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Abstract 

The countries of Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan, and Uzbekistan in Central Asia are 

highly prone to natural hazards, particularly floods, earthquakes, and landslides. The European Union, in 

collaboration with the World Bank and the GFDRR, created the program “Strengthening Financial Resilience and 25 

Accelerating Risk Reduction in Central Asia” (SFRARR) to advance disaster and climate resilience in the region. 

As part of the SFRARR project, the “Regionally consistent risk assessment for earthquakes and floods and 

selective landslide scenario analysis for strengthening financial resilience and accelerating risk reduction in 

Central Asia” was developed to achieve the project's objectives. This article presents the data, model, methodology 

and results for the five Central Asia countries of the flood risk assessment, which represents the first high-30 

resolution regional-scale transboundary risk assessment study in the area aiming at providing tools for decision-

making. The output information will inform and enable the World Bank to initiate a policy dialogue. 

A fully probabilistic risk assessment for fluvial floods has been carried out for these countries to support regional 

and national risk financing and insurance applications, including potential indemnity and/or parametric risk 

financing solutions for a regional program. A homogenized risk assessment methodology for the five countries 35 

and across multiple hazards (floods and earthquakes) and asset types has been adopted to obtain strategic financial 

solutions consistent across geographical areas and economic sectors. 

The largest relative (to the total exposed value) expected annual damages are found in Kazakhstan and Tajikistan, 

with values above 6‰. In the five considered countries, the largest relative expected annual damages by sector 

are found for the transport and agricultural sector. Climate change is expected to have contrasting impacts, with 40 

increases in risk for some regions (the most severe increase is found in Mangistauskaya Region in Kazakhstan) 

and decreases for other regions (Lebap (Turkmenistan), Khatlon (Tajikistan), Samarkand (Uzbekistan) and Batken 

(Kyrgyz Republic). 

 

Keywords: flood hazard, flood risk, large-scale model, risk assessment, Central Asia 45 

 

Short summary 

A probabilistic flood risk assessment was carried out for five Central Asia countries for supporting regional and 

national risk financing and insurance applications. A homogenized risk assessment methodology for the countries 

and across multiple hazards (floods and earthquake) and asset types was adopted to obtain strategic financial 50 

solutions consistent across geographical areas and across economic sectors. The paper presents the first high-

resolution regional-scale transboundary flood risk assessment study in the area aiming at providing tools for 

decision-making. 

1 Introduction 

Central Asia is subject to frequent disasters including earthquakes and floods (GFDRR, 2016). Furthermore, 55 

climate change, urbanization processes, and a growing population have contributed to an increase in the frequency 

and severity of losses caused by natural hazard events in the last two decades (Pollner et al., 2010; Yu et al., 2019; 

Reyer et al., 2017). The transboundary nature of many of these events requires a regional and shared approach to 

support, plan, and coordinate Disaster Risk Management (DRM) and Disaster Risk Financing and Insurance 

(DRFI) strategies. Flood risk assessment is a fundamental tool in this framework, as it allows the quantification 60 

of the expected losses caused by floods and the identification and prioritization of interventions (Tsakiris, 2014; 

Merz et al., 2014). Flood risk assessment is defined as an evaluation of future losses caused by floods (riverine 

and/or coastal) using a set of tools such as hydrological and flood models, exposure models and vulnerability 

models within a risk-based framework, which includes associating losses with levels of likelihood (Mitchell-

Wallace et al., 2017). 65 

In particular, large-scale risk assessment is needed by governments and international institutions to drive national-

scale policies to counter economic losses by floods and improve national resilience towards disasters caused by 

natural hazard events. Here, we define large-scale risk assessment as a risk evaluation study that covers an area 

encompassing hundreds of thousands of square km, including administrative units from districts/provinces to 

national or pluri-national scale. Large-scale flood hazard modelling and assessment is nowadays a well-70 

established branch of flood engineering research and practice (Alfieri et al., 2014; Pappenberger et al., 2012; 
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Schumann et al., 2016), albeit with caveats and limitations (Bates, 2022). Large-scale flood risk modelling and 

assessment has also gained traction in the past years (Steinschneider et al., 2014; Ward et al., 2013) and is routinely 

used in commercial catastrophe risk models by insurance and reinsurance companies to price their products (Wing 

et al., 2020). Nevertheless, uncertainties remain large and their evaluation is subject of ongoing research 75 

(Figueiredo et al., 2018). 

A key issue for large-scale model set-up and reliability is data availability. Such models are data-demanding, since 

they need meteorological data, river flow observations, geomorphological data, location and protection level of 

defences, macroeconomic data, among others. Such data might not always be available, or cannot be easily 

obtained, due to data restriction policies or lack of digitalisation. In Central Asia, for example, meteorological and 80 

flow data are hard to acquire without an institutional or local support. Furthermore, in this region, several flow 

gauges were discontinued at the time of the dissolution of the Soviet Union, and most of them were not replaced 

and, therefore, flow records covering recent times are scarce. Another frequent limitation is the absence of post-

event survey, either of the event intensity (flood footprints) or of the physical damage and of the economic losses 

(e.g., damage data and insurance claims). 85 

In this study, a flood risk assessment model was implemented based on global, regional and local datasets, which 

comprise a hazard module (assessment of frequency and intensity of floods), a vulnerability module (assessment 

of the relationship between event intensity and damage/losses) and an exposure module (inventory of building 

and infrastructure). The model covers the countries of Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan 

and Uzbekistan, in Central Asia. The model was implemented within the framework of the project “Regionally 90 

Consistent Risk Assessment for Earthquakes and Floods and Selective Landslide Scenario Analysis for 

Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia” and within the 

implementation of the EU-Funded “Strengthening Financial Resilience and Accelerating Risk Reduction in 

Central Asia” – SFRARR program (https://www.gfdrr.org/en/program/SFRARR-Central-Asia). The project aims 

to advance disaster and climate resilience in Central Asia countries. The landslide susceptibility assessment, which 95 

was part of this study, can be found in (Rosi et al., 2023). 

The objective of this paper is twofold. First to provide guidelines for the implementation of large-scale (e.g., 

country-scale) flood risk models in data-scarce regions, showing that regional datasets such as reanalysis and 

global land maps need to be integrated with knowledge and data that can only be obtained through engagement 

and collaboration of local authorities and local experts through participation of stakeholders. Second to present 100 

for the five countries considered in this study the estimated levels of flood risk to support governments and 

decision makers in the decisions for a more comprehensive flood risk management strategy. Currently, the 

availability of risk information for Disaster Risk Management (DRM) and Disaster Risk Financing and Insurance 

(DRFI) activities remains variable across the region and has been provided by previous projects focusing on a 

single country. Moreover, few of these studies have quantified multi-hazard disaster risk, and, to our best 105 

knowledge, none have done so for the whole region using probabilistic methods applied with the sufficient fidelity 

required to robustly inform the development of DRFI solutions. Fragmented and low-resolution flood risk 

assessment studies already exist in the region (CAC DRMI, 2009; GFDRR, 2016; UNDP, 2014; UNISDR, 2010; 

Umaraliev et al., 2020; Asian Development Bank, 2015; M.S. Saidov, 2020), however a high-resolution, 

homogeneous, transboundary flood risk assessment such as the one presented here is unprecedented for the Central 110 

Asia region.  

2 Study area 

Central Asia is highly exposed and vulnerable to a broad range of natural hazards which frequently result in 

economic and human losses. Flood hazard is significant in the region, with floods being the most frequent natural 

disaster in the period 1988-2007 according to a recent analysis provided by the Central Asia and Caucasus Disaster 115 

Risk Management Initiative (CAC DRMI, 2009). In the same period, floods were second for number of deaths 

caused and amount of population affected (1,512 and 19% respectively). Despite the aridity of large areas in some 

of the target countries, natural phenomena linked to extreme precipitation can cause billions of dollars of damages 

every year: collectively, floods inflict the second highest overall economic losses ($52 million), surpassed only 

by earthquake (an annual average of $186 million). At the local level (e.g., in Tajikistan), flood is sometimes the 120 

dominant risk in terms of economic losses (World Bank et al., 2012). Considering the deteriorated protection 

https://www.gfdrr.org/en/program/SFRARR-Central-Asia
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infrastructure and vulnerabilities in several sectors, floods can cause considerable damage to housing, 

infrastructure, and agriculture (Libert, 2008). 

Climatically, this region is characterized by strong rainfall gradient contrasts, due to the diversity of climate and 

vegetation zones. The region is drained by large, partly snow- and glacier-fed mountain rivers, that cross or 125 

terminate in arid forelands. Central Asian countries are therefore affected by a significant river flood hazard mainly 

in spring and summer seasons. Land use is mainly grassland in central and southern Kazakhstan, while in most of 

Uzbekistan and Turkmenistan vegetation is very sparse. Arable land is concentrated in northern Kazakhstan and 

in the irrigated parts of the plains of Uzbekistan and Turkmenistan. Tajikistan and the Kyrgyz Republic are mainly 

mountainous while the other three countries are mostly flat. The elevation of the region is shown in Figure 1. 130 

 

 
Figure 1. Study area: country boundaries and elevation. 

3 Data and models 

3.1 Global datasets 135 

In this study, a wide range of well-known and established datasets was used. Table 1 shows a complete inventory 

of the global data and how it was used within the model. A short description of the use within the study is provided, 

as well as its resolution and some bibliographic references. 

Table 1. Global data inventory. 

Data Type Source Use within the model Spatial resolution References 

Digital Elevation 

Model 

MERIT DEM  

MERIT Hydro 

Input to TOPKAPI, CA2D. 

Input to derive additional data 

products 

3 arc-seconds Yamazaki et al., 

2017 

Yamazaki et al., 

2019 

Soil Type FAO Harmonized 

World Soil Database 

TOPKAPI parametrization 30 arc-seconds Nachtergaele et al., 

2012 

Land Use GlobeLand30 TOPKAPI and CA2D 

parametrization. 

30 m  
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Observed 

Discharge 

records 

Global Runoff Data 

Centre (GRDC) 

TOPKAPI calibration and 

extreme values distributions 

Point measurements  

Precipitation ERA5-Land: 1981-2020  

 

Input to TOPKAPI 

simulations 

0.1° 

 

Muñoz-Sabater et 

al., 2021; Hersbach 

et al., 2019 

Temperature ERA5-Land: 1981-2020  

 

Input to TOPKAPI 0.1° 

 

Muñoz-Sabater et 

al., 2021; Hersbach 

et al., 2019 

Reservoirs and 

Dams 

Global Reservoir and 

Dam Database 

(GRanD) 

Extreme Values Analysis and 

Regionalization 

- The Global Water 

System Project, 

2011 

Hydraulic 

defenses 

FLOPROS database 

WorldPOP 

HBASE 

Defended hazard maps Administrative units 

100 m 

30 m 

 

Scussolini et al., 

2016 

Tatem, 2017; Wang 

et al., 2017a 

Climate change 

projections 

CORDEX 

(RegCM4.3.5 driven 

by MPI-ESM-MR in 

Central Asia domain, 

scenario RCP4.5) 

Defended hazard maps 0.2° 

 

Giorgi et al., 2009 

Ozturk et al., 2017 
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3.2 Local datasets 

Table 2. shows a complete inventory of the data requested/obtained from the local experts and stakeholders. 

Although the number of available flow gauges might appear limited given the extensive region, it is crucial to 

recognize that their spatial distribution effectively encompasses densely populated areas where the majority of 

exposed assets are located. Figure 2 shows the gauging stations locations and the populated areas (in blue, 145 

population density > 1/km2) including both local and global datasets. 

 

 

Table 2. Local data inventory. 

Country Daily Discharge Annual maximum 

discharge 

Hydraulic 

Protection 

Reservoirs 

Kazakhstan 7 stations (records of 

variable lengths 

between 2001 and 

2015) 

120 stations (records 

of variable lengths 

between 1910 and 

2018) 

Location and length 

of some riverbank 

hydraulic structures 

on the Sir Darya 

River 

Volume and year of 

construction of main 

reservoirs 

Kyrgyz Republic No data obtained 

because cost was too 

high compared to the 

benefit 

65 stations (records 

of variable length 

between 1930 and 

2018). Some of these 

data were purchased 

from 

KyrgyzHydroMet 

Record of hydraulic 

protection works 

from 2018 at the 

regional level 

Data on reservoirs’ 

volume and 

construction year for 

5 main reservoirs 

Tajikistan No data obtained 

because cost was too 

high compared to the 

benefit 

14 stations (variable 

lengths), purchased 

from TajykHydroMet 

No data Volume and 

construction year for 

13 reservoirs 

Uzbekistan 2 stations 

(2015-2019) 

46 stations (2005-

2019) 

No data Volume and year of 

construction of main 

reservoirs 

Turkmenistan  6 stations 

(2015-2020) 

11 stations, variable 

record between 1936-

2020 (monthly 

maxima available) 

No data Volume and year of 

construction of main 

reservoirs 

 150 
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Figure 2. Annual maxima flow gauges coverage on populated areas, provided by local Institutes (top) and daily flow 

gauges coverage on populated areas, provided by local Institutes (inside of the country borders) and GRDC (inside 

and outside of the Countries’ borders). . The background shades are from Map Tiler and OpenStreetMap. 

 155 

Information about the characteristics of the building stock of relevance for their vulnerability to flood water was 

collected from local sources and from the literature. In particular, characteristics like number of floors, presence 

of a basement, level of the ground floor above the street level, type of building (apartment, detached, semi-

detached), etc., were collected. The number of floors distribution in various countries was derived from Pittore et 

al. (2020) and Wieland et al. (2015), which established floor number ranges for different building categories 160 

through local surveys. Additionally, sources such as Pittore et al. (2011) and The World Bank (2017) were used to 

complement the above-mentioned information. On-site collection of unit costs for building component 

maintenance, removal, and replacement was facilitated by local advisors and engineers, drawing from interactions 

with professionals involved in building design and pricing, as well as engineering manuals and real estate catalogs 

(such as ENiR - Uniform norms and prices for construction, installation, and repair works). 165 

The role of the defensive protections is crucial in reducing fluvial flood hazard. However, availability of precise 

data regarding flood protection levels is very limited, as discussed earlier. To circumvent this problem, we 

developed a strategy to derive the hydraulic protection level of the region based on the correlation between the 

level of protection and the population density at any given location along the river. Initially, we identified urban 

agglomerates and determined their maximum population density through data from HBASE (Wang et al., 2017b) 170 

and WorldPop (Tatem, 2017). The former indicates the extension of urban areas, while the latter provides 

population density over 1 km2. For example, we identify a certain cluster of high-density population (i.e., a city) 
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based on WorldPop and then we define the boundaries of that city based on HBASE. Then, we identified the river 

portions afferent to each urban agglomerate and assumed that those stretches have a certain level of protection, 

due to the fact that they drain towards a city.. The level of protection was based on the FLOPROS database 175 

(Scussolini et al., 2016) area protection standards.  In specific cases, we integrated this methodology with eh 

available local data. This was the case, for example, for the level of protection of the two main Kazakh cities 

(Almaty and Astana), for which we utilized geospatial information provided by local stakeholders. 

4 Flood hazard assessment 

In this study, the flood hazard of the five Central Asian countries was assessed for the historical and climate change 180 

scenario by means of a physically based numerical modelling toolset and a stochastic catalogue of flood footprints 

(Figure 3). 

 
Figure 3. Flood hazard assessment: schematic representation of methodology. 

 185 

4.1 Numerical Modeling Toolset 

The numerical modelling toolset is composed of two elements: the hydrological model (TOPKAPI-X) and the 

flood hydraulic model (CA2D). 

The TOPKAPI (TOPographic Kinematic APproximation and Integration) model is a fully-distributed physically-

based hydrological model that can provide high resolution information on the hydrological state of a catchment 190 

(Ciarapica and Todini, 2002). The TOPKAPI-X model is an advanced version of the original TOPAKPI model 

that includes an additional soil layer for assessing subsurface flow, an improved snow melting and accumulation 

module that considers terrain aspect and latitude and a groundwater component to model the aquifer flow. The 

TOPKAPI-X model requires as input both precipitation and temperature meteorological data, plus a description 

of the soil characteristics that can be derived from the land use (to derive crop factors and surface roughness) and 195 

soil type maps (to derive soil permeability and depth). 

CA2D (Dottori and Todini, 2011) is a full physically-based flood model specifically designed for high-

performance computing applications, based on the cellular automata (CA) approach and the diffusive wave 

equations, to simulate flood inundation events involving wide areas. The model is based on the state-of-the-art of 

large-scale hydraulic modelling and has been tested extensively on several case studies. The CA2D model has an 200 

internal preprocessor that allows the user to provide as input only the Digital Elevation Model and the surface 

roughness map. The network (comprising nodes and links) is automatically generated, and specific conditions 

(such as flood protections) can be included, where present. In addition, input meteorological data must be provided 

in the form of hydrographs at specific points and/or of rainfall maps. We ran the model using the semi-inertial 
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formulation of the momentum equation, which was developed for the LISFLOOD-FP model (Bates et al., 2010). 205 

This approach allows for high resolution simulations at a significantly reduced computational effort, making it 

possible to run hydraulic simulations at the continental and global scale (Dottori and Todini, 2011). 

4.1.1 Hydrological model 

ERA5-Land hourly precipitation and temperature on a 0.1×0.1° regular grid were processed and used to drive 

calibrated TOPKAPI-X set-ups (one for each catchment in the region, including catchments partially overlaying 210 

neighbouring countries such as China, Afghanistan and Russia). The output was a set of 40-years long hourly 

discharge values at numerous river sections covering the whole drainage network in the region. 

The TOPKAPI-X model was run on a regular 1×1 km grid for all catchments in the region, based on a resampled 

digital elevation model consistent with MERIT-Hydro in terms of flow direction and river network. The 

hydrological model uses an equal-area projected reference system. Rainfall and temperature values, which are 215 

defined on a regular 0.1° grid with geographical coordinates, were associated to each of the hydrological model 

grid using a simple nearest neighbour methodology. Soil type and land use maps were also resampled to match 

the same grid. The model was run on an hourly time-step using hourly ERA5-Land precipitation and temperature 

from January 1981 to December 2020. The model simulations were initiated with average soil saturation and river 

depth conditions and the first year of simulation was used as warm-up period to reach realistic soil moisture 220 

conditions. Therefore, the year 1981 was not considered for calibration purposes nor for the extreme value 

analysis. The main model output consisted of hourly simulated discharges at several locations of the river network 

across the entire region. The model simulations corresponding to locations where observations were available 

have been used to perform a trial-and-error calibration that could reasonably reproduce the overall behaviour of 

each catchment. 225 

The TOPKAPI-X model was calibrated through a trial-and-error procedure adapting the initial model parameters 

in order to match the available observed discharge, using goodness-of-fit metrics such as correlation and percent 

bias to assess the model skills. We mainly based the model calibration on the historical daily data, but also used 

the annual maxima for the areas where daily data were not available. The calibration process focused mainly on 

robustly reproducing the flow peaks. This is because the hydrological simulations aim at estimating the extreme 230 

discharge value distributions at river sections across the region that are used to derive the flood footprint at 

different return periods via the hydraulic model. Since a physically based model better reproduces the flow peaks 

if all the other hydrological components are well represented, we made sure that the main hydrological processes 

were also correctly reproduced, with particular attention to the snow accumulation/melting component, which is 

the driver of most of the floods in this region. The calibration was performed independently for each catchment 235 

where historical data were available. Given the distributed and physically based nature of the TOPKAPI-X 

hydrological model, the calibration process was not based on an automatic procedure but on the use of reasonable 

values of the physical parameters. This procedure allows the identification of model parameters values that 

provide reasonable outputs across the entire catchments, avoiding under- or over-fitting any of the available 

historical records. We assumed two soil layers (superficial and sub-superficial) and the parameters that were 240 

calibrated included horizontal conductivity and depth for each of the two layers, vertical conductivity, potential 

evapotranspiration and snowmelt rate. The calibration period varied among historical stations, with record lengths 

ranging from 15 to 37 years. 

 

4.1.2 Extreme value analysis 245 

The extreme value analysis and regionalisation process was based on fitting the Generalized Extreme Value (GEV) 

distribution for several locations along the drainage network to derive the peak flows with different return periods. 

GEV is a standard tool for modeling flood peaks using annual maximum series (Morrison and Smith, 2002; 

Rosbjerg and Madsen, 1995). Simulated flow annual maxima were used to derive a GEV distribution for a large 

number of river sections all over the river network. Where observed flow records were available, the GEV 250 

distribution was also fitted on the observed flow annual maxima, and the resulting distribution compared with the 

distribution derived from simulated flow values with the objective of evaluating the model error on the extreme 

values. We observed that the largest hydrological model discrepancies occur on the main stem of large rivers, 
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because of the impact of large reservoirs and floodplains. Therefore, an adjustment of the simulated flows was 

implemented by computing the ratio between observed and simulated mean annual maximum flows and then 255 

multiplying the simulated flow by such a ratio. In other terms, the simulated annual maximum flows were 

increased or decreased by a coefficient based on the mean bias between observed and simulated mean annual 

maximum flows. Where observed data were not available, the adjustment coefficient was computed by using an 

adjustment coefficient from an associated station selected based on the proximity of the location and flow 

accumulated area. This procedure yielded a very good fit between observed and simulated extreme values of flow 260 

and allowed extrapolating the adjustment to ungauged river sections. This adjustment was particularly useful in 

floodplains and downstream dams, which are features that are particularly difficult to reproduce with a 

hydrological model. With this procedure we obtained estimates of the extreme flow value distribution for 78,000 

river sections having more than 100 km2 drainage area, from which peak flows were extracted at several levels of 

likelihood (1-in-5, 10, 20, 50, 100, 200, 500, 1000 years). 265 

4.1.3 Hydraulic model 

At each river section, the CA2D model was used to simulate the flood propagation of the river discharges 

generated at step 2), producing reach-specific water depth footprints for each of the fixed exceedance probability 

levels. 

The CA2D model was run at a 3 arcseconds (~90 m) spatial resolution. The simulation time-step is dynamic, and 270 

it varies between 0.01 and 15 seconds, with the maximum allowable time step defined by the Courant–Friedrichs–

Lewy or CFL condition (Courant et al., 1928), which is commonly adopted to preserve stability in computational 

fluid dynamics models. For every one of the 78,000 river reaches, 8 simulations were carried out using the 1-in-

5, 10, 20, 50, 100, 200, 500 and 1000 flows resulting from the extreme value analysis as boundary conditions. 

The MERIT-Hydro model was used as a source of elevation data and GlobeLand30 was used to derive roughness 275 

values from land use classes (Arcement, et al., 1989). The calibration of the CA2D model primarily focused on 

reproducing historical event hydrographs in terms of volume and peak timing: for each river section, we built a 

flood hydrograph to estimate the time of concentration, i.e., the time needed for the water to flow from the most 

remote point in a watershed to the watershed outlet (Giandotti, 1934). We assumed a triangular hydrograph 

reaching the flood peak at 2/3 of the concentration time and going back to zero at twice the concentration time. 280 

We assume the bankfull discharge as the discharge at 2-year return period.  

Flood protections were not explicitly accounted for in CA2D simulations. Instead, we adjusted water depth maps 

to reflect the presence of flood protections. Specifically, we assumed that areas with water depths below the 

designated level of protection would not incur any losses. 

4.1.3 Flood extent map validation 285 

For a single flood event, occurred in Hamadoni, Tajikistan, in 2005, reported losses, flood footprints, and river 

flow time series were available (Saidov et al., 2006, JICA, 2007). The availability of such data allowed for the 

validation of some of the components of the present model (namely the hydraulic model and the risk model), 

although limited to only one event. Nevertheless, and despite the caveats of carrying out a validation of a model 

against a single observation, showing the performances of the risk model for such event has an informative value. 290 

 

In order to validate the hydraulic model, the observed flood extent as well as the inlet discharge data were extracted 

from the JICA report (JICA, 2007). 

The flood event was quite long and involved a dyke breach and extensive damage to the nearby villages. The JICA 

study provides both a probable inundation area that was estimated from satellite data, and a flood footprint that 295 

was simulated.  

The following factors contribute to the uncertainty in both the JICA results and ours: 

• Satellite data from SPOT and ASTER are only available before and significantly after the peak. This 

probably explains the satellite estimated flood map underestimation of the flood extent. 

• The inlet discharge was estimated from the data recorded at a different station which is located at 80 km 300 

upstream, by the peak discharge ratio. 
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• The simulated water depth values are not available from the JICA study, we only have a figure that we 

superimposed over our flood footprint for a visual comparison. 

• We did not simulate the dyke breach as information on its location and the nature of the damage was not 

available. 305 

We built our hydrograph by taking the data estimated by JICA and used it as input to the CA2D model to get the 

flood footprint for the event.  

 

4.2 Stocasthic catalogue of flood footprints 

The results of the flood model simulations were the hazard maps, i.e., water depth maps at fixed return periods. 310 

While hazard maps provide the depth of inundation that can occur at a given location with a certain annual 

probability (or, conversely, with a certain return period), they are unable to describe the likelihood of concurrent 

flooding across multiple sites. This caveat limits their capability of assessing risk over the full range of plausible 

scenarios, including the most extreme ones which are those of most concerns to stakeholders. For this purpose, 

risk assessment models routinely use stochastic catalogues of events, i.e., datasets of synthetic event intensity 315 

footprints. This procedure is typically used for rainfall events (Salazar et al., 2009; Francés et al., 2011), tropical 

cyclones (Bloemendaal et al., 2020), drought (Guillod et al., 2018) and other perils. In this study, a flood depth 

hazard catalogue serves this purpose, by providing a stochastic ensemble of 10,000 years of hypothetical floods 

that may occur in the region, with related annual frequency of occurrence. To ensure spatial coherence in the 

stochastic catalogue, the spatial correlation of the river flow at each gauge/station is determined by computing a 320 

cross correlation matrix based on all the available (observed/simulated) flow time series. The methodology 

followed to produce a stochastic catalogue consists of the following steps: 

1. Clustering: river sections are grouped into clusters under the assumption that flows at river sections in 

the same cluster are highly correlated random variables. The amount of correlation depends on historical 

simulated flows, location of the stations and accumulated areas of the stations. 325 

2. Cluster activation probability: the annual probability of activation of a cluster is computed, where 

“activation” is defined here as an instance when at least one river section in a given cluster exceeds the 

5-year flow. This probability is based on the activation of clusters in the historical simulated flows. 

3. Activation of river section within a cluster: the average number of active river sections for a given year 

and its standard deviation are computed. A station is defined to be active when the flow at that location 330 

exceeds the 5-year flow. These values are based on the activation of clusters in the historical simulated 

flows. 

4. Generation of the stochastic catalogue: based on all the analysis above (clusters, annual activation 

probability, average number of active stations) and on the hazard curves at each section, a stochastic 

catalogue is produced, with equivalent duration of 10,000 years. Every year consists of an annual flood 335 

footprint, i.e., a map where each pixel represents the maximum water depth during a given year. 

 

4.3 Climate change scenario 

The climate scenarios used in this study are detailed in Ozturk et al. (2017). The Regional Climate Model (RCM) 

RegCM4.3.5 from the International Centre for Theoretical Physics (ICTP) was driven by two different CMIP5 340 

Global Climate Models (GCMs): the HadGEM2-ES from the UK Met Office Hadley Centre and the MPI-ESM-

MR from the German Max Planck Institute for Meteorology, under two emission scenarios (RCP4.5 and RCP8.5). 

Based on predictive performance, we selected the MPI-ESM-MR GCM. We chose RCP4.5 over RCP8.5 because 

it aligns more closely with current emission trends and future reduction pledges (Roger Pielke Jr et al., 2022). The 

model was run over the Central Asia domain as defined by CORDEX (Giorgi et al., 2009), with the corner points 345 

at 54.76°N - 11.05°E, 56.48°N - 139.13°E, 18.34°N - 42.41°E, and 19.39°N - 108.44°E. 

The impact of climate change on flood hazard was accounted for by estimating change factors to the ERA5-Land 

precipitation and temperature based on the probability density function (pdf) comparison of the current climate 

and 1971-2100 projection. Bias-correcting climate projections before using them in hydrological modelling is 

standard practice and should always be carried out to avoid propagating the climate model biases into the 350 
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hydrological model results (Shrestha et al., 2017; Teutschbein and Seibert, 2012). The methodology we used here 

belongs to the “delta change” family cited by Teutschbein and Seibert (2012), The literature on this methodology 

and its implications on hydrological model outputs is very extensive and well documented, here we cite only a 

few examples (Räty et al., 2014, 2018; Mudbhatkal and Mahesha, 2018; Fang et al., 2015). It is simpler than other 

techniques, since it does not require to bias-correct the baseline climatology (which is still the observed 355 

climatology), although it has the disadvantage that some properties of the variable to be corrected still remain 

unadjusted (for example, if the precipitation from a certain climate projection is simply multiplied by a factor in 

order to reproduce the annual average of the reference dataset, the distribution of the original reference dataset 

will be maintained and only the mean values will be corrected – this is also called “constant scaling”). However, 

the approach used in this paper, which adjust the whole distribution of precipitation and temperature, not only the 360 

mean or the standard deviation, limits this disadvantage. Räty et al. (2014), among others, have discussed the 

advantage and disadvantages of such technique, which blends the simplicity of the delta factor methodologies 

with the robustness of the quantile mapping methodologies. We used a probability density function matching 

technique to modify the distributions of the current ERA5-Land variables (Lafon et al., 2013).  

To derive the hazard maps for the time horizon 2080 (i.e., the time window 2071-2100), the entire modeling chain 365 

composed of hydrological modeling (TOPKAPI-X), extreme values analysis and hydraulic modeling (CA2D) was 

fed with the modified ERA5-Land derived meteorological input data (precipitation and temperature). Although 

we are fully cognizant that flood hazard and risk estimates under scenarios of climate change are affected by a 

very large uncertainty (Bubeck et al., 2011), it is of paramount importance that the effects of climate change be 

considered into any disaster risk management strategy to ensure robust planning going forward. 370 

5 Flood risk assessment 

5.1 Vulnerability and exposure 

Flood vulnerability for buildings was assessed using a component-based flood vulnerability model, called 

INSYDE (Dottori et al., 2016). This model account for different measures of the event intensity (water depth, but 

also flow velocity, flood duration, sediment load, water quality, etc.) and different components of the building 375 

(structural, non-structural, finishing, doors/windows, systems, basement, etc.) to derive a large set of curves for 

each component of the damage. These curves are then combined depending on the characteristics of the building 

categories. Local knowledge was key in the construction of vulnerability curves for buildings, in terms of defining 

unit costs of the components, archetype buildings, materials, etc.  

INSYDE is a very flexible vulnerability model, suitable for both data-rich and data-poor scenarios. In this study, 380 

a specific vulnerability function relating water depth and level of damage was set up for each of the taxonomy 

categories (Scaini et al., 2024a, b). Note that the categorisation is, in some cases, done based on criteria that are 

not relevant to flood risk (e.g., earthquake-resistant design does not affect flood damage). This was done in order 

to ensure compatibility with a companion earthquake risk model. 

Some flood-relevant parameters were not explicitly considered in the categorisation, due to lack of spatialised 385 

data, for example the presence of a basement, the number of storeys or the height of the ground level over the 

surrounding terrain. These parameters were treated in a statistical way. For example, if, within a certain category, 

the percentage of buildings with one storey is 40% and the percentage of buildings with two storeys is 60%, the 

final vulnerability curve was obtained as the weighted average of two curves, one considering a one-storey 

building, the other considering a two-storey building. The distributions of such parameters were obtained from 390 

the available literature (Pittore et al., 2011, 2020; The World Bank, 2017; Wieland et al., 2015), from local 

institutions (for example, the Kazakh Research and Design Institute of Construction and Architecture – 

KazNIISA), from local surveys (for example, in Dushanbe, Tajikistan, from Pittore et al., 2020) and from polls 

and consultations with local experts carried out during several workshops in 2021 an 2022 and organised by the 

World Bank. 395 

The component-based approach also requires unit costs for each component. These are the costs per unit (usually 

per m, m2 or m3) of cleaning/removing/replacing each of the component. These costs have been collected onsite 

by local advisors and engineers through inquiries with engineers and architects involved in the design and pricing 
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of buildings and from engineering manuals or real estate catalogues (for example, the ENiR - Uniform norms and 

prices for construction, installation and repairing works). 400 

Local knowledge was key in the construction of vulnerability curves for buildings, in terms of defining unit costs 

of the components, archetype buildings, materials, etc. This knowledge, together with the literature cited above 

and the collaboration with local institutions and experts led to produce vulnerability curves that are highly suitable 

for the local context, as opposed to the common practice of transferring curves developed elsewhere without 

considering the local context. This approach also allowed producing separate curves for each country. 405 

The infrastructure vulnerability (e.g., roads, power plants, airports) was taken from the Global Flood Depth-

Damage dataset developed by the European Union’s Joint Research Centre (Dottori et al., 2018; Huizinga et al., 

2017) and from HAZUS (HAZard United States) (FEMA, 2018), the natural hazard analysis tool developed and 

freely distributed by the US Federal Emergency Management Agency (FEMA). 

Flood vulnerability for the two prevalent crops, cotton and wheat, were derived from the literature. The cotton 410 

curve was derived from Qian et al. (2020). The wheat curve was derived from similar crops (no specific wheat 

curves were found for Central Asia, or Asia in general, but vulnerability curves for other cereals in Asia exist) 

(Baky et al., 2020; Hendrawan and Komori, 2021; Kwak et al., 2015; Molinari et al., 2019; Win et al., 2018). 

An exposure database for the region (Scaini et al., 2024a, b), which includes residential and non-residential 

buildings, transportation infrastructure and crops, was developed by assembling available global and regional 415 

datasets with country-based information provided by local authorities and research groups, including 

reconstruction costs. We refer to the original paper for more information. 

Although this article discusses only the flood-induced losses, as alluded to before this effort was part of a multi-

hazard risk assessment study that included also assessing risk for earthquakes (for the earthquake risk assessment 

please refer to Salgado et al. (2023). To compare the risk across different perils, it was necessary to use a peril-420 

agnostic assessment methodology such as that adopted in CAPRA, which uses a common representation of the 

disaster risk assessment components, i.e., hazard, exposure, and vulnerability.  

5.2 Risk assessment 

The flood risk of the five Central Asian countries was assessed by means of the CAPRA risk assessment software 

(Reinoso et al., 2018) according to the methodology displayed in Figure 4. 425 

 
Figure 4. Flood risk assessment: schematic representation of methodology. 

The CAPRA platform (www.ecapra.org) is an open-source and free platform for multi-hazard probabilistic and 

deterministic risk assessment, that has been developed with the initial financial support of the World Bank, the 

Inter-American Development Bank and the UNISDR (Reinoso et al., 2018). The CAPRA Platform, which allows 430 

multi-peril assessment (using the probabilistic methodologies described in this manuscript) uses the geographical 

information (for the exposure and hazard components) and produces economic losses aligned with the risk metrics 

typically employed in the insurance industry, besides. Moreover, it produces GIS-compatible geospatial data 

layers with metadata, describing estimated loss per administrative unit, as well as identifying the location of key 

Stochastic 
catalog
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industrial sites, critical and supply infrastructure and the corresponding hazard intensity values at those locations, 435 

either in raster or vector formats. 

The loss estimation module allows estimating both the economic losses for the assets in the exposure datasets and 

corresponding human losses for each of the possible future events in the stochastic catalogue. Economic losses 

for each exposed asset are determined by combining the flood depth distribution at the site with the corresponding 

damage function. This yields a distribution of mean damage ratios (repair cost divided by asset replacement cost) 440 

for each asset. Scaling this distribution by the total asset value generates the loss distribution caused by a flood 

event. Summing these losses for all exposed assets provides the total loss for the event. 

The flood risk model presented here is designed to provide all the loss metrics needed to devise risk mitigation 

strategies, including the design of an insurance product. Key outcomes of the long-term flood risk assessment are 

the year loss tables (YLTs) for each of the five analyzed countries. These YLTs detail the expected value and the 445 

corresponding uncertainty of the economic loss, together with its annual frequency of occurrence, and a timestamp 

(ranging from year 1 to year 10,000) for each event in the stochastic set. The YLTs can then be used to derive the 

loss exceedance curve (LEC), also known as the Exceedance Probability (EP) curve (e.g., Mitchell-Wallace et al., 

2017), which encapsulates loss occurrence characteristics and informs disaster risk management activities, such 

as regional and national risk financing and insurance development. Additionally, the model yields estimate of key 450 

risk measures like average annual loss (AAL) and probable maximum loss (PML), commonly used for risk 

communication. 

Since the simultaneous occurrence of earthquakes and floods (at least of those causing the large losses of interest 

to stakeholders) is highly unlikely, the losses caused by the two types of events have been assumed to be 

independent.  455 

5.3 Risk model calibration 

Although all the components of the risk assessment developed in the project (hazard, exposure, and vulnerability) 

have been separately validated against observations to the extent possible, it is good practice to calibrate and 

validate the risk model as a whole. This further calibration step, when needed, often adjusts the exposure and 

vulnerability module to ensure a better agreement among historical observations of economic losses and modelled 460 

losses. 

Risk model calibration and validation are typically carried out by comparing modelled and observed loss estimates 

for historical events, adjusting some of the model parameters or components to improve the goodness-of-fit. 

Observed loss estimates are usually obtained from post-event assessment reports and surveys. However, limited 

and uncertain historical flood loss data in Central Asia hinder this calibration. This scarcity of loss data limits the 465 

efficacy of the flood risk model calibration effort. 

Given the data limitation, it was decided to reduce the number of calibration parameters to a minimum. Hence, 

all the vulnerability curves were increased or decreased by the same amount, i.e., no differential calibration was 

carried out on vulnerability curves of different exposure classes or different countries. Furthermore, only the 

residential building vulnerability curves were calibrated, since residential buildings account for the majority of 470 

the exposed value. Infrastructure and crop vulnerability functions were left unadjusted, as no data were available 

to justify a specific calibration of such curves.Bearing in mind these data availability limitations and the objective 

of the present risk assessment (which is to estimate the underlying, long-term average flood risk), the model 

calibration was carried out as follows: 

1. A list of historical events and reported losses was collected from local governments/agencies within the 475 

project; 

2. The districts/regions affected by the historical floods were identified; 

3. The risk model was run using the stochastic catalog of flood footprints as input, for all the district/regions 

previously identified; 

4. The exceedance probability curves of all selected district/regions were calculated based on the results of the 480 

simulations with the stochastic catalogue; 

5. Based on the resulting exceedance probability curves, the return periods of the historical losses were 

computed (historical losses and district/region losses are comparable under the assumption that reported 

events are usually large floods that either affect the whole district/region or represent economic losses that 

are significant at the scale of the whole district/region); 485 
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6. The resulting return periods were critically analyzed under the following assumptions: 

a. Reported events are typically large events that make the news, and therefore are relatively rare. It 

is expected that their return period is at least 5 years. 

b. It is relatively unlikely that a reported flood event has a return period of more than 500-1,000 years.  

c. If a region has more than one reported event, it is highly unlikely that all events have return periods 490 

longer than 100 years. 

d. In general, it is expected that most reported floods have a return period between 5 and 100 years, 

with very few outliers. 

7. If some of the above criteria were not met, the vulnerability curves were adjusted to increase or decrease the 

losses and obtain a better adjustment to the criteria. 495 

The reported monetary and human losses were collected from a variety of sources, including EM-DAT (EM-DAT 

CRED, 2010), AON’s catastrophe insight reports, SwissRe’s Sigma explorer, and, in some cases, from local 

sources. The international databases already provide loss figures in USD dollars. Conversion from local currency 

to USD for data collected from local sources was done using the average currency exchange rate of the year the 

disaster happened. Loss values were then trended to account for inflation and growth since the moment of 500 

occurrence of the flood, using real GDP growth as a proxy. Although affected by large uncertainties, these are the 

only datasets available for model calibration, as presented below. 

The rational of this methodology is that, instead of providing direct comparisons between observed and reported 

losses (not possible given the lack of available data), the calibration process tries to demonstrate that the model is 

providing risk estimates that are in line with what has been observed in the past 20 years in terms of frequency of 505 

the events and severity of the economic losses. Given the objective and the limitations described above, this seems 

to be the most tenable strategy that both exploits the, albeit rare, data available and provides sensible loss 

estimates. 

Human vulnerability curves were calibrated based on national-scale statistics of fatalities caused by floods. 

Vulnerability functions were adjusted so that the average number of fatalities per year provided by the model was 510 

similar to the values obtained from the official statistics 

5.4 Risk model validation:  

5.4.1 Exceedance Probability (EP) loss curves  

We compared the EP loss curves for those regions where partial historical loss data were available (Table 3). This 

procedure consisted of verifying that the reported losses for 8 historical floods were coherent with the results, by 515 

Oblast, in terms of the EP curves (i.e., reviewing that there were no systematic under- or over-estimation of losses). 

Reported loss values were adjusted to account for price inflation and changes in exposure using Gross Domestic 

Product (GDP) as a proxy (i.e., applying a factor accounting for the increase or decrease of GDP from the year 

the event occurred to the year the exposure database refers to). Other factors can be considered in this type of 

normalisation, however, given the very large uncertainty affecting the reported losses, only GDP was taken into 520 

account in order to avoid introducing further uncertainties and complexities into the observed values. Clearly, 

such reference values mut be taken with precaution and used solely as a sanity check, rather than a thorough 

calibration. 

Figure 5 shows one of the results of these comparisons. 

Table 3. Reported economic losses for flood events and identification of the oblast where it occurred. 525 

Event Country Region Reported loss (US M) 

Flood_TJK_2010-5-6 Tajikistan Khatlon $307.30 

Flood_TJK_2006-4-21 Tajikistan Khatlon $264.68 

Flood_TJK_2005-7-23 Tajikistan Khatlon $156.06 

Flood_TJK_2021-5-7 Tajikistan Khatlon $8.40 

Flood_TJK_2014-4-22 Tajikistan Khatlon $3.04 

Flood_KAZ_2010-2- Kazakhstan Almaty $73.44 
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Flood_KGZ_2012-4-23 Kyrgyzstan Osh & Batken $24.42 

Flood_KGZ_2005-6-10 Kyrgyzstan Osh & Batken $8.03 

 

 
Figure 5. EP curve and reported economic losses for the Khatlon Region in Tajikistan 

5.4.2 The Hamadoni 2005 flood event 

Losses for the Hamadoni event are estimated to be in the order of 7 to 10 M USD (Saidov et al., 2006). The model 530 

presented in this paper estimated losses of 10 M USD, which shows a very good agreement between modelled 

and reported losses. However, the present model has been set up considering 2020 prices and exposure, while the 

reported losses refer to 2005 prices and exposure, and therefore this value must be corrected to account for such 

factors. A simple way to do this is to account for price inflation and changes in exposure using Gross Domestic 

Product (GDP) as a proxy. Changes in GDP in time are indeed a measure of the changes of the economy of a 535 

country. According to the GDP deflator index estimated by the World Bank, Tajikistan’s GDP increased 3.52-fold 

from 2005 to 2020 (from 2.31 billion USD to 8.13 M USD). However, in Tajikistan, historically high inflation has 

been compensated by the loss of value of the local currency (somoni) relative to the US dollar. The ratio 

Somoni/USD in 2005 was around 0.34, in 2020 around 0.10, i.e., 29% of the 2005 value. Accounting for both 

factors result in an adjustment factor of 1.02, which means that losses for a 2005 event should only be increased 540 

by 2% if normalised to 2020 exposure.   

6 Results 

6.1 Hydrological and flood model 

Table 4 shows summary performance metrics (correlation and percent bias on annual maximum streamflow) for 

the stations where observed streamflow was available. When assessing the model skills, the fact that this is a very 545 

large-scale model must be taken into account. From this perspective, the results are satisfactory for most of the 

stations, with limited exceptions. 

 

Table 4. Summary performance metrics (correlation and percent bias on annual maximum streamflow). 

Station Correlation Percent bias 

KAZ_158 0.12 -16 

KAZ_160 0.34 19 

KAZ_161 0.62 3 
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KAZ_165 0.72 9 

KAZ_166 0.72 2 

KAZ_172 0.30 14 

KAZ_232 0.85 -11 

KAZ_233 0.39 -55 

KAZ_234 0.56 -7 

KAZ_235 0.33 -18 

KAZ_238 0.72 -7 

KAZ_227 0.43 8 

KAZ_228 0.73 13 

KAZ_245 0.62 -51 

KAZ_247 0.16 -36 

KAZ_46 0.68 2 

KAZ_207 0.55 -47 

KAZ_208 0.60 -9 

KAZ_241 0.70 -156 

KAZ_4 0.05 -2 

UZB_41 0.71 11 

UZB_10 0.75 9 

KAZ_209 0.50 -3 

KAZ_211 0.28 -7 

KAZ_219 0.39 -30 

KGZ_1 0.19 -6 

KGZ_2 0.38 -1 

KGZ_4 -0.38 12 

UZB_6 -0.15 8 

UZB_26 0.07 11 

 550 

Figure 6 compares the CA2D simulated flood map (in yellow) with the satellite-estimated flood map (left) and 

the JICA study's simulated flood map (right). 

 

 
Figure 6. Flood extent maps comparison. On the left side, the modelled extension of the flooded area is 555 

represented: in orange the true positive extension (i.e., agreement between the model and the satellite imagery), 

in yellow the false positive extension (modelled inundated cells which are not inundated according to the 

satellite imagery) and in violet the false negative extension (dry cells according to the model that are inundated 

according to the satellite imagery). On the right side, the green and blue shades represent the extension of the 
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inundated area according to JICA (2007), overlayed onto the inundated extension according to the present study 560 

(in yellow). The right-side figure has been edited from JICA (2007). The legend is barely visible also in the 

original version. 

6.2 Flood hazard 

6.2.1 Hazard maps 

The fluvial flood hazard maps for the current climate conditions have been computed over the entire Central Asia 565 

area and specifically for the five countries of Kazakhstan, Kyrgyz Republic, Uzbekistan, Tajikistan, and 

Turkmenistan for the selected eight return periods of 5, 10, 20, 50, 100, 200, 500, 1000 years. Two sets of fluvial 

flood hazard for current climate conditions were computed, namely for the undefended and defended scenarios. 

Figure 7 and Figure 8 show some of the resulting hazard maps for a return period of 100 years. 

The comprehensive collection of the computed results of the flood hazard model can be found here: 570 

https://datacatalog.worldbank.org/search?q=SFRARR&sort=&start=0. 

 
Figure 7. Fluvial flood hazard map for Uzbekistan, 100-year return period, undefended scenario. The background 

shades are from Map Tiler and OpenStreetMap. 

https://datacatalog.worldbank.org/search?q=SFRARR&sort=&start=0
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 575 
Figure 8. Fluvial flood hazard map for Kazakhstan, 100-year return period, undefended scenario. The background 

shades are from Map Tiler and OpenStreetMap. 

6.2.2 Hazard curves for selected target cities 

Figure 9 shows the derived fluvial flood hazard curves for undefended conditions for five selected locations within 

the urban areas of the main flood-prone cities of the target countries: Turkmenabat, Tashkent, Dushanbe, Astana 580 

(previously Nur Sultan), Bishkek. 
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Figure 9. Undefended flood hazard curves computed at five selected target sites 

 

6.3 Flood risk 585 

Risk metrics 

The results of the flood risk assessment are presented in terms of a loss exceedance probability curve (EP curve) 

and by the year loss tables (YLTs), disaggregated at administration units 1 (ADM1, which is equal to regional 

level) and administration unit 0 (ADM0, which is equal to country level). Furthermore, return period loss estimates 

and Average Annual Loss (AAL) at ADM1 and ADM0 levels, and for the whole region are provided in tabular 590 

format for the same eight return periods ranging from 5 to 1000 years reported earlier. In addition, for preparedness 

and mitigation plans it is important to estimate the possible losses (economic and human) that scenario events 

may cause to the current exposure. The loss results have been derived both in terms of expected values and their 

confidence intervals. Finally, exposure levels to various hazard intensity thresholds have been assessed for 
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population, key industrial sites, critical infrastructure, and supply infrastructure. These results are available for the 595 

current conditions (year 2020) and future (2080) scenarios considering three different projections to year 2080: 

the three Shared Socio-Economic Pathways SSP1, SSP4 and SSP5 considered in the exposure model development 

(presented in detail in Scaini et al., 2023). The future exposure only considers the residential sector. Losses have 

been calculated for physical risk (monetary) and human risk (fatalities). 

 600 

Probabilistic flood risk results 

Table 5 shows the fluvial flood risk results (undefended case) at national and regional levels in absolute and 

relative (to the total replacement cost of the exposure dataset) terms for the current exposure scenario. The highest 

absolute fluvial risk is found to be in Kazakhstan and Uzbekistan. However, when assessed in relative terms, 

Kazakhstan, Tajikistan and Turkmenistan have similar risk values with an AAL above 2‰. The same results for 605 

the defended case shown in Figure 10 highlight a large risk reduction especially for Kazakhstan, Turkmenistan 

and Uzbekistan. Figure 10 also shows the fluvial flood risk results at country and regional levels (undefended 

case) for one of the three different projected scenarios with consideration of the effect of climate change. The 

aforementioned tables use the country ISO3 codes: KGZ [Kyrgyz Republic], KAZ [Kazakhstan], TJK [Tajikistan], 

TKM [Turkmenistan], and UZB [Uzbekistan]. 610 

The most substantial variations among the examined scenarios stem from whether flood defenses are factored in 

or not, revealing more consistent disparities. In contrast, the influence of climate change, while noteworthy, 

exhibits greater variability depending on the specific geographical context. The exposure dataset used in the flood 

risk assessment for the 2080 projection only includes the residential sector, although in terms of absolute losses, 

the differences between the current scenario (that includes all lines of business) and the 2080 scenario (only 615 

residential assets) are not as large. 

As a general comment on the estimate of flood losses, it appears that the exceedance probability curves tend to 

saturate relatively quickly (i.e., the slope of the curve is decreasing sharply with increasing frequency). There are 

three factors contributing to the quick saturation of the EP curves, one related to the hazard, another to the 

vulnerability, and a third one to the reproduction of flood defenses. First, flood depth hazard curves (i.e., 620 

relationships between flood depth and frequency) in this region often have a rather “flat” shape (i.e., the increase 

in flood depth with frequency is gradually smaller with high frequency); this phenomenon is typical of frequently 

inundated flat areas where floods are rather common, but the difference between water depths for small intensity 

and high intensity events is not that large, due to the fact that large alluvial floodplains provide plenty of space for 

water propagation. Second, the flood vulnerability curves developed for this project typically saturate at 30%-625 

40%-50% of the total exposed value, mainly because they represent asset classes that bundle together buildings 

with different number of stories. This means that losses after a certain water depth increase very slowly, therefore 

causing a saturation of the loss vs frequency curve. This is typical of losses calculated for assets spread out in 

large-scale regions, some of which are exposed to high flood risk and others are relatively safe. Finally, another 

important issue is the inclusion of flood defenses in the model: a reliable representation of the flood defenses in 630 

the model would necessarily lower the high-frequency losses. However, very little data were available to precisely 

reproduce the flood defenses in the region, and therefore the results of the model are considered to be conservative, 

especially in the high-frequency part of the EP curve. Because of the characteristics of the region (many large 

fluvial plains with little population) and the model (large-scale aggregation and unavailability of data regarding 

flood defenses), we believe that the quick saturation of the flood loss curves is justified. 635 

Table 5. Losses for different return periods (first 9 lines) and AAL (last line) for fluvial flood risk undefended scenario 

at Regional and Country level. The results were computed for the 2020 total exposure. 

Tr 

(years

) 

Absolute values ($Million USD) Relative values to the total replacement  

Regiona

l 
KGZ KAZ TJK TKM UZB 

Regiona

l 
KGZ KAZ TJK TKM UZB 

5 $2,664.3 
$130.

7 

$1,522.

0 

$242.

0 

$203.

2 
$867.2 

0.231% 

0.272

% 

0.325

% 

0.369

% 

0.094

% 

0.231

% 

10 $2,988.6 
$156.

6 

$1,755.

9 

$292.

7 

$262.

9 

$1,037.

9 0.277% 

0.314

% 

0.393

% 

0.477

% 

0.112

% 

0.277

% 

25 $3,360.0 
$185.

6 

$2,021.

3 

$349.

7 

$342.

5 

$1,240.

2 0.328% 

0.362

% 

0.470

% 

0.622

% 

0.134

% 

0.328

% 
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50 $3,595.7 
$205.

3 

$2,197.

2 

$381.

8 

$393.

0 

$1,380.

9 0.363% 

0.393

% 

0.513

% 

0.713

% 

0.149

% 

0.363

% 

100 $3,797.4 
$224.

0 

$2,361.

5 

$409.

5 

$437.

0 

$1,527.

5 0.396% 

0.422

% 

0.550

% 

0.793

% 

0.165

% 

0.396

% 

250 $4,024.7 
$241.

4 

$2,605.

0 

$449.

1 

$502.

8 

$1,760.

0 0.426% 

0.466

% 

0.603

% 

0.913

% 

0.190

% 

0.426

% 

475 $4,178.7 
$249.

7 

$2,830.

8 

$480.

4 

$557.

3 

$1,897.

5 0.441% 

0.506

% 

0.645

% 

1.012

% 

0.205

% 

0.441

% 

500 $4,190.7 
$250.

3 

$2,845.

7 

$483.

0 

$561.

2 

$1,908.

5 0.442% 

0.509

% 

0.649

% 

1.019

% 

0.206

% 

0.442

% 

1000 $4,354.0 
$257.

6 

$3,004.

5 

$515.

6 

$610.

3 

$2,031.

3 0.455% 

0.537

% 

0.693

% 

1.108

% 

0.220

% 

0.455

% 

AAL $2,190.9 $95.1 
$1,165.

6 

$177.

0 

$123.

0 
$630.2 

0.168% 

0.209

% 

0.238

% 

0.223

% 

0.068

% 

0.168

% 
 

 

 640 
Figure 10. Change in 1-in-100 year losses compared to the undefended baseline scenario for the defended scenario 

(left) and the climate change scenario 2080 SSP1 (right). 

 

Some of the relative losses computed for the current (2020) and future (2080) scenarios are plotted in Figure 11, 

Figure 12, and Figure 13. The risk reduction immediately apparent when comparing the results of Figure 11 and 645 

Figure 12 is due to the inclusion of flood defenses. 

 
Figure 11. Current (2020) exposure and undefended scenario: relative losses. Background grey shades from the 

MERIT DEM. 
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 650 
Figure 12. Current (2020) exposure and defended scenario: relative losses. Background grey shades from the MERIT 

DEM. 

 

 
Figure 13. Future (2080) exposure and Climate Change – SSP1 scenario: relative losses. Background grey shades 655 

from the MERIT DEM. 

For the undefended scenario, the largest relative AALs are found in Kazakhstan and Tajikistan, with values above 

6‰. In the five considered countries, the largest relative AALs by sector are found for the transport and 

agricultural sector (the two types of crops included in this assessment: cotton and wheat). For the case of cotton 

crops, the largest relative AALs are found in Kazakhstan, Turkmenistan, and Tajikistan with values above 6‰. 660 

Regarding flood risk fatalities, the highest risk is found, as expected, for the undefended case. The largest values 

are found for the Akmolinskaya Region in Kazakhstan and Khatlon Province in Tajikistan. On average, at Region 

level, there is a decrease of 20% of flood fatalities’ risk in the defended case. Regarding future scenarios, and 

considering climate change, there is a variable trend at regional level for the flood fatality risk, although consistent 

among the considered SSPs. In general, risk values in future scenarios are increased by a factor between 1.5 and 665 
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2.0, such as in the following regions: Sirdarya (Uzbekistan), Ysyk-Kol, and Jalal-Abad in the Kyrgyz Republic 

and Turkistan and Karagandiskaya in Kazakhstan. However, there are extreme cases, such as the Mangistauskaya 

Region in Kazakhstan, where the risk increases by seven times. Conversely, there are regions, such as Lebap 

(Turkmenistan), Khatlon Province (Tajikistan), Samarkand (Uzbekistan) and Batken (Kyrgyz Republic), for 

which decreases between 80 and 90% are observed for all SSPs. 670 

As expected, flood risk is lower for the defended case although caution should be used when interpreting these 

results due to the assumptions about flood defenses’ location and height discussed earlier. That being said, a 

comparison between the two cases at regional level can be made and some discussion is provided next. Overall, 

the region with the largest flood AAL is the Badakhshan Autonomous Mountainous Region in Tajikistan. The 

largest relative difference caused by modelling or not the flood defenses is found in Batken Region (Kyrgyz 675 

Republic), although for the undefended case the flood risk AAL was relatively low (0.4‰). A major flood risk 

reduction due to the inclusion of the defenses is observed in Ysyk-Kol Region, with a decrease of around 40%, 

which is a significant decrease considering the large flood risk AAL for the undefended case.  

7 Discussion 

This study presents the first high-resolution, regional-scale, transboundary fully probabilistic risk assessment for 680 

the area, providing decision-making aids and disaster risk management resources. Notably, the involvement of 

local stakeholders and unprecedented access to local data enhance its significance.  

Within the SFRARR project, multiple workshops and meetings with local stakeholders and experts were held. In 

particular, eight capacity building workshops devoted to the different risk assessment components, namely five 

country-based workshops on exposure assessment and three regional thematic workshops on hazard, vulnerability 685 

and risk modelling. This activity was carried out in close collaboration with local experts and representatives from 

all five countries. The workshops provided participants an opportunity to learn about international best practice 

and latest methodologies related to natural risks assessment. These workshops allowed sharing knowledge with 

local experts and provided an opportunity for emergence and inclusion of a greater amount of locally collected 

information into the analysis. Obtaining daily discharge and hydraulic protection data from local sources proved 690 

complex due to variability in data quality and form. Compiling comprehensive hydraulic protection data at the 

country level was hindered by its highly classified and confidential nature, posing challenges for acquisition. 

In terms of model performance, when comparing the reported losses with the EP curves (in terms of return 

periods), we observe that for the case of the Khatlon Region in Tajikistan the April 2006 flood is associated with 

a return period of approximately 650 years, the July 2005 flood is associated with a return period of approximately 695 

20 years., whereas floods with lower reported losses, such as the April 2014, and May 2021 have a return period 

of approximately two years. The May 2010 flood corresponds to the event with the largest reported losses, and as 

per the EP curve calculated for this region, has a return period longer than 1000 years. Since the Khatlon Region 

has experienced an exceptional number of reported events in the past 20 years, which is uncommon in the rest of 

the regions, it is reasonable to assume some of the reported events are associated to such short return periods. 700 

Furthermore, note that, strictly speaking the comparison between region-wide losses and event-specific losses for 

the purpose of assessing the reasonability of the associated return periods is not correct. Small events only affect 

a portion of the region and other events might have happened during the same year. Therefore, the yearly regional 

losses are, intuitively, larger than event-specific losses that may have occurred in that year. Hence, we expect that 

small, localized events are associated to short regional scale loss return periods. On the other side of the spectrum, 705 

the large May 2010 event in the Khatlon province appears to be out of the limits of the exceedance probability 

curve. However, it must be noted that there is a large discrepancy among the different data sources in the reported 

losses for this event: SwissRe reported a loss of around 200 M USD, whereas AON around 5 M USD. The 

overestimation of observed losses by one of the sources (or perhaps the inclusion of losses by landslides and 

mudslides, which are not included in this model) might be the cause of the very long estimated return period. In 710 

any case, referring to the event above, the chance that a 10,000yr loss or larger has been observed in 20 years is 

very small. This rare event can be explained by the discrepancy in the reported losses but, in general, such 

extremely large losses associated with very long return periods are not tenable. This is the reason why we 

calibrated the model to eliminate such cases After calibration, the reported event loss values have plausible return 

periods when compared to the modeled losses from the subnational EP curves. 715 
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Hereafter, we delineate a series of strengths and limitations inherent to this risk assessment.  

7.1 Strengths 

• A main strength of this risk assessment is that a peril-agnostic methodology was used, facilitating the 720 

comparison of results across country, sector, and hazards (earthquake and flood). This was achieved by 

using the same representation for all the key risk components and by computing the same risk metrics 

using the same probabilistic approach.  

• This is the first study in the region that disaggregates flood risk results into subnational level (regions), 

national level (country), and regional level (five countries), providing a complete disaster risk estimation 725 

and results compatible with the overall objectives of the project. 

• The regional approach adopted for carrying out this risk assessment used consistent assumptions, 

modelling approaches and treatment of uncertainties. This is key considering that the final objective of 

this study is the regional calculation of losses caused by floods of different types (pluvial flood not shown 

here) and different kind of events (earthquakes). 730 

• This is the first project in the region that considers a complete exposure dataset for the estimation of 

flood risk. Besides buildings (considered in previous studies), other relevant types of assets, such as the 

transportation infrastructure (roads and bridges) and key crops (cotton and wheat) have been included 

too. 

• Given that the software utilized to estimate the physical and human losses has a friendly graphic user 735 

interface and some GIS capabilities, the obtained flood risk results are expected to facilitate the capacity 

building process in disaster risk assessment in Central Asia. 

• The risk results obtained in this study provide losses for floods at subnational level with a reasonable 

level of accuracy. This has been achieved using a good amount of local data for hazard modeling and 

risk validation and adopting a high-resolution approach to the modeling of the hazard and exposure 740 

components. 

• By having developed an exposure dataset with different lines of business, all the loss results can be 

disaggregated by categories. This information is valuable to different stakeholders at subnational to 

regional levels. 

• The level of detail paid to most components of the flood risk model is higher than that adopted in previous 745 

studies carried out in the region. The refined approach has been complemented by the inclusion of 

additional lines of business in the exposure datasets, an addition that enabled the derivation of a more 

comprehensive picture of the flood risk in the region. 

7.2 Limitations 

• Hydrological model calibration: absence of lake/reservoirs in the model. The influence of lakes and 750 

reservoirs was taken into account by allowing an overestimation of the flood peaks and underestimation 

of the low flows for downstream stations of primary reservoirs. These reservoirs effectively attenuate 

flood waves by storing water during peak events and releasing it during drier periods. This behavior was 

not explicitly modeled due to lack of information on the reservoir management strategies. Hence, it was 

anticipated that the model would not precisely replicate observed hydrographs for stations located 755 

downstream of reservoirs. This issue was dealt with by correcting the extreme value flow distributions 

downstream reservoirs based on the available observations. 

• Inability to reproduce the effect of alluvial plains, which similarly to reservoirs alter flood waves by 

flattening peak flows. To address this, the same approach was adopted as with reservoirs, namely we 

allowed the overestimation of the peaks and the underestimation of recession curves for stations located 760 

within alluvial plains. This issue was dealt with by correcting the extreme value flow distributions in 

alluvial plains based on the available observations. 

• The hazard model is not supported by the level of detail and accurate data that are often available when 

developing national and sub-national scale models in other regions. However, until those more detailed 

analyses are performed and made available to the public, these risk estimates can certainly be used as 765 
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first-order quantification of risks. These risk estimates are certainly suitable both to support raising 

awareness on this topic, and to guide the development of more refined analyses with the same 

probabilistic framework adopted here. 

• Catastrophe risk models always have an associated level of uncertainty even when developed for the 

current hazard and exposure characteristics. In this project, a projection of exposure was performed to 770 

year 2080 (for the residential sector only) for different Shared Socio-Economic Pathways (SSPs) for one 

climate change scenario. These results are intended to be indicative and useful for comparison purposes 

only. The relative results should be preferred over the absolute losses. 

• The risk estimates should not be used as the only support for planning and designing specific risk 

management infrastructure. These applications should be informed by flood risk studies for specific areas 775 

that utilize a more comprehensive set of input data such as those confidential and highly classified 

datasets available to the central governments. 

8 Conclusions 

This article presented the methodological framework utilized for developing a fully probabilistic flood risk 

assessment for Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan and Uzbekistan in Central Asia and the 780 

obtained risk estimates. The results are expressed in terms of EP curves, AAL and specific return period losses, 

which are the metrics commonly used to shape different disaster risk management strategies. The risk assessment 

study includes several variants of the hazard (current and future including climate change conditions) and exposure 

components (current all lines of business and future, residential line only, for different Shared Socio-Economic 

Pathways). The results of the risk assessment are of general use but were intended primarily to inform World 785 

Bank’s engagement in supporting regional and national disaster risk financing and insurance applications, 

including traditional and parametric solutions for the structuring of a regional risk mitigation program. These risk 

estimates can be used by the World Bank to initiate a policy dialogue with the governments of Kazakhstan, Kyrgyz 

Republic, Tajikistan, Turkmenistan and Uzbekistan. 
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