predictions for the Environment (HYPE) model, which 

simulates water flows and quality at different spatial scales (Lindström et al., 2010), a model detailed description can be found 180 

at http://www.smhi.net/hype/wiki/doku.php?id=start. Daily temperature and precipitation values are used as dynamic forcing 

in this model. The European HYPE model: “E-Hype2016_version_16_g” (E-Hype) provides daily river discharge (in m3 s-1) 

from 1989 to 2021 (https://vattenwebb.smhi.se/om-vattenwebb). The model performs better for annual and seasonal flows 

compared with daily and extreme flows (Donnelly et al., 2016). 

 185 

- S-Hype model 

SMHI has set up the HYPE model for Sweden, now used operationally to forecast hydrological conditions over Sweden, such 

as floods and droughts. It covers all of Sweden (450000 km2), where the country has been divided into sub-basins of 28 km2 

on average (Strömqvist et al., 2012). S-Hype3 model’s data (S-Hype) of daily river discharge (in m3 s-1) has been provided 

from 2004 to 2020 (Donnelly et al., 2016). The model seems to slightly underestimate high flow peaks with high flow statistics 190 

differing by around +-10% whereas the mean flow is highly reliable (Bergstrand et al., 2014). 
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Figure 4: Nissan’s river time series and annual maxima from different sources: observations (“obs Nissan”), European HYPE model 

(“E-Hype”) and Swedish HYPE model (“S-Hype”) from SMHI (panel a). RLs derived from GEV fits to each dataset are shown with 195 
95th percentile confidence intervals (background colours). The dots are the empirical data (panel b). 

 

The available time series associated with the S-Hype model is rather limited, leading to a wide uncertainty band when carrying 

out the univariate analysis (fig. 4).  Conversely, the Nissan observations and E-Hype data sets lead to RLs that are associated 
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with more bounded uncertainty estimates. In this light, we choose the E-Hype dataset for the bivariate analyses as the data are 200 

available over a more extended period. The largest RLs are seen for the E-Hype dataset for RPs above five years. 

 

2.1.3 Sets of coupled events 

To study compound events in a river mouth environment from both a river discharge and sea level perspective, we 

defined two different sets of events based on the data discussed above. The first one paired sea-level annual maxima (Sn) and 205 

associated daily maximum river discharge (qn) within a defined time period centered on the date of Sn (+/- Δ days). The second 

one pairs river discharge annual maxima (Qn) and associated hourly maximum sea levels (sn) within a defined three days 

window centered on the date of Qn (+/- one day) (Couasnon et al., 2020; Moftakhari et al., 2017; Sadegh et al., 2018). Each of 

the four sea level time-series observed and modelled records were then correlated with each of the three river discharge ones, 

which makes up a total of twelve different datasets (table A2).  210 

2.2 Statistical analysis 

 

- Univariate analysis 

To estimate the extreme values of Nissan’s river runoff and Halmstad sea levels, and their associated RPs, a GEV distribution 

was fitted to the annual extremes separately for each time series record (Coles, 2001; Ahsanullah, 2016). This was done using 215 

the MATLAB-based GEV-fitting algorithm, which provides parameter estimates and 95% confidence bands. Here, we do not 

make any assumption concerning the dependence between the two variables of interest, sea level and river discharge; each 

variable is modelled independently based on its own marginal distribution. 

 

- Bivariate analysis 220 

Initially, the Pearson, Spearman and Kendall’s correlation coefficients and the associated p-values were calculated for each of 

the twelve collated data sets to assess whether there was a relationship between river runoff and sea level. The usual threshold 

value of 5% was defined as evidence for rejecting the H0 null hypothesis, that is, the two variables are independent. When p-

values were found to be lower than the threshold, the null hypothesis could be rejected, and the two variables similarly found 

to show significant dependency. However, when p-values are above 5%, H0 cannot be rejected, so the two variables can be 225 

independent.  

To represent the compound extremes, we apply copula modelling, which has been found to be useful for representing a joint 

probability (Hao et al., 2016). The analyses were carried out using the Multihazard Scenario Analysis Toolbox (MhAST), 

Version 2.0 from Sadegh et al., (2018). The copula method models the dependence structure of the two random variables (Joe, 

2014; Sadegh et al., 2017). It links or joins individual univariate distributions into a joint multivariate distribution that has a 230 

specified correlation structure (Tootoonchi et al., 2022).  The MhAST toolbox fits 25 different copulas to an input dataset. It 
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first calculates the best possible fitting marginal distribution for each univariate dataset. It then proposes the best copula fit 

based on the Maximum Likelihood, Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC). The 

root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) values are calculated for each copula. Here, we evaluated 

the difference between each of the copula fits. Joint RP can then be calculated based on the copula but results in statistically 235 

similar infinite combinations of sea level and river discharge values for each RP event (Sadegh et al., 2018). The scenario with 

the highest density along the closed-form joint probability density function of the copula permits the identification of the “most 

likely scenario”. This scenario is based on the copula fit parameters, which represent the statistical relationships between the 

individual hazard components coming from the input samples. An uncertainty analysis was also carried out using the MhAST 

toolbox with a “Weighted Average” and a “Maximum Density” approach (Sadegh et al., 2018). This first approach reproduces 240 

a distribution of potentially compound hazards. Based on the determined joint probability contours, random samples are 

weighted from the critical joint RP. 1000 weighted samples are randomly drawn from it. Therefore, a sample with a higher 

joint probability density value has a higher chance of selection. This approach effectively generates a distribution of potential 

compound hazards while considering the underlying copula structure. This provides a comprehensive overview of the overall 

range of possible compound hazards. The second approach is based on the “most likely scenario” and provides an uncertainty 245 

range around it. A range of possible most likely scenarios can be generated based on the different copulas issued from the 

same copula family that best describes the input datasets, allowing for the quantification of uncertainties around this central 

scenario (Sadegh et al., 2018).  

Two types of Hazard Scenarios (HSs) have commonly been proposed to study the hazard of compound floods related to sea 

level and river discharge (Salvadori et al., 2016; Moftakhari et al., 2019; Serinaldi, 2015). The “AND scenario” corresponds 250 

to a scenario where both the river discharge and the sea level are large enough to make a bivariate occurrence hazardous 

meaning that both high sea levels and river discharge exceed the respective random variables concurrently. The “OR scenario” 

corresponds to a scenario where either the river discharge or the sea level or both are large enough to make a bivariate 

occurrence troublesome meaning that either of the extremes exceeds the respective random variable with a time offset within 

a limited time interval (Requena et al., 2013). 255 

2.3 Methodology 

Firstly, a correlation analysis was carried out for each set, as proposed in section 2.2. This analysis investigated the 

significance of independence between the sea level and river discharge during extreme occurrences. Then, each set was used 

as input to the MhAST toolbox, which performed the compound analysis and returned 25 copula fits ranked depending on 

different criteria (section 2.2). Among the 25 copulas fitted, only the ones presenting a closed-form joint probability density 260 

function (Sadegh et al., 2017) were further investigated since, in these cases, "most likely scenarios” and their associated 

uncertainties can be defined. Chosen RLs were calculated for each copula, and their uncertainties were assessed. Adopting the 

“AND scenario” (see above) permitted us to investigate the hazard of compound events only, highlighting the dependency 

between sea level and river discharge during extreme events. Conversely, the “OR scenario” was finally preferred when 
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looking at RLs as this looks into the “total” hazard of flooding, whether originating from hydrological, coastal sources or both 265 

in combination. 

To compare and evaluate the role of copulas and the role played by sea level and river discharge, respectively, a 

notion of normalized difference value (NDV) was introduced. We defined it as the normalized difference between the RL 

values of interest from the bivariate analyses. Here, we normalize relative to the corresponding E-Hype univariate RL, which 

yields a representative dimensionless quantity. It should be pointed out that this quantity does not represent the “amplification” 270 

with respect to the univariate case since, as shown by Serinaldi (2015), one cannot compare RLs of different dimensionality. 

Suppose we investigate the resulting spread from using different copulas (based on the most likely scenarios within one set 

under the 5-year RP); the NDV is calculated as the difference between the maximum and minimum value of the most likely 

scenarios for any copula within a specific set divided by univariate 5-years RL derived from the E-Hype data set (section 3.2). 

When we look into the sensitivity of river discharge datasets, the sea level dataset is fixed, and the NDV is measured as the 275 

normalized difference between the maximum and minimum values of the most likely scenarios of best fits among the three 

sets of associated river discharge divided by the corresponding E-Hype univariate RL; and vice-versa, when looking into the 

sensitivity of sea level datasets. The NDV term indicates the magnitude of change or difference in RL results we can expect 

when choosing a certain copula or input dataset. Very small NDVs suggest that the corresponding choice of a variable of 

interest does not strongly influence the results. In contrast, large NDVs indicate that a particular choice results in significant 280 

differences. 

3 Results and discussion 

From the rank correlation analysis, the datasets based on sea level annual maxima (Sn, qn) did not reveal any 

significant dependency (i.e., “compoundness”) between sea level and river discharge, and therefore, no copula analysis was 

done (table A.1). In this case, the univariate analysis seemed to fit best under the proposed conditions of this study. Conversely, 285 

the datasets based on river discharge annual maxima (Qn, sn) yielded significant dependencies, suggesting a possible compound 

impact on river discharge. In subsections 3.1 and 3.3.1, we look into the “AND scenario” as we investigate the compound 

hazard only. In the subsections 3.2 and 3.3.2, we mainly focus on the “OR scenario” (see above) as we are interested in the 

total flood hazard driven regardless of the situation (oceanographic, hydrological or compound). The set rec Halmstad / E-

Hype is chosen as our base case because it has the longest co-occurring period (table A.2). 290 

3.1 Dependency / Independency of the variables 

Figure 5 and Table A1 show the dependency between the river discharge annual maxima and associated sea level 

local maxima (Qn, sn) event sets as expressed in section 2.1. Figure 5 displays the best copula distribution fit: BB1 from the 

rec Halmstad / E-Hype set under the “AND scenario” hypothesis for the 2, 5, 15 and 30-year RP. The full lines depict the RLs 

considering sea level and river discharge as dependent variables (derived from the best copula distribution fit). In contrast, the 295 
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dashed lines show analogous results when assuming the two variables to be independent. The figure shows that the lines do 

not overlap, highlighting a dependency between both variables. Also, for all RLs presented, each RL from the independent 

hypothesis (dashed line) is placed below each corresponding RL from the dependent hypothesis (full line), supporting the 

hypothesis that compound events lead to higher flood risks when considering compound extremes as also found in Bevacqua 

et al. (2017) where they studied compound hydrological and oceanographic floods in Ravenna (Italy). Therefore, for example, 300 

a 30-year RP, when looking at the independent variables, would become a 13-year RP when considering the variables’ 

dependency. This frequency increase comes from the compound effects and can be highlighted for each RP and copulas tested. 

Also, the dependency between extreme hydrological conditions and high oceanographic ones stresses the presence of 

compound effects, which lead to higher levels of river discharge and sea level during such events at the estuary. Joint 

probability contours are derived, which permits obtaining a probability of co-occurrences for a possible event along each curve, 305 

which is later used to carry out the uncertainty analysis (Sadegh et al., 2018). For example, along the 5-year RP curve, the 

probability of getting a 5-year RL of 180 m3 s-1 river discharge and 93 cm sea level is higher than getting one of 201 m3 s-1 and 

20 cm or one of 101 m3 s-1 and a 112 cm one (fig. A1). 

 

 310 

Figure 5: RLs for base case set rec Halmstad / E-Hype. Full lines correspond to the return period (RP) isolines for joint probability 

(AND scenario) of river discharge (y-axis) annual maxima and associated sea level (x-axis) maxima (Qn, sn). The dashed lines 

represent the distribution fit, assuming the independence between the variables. Blue dots show observed data. BB1 copula is used 

to model the dependence of river discharge annual maxima and associated sea level maxima calculated for each RPs visible in red 

text (2, 5, 15 and 30 years). 315 
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3.2 Compound hazard potential on river floods 

The focus is on river discharge RLs as a proxy for fluvial flooding indicators. Figure 6 represents the 5- and 30-year 

river discharge RLs from the set rec Halmstad / E-Hype under the “OR scenario” hypothesis for each copula tested and its 

associated uncertainties values from two approaches. The best copula fit selected based on the different criteria as AIC in this 320 

case (section 2.2) is BB1 (red diamond). The stars and diamonds represent the maximum density of the calculated RL for each 

copula, which can be interpreted as the most likely scenario under the bivariate analysis.  

 

- RP = 5 years 

The 5-year RL from the E-Hype model is 201 m3 s-1 with a 95th percentile confidence interval of 167-246 m3 s-1 under the 325 

univariate GEV distribution fit. The BB1 copula fit has a 5-year RL “most likely scenario” of 220 m3 s-1. Among all tested 

copulas, their 5-year RLs of “most likely scenarios” differ around 26 m3 s-1, all between 208 and 234 m3 s-1. The RL copulas’ 

uncertainties are displayed with the boxplots from two methods: the “Weighted Average” approach showed with the outlined 

error bars, and the “Maximum Density” approach showed with the filled error bars. The “Weighted Average” approach gives 

more considerate uncertainty ranges than the “Maximum Density” (section 2.2). Indeed, for the best copula fit, the “Maximum 330 

Density” approach looking at the uncertainty of the “most likely scenarios” results in a narrow band of a maximum of 19 m3 

s-1 per copula against a more extensive range of 159 m3 s-1 going from 202 to 361 m3 s-1 with the “Weighted Average” approach. 

All copulas present a similar pattern.  

Moreover, the RL uncertainties for the “Maximum Density” approach are all located within the 95th confidence interval of the 

univariate RL. However, the “Weighted Average” approach gives a 75th percentile of around 255 to 269 m3 s-1 and a nonoutlier 335 

maximum of around 324 to 361 m3 s-1 above the 246 m3 s-1 corresponding to the 95th percentile of the univariate GEV fit, 

indicating the importance of considering bivariate analysis method. The BB1 copula chosen as the best fit here by the different 

evaluation criteria mentioned in section 2.2 presents neither the smallest nor largest uncertainty band. 

 

- RP = 30 years 340 

The 30-year RL from the E-Hype model is 263 m3 s-1 with a 95th percentile confidence interval going from 189 to 431 m3 s-1 

under the univariate GEV distribution fit. The BB1 copula fit has a 30-year RL of 278 m3 s-1. The copulas’ 30-year RL of 

“most likely scenarios” differ by around 25 m3 s-1, with all of them between 267 and 292 m3 s-1, except for the Gaussian copula. 

For all copulas except the Gaussian one, the “Weighted Average” approach gives a more extensive uncertainty range than the 

“Maximum Density” one. Indeed, for the best copula fit, the “Maximum Density” approach results in a relatively narrow band 345 

of 24 m3 s-1, going from 272 to 296 m3 s-1, against a more extensive range of 92 m3 s-1 going from 261 to 353 m3 s-1 with the 

“Weighted Average” one. All copulas except the Gaussian and the Tawn ones present a similar pattern. Moreover, all RL 
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uncertainties for both uncertainty analysis approaches are within the 95th confidence interval of the univariate RL for the 30-

year RP. 

 350 

- Sensitivity to the choice of copula 

For both 5- and 30-year RPs, the copulas and their associated uncertainties present a similar pattern. Depending on the choice 

of copulas, the most likely scenarios differ up to 26 m3 s-1 for the 5-year RP and up to 25 m3 s-1 for the 30-year RP, with the 

Tawn copula giving the minimum value and the Fischer-Kock and FGM copulas giving the maximum value. When only 

looking at the most likely scenarios values for each copula, they differ in a range approximately equal to 13% and 9.5% for 355 

the 5- and 30-year RPs, respectively (table A3). For each copula, the uncertainties’ relative errors based on the “Maximum 

Density” approach differ from 1% (Gaussian) to 9.9% (Fischer-Kock) and from 2.3% (Joe) to 52% (Gaussian) for the 5- and 

30-year RPs respectively; from 63% (Joe) to 75% (Fischer-Kock) and from 16% (Joe) to 35% (Fischer-Kock) for the 

“Weighted Average” approach. For comparison, the relative errors for the univariate GEV fit are around 41% and 92% for the 

5- and 30-year RPs, respectively. When considering the “Maximum Density” uncertainties, all RLs of all copula are in the 360 

range of 208-234 m3 s-1 for the 5-year RL and 262-398 m3 s-1 for the 30-year RL (Table A3; fig. 6). 

These differences in resulting RLs emphasize the importance of the role played by the choice of copulas and the consideration 

of quantifying uncertainties. 

 

 365 

Figure 6: Fluvial component in bivariate events with 5- (a) and 30-year (b) Return periods from copula fits for rec Halmstad / E-

Hype. Each column represents a copula distribution fit. Stars represent the most likely scenario return values from each copula for 

each set, and the red diamond is the best copula fit. Two uncertainty approaches are displayed as boxplots, giving a statistical 

summary. Median, first, and third quartiles are represented in each box, whiskers represent minimum/maximum values, and dots 

represent outliers. Outlined boxplots correspond to the “Weighted Average” approach, and filled ones to the “Maximum Density” 370 
approach. 
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3.3 Sensitivity analysis on compound flood hazard potential -OR scenario- 

This section focuses on the impact of data sources on resulting RP statistics, aiming to compare copula analyses 

considering compound events. As seen in section 2.1, we have twelve possible data sets to analyze for Halmstad city extracted 375 

from models and observations. As mentioned in section 2.1, the univariate analysis presents different results, including RL 

values and confidence intervals for each river runoff time series.  

5-year and 30-year univariate RLs of river runoff, respectively, differ by around 9 m3 s-1 and 21 m3 s-1 with values of 202 m3 s-

1 and 241 m3 s-1 based on observation gauge (red); 193 m3 s-1 and 252 m3 s-1 based on S-Hype model (blue); 201 m3 s-1 and 263 

m3 s-1 based on E-Hype model (green) as displayed in Figure 4-b. However, uncertainties associated with the 95th percentile 380 

confidence interval differ vastly from respectively around 86 m3 s-1 and 185 m3 s-1 (observation); 121 m3 s-1 and 811 m3 s-1 (S-

Hype); 79 m3 s-1 and 242 m3 s-1 (E-Hype) as displayed with the background colours on the figure. 

3.3.1 Dependency / Independency of the variables 

Figure 7 presents resulting RLs for combined ranges of each variable set for the 5- and 30-year RPs as in Figure 5, 

but with results from six different data sources to study the resulting impacts. The dependency is evident for each set, with 385 

each full line moved away from its corresponding dashed line, highlighting the dependency and compound effects for any sets 

tested. The differences between solid and dashed lines in Figure 7 are typically contained within about 20 cm sea level or 25 

m3 s-1 river discharge based on the maximum distance between the copula and independence cases on rays coming from the 

origin; constituting about 10-15% of the extreme 5- and 30-year RLs for the site with a gap increasing with higher RPs. At 

first glance, these differences may be perceived as a reasonably small compound effect, but every little increase in extreme 390 

situations can have a consequence for society. It should be noted that switching data sources may have a significant effect on 

estimated RLs; hence, both method and choice of data are essential. 
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Figure 7: 5- (a) and 30-year (b) Return periods isolines for joint probability (AND scenario) of river discharge (y-axis) annual 395 
maxima and associated sea level (x-axis) maxima (Qn, sn) for Halmstad. Full lines implement the compound effect, and dashed lines 

represent fit, assuming independence between both variables. Dots show observed data. The best copula fit is used to model the 

dependence of (Qn, sn) calculated for each set visible in coloured text. 

 

Some sets behave similarly as their corresponding dashed and full lines almost overlap as for the sets obs Nissan / 400 

pred Halmstad & obs Nissan / rec Halmstad or E-Hype / pred Halmstad & E-Hype / rec Halmstad in both 5- and 30-year RPs 

(fig. 7). This similarity emphasizes that river discharge dominates over sea-level inputs the co-occurrence probabilities of 

bivariate hazardous events. 

3.3.2 Compound hazard potential on river floods 

The most likely scenarios of 5- and 30-year RPs and their associated uncertainties on the different sets are calculated 405 

as described in section 2.1. This study focuses on extreme hydrological events associated with oceanographic conditions and, 

therefore, concentrates on the RLs of river discharge. Figure A2 displays those results for each set in the same way as Figure 

6. Figure A2-a returns the results of the 5-year RP and Figure A2-b, the 30-year RP analysis.  

Under the 5-year RP, lower RLs are found for all obs sea level sets (fig. A2-a), corresponding to the data available and short 

duration of overlapping periods, with a maximum of 13 years and limited by the extent of sea level observations. Under the 410 

30-year RP, lower RLs are found for the set E-Hype / obs sea level and all S-Hype sets except for S-Hype / obs sea level, 

which presents the most extreme values.  

For the 5- and 30-year RPs, the three sets associated with the E-Hype model, which show statistical significance, lead 

to similar and higher values, respectively, than all the other sets. The last set showing statistical significance is associated with 
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the S-Hype model and leads to somewhat different results between the 5-year RP, with slightly lower RLs, and the 30-year 415 

RP, with generally higher RLs (fig. A2). It stresses that the dependence changes the RP results as also shown by Santos et al. 

(2021) which studied compound surge and precipitation events in a case study in the Netherlands. 

All most likely scenario values calculated from the copula analysis under both the 5- and 30-year RPs are within the 

range of the 95th percentile confidence interval of the univariate GEV distribution fit (fig. A2). 

Uncertainties associated with the copula analysis and following the “Maximum Density” approach do not extend too much 420 

from the median values and stay within the confidence interval of the univariate GEV distribution (fig. A2) for most of the 

copulas tested. Under this “Maximum Density” approach and based on the best copula fits, they differ by about 3-8 m3 s-1 for 

the 5-year RP and 2-9 m3 s-1 for the 30-year RP. Under those same conditions, the uncertainties from the “Weighted Average” 

approach vary between 65 and 149 m3 s-1 for the 5-year RP and between 37 and 68 m3 s-1 for the 30-year RP. Therefore, 

uncertainties related to the “Maximum Density” approach associated with the most likely scenarios are relatively small, 425 

providing reasonable confidence in such scenarios. Conversely, the “Weighted Average” approach uncertainties provide a 

confidence interval on possibly more extreme scenarios, which is relevant when communicating RLs.  

 

- Input datasets selection 

Depending on the choice of river time series as initial input, the results of the copula analysis under the 5- and 30-year RPs 430 

differ substantially around a maximum of 20 m3 s-1 and 40 m3 s-1, respectively, with an NDV range of 6-10% and 8.4-15% (fig. 

8). This contrasts with the choice of sea level time series as initial input with a maximum difference of around 6 and 12 m3 s-1 

equivalent to 1.5-3% and 2.3-4.6% NDV bounds for the 5- and 30-year RPs, respectively, without considering the three sets 

associated with obs sea level. Those results are based on the most likely scenarios from each best copula fit and did not consider 

the obs sea level associated sets. It emphasizes that the choice of sea level records has a lower influence than the one of river 435 

discharge within this study on compound hydrological extreme events on our example study site (Halmstad). The well-

recognized issues from the reanalysis dataset support this result as even a large difference in the sea level input dataset does 

not get reflected in the NDV values when looking at the choice of sea level. Similar findings could be expected for the 

surrounding area (West coast of Sweden). 

 440 

- Copula selection 

To evaluate the role played by choice of the copula, we calculated the NDV for each set between the maximum and the 

minimum values returned by the 18 copulas tested without considering the sets with obs sea level data input as it was too short 

for bivariate analysis. Among all the different sets, the BB1, the Gaussian and the Clayton copulas are the best ones based on 

the different statistical criteria (section 2.2). Moreover, when only looking at the sets associated with the same river runoff 445 

input, the best copula fit is the same: Clayton for obs Nissan, BB1 for E-Hype except for S-Hype, which has Gaussian as the 

best fit for S-Hype/rec Halmstad and Clayton for the two other sets. The tests of using multiple copulas have also been 

investigated in previous studies. Lucey and Gallien (2022) looked at compound coastal events linking precipitation and/or sea 
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level in a tidal and semi-arid area. They noticed that, in their particular area, the Nelsen, BB1, BB5, and Roch-Alegre copulas 

represented best their datasets and each of them provided similar results in almost all cases. Bai et al. (2020) introduced a 450 

mixed copula which is a linear combination of Gumbel, Clayton, and Frank copulas to statistically study coastal winds and 

waves. They observed that the mixed copula can better describe the dependency structure than the five single copulas tested 

(Gaussian, t, Gumbel, Clayton, Frank) where the representation of relations between both drivers is complex. 

For most of the sets, the “Fischer-Kock” and the “FGM” copulas give the highest RLs and the “Tawn” and “Joe” copulas give 

the smallest ones (fig. A2). It results in NDVs between 5.5% and 13% for the 5-year RP and between 3.8% and 9.5% for the 455 

30-year RP. The base case E-Hype / rec Halmstad presents the highest NDVs when comparing with other sets NDVs, which 

emphasizes that the choice of copula is relatively more important than in other sets (fig. 8). Based on our assumption that this 

is possibly the best set, in terms of data sources, it stresses the idea that the choice of copula becomes more and more critical 

when input datasets are long enough and statistically significant.  

Therefore, the choice of copula has a similar influence as the choice of river discharge records for each of the nine sets tested 460 

here, as the obs sea level has not been considered. For both the 5- and 30-year RPs, the choice of sea level is the least impactful. 

Under the 5-year RP, the choice of copula is overall the most important before the choice of river discharge, but under the 30-

year RP, the choice of river discharge predominates. However, this differs when looking at specific sets’ copula NDVs (fig. 

8). 
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 465 

Figure 8: Normalized difference values (%) for evaluating the importance of copula fit and forcing data for both 5- and 30-year 

return periods as mentioned in section 3.3.2. 

 

4 Limitations 

Observed time-series datasets have a relatively short length, leading to rather high uncertainties once applying the 470 

GEV analysis. Similarly, model time-series datasets have inherent uncertainties, which can be challenging to quantify. Various 

data sources were assessed for their applicability in bivariate analysis, and direct sea level observations available for only 13 

years were a limiting factor. We focus on longer reconstructed time series and other data sources for the principal analysis to 

explore uncertainties which are linked with available datasets of different lengths and biases. For example, re-analysis driven 

storm surge as well as different modelling approaches such as S-Hype and E-Hype models present some uncertainties due to 475 

the modelling nature of such datasets especially towards the extremes where they are often underestimated. Moreover, assumed 

stationarity within the datasets can be a limitation while performing the statistical analysis (Kudryavtseva et al., 2021) even 

though for the neighbour station of Ringhals it has been shown that non-stationary models were not statistically significant 

(Rydén, 2024). The choice of the sampling datasets based on annual maxima can be a limitation. For instance, in their specific 
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tidal dominated and semi-arid area, Lucey and Gallien (2022) stated that annual maximum sampling seems to underestimate 480 

water levels at longer RPs. In this study, only the compounding between sea level and river discharge has been studied but 

Latif and Simonovic (2023) showed that considering the three drivers storm surge, precipitation and river discharge to study 

compound coastal floods can provide a better statistical approach and therefore better estimate joint RPs in their study area 

located on the West Coast Canada. However, after carrying out a brief sensitivity analysis on defining extreme sea level events 

as sea level peaks above the 95th or 99th percentile and comparing it with the annual maxima sampling, no noticeable changes 485 

were found; a similar conclusion was also drawn by Ward et al. (2018). 

A compound analysis is seen as a relatively new approach within this field of study, which also involves some 

limitations, such as the quantification of uncertainties within a multivariate analysis that differ widely depending on the choice 

of a copula. The uncertainty resulting from the choice of copula can to some extent be constrained by adopting appropriate 

goodness-of-fit statistics for the selection of the best-fitting copula. In this study, we choose to illustrate this indirectly by 490 

presenting results from many different choices of copula, despite having calculated such goodness-of-fit metrics (section 2.2). 

Furthermore, we showed the normalized difference values for different data sources. As discussed in section 2.3 and Serinaldi 

(2015) a careful interpretation comparing return levels from different hazard scenarios is, however, always needed. In decision-

making adapting a strategy such as ours (to include results from all studied copulas and also different data sources) has some 

limitations in the sense that too much information can sometimes cause more confusion than help for the decision. Often it 495 

may be possible to argue against some choices of copulas (e.g. the Gaussian copula when the distributions are skewed) and 

the strategy of constraining the results to one copula or a set of “best-fitting” copulas using some threshold on the goodness-

of-fit metrics may be appropriate. For the purpose of our study and the conclusion drawn we consider, however, that presenting 

the results from multiple choices of data and multiple copula is appropriate. 

5 Summary and conclusions 500 

This study assesses the hydrological and oceanographic processes that may lead to compound flood effects in 

Halmstad. The method is easily transferable to other regions or sites. In the paper, we stress the importance of the choice of 

data sources and copulas for multivariate analysis. Based on our analysis, we conclude that:  

 

• A dependency is found between the annual maxima of river discharge and the corresponding sea level. The 505 

dependency for annual sea level maxima and associated river discharge was not considered significant at this site. 

• All values of the “most likely” scenarios and their uncertainties resulting from the copula analysis are within the range 

of the 95th percentile confidence interval of the univariate GEV distribution fit. 

• The choice of river time series as initial input influences the results of the copula analysis to a higher degree than the 

choice of sea level time series as initial input. 510 
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• Copula choice has a similar influence on return period statistics as the river discharge input for most of the twelve 

sets tried. 

• According to statistical criteria, the Clayton, BB1 and Gaussian (once) copulas performed the best in this study.  

 

Uncertainties in compound flood hazard quantification are essential to consider. They can come from different sources, such 515 

as methodology and data sources. Each type of uncertainty from the individual components due to the length of the time series 

and the modelling ones is also propagated in multivariate risk estimation. This study highlighted the need to be careful when 

choosing such or such data sources in that regards as it may result in quite different outputs if only looking at one data source, 

which inherently is associated with some uncertainties. Therefore, this study stresses the importance of the choice of data 

sources and copula. 520 

5 Appendices 

Table A1: Rank correlation (rho) and p-values of the twelve different sets based on (Qn/ sn) in columns: “ / river” and (qn/ Sn) in 

columns “ / sea” ; the best set of study is displayed with bold and underlined; p_values above 5% are highlighted in italic.  

river  sea level 
rank 

correlation 
rho / 
river p / river rho / sea 

 
p / sea 

E-Hype 

reanalysis 

Pearson 0.4532 0.0154 0.0443  0.8227 

Kendall 0.3280 0.0141 0.0370  0.7992 

Spearman 0.4532 0.0163 0.0443  0.8226 

obs 
Nissan 

Pearson 0.2430 0.2478 0.6684  0.0922 

Kendall 0.2896 0.1594 0.6410  0.0725 

Spearman 0.2419 0.2478 0.6674  0.0922 

S-Hype 

Pearson 0.3799 0.1325 -0.0760  0.7719 

Kendall 0.3088 0.0914 -0.0588  0.7765 

Spearman 0.3799 0.1333 -0.0760  0.7729 

E-Hype 

observed 

Pearson 0.4725 0.1030 0.4056  0.1908 

Kendall 0.3590 0.1000 0.2424  0.3108 

Spearman 0.4725 0.1057 0.4056  0.1926 

obs 
Nissan 

Pearson 0.4396 0.1329 -0.1049  0.7456 

Kendall 0.3333 0.1289 -0.0606  0.8406 

Spearman 0.4396 0.1350 -0.1049  0.7495 

S-Hype 

Pearson 0.6273 0.0388 -0.0490  0.8799 

Kendall 0.4909 0.0405 -0.0303  0.9466 

Spearman 0.6273 0.0440 -0.0490  0.8863 

E-Hype Pearson 0.4439 0.0109 0.2438  0.1788 
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pred 
Viken 

Kendall 0.3145 0.0111 0.1452  0.2518 

Spearman 0.4439 0.0116 0.2438  0.1782 

obs 
Nissan 

Pearson 0.3400 0.1040 0.2435  0.2516 

Kendall 0.2319 0.1189 0.1522  0.3128 

Spearman 0.3400 0.1044 0.2435  0.2505 

S-Hype 

Pearson 0.3676 0.1466 0.2843  0.2687 

Kendall 0.2794 0.1288 0.1912  0.3081 

Spearman 0.3676 0.1471 0.2843  0.2678 

E-Hype 

rec Viken 

Pearson 0.4836 0.0044 0.2753  0.1273 

Kendall 0.3523 0.0036 0.1815  0.1500 

Spearman 0.4836 0.0048 0.2753  0.1272 

obs 
Nissan 

Pearson 0.3446 0.0916 0.1487  0.4880 

Kendall 0.2333 0.1076 0.1014  0.5071 

Spearman 0.3446 0.0921 0.1487  0.4863 

S-Hype 

Pearson 0.4882 0.0550 0.1373  0.5994 

Kendall 0.3833 0.0413 0.1029  0.5976 

Spearman 0.4882 0.0572 0.1373  0.5986 
 

Table A2: Summary report of runs from the copula analysis for the twelve different sets; the best study set is highlighted in bold, 525 
italic and underlined. 

river  sea level 
Copula best 

fit 
number of co-occurring 

years 

obs 
Nissan 

reanalysis Clayton 24 

obs sea level Galambos 13 

pred 
Halmstad 

Clayton 24 

rec Halmstad Clayton 25 

E-Hype 

reanalysis BB1 28 

obs sea level Gaussian 13 

pred 
Halmstad 

BB1 32 

rec Halmstad BB1 33 

S-Hype 

reanalysis Clayton 17 

obs sea level BB1 11 

pred 
Halmstad 

Clayton 17 

rec Halmstad Gaussian 16 



 

24 

 

 

Table A3: Summary report from the river discharge's results and associated uncertainties from the copula analysis for the E-Hype 

/ rec Halmstad set; the results from the univariate method are highlighted in bold, italic and underlined. The Gaussian copula has 

not been considered for the analysis of the “most likely scenarios” row. 530 

E-Hype / rec 
Halmstad copula distribution fit   5-years RL 30-years RL 

univariate 

  

median 201 263 

max 95% 250 431 

min 5% 167 189 

relative error 41.29% 92.02% 

"most likely 
scenarios" 

Fischer-Kock / FGM max copula 234 292 

Tawn min copula 208 267 

NDV 12.94% 9.51% 

uncertainties 
"Maximum Density" 

approach 

BB1 
max without 
ouliers 

224 284 

BB1 
min without 
ouliers 

218 276 

BB1 NDV 2.99% 3.04% 

Joe 
max without 
ouliers 

217 274 

Joe 
min without 
ouliers 

210 268 

Joe NDV 3.48% 2.28% 

Fischer-Kosck 
max without 
ouliers 

235 296 

Fischer-Kosck 
min without 
ouliers 

215 272 

Fischer-Kosck NDV 9.95% 9.13% 

Gaussian 
max without 
ouliers 

220 398 

Gaussian 
min without 
ouliers 

218 262 

Gaussian NDV 1.00% 51.71% 

uncertainties 
"Weighted Average" 

approach 

BB1 
max without 
ouliers 

351 329 

BB1 
min without 
ouliers 

202 261 

BB1 NDV 74.13% 25.86% 

Joe 
max without 
ouliers 

328 303 

Joe 
min without 
ouliers 

202 261 
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Joe NDV 62.69% 15.97% 

Fischer-Kosck 
max without 
ouliers 

353 353 

Fischer-Kosck 
min without 
ouliers 

202 261 

Fischer-Kosck NDV 75.12% 34.98% 

Gaussian 
max without 
ouliers 

349 338 

Gaussian 
min without 
ouliers 

202 261 

Gaussian NDV 73.13% 29.28% 
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Figure A1: Set E-Hype / rec Halmstad, best copula fit: BB1. [2, 5, 10, 25, 50, 100] RPs and associated densities. The left and lower 535 
panels correspond to marginal RPs curves of each univariate parameter individually, river discharge and sea level (extracted from 

MhAST software). 
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Fig. A2-a) 
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Fig. A2-b) 
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  540 

Figure A2: Fluvial component in bivariate events with 5- (a) and 30-year (b) RPs values from copula fits. Each subplot corresponds 

to a set of events from an association of river discharge and sea level inputs displayed as a matrix, and in each column, a copula 

distribution fit where two uncertainty approaches are displayed as error bars. Stars represent the most likely scenarios return values 

from each copula for each set and each red diamond, the best-fit copula. The two uncertainty approaches are displayed as boxplots 

that give a statistical summary. Median, First and third quartiles are represented in each box; Whiskers represent minimum and 545 
maximum values, and dots represent outliers. Outlined boxplots correspond to the “Weighted Average” approach, and filled ones 

to the “Maximum Density” approach. The set E-Hype / Rec Halmstad, used as a base case, is highlighted by the red rectangles. 
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