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Abstract 

Long-term hazard and risk assessments are produced by combining many hazard-model simulations, each using slightly 

different set of inputs to cover the uncertainty space. While most input parameters for these models are relatively well-

constrained, atmospheric parameters remain problematic unless working on very short-time scales (hours to days). 

Precipitation is a key trigger for many natural hazards including floods, landslides, and lahars. This work presents a stochastic 10 

catchment-scale weather model that takes openly available ERA5-land data, and produces long-term, spatially varying 

precipitation data that mimics the statistical dimensions of real-data. This allows precipitation to be robustly included in hazard-

model simulations. 

1 Introduction 

Natural hazard and risk assessments are probabilistic by necessity. They must incorporate the intrinsic variability of natural 15 

systems, and the large number of unknown (but often data constrained) input parameters. To produce such assessments, many 

model simulations are run by sampling from a distribution for these parameters. The outputs are then combined (often overlain 

in a spatial context), to calculate hazard likelihoods across an area, and/or to produce risk maps, key for communicating hazards 

(Thompson et al., 2015; Hyman et al. 2019). The spatial extent of such hazards is key to such assessments, as is a robust 

approach to simulation design. Precipitation is causally linked to many natural hazards including floods, landslides, and lahars 20 

(Gill and Malamud, 2016). While several stochastic weather models exist in published literature, they either require detailed 

local rainfall information – which is rare over long timescales (Zhao et al. 2019; Muñoz-Sabater et al., 2021), or they are run 

for a single spatial reference point – which is insufficient for many hazard models (e.g., Floods: Arnaud et al., 2002; Landslides: 

Gao et al., 2017). The model provided here uses openly available ERA5-land data (Muñoz-Sabater, 2019) and produces 

realistic (statistically similar) precipitation patterns to improve the sampling strategy of atmospheric properties and support 25 

robust hazard assessments. This brief correspondence first presents algorithm construction, and then an example application 

using the Rangitāiki-Tarawera catchment, Bay of Plenty, New Zealand. All code is in R (R Core Team, 2021), and freely 

available.  
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Figure 1: SWM algorithm flow diagram. (a) Read/Process ERA5 data, (b) Build wet/dry blocks, (c) Create stochastic array. 30 

2 Algorithm construction 

The stochastic weather model (SWM) comprises three steps: data conversion, block construction, and stochastic weather 

generation. Due to the relative simplicity of the model, and exploiting some coding efficiencies in the R package dplyr 

(Wickham et al., 2023), 10 years of hourly data can be generated at points on a 10 by 10 grid on a standard desktop computer 

in under five seconds. Before running SWM, data must be downloaded from ERA5-land data in netCDF format. In ERA5-35 

land, the variable is total precipitation tp in metres, and is the total amount of water accumulated over a particular time period, 

resetting every 24 hours (Muñoz Sabater, 2019). SWM will run on as little as one day’s worth of rainfall data however, the 
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outputs will then only mimic the statistical properties of this day’s weather. The recommendation is therefore to download at 

least the last 20 years of data (ERA5 data are available from 1960–current). 

 40 

SWM first pulls time- and location-stamped precipitation data from the ERA5-land data and converts values from accumulated 

to hourly rainfall before combining all data into a single spatio-temporal array for analysis (Fig. 1a). A single point is selected 

at random from the locations used in the download of the original ERA5-land data (Fig. 1b). The precipitation data at this point 

is used to split the single array into periods of precipitation (wet), and no precipitation (dry) based on a user-defined rainfall 

tolerance (below which an hour is considered dry). The user must then define three start conditions: (1) the month and day 45 

from which stochastic data are to begin (noting that weather data are seasonal), (2) the length of time data are required for, and 

(3) how many sets of data are required. For example, 20 datasets for 10 years of data starting from 30th April. SWM builds an 

empty array, the spatial extent of which is based on the ERA5-land netCDFs, and the user-defined temporal extent. A starting 

block of wet or dry is randomly selected (constrained by the starting month) and inserted into the empty array, the timestamp 

is updated (starting time + block length), a check is made to see whether this timestamp exceeds the required data size, if yes, 50 

the algorithm stops (stochastic data already generated), if not, the type of block is switched (wet to dry, or dry to wet), and the 

loop begins again (Fig. 1c). The final output from SWM is a set of netCDFs identical in form to those of the ERA5-land data 

except that precipitation is hourly, rather than cumulative.  

3 Example application: Rangitāiki-Tarawera catchment, Bay of Plenty, New Zealand 

The Rangitāiki-Tarawera catchment is an area susceptible to many natural hazards including volcanic eruptions, flooding, and 55 

extreme weather events (ex-tropical cyclones). Hourly rainfall data across a 11x14 grid (Fig. 2) of longitude: {176° E, 176.1° 

E, …, 177.0° E} and latitude: {37.8° S, 37.9° S, …, 39.1° S}, for 40 years (1981 – 2020) were downloaded from ERA5-land. 

The ERA5-land data is then prepared for the Rangitāiki-Tarawera catchment through SWM by converting these individual 

netCDFs into a 11 (longitude steps of 0.1° E) by 14 (latitude steps of 0.1° S) by ~350,400 (time steps in hours) array of hourly 

data (24 hrs x 365 days x 40 yrs). The Rangitāiki-Tarawera array is then split into wet/dry time-stamped blocks. ERA5-land 60 

precipitation data at this catchment were commonly of very small (~10-18 m) but non-zero values (common for ERA4-land 

data, Muñoz-Sabater et al., 2021). The New Zealand climate report for the region (Chapell, 2013) provides average monthly 

rain and wet days at Kawerau (a town central to the catchment) of 112 wet days per year (~31 %), where wet days are defined 

as more than one mm per day. A rainfall tolerance level of zero resulted in ~54 % of data classified as wet, using the climate 

report criteria (less than one mm rainfall in 24 hrs = 4.12 x 10-5 m hr-1) resulted in ~29 % of data defined as wet. For this 65 

exemplar, the latter was used. Stochastic precipitation data for the Rangitāiki-Tarawera catchment was then built using SWM 

to obtain 95 sets of 40 years’ worth of hourly stochastic rainfall data across the region as 95 netCDFs. The number of runs (95) 

was chosen here to provide ninety-fifth percentile bounds for the statistical analyses (Sect. 4), but in practice can be set to any 

value, e.g., to match the number of downstream hazard simulations planned. 
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Figure 2: ERA5 data across the case-study area. (a) Case study area, North Island, Aotearoa, basemap from Earthstar Geographics 

(https://www.terracolor.net/), (b) Elevation of case study area with ERA5 grid, catchment of interest, and Kawerau township, (c) 

Mean monthly total rainfall for January (ERA5 data: 1981 to 2020), (d) Mean monthly total rainfall for July (ERA5 data: 1981 to 

2020). 75 

4 Statistical analyses 

Four sets of statistical analyses were undertaken to ensure that SWM simulated data are stochastically similar to ERA5-land 

data. For this, the 95 sets of 40 years of simulated data across the 11x14 grid are used, code for these analyses being in the 

GitHub repository, and all outputs for the exemplar in the supplementary material. The location at which tests are performed 

were selected randomly, and the whole process was run through twice to check sample sensitivity. The latter exercise was to 80 

check whether any patterns observed in the first 95 sets of simulated data were repeated in the second set. These are referred 

to as Sample 1 and Sample 2 in the results, with each sample containing 95 sets of simulated data. The analyses were: 

(1) Monthly means and variance  

Students t-test was used to compare the monthly mean rainfall between real and simulated data, the Shapiro-Wilks test is used 

to test normality to determine the appropriate equal variance test: Bartlett if data are normally distributed, or Levene if not 85 

(Fox and Weisburg, 2019).  

(2) Significance of month and source for rainfall prediction 

Tukey’s Honest Significant Difference (HSD) (e.g., Miller 1981) is used to determine whether source (real or simulated) is a 

significant factor in the prediction of total monthly rainfall. 

(3) Distributions of monthly rainfall totals 90 

A non-parametric bootstrap method is applied whereby empirical cumulative distribution functions (eCDFs) for each simulated 

dataset representing the 95th percentile envelope (95 runs) is overlain by the real dataset. 

(4) Temporal trends on daily and monthly timescales 

Autocorrelations are calculated for each of the real and simulated data to compare any significant lags (Venables and Ripley, 

2002). Tests require a continuous variable in discrete time so are run on cumulative daily and cumulative monthly rainfall. 95 
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Figure 3: Statistical analyses results, simulated data are shown as grey lines, real data are shown as red lines. (a) Sample 1: January 

empirical Cumulative Distribution Functions of rainfall totals (m), (b) Sample 2: January empirical Cumulative Distribution 
Functions of rainfall totals (m), (c) Sample 1: July empirical Cumulative Distribution Functions of rainfall totals (m), (d) Sample 2: 

July empirical Cumulative Distribution Functions of rainfall totals (m), (e) Sample 1: Monthly cumulative rainfall autocorrelations, 100 
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(f) Sample 2: Monthly cumulative rainfall autocorrelations, (g) Sample 1: January daily cumulative rainfall autocorrelations, (h) 

Sample 2: January daily cumulative rainfall autocorrelations, (i) Sample 1: July daily cumulative rainfall autocorrelations, (j) 

Sample 2: July daily cumulative rainfall autocorrelations. 

5 Results 

Overall, while SWM passed all statistical tests for both samples, some departure was noted in several combinations, the 105 

specifics of which are detailed below:  

(1) Monthly means and variance 

Real and simulated data failed the Shapiro-Wilks test of normality at a similar rate (~52-58 %) for both samples, thus the 

Levene test for equal variance was always used.  

Sample 1: Only eight of 1140 tests showed a statistically significant difference in monthly means (p < 0.05); expected number 110 

under the null hypothesis of no difference being 57. Fifty-one pairs (5 %) failed the test of equal variance (p < 0.05), of which 

26 (more than half) were in June. 

Sample 2: Only three of 1140 tests showed a statistically significant difference in monthly means (p < 0.05). Forty-three pairs 

(4 %) failed the test of equal variance (p < 0.05), of which 12 were in June, and 12 in February. 

(2) Significance of month and source for rainfall prediction 115 

Two linear models were built with rainfall as the response variable, and both month and source (real or simulated) as predictor 

variables. One was built with an interaction term (m1), one without (m2). Both models for both samples passed Tukey’s HSD 

test, rejecting source as a statistically significant predictor (Sample 1: p = 0.8434; Sample 2: p = 0.9786). 

(3) Distribution of monthly rainfall totals 

Samples 1 and 2: Envelopes were built for each sample and for each month from eCDFs of the simulated data, these were then 120 

overlain by the real data, which consistently fell within this ninety-fifth percentile envelope (examples in Fig. 3a-b). 

(4) Temporal trends on daily and monthly timescales 

Samples 1 and 2: Autocorrelations for cumulative daily rainfall for both real and simulated data over longer time lags (> 30 

days) showed minimal trends through time, thus, although we cannot reject a conclusion of similar trends between the two, 

results remain inconclusive. Looking within monthly data only and over shorter time lags (< 30 days), there are potential 125 

departures of the real data more positively correlated than the simulated data for January at a lag of 5 days (Fig. 3g-h), and for 

July at a lag of 8 days (Fig. 3i-j). Autocorrelations at the monthly scale show seasonal trends in both real and simulated data 

(Fig. 3d) with strong positive correlations at the yearly level (every 12 months), and negative correlations at the six-monthly 

level (e.g., rainfall in January is negatively correlated with rainfall in July). A potential horizontal offset is noted between real 

and simulated data. The differences between real and simulated data here are attributed to multi-day rain or dry events. For 130 

example, in the simulated data, a large wet block representing a tropical cyclone in the original data occurring entirely in 

December, can feasibly start at 31 December in the simulated data and thus will run over into January. January and July results 

are provided here as they represent the most extreme weather months for the region (in terms of both drought and heavy 
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rainfall) but also the most extreme departures from the simulated data. The remainder of the months do not show any notable 

differences in lags between simulated and real data for either sample (see supplementary material for complete result set). 135 

6 Conclusions 

The method and code provided through this brief communication can be used to generate multiple sets of realistic, long-term, 

hourly precipitation data over a spatial region. This code provides an easy to plug-in input for hazard simulations to support 

long-term, time and spatially varying, probabilistic risk assessments, uncertainty quantification, and multi-hazard models. 

Data availability 140 

All data were obtained from the Copernicus Climate Change Service (CS3) Climate data Store (CDS) and is published under 

a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 

Code availability 

Code is written in R (open-source software) and is freely available at https://github.com/MelWhitehead/SWM. 

Supplement 145 

The supplement related to this article is available online at: << link for nhess supplement to go here >> 
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