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Abstract.  

Coastal and riverine floods are major concerns worldwide as they can impact highly populated areas and result in significant 10 

economic losses. In a river mouth environment, interacting hydrological and oceanographical processes can enhance the 

severity of floods. The compound flood risks from high sea levels and high river runoff levels are often indirectly estimated 

using statistical copulas among other methods. Here, we systematically investigate the influence of different data sources 

coming from observations and models and as well as the choice of statistical copula on extreme water level estimates. While 

we focus on the river mouth at Halmstad city (Sweden), the approach presented is easily transferable to other sites. Our results 15 

show that the compound occurrence of high sea levels and river runoff may lead to heightened flood risks as opposed to 

considering them as independent processes and that in the current study, this is dominated by the hydrological driver. We also 

show that the choice of data sources can considerably impact the results up to 10% and 15% for the river time series and 3% 

to 4.6% for the sea level time series under the 5- and 30-year return periods respectively. and The choice of copula can also 

strongly influence the outcome of such analyses up to 13% and 9.5% for the 5-year and 30-year return periods. The copulas 20 

found to statistically best fit our datasets are the Clayton, BB1 and Gaussian (once) ones. Our findings contribute to framing 

existing studies, which typically only consider selected copulas and data sets, by demonstrating the importance of considering 

uncertainties.  

1 Introduction 

Floods can cause severe damage and disrupt activities and infrastructures in harbours and coastal communities. 25 

Flooding can result from meteorological, hydrological and oceanographic sources such as storm surges, extreme river runoff 

or precipitation. Storm surges correspond to seawater being pushed by the wind stress and the barometric pressure effect under 

deep low-pressure weather systems. Heavy precipitation can form under different conditions such as intense cyclonic activity, 

sometimes during the same deep low-pressure systems that cause the storm surge, or sometimes in or convective weather 

conditions. River runoff can also have different origins, such as snow melting upstream or intense precipitation, either related 30 
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to the same large-scale weather system that could cause the storm surge or separately. Hence, several processes could 

contribute to compound effects, but also independently cause damage and disruption to activities in the coastal zone. River 

runoff and precipitation may take some time to drain into the sea, and the flow from land to the sea can therefore be slowed 

down or even momentarily become blocked when storm surges happen (Wahl et al., 2015). This process can be referred as 

coastal backwater effects while the water level at the river mouth increases due to high river discharge or high sea level or 35 

compounding effects (Feng et al., 2022). 

Settlements and infrastructure located in river mouth environments are inherently susceptible to all of the above. The 

combination of multiple factors, extreme or not, happening at the same place simultaneously, successively, or consecutively, 

can potentially lead to larger, compounded floods, and more severe impacts on the environment and society. Compound 

flooding can also result when preceding conditions amplify the impact of the event (Andrée et al., 2023; Zscheischler et al., 40 

2020; AghaKouchak et al., 2020). Even if trends over the last forty to sixty years are estimated with high uncertainties, it is 

likely that extremes including compound events are becoming more severe in Northern Europe in a changing climate 

(Rutgersson et al., 2021).  

Couasnon et al. (2020) highlight the importance of considering interactions referred to their co-occurrence 

probabilities between river discharge and storm surge extremes in river mouth environments. They demonstrate that 45 

dependencies between these factors drivers are not random and may result from relations between weather systems at the 

synoptic scale with local conditions such as the topography. Ward et al. (2018) study the dependence between river discharge 

and skew surge at the global scale where significant dependency is found in several stations in Europe, mainly located around 

the UK coastline. Hendry et al. (2019) also highlighted those dependencies around the UK coast and linked the spatial 

variability found with differences in storm characteristics. In Northwestern Europe, it has been shown that the fluvial flood 50 

hazard increases with high sea levels and stronger storms, and that this may be critical in populated and low-elevation coastal 

areas (Ganguli et al., 2019). For example, Eilander et al. (2020) find the Baltic Sea and the Kattegat basin to be particularly 

susceptible to compound flood hazards based on the dependency between skew surge levels and river discharge. Without 

considering the occurrence of storm surges, Eilander et al. (2020) further show that flood depths are underestimated and 

subsequently so is the estimated number of people exposed to river floods in this area. Meanwhile, Moftakhari et al. (2017) 55 

demonstrate that sea level rise (SLR) is likely to increase the impacts from compound flooding by 2030 and 2050 under the 

Representative Concentration Pathways (RCPs) 4.5 and 8.5 for eight major cities around the US coastline.  

Compound flooding in coastal areas can also be caused by a combination of heavy precipitation inducing large runoff 

and high sea levels (Bevacqua et al., 2019). Hence, the probability of compound flooding is expected to significantly increase 

in the Baltic and North Sea areas, where an event with a current return period (RP) of around sixty years is projected to occur 60 

every ten years in 2100 due to the combination of SLR and increased extreme precipitation (Bevacqua et al., 2019). 

Not taking compound flooding effects into account may result in an underestimation of the flood hazards in the coastal 

zone, including river mouths (Ward et al., 2018). Thus, analyzing and understanding these events is of high relevance to coastal 

communities. In this study, we evaluate the potential impact of extreme hydrological and oceanographic coastal events on the 
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coastal city of Halmstad (Sweden), which is a port, industrial, and recreational city at the mouth of the Nissan river. Halmstad 65 

is located on the west coast of Sweden (fig. 1) and has been chosen as it is naturally prone to coastal, fluvial, and pluvial 

flooding. The area is subject to extratropical cyclones (Hoskins and Hodges, 2002; Dacre et al., 2012), resulting in rather high 

sea levels by storm surges for the area (Wolski et al., 2014). According to the Swedish Meteorological and Hydrological 

Institute (SMHI), Halmstad recorded the highest ever sea level measured in Sweden of 235 cm on the 29th of November 2015 

during the wind storm “Gorm”. Halmstad has also been severely impacted by river floods. While Nissan is the main river 70 

crossing the city of Halmstad, smaller rivers are also present and can create floods, such as Fylleån’s river. Finally, the West 

Coast of Sweden is found to be one of the areas in Sweden expecting the most significant impacts due to SLR during this 

century (Hieronymus et al.and Kalén, 2020). Thus, nearby studies have stressed the necessity to update coastal protection 

measures along the Swedish (Hieronymus et al.and Kalén, 2022) and the German Baltic Sea shorelines (Kiesel et al., 2023). 

To help guiding and communicating with the local municipalities about their continued work to protect coastal areas from 75 

flooding we considered it useful to pick one site in this area as an example to showcase the applied methods and their results. 

The main goal of the current study is to investigate the impact of different data sources, methodology, and 

representation of compound extremes on estimates of extreme water levels. Using Halmstad as an example, we explore the 

potential influence on flood risk assessments related to compound effects from river flooding within the coastal area. 

 80 

 

Figure 1: Regional map of southern and central Sweden with a zoom around our study area and the city of Halmstad (Pawlowicz, 

2020; Sentinel 2 cloudless, 2021) 

2 Data and Methods 

In the following, compound effects are defined in terms of the co-occurrence probabilities interaction between coastal 85 

sea level and river discharge when at least one of the two is subject to an “extreme” value. An event is considered in the 
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extreme range when a studied variable reaches its annual maximum value. The annual maximum values will differ between 

different years in a range between 84 to 235 cm for sea level and 88 to 271 m3 s-1 for river discharge. The correlation between 

co-occurring events has been studied as it provides insight into the relationship between each set of two variables. The 

exceedance probability of getting an extreme river discharge associated with a high sea level and the opposite permits the 90 

assessment of the potential compound effects between those two processes but it does not determine impacts from compound 

flooding either in terms of estimating water level or computing inundation depths. Hybrid statistical-hydraulic modeling 

frameworks have been introduced to answer such issue and study compound flood impacts (Jane et al., 2022; Moftakhari et 

al., 2019; Gori et al., 2020; Olbert et al., 2023). 

Figure 2 presents the main steps of the workflow describing the methodology; this is described in the following sub-sections. 95 

Firstly, we analyzed different time-series records of sea level and Nissan River discharge data from models and observations 

at Halmstad using extreme value theory and a Generalized Extreme Value (GEV) distribution (Coles, 2001) – hereby referred 

to as the “univariate approach” - to estimate Return Levels (RLs) on every factor driver independently. Secondly, we defined 

sets of coupled events based on single variables. Thirdly, we analyzed the correlation between sea level and river discharge 

events. If this analysis indicated a potential for compound events, we studied the co-dependency between the two variables by 100 

fitting a statistical copula distribution function (Sadegh et al., 2018). We finally performed a statistical analysis of the 

compound events to study the differences between each data source and its associated uncertainties. 

 

Figure 2: Workflow describing the methodology used in this paper, starting from the oceanographic and hydrological data (in 

orangepurple) to the univariate (in blue and dashed arrows) and bivariate (in greenorange) approaches used for flood risk analysis. 105 
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2.1 Data 

An analysis of time-series records of sea level (fig. 3-a) and river discharge (fig. 4-a) at Halmstad was carried out. As 

mentioned above, a univariate distribution was initially fitted based on the GEV distribution and extreme value theory (Coles, 

2001) for each time series collected. The temporal differences in the lengths of each dataset induce substantial differences and 110 

associated uncertainties, which dominate in the case of extreme RP. Consequently, a moderately extreme 30-year RP event 

was chosen as the maximum value considered. For comparison, we also consider more frequent events with a 5-year RP. 

2.1.1 Sea level data 

Figure 3 displays the different sea level datasets used (fig. 3-a) and their corresponding univariate extreme value 

analysis (fig. 3-b). 115 
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Figure 3: Halmstad sea level time series and annual maxima from different sources: observations (”obs sea level”), reconstructed 

(”rec Halmstad“) and predicted (”pred Halmstad“) derived from a machine learning model trained on data from the Viken station, 

and reanalysis (“reanalysis”) datasets (panel a). RLs estimated from corresponding GEV fits of each dataset and the associated 95th 

percentile confidence intervals (background colours). The dots depict empirical data (panel b). 120 
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- Observations 

Hourly sea level observations data were obtained from SMHI at Halmstad’s tide gauge denoted as the station “HALMSTAD 

SJÖV” with station number 35115 in the open database provided by SMHI (fig. 1). This hourly sea level time series is 125 

transformed to a daily time series using the maximum hourly data within the day. However, to carry out this analysis, the 

period with sea level observations (titled “obs sea level”) was insufficient as only 13 years (from 2009 to 2021) are available; 

based on the p-value from correlation analysis the associated results are not statistically insignificant. To extend this sea level 

record, a set of reanalysis data and a machine learning approach have been investigated and used. 

 130 

- Reanalysis 

Hourly sea surface variations (in m) covering the period from 1993 to 2020 with a spatial resolution of approximately two 

nautical miles have been provided by the Copernicus Marine Environment Monitoring Service’s (CMEMS) Baltic Monitoring 

and Forecasting Centre (BAL MFC) (CMEMS, 2022). This reanalysis uses the ice-ocean model NEMO-NORDIC (Pemberton 

et al., 2017), and the data are assimilated with the Localized Singular Evolutive Interpolated Kalman (LSEIK) method (Nerger 135 

et al., 2005). Data is extracted from the closest grid point to Halmstad’s tide gauge and the hourly data was changed to a time 

series of daily maxima for our purpose to focus on extremes. This sea level dataset is named: “reanalysis”. 

 

- Machine learning model 

A probabilistic machine learning method, Quantile Regression Random Forests (QRF), is used (MeinshausenBreiman, 140 

20062001). Sea level records from the neighbouring station of Viken (station named “VIKEN”, number 2228 in the SMHI 

database) is used to train the QRF model over an eight year-period, where it is correlated with Halmstad's observed sea level. 

The resulting sea level estimates at Halmstad include both mean predictions and percentiles standard deviation to assess 

uncertainties and variability following the methodology introduced by Dubois et al. (20243). The last three years of available 

data at Halmstad are used to validate the QRF model, emphasizing extreme events predictions. The QRF model is used to 145 

produce a first dataset called: “predicted Halmstad” (“pred Halmstad”) and a second one named: “reconstructed Halmstad” 

(“rec Halmstad”).  

The predicted Halmstad dataset provides daily sea level (in cm) for the full period of available sea level observations from the 

station at Viken, here from 1977 to 2021.  

The reconstructed Halmstad dataset provides daily sea level (in cm). It joins both sets, i.e., combines observations 150 

from Halmstad from 2009 to 2021 and the predicted Halmstad data from the QRF model from 1977 to 2009. Thus, it also 

covers the period from 1977 to 2021. Further attempts to enrich the QRF model by including reanalysis data (i.e., as part of 

the training) did not improve the predicted sea levels in the reconstructed data sets significantly, which emphasized the need 

for local observations. These were fortunately available, even if not for the entire more extended period. Similar findings, that 
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is, significant improvements when using local observations as means to train a machine learning of sea level were previously 155 

found in this region (e.g. Hieronymus et al., 2019). 

 

 

It is not only the length of the observation period that is short. Also, the reanalysis dataset exhibits a bias and does 

not predict the observed extreme sea levels. Accordingly, the uncertainty estimated from both univariate GEV analyses are 160 

large (fig. 3-b). The predicted and reconstructed data sets yields result with a smaller uncertainty range. Hence, the 

reconstructed data set, which is based on observations when available, was chosen as the best source of sea level information 

for the bivariate analysis.  

2.1.2 River runoff data 

Figure 4 presents the different river discharge datasets obtained (fig. 4-a) and their corresponding univariate extreme 165 

value analysis (fig. 4-b). 

 

- Observations 

River discharge data were obtained from SMHI at station 2471: “Nissaström” (fig. 1), covering a basin of 2437 km2. 

Observations of daily river discharge in m3/sm3 s-1 (obs Nissan) have been provided from 1997 to 2021. 170 

 

- E-Hype model 

Modelled river discharge data are taken from the Hydrological Predictions for the Environment (HYPE) model, which 

simulates water flows and quality at different spatial scales (Lindström et al., 2010), a model detailed description can be found 

at http://www.smhi.net/hype/wiki/doku.php?id=start. Daily temperature and precipitation values are used as dynamic forcing 175 

in this model. The European HYPE model: “E-Hype2016_version_16_g” (E-Hype) provides daily river discharge (in m3 s-

1m3/s) from 1989 to 2021 (https://vattenwebb.smhi.se/om-vattenwebb). The model best performs for annual and seasonal flows 

compared with daily and extreme flows (Donnelly et al., 2016). 

 

- S-Hype model 180 

SMHI has set up the HYPE model for Sweden, now used operationally to forecast hydrological conditions over Sweden, such 

as floods and droughts. It covers all of Sweden (450000 km2), where the country has been divided into sub-basins of 28 km2 

on average (Strömqvist et al., 2012). S-Hype3 model’s data (S-Hype) of daily river discharge (in m3 s-1m3/s) has been provided 

from 2004 to 2020 (Donnelly et al., 2016). The model seems to slightly underestimate high flow peaks with high flow statistics 

differing by around +-10% whereas the mean flow is highly reliable (Bergstrand et al., 2014). 185 
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Figure 4: Nissan’s river time series and annual maxima from different sources: observations (“obs Nissan”), European HYPE model 

(“E-Hype”) and Swedish HYPE model (“S-Hype”) from SMHI (panel a). RLs derived from GEV fits to each dataset are shown with 

95th percentile confidence intervals (background colours). The dots are the empirical data (panel b). 190 

 

The available time series associated with the S-Hype model is rather limited, leading to a wide uncertainty band when carrying 

out the univariate analysis (fig. 4).  Conversely, the Nissan observations and E-Hype data sets lead to RLs that are associated 
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with more bounded uncertainty estimates. In this light, we choose the E-Hype dataset for the bivariate analyses as the data are 

available over a more extended period. The largest RLs are seen for the E-Hype dataset for RPs above five years. 195 

 

2.1.3 Sets of coupled events 

To study compound events in a river mouth environment from both a river discharge and sea level perspective, we 

defined two different sets of events based on the data discussed above. The first one used paired sea-level annual maxima (Sn) 

and associated daily maximum river discharge (qn) within a defined time period centered on the date of Sn (+/- Δ days). The 200 

second one uses pairs river discharge annual maxima (Qn) and associated hourly maximum sea levels (sn) within a defined 

three days window (Couasnon et al., 2020; Moftakhari et al., 2017; Sadegh et al., 2018) centered on the date of Qn (+/- one 

day) (Couasnon et al., 2020; Moftakhari et al., 2017; Sadegh et al., 2018). Each of the four sea level time-series observed and 

modelled records were then correlated with each of the three river discharge ones, which makes up a total of twelve different 

datasets (table A2).  205 

2.2 Statistical analysis 

 

- Univariate analysis 

To estimate the extreme values of Nissan’s river runoff and Halmstad sea levels, and their associated RPs, a GEV distribution 

was fitted to the annual extremes separately for each time series record (Coles, 2001; Ahsanullah, 2016). This was done using 210 

the MATLAB-based GEV-fitting algorithm, which provides parameter estimates and 95% confidence bands. Here, we do not 

make any assumption concerning the dependence between the two variables of interest, sea level and river discharge; each 

variable is modelled independently based on its own marginal distribution. 

 

- Bivariate analysis 215 

Initially, the Pearson, Spearman and Kendall’s correlation coefficients and the associated p-values were calculated for each of 

the twelve collated data sets to assess whether there was a relationship between river runoff and sea level. The usual threshold 

value of 5% was defined as evidence for rejecting the H0 null hypothesis, that is, the two variables are independent. When p-

values were found to be lower than the threshold, the null hypothesis could be rejected, and the two variables similarly found 

to show significant dependency. However, when p-values are above 5%, H0 cannot be rejected, so the two variables can be 220 

independent.  

To represent the compound extremes, we apply copula modelling, which has been found to be useful for representing a joint 

probability (Hao et al., 2016). The analyses were carried out using the Multihazard Scenario Analysis Toolbox (MhAST), 

Version 2.0 from Sadegh et al., (2018). The statistical copula method models the dependence structure of the two random 

variables (Joe, 2014; Sadegh et al., 2017). It links or joins individual univariate distributions into a joint multivariate 225 



 

11 

 

distribution that has a specified correlation structure (Tootoonchi et al., 2022).  The MhAST toolbox fits 25 different copulas 

to an input dataset. It first calculates the best possible fitting marginal distribution for each univariate dataset. It then proposes 

the best copula fit based on the Maximum Likelihood, Akaike Information Criterion (AIC), and the Bayesian Information 

Criterion (BIC). The root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) values are calculated for each 

copula. Here, we evaluated the difference between each of the copula fits. An uncertainty analysis was also carried out using 230 

the MhAST toolbox with a “Weighted Average” and a “Maximum Density” approach (Sadegh et al., 2018). This first approach 

reproduces a distribution of potentially compound hazards. Based on the determined copula probability function, random 

samples are weighted accordingly and then calculated from the critical joint RP. The weights are determined based on the 

critical joint RP. This approach effectively generates a distribution of potential compound hazards while considering the 

underlying copula structure. This provides a comprehensive overview of the overall range of possible compound hazards. The 235 

second approach is based on the “most likely scenario” and provides an uncertainty range around it by adjusting the parameters 

of the copula distribution fit. Indeed, it focuses on first identifying the most likely scenarios for the compound hazard event 

which corresponds to the scenario with the highest density along the closed-form joint probability density function of the 

copula. This scenario is based on the copula fit parameters, which represent the statistical relationships between the individual 

hazard components. By adjusting these parameters, a range of possible most likely scenarios can be generated, allowing for 240 

the quantification of uncertainties around this central scenario.  

Two types of Hazard Scenarios (HSs) have commonly been proposed to study the risk of compound floods related to sea level 

and river discharge (Salvadori et al., 2016; Moftakhari et al., 2019; Serinaldi, 2015). The “AND scenario” corresponds to a 

scenario where both the river discharge and the sea level are large enough to make a bivariate occurrence hazardous. The “OR 

scenario” corresponds to a scenario where either the river discharge or the sea level or both are large enough to make a bivariate 245 

occurrence troublesome. 

2.3 Methodology 

Firstly, a correlation analysis was carried out for each set, as proposed in section 2.2. This analysis investigated the 

significance of independence between the sea level and river discharge during extreme occurrences. Then, each set was used 

as input to the MhAST toolbox, which performed the compound analysis and returned 25 copula fits ranked depending on 250 

different criteria (section 2.2). Among the 25 copulas fitted, only the ones presenting a closed-form joint probability density 

function (Sadegh et al., 2017) were further investigated since, in these cases, "most likely scenarios” and their associated 

uncertainties can be defined. Chosen RLs were calculated for each copula, and their uncertainties were assessed. Adopting the 

“AND scenario” (see above) permitted us to investigate the risk of compound events only highlighting the dependency between 

sea level and river discharge during extreme events. Conversely, the “OR scenario” was finally preferred when looking at RLs 255 

as this looks into the “total” risk of flooding, whether originating from hydrological, coastal sources or both in combination. 

To compare and evaluate the role of copulas and the role played by sea level and river discharge, respectively, a 

notion of normalized difference value (NDV) was introduced. We defined it as the normalized difference between the RL 
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values of interest from the bivariate analyses. Here, we normalize relative to the corresponding E-Hype univariate RL, which 

yields a representative dimensionless quantity. It should be pointed out that this quantity does not represent the “amplification” 260 

with respect to the univariate case since, as shown by Serinaldi (2015), one cannot compare RLs of different dimensionality. 

Suppose we investigate the resulting spread from using different copulas (based on the most likely scenarios within one set 

under the 5-year RP); the NDV is calculated as the difference between the maximum and minimum value of the most likely 

scenarios for any copula within a specific set divided by univariate 5-years RL derived from the E-Hype data set (section 3.2). 

When we look into the sensitivity of river discharge datasets, the sea level dataset is fixed, and the NDV is measured as the 265 

normalized difference between the maximum and minimum values of the most likely scenarios of best fits among the three 

sets of associated river discharge divided by the corresponding E-Hype univariate RL; and vice-versa, when looking into the 

sensitivity of sea level datasets. The NDV term indicates the magnitude of change or difference in RL results we can expect 

when choosing a certain copula or input dataset. Very small NDVs suggest that the corresponding choice of a variable of 

interest does not strongly influence the results. In contrast, large NDVs indicate that a particular choice results in significant 270 

differences. 

3 Results and discussion 

From the rank correlation analysis, the datasets based on sea level annual maxima (Sn, qn) did not reveal any 

significant dependency (i.e., “compoundness”) between sea level and river discharge, and therefore, no copula analysis was 

done (table A.1). In this case, the univariate analysis seemed to fit best under the proposed conditions of this study. Conversely, 275 

the datasets based on river discharge annual maxima (Qn, sn) yielded significant dependencies, suggesting a possible compound 

impact on river discharge. In the following subsections 3.1 and 3.3.1 we look into the “AND scenario” as we investigate the 

compound risk only. In the subsections 3.2 and 3.3.2, we mainly focus on the “OR scenario” (see above) as we are interested 

in the compound flood risk driven regardless of the situation (oceanographic or hydrological). 

3.1 Dependency / Independency of the variables 280 

Figure 5 and Table A1 show the dependency between the river discharge annual maxima and associated sea level 

local maxima (Qn, sn) event sets as expressed in section 2.1. Figure 5 displays the best copula distribution fit: BB1 from the 

rec Halmstad / E-Hype set under the “AND scenario” hypothesis for the 2, 5, 15 and 30-year RP. The full lines depict the RLs 

considering sea level and river discharge as dependent variables (derived from the best copula distribution fit). In contrast, the 

dashed lines show analogous results when assuming the two variables to be independent. The figure shows that the lines are 285 

not superposeddo not overlap, highlighting a dependency between both variables. Also, for all RLs presented, each RL from 

the independent hypothesis (dashed line) is placed below each corresponding RL from the dependent hypothesis (full line), 

supporting the hypothesis that compound events lead to higher flood risks when considering compound extremes as also found 

in Bevacqua et al. (2017) where they studied compound hydrological and oceanographic floods in Ravenna (Italy). Therefore, 
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for example, a 30-year RP, when looking at the independent variables, would become a 13-year RP when considering the 290 

variables’ dependency. This frequency increase comes from the compound effects and can be highlighted for each RP and 

copulas tested. Also, the dependency between extreme hydrological conditions and high oceanographic ones stresses the 

presence of compound effects, which lead to higher levels of river discharge and sea level during such events at the estuary. A 

copula-based joint probability density function is assignedderived to each copula fit curve, which permits obtaining a 

probability of co-occurrences for a possible event along each curve, which is later used to carry out the uncertainty analysis 295 

(Sadegh et al., 2018). For example, along the 5-year RP curve, the probability of getting a 5-year RL of 180 m3 s-1m3/s river 

discharge and 93 cm sea level is higher than getting one of 201 m3 s-1m3/s and 20 cm or one of 101 m3 s-1m3/s and a 112 cm 

one (fig. A1). 

 

 300 

 

 

Figure 5: RLs for base case set rec Halmstad / E-Hype. Full lines correspond to the return period (RP) isolines for joint probability 

(AND scenario) of river discharge (y-axis) annual maxima and associated sea level (x-axis) maxima (Qn, sn). The dashed lines 

represent the distribution fit, assuming the independence between both variables. Blue dots show observed data. BB1 copula is used 305 
to model the dependence of river discharge annual maxima and associated sea level maxima calculated for each RPs visible in red 

text (2, 5, 15 and 30 years). 
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3.2 Compound hazard potential on river floods 

The focus is on river discharge RLs as a proxy for fluvial flooding indicators. Figure 6 represents the 5- and 30-year 310 

river discharge RLs from the set rec Halmstad / E-Hype under the “OR scenario” hypothesis for each copula tested and its 

associated uncertainties values from two approaches. The best copula fit selected based on the different criteria as AIC in this 

case (section 2.2) is BB1 (red diamond). The stars and diamonds represent the maximum density of the calculated RL for each 

copula, which can be interpreted as the most likely scenario under the bivariate analysis.  

 315 

- RP = 5 years 

The 5-year RL from the E-Hype model is 201 m3 s-1m3/s with a 95th percentile confidence interval of 167-246 m3 s-1m3/s under 

the univariate GEV distribution fit. The BB1 copula fit has a 5-year RL “most likely scenario” of 220 m3 s-1m3/s. Among all 

tested copulas, The copulas’their 5-year RLs of “most likely scenarios” differ around 26 m3 s-1m3/s, all between 208 and 234 

m3 s-1m3/s. The RL copulas’ uncertainties are displayed with the boxplots from two methods: the “Weighted Average” approach 320 

showed with the outlined error bars, and the “Maximum Density” approach showed with the filled error bars. The “Weighted 

Average” approach gives more considerate uncertainty ranges than the “Maximum Density” (section 2.2). Indeed, for the best 

copula fit, the “Maximum Density” approach looking at the uncertainty of the “most likely scenarios” results in a narrow band 

of a maximum of 19 m3 s-1m3/s per copula against a more extensive range of 159 m3 s-1m3/s going from 202 to 361 m3 s-1m3/s 

with the “Weighted Average” approach. All copulas present a similar pattern.  325 

Moreover, the RL uncertainties for the “Maximum Density” approach are all located within the 95th confidence interval of the 

univariate RL. However, the “Weighted Average” approach gives a 75th percentile of around 255 to 269 m3 s-1m3/s and a 

nonoutlier maximum of around 324 to 361 m3 s-1m3/s above the 246 m3 s-1m3/s corresponding to the 95th percentile of the 

univariate GEV fit, indicating the importance of considering bivariate analysis method. The BB1 copula chosen as the best fit 

here by the different evaluation criteria mentioned in section 2.2 presents neither the smallest nor largest uncertainty band. 330 

 

- RP = 30 years 

The 30-year RL from the E-Hype model is 263 m3 s-1m3/s with a 95th percentile confidence interval going from 189 to 431 m3 

s-1m3/s under the univariate GEV distribution fit. The BB1 copula fit has a 30-year RL of 278 m3 s-1m3/s. The copulas’ 30-year 

RL of “most likely scenarios” differ by around 25 m3 s-1m3/s, with all of them between 267 and 292 m3 s-1m3/s, except for the 335 

Gaussian copula. For all copulas except the Gaussian one, the “Weighted Average” approach gives a more extensive 

uncertainty range than the “Maximum Density” one. Indeed, for the best copula fit, the “Maximum Density” approach results 

in a relatively narrow band of 24 m3 s-1m3/s, going from 272 to 296 m3 s-1m3/s, against a more extensive range of 92 m3 s-1m3/s 

going from 261 to 353 m3 s-1m3/s with the “Weighted Average” one. All copulas except the Gaussian and the Tawn ones 

present a similar pattern. Moreover, all RL uncertainties for both uncertainty analysis approaches are within the 95th confidence 340 

interval of the univariate RL for the 30-year RP. 
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- Sensitivity to the choice of copula 

For both 5- and 30-year RPs, the copulas and their associated uncertainties present a similar pattern with higher RLs when 

considering the compound effects. Depending on the choice of copulas, the most likely scenarios differ up to 26 m3 s-1m3/s for 345 

the 5-year RP and up to 25 m3 s-1m3/s for the 30-year RP, with the Tawn copula giving the minimum value and the Fischer-

Kock and FGM copulas giving the maximum value. When only looking at the most likely scenarios values for each copula, 

they differ in a range approximately equal to 13% and 9.5% for the 5- and 30-year RPs, respectively (table A3). For each 

copula, the uncertainties’ relative errors based on the “Maximum Density” approach differ from 1% (Gaussian) to 9.9% 

(Fischer-Kock) and from 2.3% (Joe) to 52% (Gaussian) for the 5- and 30-year RPs respectively; from 63% (Joe) to 75% 350 

(Fischer-Kock) and from 16% (Joe) to 35% (Fischer-Kock) for the “Weighted Average” approach. For comparison, the relative 

errors for the univariate GEV fit are around 41% and 92% for the 5- and 30-year RPs, respectively. When considering the 

“Maximum Density” uncertainties, all RLs of all copula are in the range of 208-234 m3 s-1m3/s for the 5-year RL and 262-398 

m3 s-1m3/s for the 30-year RL (Table A3; fig. 6). 

These differences in resulting RLs emphasize the importance of the role played by the choice of copulas and the consideration 355 

of quantifying uncertainties. 

 

 

Figure 6: Fluvial component in bivariate events with 5- (a) and 30-year (b) RLs Return periods of river discharge from copula fits 

and univariate GEV fits for rec Halmstad / E-Hype. Each column represents a copula distribution fit. Stars represent the most likely 360 
scenario return values from each copula for each set, and the red diamond is the best copula fit. Two uncertainty approaches are 

displayed as boxplots, giving a statistical summary. Median, first, and third quartiles are represented in each box, whiskers represent 

minimum/maximum values, and dots represent outliers. Outlined boxplots correspond to the “Weighted Average” approach, and 

filled ones to the “Maximum Density” approach. 

 365 
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3.3 Sensitivity analysis on compound flood hazard potential -OR scenario- 

This section focuses on the impact of data sources on resulting RP statistics, aiming to compare copula analyses 

considering compound events. As seen in section 2.1, we have twelve possible data sets to analyze for Halmstad city extracted 

from models and observations. As mentioned in section 2.1, the univariate analysis presents different results, including RL 

values and confidence intervals for each river runoff time series.  370 

5-year and 30-year univariate RLs of river runoff, respectively, differ by around 9 m3 s-1m3/s and 21 m3 s-1m3/s with values of 

202 m3 s-1m3/s and 241 m3 s-1m3/s based on observation gauge (red); 193 m3 s-1m3/s and 252 m3 s-1m3/s based on S-Hype model 

(blue); 201 m3 s-1m3/s and 263 m3 s-1m3/s based on E-Hype model (green) as displayed in Figure 4-b. However, uncertainties 

associated with the 95th percentile confidence interval differ vastly from respectively around 86 m3 s-1m3/s and 185 m3 s-1m3/s 

(observation); 121 m3 s-1m3/s and 811 m3 s-1m3/s (S-Hype); 79 m3 s-1m3/s and 242 m3 s-1m3/s (E-Hype) as displayed with the 375 

background colours on the figure. 

3.3.1 Dependency / Independency of the variables 

Figure 7 presents resulting RLs for combined ranges of each variable set for the 5- and 30-year RPs as in Figure 5, 

but with results from six different data sources to study the resulting impacts. The dependency is evident for each set, with 

each full line moved away from its corresponding dashed line, highlighting the dependency and compound effects for any sets 380 

tested. The differences between solid and dashed lines in Figure 7 are typically contained within about 20 cm sea level or 25 

m3 s-1m3/s river discharge, constituting about 10-15% of the extreme 5- and 30-year RLs for the site with a gap increasing with 

higher RPs. At first glance, these differences may be perceived as a reasonably small compound effect, but every little increase 

in extreme situations can have a consequence for society. It should be noted that switching data sources may have a more 

significant effect on estimated RLs; hence, both method and choice of data are essential. 385 
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Figure 7: 5- (a) and 30-year (b) Return periods isolines for joint probability (AND scenario) of river discharge (y-axis) annual 

maxima and associated sea level (x-axis) maxima (Qn, sn) for Halmstad. Full lines implement the compound effect, and dashed lines 

represent fit, assuming independence between both variables. Dots show observed data. The best copula fit is used to model the 390 
dependence of (Qn, sn) calculated for each set visible in coloured text. 

 

Some sets behave similarly as their corresponding dashed and full lines are almost superposed overlap as for the sets 

obs Nissan / pred Halmstad & obs Nissan / rec Halmstad or E-Hype / pred Halmstad & E-Hype / rec Halmstad in both 5- and 

30-year RPs (fig. 7). This similarity stresses the ideaemphasizes that river discharge predominates over sea-level inputs the 395 

co-occurrence probabilities of bivariate hazardous events. 

3.3.2 Compound hazard potential on river floods 

The most likely scenarios of 5- and 30-year RPs and their associated uncertainties on the different sets are calculated 

as described in section 2.1. This study focuses on extreme hydrological events associated with oceanographic conditions and, 

therefore, concentrates on the RLs of river discharge. Figure A2 displays those results for each set in the same way as Figure 400 

6. Figure A2-a returns the results of the 5-year RP and Figure A2-b, the 30-year RP analysis.  

Under the 5-year RP, lower RLs are found for all obs sea level sets (fig. A2-a), corresponding to the data available and short 

duration of overlapping periods, with a maximum of 13 years and limited by the extent of sea level observations. Under the 

30-year RP, lower RLs are found for the set E-Hype / obs sea level and all S-Hype sets except for S-Hype / obs sea level, 

which presents the most extreme values.  405 

For the 5- and 30-year RPs, the three sets associated with the E-Hype model, which show statistical significance, lead 

to similar and higher values, respectively, than all the other sets. The last set showing statistical significance is associated with 
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the S-Hype model and leads to somewhat different results between the 5-year RP, with slightly lower RLs, and the 30-year 

RP, with generally higher RLs (fig. A2). It stresses that the dependence changes the RP results as also shown by Santos et al. 

(2021) which studied compound surge and precipitation events in a case study in the Netherlands. 410 

All most likely scenario values calculated from the copula analysis under both the 5- and 30-year RPs are within the 

range of the 95th percentile confidence interval of the univariate GEV distribution fit (fig. A2). 

Uncertainties associated with the copula analysis and following the “Maximum Density” approach do not extend too much 

from the median values and stay within the confidence interval of the univariate GEV distribution (fig. A2) for most of the 

copulas tested. Under this “Maximum Density” approach and based on the best copula fits, they differ by about 3-8 m3 s-1m3/s 415 

for the 5-year RP and 2-9 m3 s-1m3/s for the 30-year RP. Under those same conditions, the uncertainties from the “Weighted 

Average” approach vary between 65 and 149 m3 s-1m3/s for the 5-year RP and between 37 and 68 m3 s-1m3/s for the 30-year 

RP. Therefore, uncertainties related to the “Maximum Density” approach associated with the most likely scenarios are 

relatively small, providing reasonable confidence in such scenarios. Conversely, the “Weighted Average” approach 

uncertainties provide a confidence interval on possibly more extreme scenarios, which is relevant when communicating RLs.  420 

 

- Input datasets selection 

Depending on the choice of river time series as initial input, the results of the copula analysis under the 5- and 30-year RPs 

differ substantially around a maximum of 20 m3 s-1m3/s and 40 m3 s-1m3/s, respectively, with an NDV range of 6-10% and 8.4-

15% (fig. 8). This contrasts with the choice of sea level time series as initial input with a maximum difference of around 6 and 425 

12 m3 s-1m3/s equivalent to 1.5-3% and 2.3-4.6% NDV bounds for the 5- and 30-year RPs, respectively, without considering 

the three sets associated with obs sea level. Those results are based on the most likely scenarios from each best copula fit and 

did not consider the obs sea level associated sets. It emphasizes that the choice of sea level records has a lower influence than 

the one of river discharge within this study on compound hydrological extreme events on our example study site (Halmstad). 

The well-recognized issues from the reanalysis dataset support this result as even a large difference in the sea level input 430 

dataset does not get reflected in the NDV values when looking at the choice of sea level. Similar results findings could be 

expected for the surrounding area (West coast of Sweden). 

 

- Copula selection 

To evaluate the role played by choice of the copula, we calculated the NDV for each set between the maximum and the 435 

minimum values returned by the 18 copulas tested without considering the sets with obs sea level data input as it was too short 

for bivariate analysis. Among all the different sets, the BB1, the Gaussian and the Clayton copulas are the best ones based on 

the different statistical criteria (section 2.2). Moreover, when only looking at the sets associated with the same river runoff 

input, the best copula fit is the same: Clayton for obs Nissan, BB1 for E-Hype except for S-Hype, which has Gaussian as the 

best fit for S-Hype/rec Halmstad and Clayton for the two other sets. The tests of using multiple copulas have also been 440 

investigated in previous studies. Lucey and Gallien (2022) looked at compound coastal events linking precipitation and/or sea 
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level in a tidal and semi-arid area. They noticed that, in their particular area, the Nelsen, BB1, BB5, and Roch-Alegre copulas 

represented best their datasets and each of them provided similar results in almost all cases. Bai et al. (2020) introduced a 

mixed copula which is a linear combination of Gumbel, Clayton, and Frank copulas to statistically study coastal winds and 

waves. They observed that the mixed copula can better describe the dependency structure than the five single copulas tested 445 

(Gaussian, t, Gumbel, Clayton, Frank) where the representation of relations between both drivers is complex. 

For most of the sets, the “Fischer-Kock” and the “FGM” copulas give the highest RLs and the “Tawn” and “Joe” copulas give 

the smallest ones (fig. A2). It results in NDVs between 5.5% and 13% for the 5-year RP and between 3.8% and 9.5% for the 

30-year RP. The base case E-Hype / rec Halmstad presents the highest NDVs when comparing with other sets NDVs, which 

emphasizes that the choice of copula is relatively more important than in other sets (fig. 8). Based on our assumption that this 450 

is possibly the best set, in terms of data sources, it stresses the idea that the choice of copula becomes more and more critical 

when input datasets are long enough and statistically significant.  

Therefore, the choice of copula has a similar influence as the choice of river discharge records for each of the nine sets tested 

here, as the obs sea level has not been considered. For both the 5- and 30-year RPs, the choice of sea level is the least impactful. 

Under the 5-year RP, the choice of copula is overall the most important before the choice of river discharge, but under the 30-455 

year RP, the choice of river discharge predominates. However, this differs when looking at specific sets’ copula NDVs (fig. 

8). 
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Figure 8: Normalized difference values (%) for evaluating the importance of copula fit and forcing data for both 5- and 30-year 

rReturn pPeriods as mentioned in section 3.3.2. 460 

 

4 Limitations 

Observed time-series datasets have a relatively short length, leading to rather high uncertainties once applying the 

GEV analysis. Similarly, model time-series datasets have inherent uncertainties, which can be challenging to quantify. Various 

data sources were assessed for their applicability in bivariate analysis, and direct sea level observations available for only 13 465 

years were a limiting factor. We focus on longer reconstructed time series and other data sources for the principal analysis.  

Moreover, assumed stationarity within the datasets can be a limitation while performing the statistical analysis (Kudryavtseva 

et al., 2021). The choice of the sampling datasets based on annual maxima can be a limitation. For instance, in their specific 

tidal dominated and semi-arid area, Lucey and Gallien (2022) stated that annual maximum sampling seems to underestimate 

water levels at longer RPs. In this study, only the compounding between sea level and river discharge has been studied but 470 

Latif and Simonovic (2023) showed that considering the three drivers storm surge, precipitation and river discharge to study 

compound coastal floods can provide a better statistical approach and therefore better estimate joint RPs in their study area 
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located on the West Coast Canada. However, after carrying out a brief sensitivity analysis on defining extreme sea level events 

as sea level peaks above the 95th or 99th percentile and comparing it with the annual maxima sampling, no noticeable changes 

were found; a similar conclusion was also drawn by Ward et al. (2018). 475 

A compound analysis is seen as a relatively new approach within this field of study, which also involves some 

limitations, such as the quantification of uncertainties within a multivariate analysis that differ widely depending on the choice 

of a copula. The uncertainty resulting from the choice of copula can to some extent be constrained by adopting appropriate 

goodness-of-fit statistics for the selection of the best-fitting copula. In this study, we choose to illustrate this indirectly by 

presenting results from many different choices of copula, despite having calculated such goodness-of-fit metrics (section 2.2). 480 

Furthermore, we showed the normalized difference values for different data sources. As discussed in section 2.3 and Serinaldi 

(2015) a careful interpretation comparing return levels from different methodologies is, however, always needed. In decision-

making adapting a strategy such as ours (to include results from all studied copulas and also different data sources) has some 

limitations in the sense that too much information can sometimes cause more confusion than help for the decision. Often it 

may be possible to argue against some choices of copulas (e.g. the Gaussian copula when the distributions are skewed) and 485 

the strategy of constraining the results to one copula or a set of “best-fitting” copulas using some threshold on the goodness-

of-fit metrics may be appropriate. For the purpose of our study and the conclusion drawn we consider, however, that presenting 

the results from multiple choices of data and multiple copula is appropriate. 

5 Summary and conclusions 

This study assesses the hydrological and oceanographic processes that may lead to compound flood effects in 490 

Halmstad. The method is easily transferable to other regions or sites. In the paper, we stress the importance of the choice of 

data sources and copulas for multivariate analysis. Based on our analysis, we conclude that:  

 

• A dependency is found between the annual maxima of river discharge and the corresponding sea level. The opposite 

dependency for annual sea level maxima and associated river discharge was not considered significant at this site. 495 

• All values of the “most likely” scenarios and their uncertainties resulting from the copula analysis are within the range 

of the 95th percentile confidence interval of the univariate GEV distribution fit. 

• The choice of river time series as initial input influences the results of the copula analysis to a higher degree than the 

choice of sea level time series as initial input. 

• The choice of copula has a similar magnitude of its influence on return period statistics as the choice of river discharge 500 

input Copula choice has a similar influence on return period statistics as the river discharge input for most of the twelve sets 

tried. 

• According to statistical criteria, the Clayton, BB1 and Gaussian (once) copulas performed the best in this study.  
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Uncertainties in compound flood hazard quantification are essential to consider. They can come from different sources, such 505 

as methodology and data sources. This study stresses the importance of the choice of data sources and copula. 

5 Appendices 

Table A1: Rank correlation (rho) and p-values of the twelve different sets based on (Qn/ sn) in columns: “ / river” and (qn/ Sn) in 

columns “ / sea” ; the best set of study is displayed with bold and underlined; p_values above 5% are highlighted in italic.  

river  sea level 
rank 

correlation 
rho / 
river p / river rho / sea 

 
p / sea 

E-Hype 

reanalysis 

Pearson 0,.4532 0,.0154 0,.0443  0,.8227 

Kendall 0,.3280 0,.0141 0,.0370  0,.7992 

Spearman 0,.4532 0,.0163 0,.0443  0,.8226 

obs 
Nissan 

Pearson 0,.2430 0,.2478 0,.6684  0,.0922 

Kendall 0,.2896 0,.1594 0,.6410  0,.0725 

Spearman 0,.2419 0,.2478 0,.6674  0,.0922 

S-Hype 

Pearson 0,.3799 0,.1325 -0,.0760  0,.7719 

Kendall 0,.3088 0,.0914 -0,.0588  0,.7765 

Spearman 0,.3799 0,.1333 -0,.0760  0,.7729 

E-Hype 

observed 

Pearson 0,.4725 0,.1030 0,.4056  0,.1908 

Kendall 0,.3590 0,.1000 0,.2424  0,.3108 

Spearman 0,.4725 0,.1057 0,.4056  0,.1926 

obs 
Nissan 

Pearson 0,.4396 0,.1329 -0,.1049  0,.7456 

Kendall 0,.3333 0,.1289 -0,.0606  0,.8406 

Spearman 0,.4396 0,.1350 -0,.1049  0,.7495 

S-Hype 

Pearson 0,.6273 0,.0388 -0,.0490  0,.8799 

Kendall 0,.4909 0,.0405 -0,.0303  0,.9466 

Spearman 0,.6273 0,.0440 -0,.0490  0,.8863 

E-Hype 

pred 
Viken 

Pearson 0,.4439 0,.0109 0,.2438  0,.1788 

Kendall 0,.3145 0,.0111 0,.1452  0,.2518 

Spearman 0,.4439 0,.0116 0,.2438  0,.1782 

obs 
Nissan 

Pearson 0,.3400 0,.1040 0,.2435  0,.2516 

Kendall 0,.2319 0,.1189 0,.1522  0,.3128 

Spearman 0,.3400 0,.1044 0,.2435  0,.2505 

S-Hype 

Pearson 0,.3676 0,.1466 0,.2843  0,.2687 

Kendall 0,.2794 0,.1288 0,.1912  0,.3081 

Spearman 0,.3676 0,.1471 0,.2843  0,.2678 

E-Hype rec Viken Pearson 0,.4836 0,.0044 0,.2753  0,.1273 
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Kendall 0,.3523 0,.0036 0,.1815  0,.1500 

Spearman 0,.4836 0,.0048 0,.2753  0,.1272 

obs 
Nissan 

Pearson 0,.3446 0,.0916 0,.1487  0,.4880 

Kendall 0,.2333 0,.1076 0,.1014  0,.5071 

Spearman 0,.3446 0,.0921 0,.1487  0,.4863 

S-Hype 

Pearson 0,.4882 0,.0550 0,.1373  0,.5994 

Kendall 0,.3833 0,.0413 0,.1029  0,.5976 

Spearman 0,.4882 0,.0572 0,.1373  0,.5986 
 510 

Table A2: Summary report of runs from MhAST the copula analysis for the twelve different sets; the best study set is highlighted 

in bold, italic and underlined. 

river  sea level 
Copula best 

fit 
number of co-occurring 

years 

obs 
Nissan 

reanalysis Clayton 24 

obs sea level Galambos 13 

pred 
Halmstad 

Clayton 24 

rec Halmstad Clayton 25 

E-Hype 

reanalysis BB1 28 

obs sea level Gaussian 13 

pred 
Halmstad 

BB1 32 

rec Halmstad BB1 33 

S-Hype 

reanalysis Clayton 17 

obs sea level BB1 11 

pred 
Halmstad 

Clayton 17 

rec Halmstad Gaussian 16 

 

Table A3: Summary report from the river discharge's results and associated uncertainties from MhAST the copula analysis for 

the E-Hype / rec Halmstad set; the results from the univariate method are highlighted in bold, italic and underlined. The Gaussian 515 
copula has not been considered for the analysis of the “most likely scenarios” row. 

E-Hype / rec 
Halmstad copula distribution fit   5-years RL 30-years RL 

univariate 

  

median 201 263 

max 95% 250 431 

min 5% 167 189 

relative error 41.,29% 92.,02% 
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"most likely 
scenarios" 

Fischer-Kock / FGM max copula 234 292 

Tawn min copula 208 267 

NDV 12.,94% 9.,51% 

uncertainties 
"Maximum Density" 

approach 

BB1 
max without 
ouliers 

224 284 

BB1 
min without 
ouliers 

218 276 

BB1 NDV 2.,99% 3.,04% 

Joe 
max without 
ouliers 

217 274 

Joe 
min without 
ouliers 

210 268 

Joe NDV 3.,48% 2.,28% 

Fischer-Kosck 
max without 
ouliers 

235 296 

Fischer-Kosck 
min without 
ouliers 

215 272 

Fischer-Kosck NDV 9.,95% 9.,13% 

Gaussian 
max without 
ouliers 

220 398 

Gaussian 
min without 
ouliers 

218 262 

Gaussian NDV 1.,00% 51.,71% 

uncertainties 
"Weighted Average" 

approach 

BB1 
max without 
ouliers 

351 329 

BB1 
min without 
ouliers 

202 261 

BB1 NDV 74.,13% 25.,86% 

Joe 
max without 
ouliers 

328 303 

Joe 
min without 
ouliers 

202 261 

Joe NDV 62.,69% 15.,97% 

Fischer-Kosck 
max without 
ouliers 

353 353 

Fischer-Kosck 
min without 
ouliers 

202 261 

Fischer-Kosck NDV 75.,12% 34.,98% 

Gaussian 
max without 
ouliers 

349 338 

Gaussian 
min without 
ouliers 

202 261 
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Gaussian NDV 73.,13% 29.,28% 
 

 

Figure A1: Set E-Hype / rec Halmstad, best copula fit: BB1. [2, 5, 10, 25, 50, 100] RPs and associated densities. The left and lower 

panels correspond to marginal RPs curves of each univariate parameter individually, river discharge and sea level (extracted from 520 
MhAST software). 
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Fig. A2-a) 
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Fig. A2-b) 
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Figure A2: Fluvial component in bivariate events with 5- (a) and 30-year (b) RPs values of river discharge from copula fits and 525 
univariate GEV fits. Each subplot corresponds to a set of events from an association of river discharge and sea level inputs displayed 

as a matrix, and in each column, a copula distribution fit where two uncertainty approaches are displayed as error bars. Stars 

represent the most likely scenarios return values from each copula for each set and each red diamond, the best-fit copula. The two 

uncertainty approaches are displayed as boxplots that give a statistical summary. Median, First and third quartiles are represented 

in each box; Whiskers represent minimum and maximum values, and dots represent outliers. Outlined boxplots correspond to the 530 
“Weighted Average” approach, and filled ones to the “Maximum Density” approach. The set E-Hype / Rec Halmstad, used as a base 

case, is highlighted by the red rectangles. 
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