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Abstract 20 

Despite applications of machine learning (ML) models for predicting floods, their transferability 21 

for out-of-sample data has not been explored. This paper developed an ML-based model for 22 

hindcasting maximum river water depths during major events in coastal watersheds and evaluated 23 

its transferability across other events (out-of-sample). The model considered spatial distribution of 24 

influential factors, which explain the underlying physical processes, to hindcast maximum river 25 

water depths. Our model evaluations in a six-digit hydrologic unity code (HUC6) watershed in 26 

Northeastern US showed that the model satisfactorily hindcasted maximum water depths at 116 27 

stream gauges during a major flood event, Hurricane Ida (R2 of 0.94). The pre-trained, validated 28 

model was successfully transferred to three other major flood events, Hurricanes Isaias, Sandy, 29 

and Irene (R2 > 0.70). Our results showed that ML-based models can be transferable for 30 

hindcasting maximum river water depths across events when informed by the spatial distribution 31 

of pertinent features, their interactions and underlying physical processes in coastal watersheds. 32 

Keywords 33 

Flood modeling; Hindcasting; Machine learning algorithms; Maximum flood depth; Model 34 

transferability; Coastal watersheds. 35 

1. Introduction 36 

Floods can damage civil infrastructure, business disruptions, and environmental degradation. 37 

Mitigation strategies are planned and implemented to mitigate these damages. To propose effective 38 

protection strategies, predictive models are used to evaluate watershed responses under various 39 

plausible flood scenarios (Fernández-Pato et al. 2016; Kundzewicz et al. 2019; Viglione et al. 40 

2014). These models are essential tools to inform decision makers about suitable risk management 41 
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strategies and actions. Flood models can be broadly categorized as physically-based, morphologic-42 

based and data-driven. 43 

 Physically-based models, widely used for predicting hydrologic events, are considered 44 

reliable tools for assessing different flood scenarios (Fernández-Pato et al. 2016). These models 45 

solve the shallow water equations to derive flood characteristics. Developing physically-based 46 

models requires certain meteorologic, hydrologic, and geomorphologic data. If these data are not 47 

available at the desired scale, such models cannot be developed. For instance, global inundation 48 

models are available to model flooding across the world, but they may not be efficient for small 49 

scale applications. In such instances, data-driven models can be a flexible alternative as they can 50 

adapt to varying levels of data availability by focusing on the features with sufficient data. This 51 

flexibility remains one of the advantages of data-driven models over physically-based models. 52 

Physically-based models also need significant computational resources, especially in the case of 53 

high-resolution, multidimensional (2D and 3D) or stochastic models that necessitate numerous 54 

simulations. To enhance the speed of flood simulations, techniques such as parallel computing, 55 

graphics processing units (GPUs), and simplified models have been utilized (Costabile, Costanzo, 56 

and Macchione 2017; Kalyanapu et al. 2011; Ming et al. 2020; Sridhar, Ali, and Sample 2021; 57 

Zahura et al. 2020). However, resources for utilizing these approaches are not always available 58 

(Zhang et al. 2014). 59 

Morphologic-based models, which approximate flat-water surfaces over small spatial scales, 60 

are also used for flood predictions (Bates 2022). Bathtub (Anderson et al. 2018; Kulp & Strauss 61 

2019) and height above nearest drainage (HAND; Rennó et al. 2008) are two widely used models 62 

in this modeling category. Jafarzadegan and Merwade (2019) used a probabilistic function based 63 

on HAND, computed from a digital elevation model (DEM), and optimized it for accuracy, to 64 
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delineate 100-year floodplains. Zheng et al. (2018) developed a synthetic rating curve using the 65 

HAND method, which represents river water depth measurements, similar to hydraulic models or 66 

stream gauge readings. While these models are computationally efficient, they can overestimate 67 

flooded area and are limited to the number of features they use; these models rely on topographic 68 

data (Bates 2022; Bates et al. 2005) and tend to work well only in confined valleys. The sole use 69 

of topographic data makes HAND-based models impractical for low-lying areas, especially coastal 70 

watersheds that experience a combination of hydrologic and oceanic processes (e.g., tidal 71 

influences, storm surges and wave action); other flood influencing factors, which represent such 72 

overlooked underlying physical processes, are needed along for predictions in such watersheds. 73 

Coastal regions also experience a combination of oceanic and hydrologic processes, which might 74 

not be fully represented by HAND. Both HAND-based and bathtub models are limited in 75 

representing such terrains as they might not fully capture the intricate interactions between oceanic 76 

and hydrologic factors in coastal areas. Consequently, in coastal watersheds, where unconfined 77 

floodplains and complex interactions are prevalent, alternative modeling approaches that consider 78 

a broader range of factors are crucial for producing reliable flood predictions. Incorporating these 79 

overlooked underlying physical processes becomes essential in providing comprehensive flood 80 

predictions in these intricate environments. 81 

ML and, in particular, deep learning (DL) models, offer an alternative approach that can rapidly 82 

capture complex relationships between various influencing factors and flood characteristics. ML 83 

models have the potential to provide satisfactory flood predictions (Mishra et al. 2022). Such data-84 

driven models have gained popularity in overcoming the limitations of physically-based and 85 

morphologic-based models in flood modeling (Khosravi et al. 2018). These models 86 

mathematically represent the nonlinearity of flood dynamics with pertinent features and observed 87 
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flood data using complex nonlinear structures and algorithms. Data-driven models have been 88 

found as promising tools due to their quick development time and minimal input requirements 89 

(Guo et al. 2021; Löwe et al. 2021; Zahura et al. 2020). Example data-driven models for flood 90 

predictions include multiple linear regression, artificial neural networks (ANNs), random forest, 91 

support vector machine, and support vector regression models (Adamowski et al. 2011; Kim et al. 92 

2016; Rafiei-Sardooi et al. 2021; Rahmati et al. 2016; Rezaie et al. 2022; Wang et al. 2015; 93 

Youssef et al. 2022). While there are several issues with these models, including interpretability, 94 

techniques such as SHapley Additive exPlanations (SHAP) can enhance understanding of these 95 

models' decision-making processes (Lundberg and Lee 2017; Abdollahi and Pradhan 2021). These 96 

models enable the identification of key features that drive flood characteristics.  97 

Previous research has shown that various ML algorithms are effective in predicting flood 98 

extents and generating susceptibility maps, with a focus on classification ML models (Khosravi et 99 

al. 2018; Rahmati et al. 2016; Rezaie et al. 2022; Youssef et al. 2022). However, these studies have 100 

limitations in terms of their experimental design and scope. For instance, some of these studies 101 

created datasets of flooded and unflooded points using remote sensing. The datasets were often 102 

split into two subsets, and ML models were examined trained on a portion of the dataset (training 103 

set) and then tested for the remainder of the dataset (validation or test set). This approach helps in 104 

identifying the most effective models for flood predictions based on performance metrics, such as 105 

recall or the area under the Receiver Operating Characteristic (ROC) curve. Another limitation of 106 

these ML studies is the reliance on a single event for training and validation. As such, it is unclear 107 

whether a trained and validated model can satisfactorily predict other flood events. These 108 

limitations call for studies that evaluate more complex methodologies and a broader range of 109 

scenarios on the effectiveness of ML algorithms for predicting flood characteristics. These 110 
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limitations call for studies that evaluate more complex methodologies and a broader range of 111 

scenarios on the effectiveness of ML algorithms for predicting flood characteristics. 112 

Another application of ML models for flood inundation prediction has been coupling them 113 

with physically-based models for improving their performance. Such applications are based on the 114 

hybrid use of ML and physically-based modeling categories. For instance, Chang et al. (2022) 115 

suggested an approach that incorporated principal component analysis(PCA), self-organizing 116 

maps, and nonlinear autoregressive models with exogenous inputs to mine spatiotemporal data and 117 

forecast regional flood inundation. The authors recognized the value of using ML algorithms 118 

together with a 2D hydraulic model to simulate urban flood inundation considering different 119 

rainfall events. Elkhrachy (2022) developed a hybrid approach to predict flash flood depths 120 

combining 2D hydraulic modeling with ML algorithms; water depths simulated by the Hydrologic 121 

Engineering Center's River Analysis System (HEC-RAS; Brunner 2016) model served as training 122 

and test datasets for ML algorithms. Löwe et al. (2021) trained an ANN model to identify patterns 123 

in rainfall hyetographs and topographic data to enable fast predictions of flood depths for other 124 

rainfall events and locations (out of training sample data) complemented by 2D hydrodynamic 125 

simulations. Guo et al. (2021) used a convolutional neural network (CNN) model trained on flood 126 

simulation patch data from the CADDIES cellular-automata model to perform image-to-image 127 

translation for rapid urban flood prediction and risk assessment. To simulate maximum flood 128 

extent and depth, Hosseiny et al. (2020) created a system that combines a hydraulic model with 129 

ML algorithms. Zahura et al. (2020) used simulations from high-resolution 1D/2D physically-130 

based models as training and test data for a random forest model that included topographic and 131 

environmental characteristics to estimate hourly water depths. In these applications, flood depth, 132 

which is important for risk assessments and damage estimates (Merz et al. 2010), has been 133 
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predicted by coupling physically-based and ML models. These coupled modeling studies 134 

demonstrated the complimentary benefits of physically-based models along with ML algorithms 135 

in producing flood modeling outputs, but the computational expense is still an application barrier. 136 

Another significant challenge inherent in these studies lies in their dependence on hydraulic 137 

models for training purposes. Furthermore, there is a gap in demonstrating the ability of these 138 

studies to successfully predict flood characteristics beyond their training samples. For instance, no 139 

studies have explored the capability of ML models to predict events other than those utilized in 140 

their original training datasets (out-of-sample). 141 

Despite previous efforts, the development of computationally efficient and user-friendly flood 142 

prediction models remains a challenge. ML-based models, although promising and 143 

computationally efficient, have not gained widespread acceptance among practitioners due to 144 

concerns about their reliance on predicting flood characteristics for other events (out-of-sample). 145 

Transferability is particularly crucial given the growing reliance on ML modeling methods, like 146 

ANNs, as suggested by Wenger and Olden (2012). The term “transferability" refers to the model's 147 

ability to predict different flood events beyond the scope of its training data, validating its 148 

applicability to unseen scenarios, potentially with their unique characteristics (Jiang et al. 2024; 149 

Wagenaar et al. 2018). Furthermore, there has yet to be research investigating the extent to which 150 

flood depths prediction models can be transferred and applied successfully to different events 151 

beyond the initial training settings. It, therefore, remains unclear whether an ML-based model, 152 

which is trained, validated, and tested against a historical event, performs satisfactorily in 153 

predicting flood characteristics of other events in the same watershed. Floods originate from 154 

various sources and the flood characteristics depend on the unique characteristics of storm events. 155 

High wind events tend to generate storm surges that move upstream, while intense rainfall over 156 
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upstream watersheds leads to fluvial flooding that moves downstream towards the coast. 157 

Conversely, slow-moving storm systems can cause intense local rainfall, resulting in overland 158 

runoff entering rivers along their paths rather than a concentrated upstream inflow flood wave. 159 

Hence, it is crucial to avoid overfitting an ML model to a single historical flood event, as it can 160 

lead to significant underperformance in handling other events. 161 

A further limitation of past research is the sole focus on predicting greatest flood extents using 162 

classification-based algorithms, while the performance of regression-based ML models for 163 

predicting other important characteristics like flood depths has not been investigated. Additionally, 164 

the importance of spatial distribution of input features has been overlooked in past ML-based flood 165 

modeling. To hindcast a flood characteristic at a given location, the features have been 166 

incorporated at that location, but flooding is generated through contributions by several other 167 

factors that are relevant across the upstream contributing watershed (in inland systems) and/or 168 

from the downstream coastline (in coastal systems). 169 

This paper aimed to fill the abovementioned research gaps by examining the performance and 170 

transferability of ML models in hindcasting maximum water depths across various events in a 171 

coastal watershed. Our objective was to develop a transferable, computationally efficient model to 172 

hindcast maximum water depths. We aim to evaluate the performance of ML models, which are 173 

trained and tested based on an event, and shed insights on the application of the model for 174 

predicting maximum river flood depths for other events as well. Our study developed a modeling 175 

framework based on an ML algorithm, Multi-Layer Perceptron (MLP) architecture for our ANN 176 

model. This algorithm was coupled with feature selection methods and geospatial data. We 177 

evaluated the performance of this model against one extreme flood event, Hurricane Ida, across a 178 

coastal watershed (six-digit hydrologic unity code [HUC6])—Lower Hudson—in Northeastern 179 
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US. Next, we assessed the transferability of our developed model across three other extreme 180 

events—Hurricanes Isaias, Sandy, and Irene—in the same watershed. These events encompass 181 

varied rainfall intensities, wind speeds and storm track directions. Unlike past ML-based modeling 182 

studies, which focused solely on predicting flood status (flooded or unflooded), our regression-183 

based model estimates maximum water depths. This model was also examined against multiple 184 

events, more than one single event that has been the focus of past research. The model also 185 

considered the spatial dimension for predicting maximum water depths at a given location, in 186 

which the features were represented either at that location or across the contributing watershed. 187 

This ML model is generic and can be applied to hindcast maximum water depths at non-gauge 188 

river sites to get a denser reconstruction of an event along the river network and hindcast water 189 

depths in watersheds with similar drainage area (HUC6 or larger) and flood type (fluvial and 190 

coastal). 191 

 192 

2. Methodology 193 

We developed an ML-based model that hindcasts maximum water depths at stream gauges 194 

across a coastal watershed during a flood event (Figure 1). A coastal watershed receives flood 195 

contributions from the inland and coastal systems (e.g., fluvial and tidal). The model uses 196 

geospatial analyses and ML algorithms to hindcast maximum water depths during an event at river 197 

cross-sections of a given watershed. This model is informed by the underlying physical flood 198 

processes represented by a wide array of features (topographic, meteorologic, hydrologic, land 199 

surface, soil and hydrodynamic). 200 

Geospatial operations were conducted to compute the features at stream gauges and/or over their 201 

contributing watersheds (the upstream area that drains water to the gauge) considering the 202 
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underlying physical processes. We used feature selection techniques to determine the most key 203 

features for our ML model. Applying observed data from stream gauges during a flood event, the 204 

model was trained, cross-validated, and tested. We then evaluated the model transferability by 205 

examining its performance in three other extreme flood events. 206 

 207 

Figure 1. Schematic view of the machine learning (ML)-based model for hindcasting maximum 208 

water depths in coastal watersheds. PCA: Principal component analysis; SHAP: Shapley additive 209 

explanations; MAE: Mean absolute error; MDAE: Median absolute error; FQ: Ratio of estimated 210 

over observed maximum flood depth. 211 

2.1. Selection and calculation of key features 212 

To develop a transferable ML model for complex physical phenomena of flooding, the 213 

selection process should extend beyond merely choosing features based on their individual 214 

statistical significance. Instead, it should focus on identifying features that collectively contribute 215 
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to a holistic representation of the phenomenon. We selected key features for our ML-based flood 216 

model according to the past research and the underlying physical processes. Our model considers 217 

these features from five broad categories of geographic location, hydrologic, topographic, land 218 

surface, soil, and hydrodynamic (Table 1). Here, we provide information on how to derive the 219 

features to hindcast maximum water depths during a flood event in a coastal watershed. Aside 220 

from the soil category that represents pre-flood conditions (antecedent soil moisture), all other 221 

features represent conditions during a flood event. 222 

  223 
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 224 

Table 1. Machine learning model features and the assignment approaches for stream gauges. 225 

Category Feature Point-
based 

Spatial average 
across the 

contributing 
watershed 

Spatial 
maximum 
across the 

contributing 
watershed 

Geographic 
location 

Distance to rivers   *   
Distance from storm track *     
Distance from coastline *     

Hydrologic 

Height above nearest drainage (HAND)   *   
Drainage area *     

Flow accumulation *     
Topographic wetness index (TWI) * *   

Initial water depth *   

Meteorologic 
Rainfall depth * * * 
Wind speed * * * 

Topographic Elevation *     
 Ground slope * *   
 Slope aspect * *   
 Slope aspect invariability (ASPVAR)  *  
 Curvature * *   
Land surface Imperviousness   *   

Soil Antecedent soil moisture   * *   
Hydrodynamic Storm surge * *   

 226 

By integrating all these factors into our methodology, we developed a flood hindcast model 227 

that considers key processes in coastal watersheds. We used a two-step process to assign feature 228 

values to a point located on a stream gauge. Depending on the feature, we assigned specified values 229 

to the gauge itself or its contributing watershed to consider the spatial dimension in flood 230 

generation processes. For the contributing watershed, spatial mean and maximum across the 231 

contributing watershed of a given stream gauge was computed. This method ensures that the 232 

feature values indicate the overall pertinent physical processes occurring at the streams and 233 

upstream watersheds. Table 1 specifies how each feature was used in our model. 234 
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For features under the geographic location category, we incorporated distance to rivers—a 235 

critical factor in determining flood risks (Cao et al. 2020; Rafiei-Sardooi et al. 2021), storm track—236 

specific to the flood event from (National Hurricane Center 2022)—and distance to the nearest 237 

coastline. The proximity of a location to waterbodies, such as rivers or coastlines, directly 238 

influences its vulnerability to flooding. Coastal regions are susceptible to storm surges, which 239 

occur during tropical storms or hurricanes. Storm surges are massive walls of seawater that get 240 

pushed ashore by intense winds. Storm tracks are pathways in the atmosphere along which storms 241 

(e.g., hurricanes, tropical cyclones, or extratropical storms) tend to move. These storms often carry 242 

heavy rainfall, intense winds, and storm surges, which can lead to severe flooding in areas they 243 

pass over or affect. The distance to storm track and coastline is both considered “Point-based” as 244 

they are specific to individual locations. However, distance to rivers is identical (zero) at these 245 

stream gauges, but different in the contributing watersheds; we calculated the spatial average 246 

distance of the contributing watersheds to the rivers. 247 

Under the hydrologic category, we employed four variables of HAND, drainage area, flow 248 

accumulation, topographic wetness index (TWI), and initial water depth. HAND represents the 249 

elevation of a location relative to the nearest stream. This feature is widely used in flood modeling 250 

due to its ability to hindcast flood-prone areas by considering topography and flow characteristics 251 

(Hu and Demir 2021). As its value at the stream gauges is zero, its spatial average across the 252 

contributing watershed was considered. The drainage area provides information about potential 253 

runoff, while flow accumulation feature helps predict flow paths during flood events that is 254 

previously used by Löwe et al. (2021) and Pham et al. (2021). Both drainage area and flow 255 

accumulation values at point of stream gauge (Point-based) were captured. TWI was used by 256 
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(Gudiyangada Nachappa et al. 2020; Löwe et al. 2021; Pham et al. 2021; Zahura et al. 2020; Zhao 257 

et al. 2020) and calculated using Equation (1) (Beven and Kirkby, 1979). 258 

           𝑇𝑇𝑇𝑇𝑇𝑇  = ln � 𝛼𝛼
tan(𝛽𝛽)

�                              (1) 259 

where, α is the slope of the contributing watershed per unit contour length (as known as the specific 260 

catchment area), and β is the local slope gradient in radians. The TWI value was considered both 261 

point-based and spatial average across the contributing watershed to represent the specific location 262 

and the overall characteristics of the contributing watershed. The last feature in this category was 263 

initial water depth, which refers to the stream gauge height one day before the event; this feature 264 

was considered point-based and explains initial conditions in the study rivers. 265 

The meteorologic category features were precipitation (Rafiei-Sardooi et al. 2021) and wind 266 

speed. Rainfall is the main driving force for floods (Mishra et al. 2022). Storms can bring intense 267 

and prolonged precipitation to certain areas. If a storm passes over or near a location, it can result 268 

in excessive precipitation, overwhelming local drainage systems and causing flooding in low-lying 269 

or poorly drained areas. Wind speed is another feature that can influence the severity and extent 270 

of flooding, especially during hurricanes. Intense winds during storms and hurricanes generate 271 

large and powerful waves in the ocean. These waves can exacerbate the impact of storm surges, 272 

causing even more coastal flooding as they crash onto the shore and flood areas even farther inland. 273 

We obtained daily precipitation and wind speed data for the entire period of flood event from 274 

weather stations of the National Oceanic and Atmospheric Administration National Centers for 275 

Environmental Information (NOAA’s NCEI 2022). Their maximum values over a flood event 276 

were computed at each stream gauge. Using point-based precipitation and wind speed data, we 277 

then created a spatially distributed rainfall and wind speed dataset by interpolating the maximum 278 
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values using the Inverse Distance Weighting (IDW) method (Hosseini et al. 2020). Rainfall depth 279 

and wind speed are considered for point-based, spatial average across the contributing watershed, 280 

and spatial maximum across the contributing watershed. These values capture the intensity of the 281 

meteorologic conditions at individual points and the overall average and maximum values across 282 

the upstream watershed. 283 

Elevation, ground slope, slope aspect, aspect invariability (ASPVAR), and curvature were 284 

features under the topographic category (Cao et al. 2020; Chen et al. 2023; Huang et al. 2022; 285 

Khosravi et al. 2018; Rafiei-Sardooi et al. 2021; Sun et al. 2020; Fereshtehpour et al. 2024). DEM 286 

with a resolution of 1/3 arc-second (~10 m) was acquired from the United States Geological Survey 287 

(USGS 2022), National Elevation Dataset (NED). To remove any spurious depressions, the DEM 288 

sinks were filled to account for artificial depressions that can impede the realistic simulation of 289 

water flow, ensuring that the derived water pathways and other hydrologic computations reflect 290 

true surface conditions (Khosravi et al. 2018; Zhu et al. 2013). Elevation, ground slope, slope 291 

aspect, invariability of slope directions (ASPVAR), and curvature were all derived from the DEM. 292 

Elevation allows us to identify low-lying regions prone to floods and hindcast the maximum water 293 

depths. Ground slope is a key factor in driving water movement. The ground slope plays a crucial 294 

role in determining the direction and velocity at which water flows across the landscape. On sloped 295 

terrains, water flows along the path of least resistance. The slope angle determines the speed and 296 

volume of surface runoff, influencing the potential for flooding. Slope aspect provides insights 297 

into surface runoff distribution and flow accumulation by indicating the direction of the ground 298 

slope that affects hydrologic processes (Gudiyangada Nachappa et al. 2020; Rafiei-Sardooi et al. 299 

2021). Similar to Gudiyangada Nachappa et al. (2020), we divided the slope aspect into 10 300 

categories: north (0°-22.5°; 337.5°-360°), northeast (22.5°-67.5°), east (67.5°-112.5°), southeast 301 
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(112.5°-157.5°), south (157.5°-202.5°), southwest (202.5°-247.5°), west (247.5°-292.5°), 302 

northwest (292.5°-337.5°), and flat (0°). ASPVAR values near zero indicate diverse watershed 303 

slope aspects, while values approaching 1.0 imply a dominant direction (Wan Jaafar and Han, 304 

2012). This feature provided information about surface runoff distribution and flow concentration 305 

by specifying the direction that water would flow across the terrain (Dawson et al. 2006). 306 

Additionally, analyzing the curvature helped us understand how it impacts flood events (Khosravi 307 

et al. 2018; Pradhan 2009). Elevation was considered point-based, while ground slope and 308 

curvature were considered both point-based and spatial average across the contributing watershed. 309 

ASPVAR conceptually represents the spatial average across the contributing watershed. 310 

The land surface category was represented by only one variable, imperviousness. The greater 311 

the imperviousness, the larger the volume of surface runoff. Impervious surfaces increase both 312 

volume and velocity of runoff due to their high surface smoothness and low friction to resist water 313 

movement. This rapid flow of water can overwhelm natural waterways, increasing the risk of 314 

flooding. We used the spatial average of imperviousness across the contributing watershed in our 315 

model. 316 

Soil category included antecedent soil moisture, which reflects the pre-storm saturation extent, 317 

essential for runoff estimates and high moisture flux production from rain-bearing systems 318 

(Jafarzadegan et al. 2023; Mishra et al. 2022; Karamouz et al. 2022; Ahmadisharaf et al. 2018). 319 

Soil moisture was calculated one day before the storm and considered both point-based (local soil 320 

moisture adjacent to the stream gauge) and spatial average across the contributing watershed. This 321 

feature explains initial conditions in the study watershed. 322 

In the hydrodynamic category, we used storm surge from tidal gauges on the coast NOAA 323 

(2023). Storm surge was estimated as the difference between the maximum water depth and the 324 
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astronomical tide during a flood event. This feature is crucial in hindcasting coastal contributions 325 

to flood events. If the flood event does not receive any coastal contributions, this category can be 326 

removed from the list of model features. It is considered for both point-based and spatial average 327 

across the contributing watershed. 328 

2.1.1 Feature selection method 329 

We employed multiple feature selection methods Pearson's correlation coefficients (Cao et al., 330 

2020; Chen et al., 2023; Lee et al., 2020) and PCA—a widely used technique in many ML 331 

modeling studies (Abdrabo et al., 2023; Chang et al., 2022; Reckien, 2018)—and forward feature 332 

selection that accounts for interactions among the model features. We applied a step-by-step 333 

approach to utilize these three techniques. 334 

First, the Pearson’s correlation coefficients were used to assessing the linear relationships 335 

among the features and target variable. The strength and direction of linear relationships were 336 

evaluated using Pearson's correlation coefficients. These analyses enabled us to narrow down the 337 

initial list of the features. 338 

Next, PCA was applied to the features retained after the Pearson’s correlation analysis. In the 339 

PCA method, the contribution of each feature to the overall variance is quantified by examining 340 

the eigenvalues associated with each principal component (Abdrabo et al. 2023). Compared to the 341 

Pearson’s linear correlation, the PCA can reveal underlying patterns or structures in the data that 342 

are not immediately apparent.  PCA allows us to understand how much variance each principal 343 

component considers in the dataset, providing a clear measure of feature significance in terms of 344 

explaining the data variance. By aggregating the absolute values across all features, we obtained 345 

the importance for each feature, which enabled us to rank them in a descending order and omit 346 

least important features. 347 



 

18 

 

Last, the forward selection method was applied on the features retained. This method then 348 

incrementally added variables, weighing both their individual impact and interactions, enhancing 349 

the model predictive performance by focusing on features with substantial influence on flood 350 

depths (Macedo et al. 2019; Horel and Giesecke 2019; Macedo et al. 2019). This method adds 351 

variables to a model based on their predictive power. This iterative process starts with no variables 352 

and includes the most predictive one at each step, considering both its individual impact and its 353 

interactions with already included variables. This selection continues until adding more features 354 

does not significantly enhance the model performance metric in terms of Akaike Information 355 

Criterion.  356 

 357 

2.2. Machine learning (ML) models 358 

2.2.1. Artificial neural networks (ANNs) 359 

To hindcast flood depth, our target variable, we employed ANN with MLP architecture. This 360 

algorithm was trained via observed maximum water depths from stream gauges using the key 361 

features selected through our feature selection (Section 2.1). The choice of ANN was based on 362 

previous successful applications in flood depth modeling (e.g., Dawson et al., 2006; Abrahart, 363 

Kneale, and See 2004; Bafitlhile and Li 2019; Berkhahn, Fuchs, and Neuweiler 2019; Dawson et 364 

al. 2006; Rumelhart, McClelland, and Group 1986; Zhu, Yang, and Ren 2023). One of the 365 

strengths of using ANNs in modeling tasks like flood predictions is their notable flexibility and 366 

capability to approximate complex, non-linear relationships, potentially enhancing their 367 

performance for unseen data. It is essential, however, to acknowledge that the capacity to 368 

generalize depends on selecting relevant features that explain the underlying physical processes 369 

and the spatiotemporal variability, model selection, parameterization, and training the model. 370 
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ANNs are designed to simulate the behavior of biological systems composed of "neurons". These 371 

algorithms composed of nodes, or "artificial neurons", connected and operate in parallel. Each 372 

connection is assigned a weight that represents its relative importance. During the learning phase, 373 

the network learns by adjusting these weights based on the input data it is processing (McCulloch 374 

and Pitts, 1943). Here, ANN was implemented using python’s Keras library with TensorFlow 375 

backend. 376 

 377 

2.2.2. Machine learning (ML) model pre-processing and implementation 378 

The observed water depths and features were split into training and testing sets, with 70% to 379 

90% of the data used for training and 10% to 30% for testing as suggested by Joseph (2022) and 380 

Nguyen et al. (2021). After exploring various splits within the 70% to 90% range for training data, 381 

the 90% allocation for training (104 out of 116 stream gauges) was determined to be optimal for 382 

our specific dataset and model based on preliminary testing, the model complexity, and the desire 383 

to maximize the amount of data used for training while still retaining satisfactory results for the 384 

test phase (12 out of 116 stream gauges). While the train percent (90%) seems high and suggests 385 

potential for model overfitting, this same model was most successful in the transferability across 386 

other three flood events (out-of-sample). The allocation of 10% of the data for testing serves to 387 

provide an unbiased appraisal of the model generalization performance after training and 388 

hyperparameter optimization. This evaluation process, complemented by methodologies such as 389 

cross-validation and hyperparameter optimization, is structured to identify a model configuration 390 

that is likely to perform well across unseen data. This approach aims to ensure that the final model, 391 

selected based on its performance on the validation set during hyperparameter optimization, is 392 

tested on entirely unseen data to confirm its generalization ability. In preparing our dataset for the 393 
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neural network model, numerical features were standardized to have a mean value of zero and a 394 

standard deviation of one. This scaling process ensured that each feature contributes 395 

proportionately to the model predictions, mitigating the potential bias towards variables with larger 396 

scales. 397 

Hyperparameter optimization is a step in improving the performance of ML models. This 398 

process involves identifying the optimal hyper-parameter values. We used Bayesian Search to 399 

perform hyperparameter optimization. Cross-validation, particularly through methodologies like 400 

the Prediction Sum of Squares criterion for predictor selection and for parameter estimation and 401 

predictive error assessment, has been foundational in improving predictive models. This approach 402 

distinguishes between model selection and assessment (Allen 1974; Geisser 1975; Stone 1974). 403 

Cross-validation was performed using a 5-fold cross-validation strategy during the hyperparameter 404 

optimization process. Opting for 5-fold cross-validation over hold-out validation in our 405 

hyperparameter optimization process reflects a balance between comprehensive model evaluation 406 

and computational efficiency. The hyperparameters we optimized here included the number of 407 

layers, units, activation functions, optimizer, regularization rate, batch size, and epochs. Bayesian 408 

search offered a targeted search based on probabilistic modeling, iteratively refining the search 409 

area based on past evaluations to efficiently select the most promising hyperparameter sets. The 410 

selection of the optimal hyperparameters was guided by minimizing the cross-validation MSE, 411 

ensuring the chosen configuration significantly improved the model predictive performance for 412 

maximum water depths. The ANN-MLP model was trained using the training data and the best 413 

hyperparameters obtained from the optimization process. 414 

To prevent overfitting, we used early stopping and model checkpointing during the model 415 

training. Early stopping was implemented to stop training when the validation loss stopped 416 
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improving, and model checkpointing was used to save the model with the lowest validation loss. 417 

The strategy involved splitting the training data into five subsets and training the model five times, 418 

each time using a different subset as the validation set. This evaluation process, complemented by 419 

methodologies such as cross-validation and hyperparameter optimization, is structured to identify 420 

a model configuration that is most likely to perform well across unseen data. 421 

2.2.3. Model performance evaluation 422 

The performance of the ANN-MLP  model was evaluated using coefficient of determination (R2), 423 

mean absolute error (MAE), normalized root mean square error (NRMSE), median absolute error 424 

(MDAE), and the ratio of estimated over the observed maximum flood depth (FQ; Schubert and 425 

Sanders 2012). The R2 metric measures the proportion of variance in the dependent variable 426 

predictable from the independent variables. The MAE measures the average magnitude of the 427 

errors in a set of estimations without considering their direction (i.e., overestimation or 428 

underestimation). The NRMSE is a metric that quantifies the normalized average magnitude of the 429 

prediction error. It assesses the relative size of the root mean square error (RMSE) by considering 430 

the RMSE in relation to the average value of the observations. It is commonly used in regression 431 

analyses and a smaller NRMSE value indicates a higher level of agreement between the estimated 432 

values and the actual observations (Stow et al. 2003; Ahmadisharaf Ebrahim et al. 2019). The 433 

MDAE is a metric that measures the median of the absolute differences between predicted values 434 

and actual (observed) values. Unlike the MAE, which averages these differences out, the MDAE 435 

focuses on the midpoint of these differences, making it less sensitive to the outliers. This 436 

characteristic can make the median error a more robust metric in the regional water depth 437 

estimation where the data contains significant outliers. It is a common metric used in ML models 438 
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such as Sheridan et al. (2019); Dixit et al. (2022); Park, Ju, and Kim (2020). These metrics were 439 

calculated for both training and testing datasets to assess the model performance. 440 

2.2.4. Model explainability 441 

To interpret the model and explore the contribution of each feature to the estimation, we used 442 

SHAP that is a game theoretic approach to explain the output of an ML model (Lundberg and Lee, 443 

2017). It connects optimal credit allocation with local explanations using the classic Shapley 444 

values from game theory and their related extensions. The SHAP values interpret the impact of 445 

having a certain value for a given feature in comparison with the estimations we would make if 446 

that feature took some baseline value (Abdollahi and Pradhan, 2021). In other words, SHAP 447 

estimates how much each feature contributes to the model prediction output for a particular 448 

instance. The SHAP results on the feature importance and their impacts on the model prediction 449 

can be presented using a plot to visually show the distribution of impacts of each feature on the 450 

model output. A positive SHAP value indicates that the feature's presence increases the model 451 

output, while a negative SHAP value indicates that it decreases the model output. Further, we 452 

visually evaluated the performance of our model in terms of bias (overestimation and 453 

underestimation) using scatter plots. 454 

 455 

2.3.  Model transferability across flood events 456 

The ML-based model, which was initially developed, trained, and validated based on one flood 457 

event, was subsequently examined as is (with no additional parameter tuning) against other events 458 

in terms of the performance and generalizability in hindcasting maximum water depths. By 459 

examining our model against different flood events, we aimed to evaluate its effectiveness in 460 

hindcasting maximum water depths across diverse events. This evaluation allowed us to assess the 461 
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ML model ability to handle varying flood conditions and its potential for application in different 462 

events in the same watershed. 463 

 464 

3. Study area 465 

The study area is a HUC6 watershed, the Lower Hudson Watershed (HUC 020301). The 466 

10,068 km2 watershed is in the Northeastern United States (Figure 2) spanning parts of three states, 467 

Connecticut, New Jersey, and New York. This watershed has a humid subtropical climate with hot 468 

summers and mild winters. The highest elevation is ~450 m above mean sea level. Residential, 469 

agriculture, and forest are the dominant land uses in the watershed according to the 2021 National 470 

Land Cover Dataset (NLCD) (USGS 2022). Large metropolitan areas like New York are in the 471 

study watershed. Several major rivers drain into the watershed, including the Hudson River, which 472 

flows for 496 km (about the length of New York State). The ground slope varies from 87.5% in 473 

the mountainous parts to near zero in the coastal parts. 474 

We studied four major flood events in the study area. The primary event for model 475 

development was Hurricane Ida in 2021, while three other hurricanes—Isaias (2020), Sandy 476 

(2012) and Irene (2011)—were used to assess the model transferability. Hurricane Ida, a 477 

devastating Atlantic Category 4 hurricane that made landfall in September 2021, hit Louisiana, 478 

and progressed toward the Northeastern United States. The hurricane caused considerable floods 479 

and significantly impacted both the west-south-central region, including New Orleans, and the 480 

northeastern region, with severe damages reported in New York City and Philadelphia (Beven II, 481 

Hagen, and Berg 2022; Wang et al. 2022). The storm remnants sent record-breaking rainfall to the 482 

New York region as they headed northeast, resulting in flash flooding (Beven II, Hagen, and Berg 483 

2022). The extensive flooding and severe property destruction caused by Hurricane Ida's record-484 
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breaking rains highlighted the importance of comprehending the hurricane effects on affected 485 

areas. Furthermore, strengthening regional resilience to catastrophic flooding episodes requires the 486 

development of effective mitigation strategies. The three other events, which were used to evaluate 487 

the model transferability, were also most recent major hurricanes after 2000, with available 488 

streamflow data and differing track and intensity. In 2020, Hurricane Isaias, a Category 1 489 

hurricane, made a quick trip along the East Coast, bringing with it severe rain and floods, especially 490 

in the Mid-Atlantic and Northeast. The storm's rapid passage caused several deaths and extensive 491 

power losses (Latto, Hagen, and Berg 2021). In 2012, superstorm Sandy, commonly known as 492 

Hurricane Sandy, struck the Northeast and caused severe damage. It produced significant flooding 493 

due to the intense storm surge and torrential rains, especially in New York and New Jersey, where 494 

the storm surge reached record heights (Blake et al. 2013). In 2011, a huge and catastrophic storm 495 

named Hurricane Irene affected a major portion of the Eastern Seaboard. Heavy rains from the 496 

storm caused significant flooding, especially in Vermont, where it was the worst flooding in over 497 

a century for that state (Lixion and Cangialosi 2013). 498 
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 499 

Figure 2. Lower Hudson River Watershed. 500 

3.1. Data collection 501 

Table 2 lists the data used for the study area alongside their source and spatiotemporal 502 

resolutions. We acquired instantaneous stream gauge height data from the USGS’s National Water 503 

Information System to analyze water depths during the four flood events. While the features’ data 504 

had different spatial resolutions, we did not make them consistent because only at-point (stream 505 

gauges) or aggregated spatial statistics of contributing watersheds were used in the ML model; no 506 

combinations of the features were needed. 507 
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Table 2. Model features and data sources and resolutions in the study area. NHDPlus: National 508 

Hydrography Dataset Plus; NED: National Elevation Dataset; NWIS:  National Water 509 

Information System. 510 

Category Feature Source Spatial 
resolution 

Temporal 
resolution 

Geographic 
location 

Distance to rivers 

NHDPlus 

 — —  

Distance from storm track  —  — 

Distance from the coastline  —  — 

Hydrologic 

Height above nearest drainage (HAND) NED 10 m  — 

Drainage area   —   — 

Flow accumulation    —  — 

Topographic wetness index (TWI)    —  — 

Initial water depth NWIS     

Meteorologic 
Rainfall depth 

NCEI  — Daily 
Wind speed 

Topographic 

Elevation 

NLCD 10 m 

— 

Ground slope  — 

Invariability of slope directions (ASPVAR) — 

Curvature  — 

Land surface Imperviousness NLCD 30 m —  

Soil Antecedent soil moisture   ERA5  — Daily 

Hydrodynamic Storm surge NOAA Tides and Currents  — Sub-hourly 

 511 

The study watershed embraces 116 stream gauges, seven weather stations and two tidal gauges 512 

(Figure 3). These gauges and stations recorded data for all the four events (Hurricanes Ida, Isaias, 513 

Sandy, and Irene). The drainage area of the contributing watersheds of the stream gauges varies 514 

from 5.5 to 2,104 km2. The range of maximum recorded maximum water depths, rainfall, and 515 

antecedent soil moisture near the stream gauges during the four hurricanes are presented in Table 516 

3. It shows that Hurricanes Ida and Irene associated with much higher rainfall depths. These 517 

increased precipitation levels contribute directly to flood severity, as they can overwhelm drainage 518 

systems and lead to runoff exceeding riverbank capacities. The percent soil moisture before the 519 
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storms ranged from fairly dry conditions (9%) to nearly half saturated (43%). Ida and Irene had 520 

similar antecedent soil moisture conditions, which influenced their respective river water depths. 521 

Hurricane Sandy had a higher antecedent soil moisture percentage range of 17% to 38% compared 522 

to both Ida and Isaias, indicating a potentially higher level of saturation before the storm arrival. 523 

This likely contributed to Sandy's significant storm surge, which ranged from 1.97 to 2.85 m, 524 

compared to Ida and Isaias with storm surge ranges of 0.25 to 0.67 m and 0.20 to 0.76 m, 525 

respectively. Maximum wind speeds during these events were quite high, especially for Hurricanes 526 

Isaias, Sandy, and Irene. The proximity to the central path of the storm influences the intensity of 527 

the rainfall, wind speed, and storm surge experienced. Shorter distances to the storm track, 528 

particularly in Ida and Irene, correlated with more severe weather conditions and, consequently, 529 

greater flood depths. 530 

Table 3. The range of river water depth, cumulative rainfall depth and antecedent soil moisture in 531 

the flood events. 532 

Event Year  

River 
water 
depth 
(m) 

 Cumulative 
rainfall depth 

(mm) 

Antecedent 
soil 

moisture 
(%) 

Storm 
Surge 
(m) 

Wind 
speed 
(m/s) 

Distance 
to storm 

track 
(m) 

Ida 2021 0.85-36.66 121.92-201.81 21-43% 0.25-0.67 27.64-35.49 0.09-1.1 
Isaias 2020 0.22-35.35 17.37-62.22 9-39% 0.20-0.76 48.29-65.33 0.23-1.14 
Sandy 2012 0.24-35.98 19.83-56.53 17-38% 1.97-2.85 63.43-76.97 0.77-2.16 
Irene 2011 1.03-37.33 147.29-217.74 19-43% 1.05-1.37 51.05-60.68 0.00-0.93 

 533 
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 534 

Figure 3. Stream and tidal gauges and weather stations in the study watershed. 535 

Figure 4 displays the spatial variability in maximum water depths and storm tracks for all 536 

hurricanes. The total slope aspect was south, which resulted in shallower depths at the river 537 

upstream. As we moved southward along the river mainstream, water depths became deeper. 538 
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 539 

Figure 4. Maximum water depths across the study area during the four study hurricanes. 540 

 541 

4. Results and discussion 542 

4.1. Feature selection 543 

Using Pearson's correlation analyses, we eliminated five features with absolute correlation 544 

coefficients >0.70, the cutoff threshold suggested in previous studies (Cao et al. 2020; Chen et al. 545 
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2023; Lee et al. 2020). According to Figure 5, the strong correlation coefficient of 0.99 between 546 

drainage area and flow accumulation, indicated that both features capture similar information 547 

about water flow and storage in the watershed. To avoid collinearity issues, flow accumulation 548 

was excluded from further analyses due to its weaker correlation with flood depth. Similarly, 549 

features that demonstrated weaker correlations with flood depth or were highly correlated with 550 

multiple features, were excluded. These analyses ensured that independent variables, which are 551 

essential for modeling maximum water depths, are retained in our modeling. 552 
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 553 

Figure 5. Heatmap of Pearson correlation matrix for the initial model features. 554 

Next, we conducted PCA to assess the importance of the features retained by Pearson’s 555 

correlation analyses in hindcasting maximum water depths. The analyses showed that the slope at 556 

the stream gauge, slope aspect, slope invariability, curvature at the stream gauge, and average 557 
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curvature across the contributing watershed were the least important features for capturing the 558 

overall variability of maximum flood depth. Consequently, we excluded these features from our 559 

analyses. The lesser importance of slope at the stream gauge and slope aspect may be since river 560 

slope is related to bathymetry, which is typically not represented well by DEMs (Bhuyian and 561 

Kalyanapu 2020). 562 

The forward feature selection method showed that initial water depth, elevation, TWI, 563 

antecedent soil moisture, rainfall, and distance from storm surge at the stream gauge (all point-564 

based), as well as average storm surge and maximum wind speed across the contributing 565 

watershed, along with their interactions were selected for the final ML model. Considering the 566 

interactions among the features improved the model performance. This was expected because a 567 

combination of some of the features better explain the underlying physical processes. For instance, 568 

using the combination of storm surge and TWI as one unified feature can be an indication of the 569 

physical propagation of storm surge that occur primarily in waterways. 570 

 571 

4.2. Machine learning (ML) model development 572 

4.2.1. Model development and performance evaluation 573 

In the development of our ANN-MLP model for hindcasting maximum water depths during 574 

Hurricane Ida, we used Bayesian search with a cross-validation strategy for hyperparameter 575 

optimization. Details of the optimization can be found in Supplementary Material. 576 

The model demonstrated an excellent performance on the training dataset (R2 = 0.94, MAE = 577 

0.64 m, MDAE = 0.44 m, and NRMSE = 24%). On the test dataset, the model achieved an R2 of 578 

0.91, the MAE of 0.77 m, MDAE was 0.42 m, and the NRMSE was 28%, further suggesting the 579 

satisfactory performance by the model. The training history plot showed that the model 580 
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performance improved with each epoch during training, indicating that the model was learning 581 

from the data. The model training process stopped at epoch 87 due to early stopping. 582 

 583 

4.2.2. Model explainability 584 

Figure 6 shows the performance of the ML model in hindcasting maximum water depths at stream 585 

gauges, comparing estimated values against observed values for both training and testing datasets. 586 

In the training phase (Figure 6a), points are clustered along the identity line, but tend to 587 

underestimate large water depths. This pattern suggested that the model learned the training data 588 

well, especially for smaller water depths, but did not fully capture the behavior that leads to the 589 

larger water depths. The underestimation of high values is expected due to the lower number of 590 

observations. The test data (Figure 6b) revealed a similar pattern of underestimation towards 591 

higher values; this can be since the number of observed high water depths is small. 592 

  593 

Figure 6. Scatter plots of estimated vs observed maximum water depths for: (a) train and (b) test 594 

data. The identity line represents a perfect match between the estimated and observed values. 595 
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Figure 7 provides an overview of the influence of distinctive features on the model estimation 596 

on maximum water depths. Features like the antecedent soil moisture and maximum wind speed 597 

across the contributing watershed were found to substantially influence the water depth 598 

estimations. The inclusion of elevation as an important feature in our study closely aligns with the 599 

findings of Hosseini et al. (2020) and Chen et al. (2023) in their flash flood susceptibility and 600 

hazard assessments on a small non-tidal and a large coastal watershed. Elevation has been 601 

recognized as a crucial factor influencing flood occurrences, as it directly affects the water flow 602 

and drainage patterns within a watershed (Rafiei-Sardooi et al. 2021). 603 

 604 
Figure 7. Aggregated Shapely additive explanations (SHAP) feature importance radar plot of the 605 

ML model for hindcasting maximum water depths. 606 
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On the other hand, features such as the interaction of initial water depth and rainfall and local 607 

rainfall were identified as the least key features in estimating maximum water depths. In a coastal 608 

context, where the landscape reaction to oceanic events often overshadows rainfall affect, this 609 

outcome is noticeable. The finding about the less importance of rainfall in flood estimation concurs 610 

with the results by Salvati et al. (2023) in pinpointing vulnerable regions within a non-coastal 611 

medium-sized watershed. The study suggested that rainfall may have a lower impact on flood 612 

occurrences or flood depth estimations compared to other influential factors. The consideration of 613 

the interactions between rainfall and other features may also obscure the direct influence of rainfall 614 

on the model’s predictions, especially in complex flood modeling. 615 

It is important to note that the least important features are not necessarily uninformative; they 616 

simply contribute less to the model's output relative to the most important features. This can be 617 

due to the nature of the data, the modeling approach, or the specific context of the problem being 618 

addressed. 619 

4.3. Examining the machine learning (ML) model transferability across flood events 620 

The transferability of the trained and tested model (against Hurricane Ida) was examined by 621 

applying it to three other events within the same watershed. Table 4 summarizes the evaluation 622 

metrics for the three hurricanes. 623 

 624 

Table 2. Model performance across in historical flood events. MAE: mean absolute error; 625 

MDAE: Median Absolute Error; RMSE: root mean square error; FQ: ratio of estimated over 626 

observed maximum flood depth. 627 

Flood event R2 
MAE MDAE NRMSE FQ 

(meters) (meters) (%) (%) 
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Original model 

Hurricane Ida 0.94 0.64 0.45 24.1 138.1 

Transferability 

Hurricane Isaias 0.73 1.54 0.85 86.3 325.6 
Hurricane Sandy 0.70 1.71 1.78 109.2 370.2 
Hurricane Irene 0.85 1.12 0.85 36.7 112.6 

 628 

These results demonstrated the model ability to transfer across different hurricanes within the 629 

same watershed (R2>0.70). With an MAE less than 1.71 m in all hurricanes, our model 630 

performance is consistent with the CNN model of Guo et al. (2021), demonstrating its capability 631 

for satisfactory flood depth estimates. However, when compared to the original model 632 

performance on Hurricane Ida, the R2 values and other metrics show weaker model performance 633 

for the transferability to other hurricanes, suggesting reduced estimative accuracy, but not to the 634 

extent that the model performance becomes unsatisfactory.  635 

Figure 8 shows the relationship between observed and estimated maximum water depths for 636 

the four storm events. Most observed water depths for the hurricanes were low. For all four events, 637 

the data points suggested that the model tends to underestimate the high water depths and 638 

overestimate the low water depths (Figure 8). The plots for Hurricanes Sandy and Irene show a 639 

more dispersed set of points, suggesting a wider variance in the model estimates compared to the 640 
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observations. This implied that the model is less accurate in capturing the flood dynamics of these 641 

events or that these events have unique characteristics that are not fully learned by the ML model. 642 

 643 

Figure 8. Scatter plots of estimated vs observed flood depth for the four hurricanes. 644 

For Hurricane Ida, our original model, 32% of the stream gauges had an FQ between 90% to 645 

110%, implying satisfactory estimates at these gauges (Gallegos, Schubert, and Sanders 2012; 646 
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Schubert and Sanders 2012). Hurricanes Irene, Sandy and Isaias had fewer gauges with moderate 647 

FQ values of 16%, 14% and 3.5% out of all stream gauges respectively, suggesting that the model 648 

estimations were less satisfactory for these events compared to Ida in terms of bias. However, the 649 

transferability was still more successful for Irene than the other two hurricanes, similar to what we 650 

found based on the other metrics (Table 4). 651 

We attributed the model transferability performance to four main factors: water depth, 652 

antecedent soil moisture, storm track and the primary driver of flooding. Based on Table 2, 653 

Hurricanes Ida and Irene exhibited significant similarities in river water depths and antecedent soil 654 

moisture, which influenced their respective river water depths. These two hurricanes had similar 655 

antecedent soil moisture conditions, while Hurricane Sandy had a higher antecedent soil moisture 656 

percentage range of 17% to 38% compared to both Ida and Isaias, indicating a potentially higher 657 

level of saturation before the storm arrival. These partly explain the better model transferability 658 

for Hurricane Irene compared to Hurricanes Isaias and Sandy is expected. 659 

The original storm track of Hurricane Ida was located to the watershed southeast, moving 660 

northeast, and remained fully outside the watershed (Figure 4). Hurricane Irene's path, which was 661 

somewhat similar to Ida's, stretched from the southeast to the northeast, resulting in the best model 662 

transferability. The key difference is that Irene's storm path lays inside the watershed along its 663 

eastern border. Consequently, the model, assuming a track similar to Ida's (the event that the model 664 

was trained for), underestimated maximum water depths during Hurricane Irene. For Hurricanes 665 

Isaias and Sandy, which the storm track was farther from the watershed and dissimilar from Ida's 666 

path, the model overestimated the water depths. Isaias' storm track moved from the southwest to 667 

the northwest of the watershed, while Sandy's unique path propagated from the southeast to the 668 

southwest, leading to the lowest satisfactory in terms of the model transferability among the events. 669 
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The other reason why the model transferability was most successful for Hurricane Irene was 670 

that the event mainly driven by significant rainfall, similar to Hurricane Ida (the event that the 671 

model was trained for). In contrast, the model performed worse for Hurricanes Sandy and Isaias 672 

because these events were mainly driven by storm surge. The original model, considered lower 673 

importance for storm surge, was not effective in predicting the water depths in Sandy and Isaias. 674 

In fact, here we see another significant advantage of strategically using physically meaningful 675 

features rather than the more commonly used black box approach. By considering the physical 676 

phenomena in our model development, we can better understand its strengths and weaknesses and 677 

more effectively evaluate its performance. 678 

Despite these distinct characteristics of the storm events, the ML model demonstrated 679 

satisfactory performance on Hurricanes Sandy and Isaias, suggesting some level of transferability, 680 

mainly because we incorporated a wide array of pertinent flood influencing features and the spatial 681 

dimension (contributing watershed). While the model performs well, the inconsistency of the 682 

success level of transferability across flood events presents opportunities to incorporate additional 683 

features or training approaches, enhancing the model robustness to different storm tracks relative 684 

to the watershed and weighing the model features based on the main flood driver (e.g., rainfall or 685 

storm surge). 686 

The study underscored the complexity of efficiently predicting water depths for major 687 

hurricanes and emphasizes the necessity of refining models for better performance during such 688 

extreme events. It highlighted the importance of deeper analyses into features causing prediction 689 

discrepancies and suggested that addressing different flood types (fluvial vs. storm surge) 690 

separately can enhance the model performance. This approach, alongside adjustments for specific 691 

flood characteristics like storm tracks and similar influential factors that are distinct for each event, 692 
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can improve the performance of hindcast models, aiding in the development of more transferable 693 

ML-based models. 694 

 695 

4.4. Limitations and future research 696 

While this study showed promising results about ML-based flood modeling, it is important to 697 

acknowledge its limitations to identify areas for future research. One limitation is the presence of 698 

inherent uncertainties in the model that can impact the accuracy of the estimations. These 699 

uncertainties can stem from various sources, including the quality and accuracy of the observed 700 

data (Merwade et al. 2008; Bales and Wagner 2009; Gallegos, Schubert, and Sanders 2012; Teng 701 

et al. 2017) and input data (features). For instance, relying solely on spatially aggregated values of 702 

features (mean and maximum used in this study) may not adequately capture the spatial 703 

heterogeneity of pertinent variables across the upper watershed. Future research should prioritize 704 

addressing these uncertainties by exploring alternative data sources and methodologies. The ANN-705 

MLP model was tuned using observed flood data and an optimal hyperparameter set was used 706 

based on the hyperparameter optimization methods. This deterministic approach does not 707 

incorporate the uncertainty from model parameterization. Probabilistic models are needed to 708 

address this uncertainty. Parameterization uncertainty acknowledges that the exact values of model 709 

parameters (e.g., weights in an ANN-MLP) determined through training may not perfectly capture 710 

the true underlying processes, leading to variability in our predictions. Probabilistic models 711 

address this uncertainty by incorporating it directly into the modeling process, offering a range of 712 

possible outcomes with associated probabilities (posterior probability distributions) rather than a 713 

single deterministic output. This is achieved through techniques like Bayesian inference, where 714 

prior knowledge about parameters is updated with observed data to produce a posterior distribution 715 
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of parameters. This approach provides a more nuanced understanding of uncertainty, allowing 716 

predictions to reflect both the variability observed in the data and the confidence in the model's 717 

parameter estimates. To address the limitations of deterministic models, like the ANN-MLP used 718 

in this study, future research should explore integrating probabilistic modeling techniques such as 719 

Bayesian inference. Exploring alternative data sources and methodologies, such as incorporating 720 

spatially detailed features or dynamic time series data, could also help in capturing the 721 

complexities of watershed characteristics more accurately. 722 

Furthermore, we did not have sub-daily data available for all model features. Incorporating 723 

sub-daily data can highly likely improve the model accuracy in capturing intra-daily variability 724 

and flood dynamics, but it was not explored due to data constraints. Future research should 725 

incorporate sub-daily data into flood depth hindcast models. A further limitation of this study 726 

related to the time dimension is that wind events, storm surges, rainfall, and overland flow 727 

processes have different time signatures. Pluvial and storm surge flooding can be closely 728 

coincident with the storm event, but river flood waves may take much longer to arrive at a 729 

particular location. The time lag between these processes was not considered in our ML model, 730 

which was not dynamic in time and only hindcasted maximum river maximum water depths. 731 

Incorporating time-variability of the features can better represent the time-varying nature of flood 732 

dynamics. 733 

Another limitation of this study is the issue of bathymetry that is typically not represented well 734 

by DEMs like USGS’ NED. Refining the DEMs with bathymetry data such as NOAA’s 735 

Continuously Updated DEM (CUDEM) dataset and channel cross-sections is recommended to 736 

better represent the terrain on channels and floodplains in the model.  737 
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Additionally, we modeled maximum water depths across a large watershed (HUC6), whereby 738 

many details may not be important. For small watersheds and specially urbanized ones, we 739 

emphasize the importance of considering local factors such as sewer and drainage systems in flood 740 

depth hindcast, where pluvial floods may be prevalent. However, obtaining data on sewer and 741 

drainage systems can be challenging due to availability, lack of quality and confidentiality of the 742 

data, particularly at the desired spatial and temporal resolutions. Future research should strive to 743 

improve the availability and accessibility of such data to enhance the accuracy of flood depth 744 

hindcasting, especially in urban areas. In small urban watersheds, other details such as land 745 

management practices and other local features can also be important for flood depth hindcasting 746 

and should be incorporated in the ML-based model. 747 

This study primarily focused on hindcasting maximum water depths  and did not consider other 748 

important flood characteristics, such as duration, frequency, and extent, all of which are important 749 

for loss estimates, decision making and risk management (Ahmadisharaf and Kalyanapu 2019; 750 

Kreibich et al. 2009; Merz et al. 2010; Qi and Altinakar 2011b; 2011a; 2012; Ebrahimian, Gulliver, 751 

and Wilson 2016; Ebrahimian et al. 2015). To gain a fuller picture of flood hazards, future research 752 

should aim to develop ML models that can hindcast these additional flood characteristics. We also 753 

focused on river maximum water depths and did not hindcast inundation on floodplains (out-of-754 

channel). Developing ML-based models that can satisfactorily hindcast out-of-channel maximum 755 

water depths should be a focus of future research; the transferability of ML-based models for such 756 

estimations should be also evaluated. High water marks (HWMs) can be used to train the model 757 

for such hindcasting. However, HWMs are subject to large uncertainties (Schubert et al. 2022). 758 

Therefore, one challenge in developing models that hindcast maximum water depths over 759 

floodplains is the availability of reliable observations. Satellite-based observations are also often 760 
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limited to flood status data; maximum water depths cannot be estimated using these types of 761 

datasets. Newly launched satellites, such as the Surface Water and Ocean Topography (SWOT) 762 

mission, can provide additional data for such estimations. 763 

As part of future work, it is also essential to consider the sensitivity of stream gauges to changes 764 

in flow once water exceeds bankfull levels. This is significant as water height changes at a slower 765 

rate beyond bankfull due to the compound channel shape. Wide floodplains can lead to similar 766 

stage elevations for quite different flow conditions. This sensitivity assessment can offer insights 767 

about whether water depths can be estimated once flood conditions are established, which has 768 

implications for the model transferability across events. 769 

We recommend that future work compares the performance of our ML-based model to 770 

traditional physically-based and morphologic-based models using the same datasets. By evaluating 771 

the performance, generalizability, and computational efficiency of our ML-based model versus 772 

these traditional modeling approaches, we will be able to better validate the strengths of our data-773 

driven methodology. Detailed error analyses between the approaches can also reveal insights into 774 

where additional physics knowledge needs to be incorporated into the ML-based model structure 775 

and training to improve performance. 776 

Thus, although we found ML-based models are transferable across flood events when informed 777 

by relevant physical features at meaningful locations, there are still several areas that require 778 

further investigations. By addressing these limitations, future research can corroborate our findings 779 

about the performance and transferability of ML-based models in estimating maximum water 780 

depths as computationally-efficient modeling frameworks. 781 
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5. Summary and conclusions 782 

This paper developed an ML-based model for hindcast maximum water depths to address two 783 

major limitations of past research in applying ML models for flood estimations: solely predicting 784 

flood status (classification-based models) and debate on the transferability of these models across 785 

events. We used ANN-MLP to hindcast maximum water depths over an event on a coastal 786 

watershed, which is affected by fluvial and tidal floods. The model was informed by underlying 787 

physical flood processes and initial conditions (in the watershed and rivers), represented through 788 

a set of features (geographic location, topographic, climatic, land surface, hydrologic, 789 

hydrodynamic and soil). Unlike previous applications of ML algorithms, our model estimated 790 

maximum water depths by accounting for the spatial distribution of the processes through 791 

considering both local contributions (at a given location) and those from the upstream watersheds. 792 

We demonstrated the model on a HUC6 watershed, Lower Hudson, in the Northeastern United 793 

States and evaluated its transferability across major flood events—Hurricanes Ida, Sandy, Irene 794 

and Isaias. Feature selection techniques were used to identify the most influential features for flood 795 

hindcast. Hyperparameter optimization was performed to fine-tune the ML model, and its 796 

performance was evaluated using various metrics. The results showed that the model performed 797 

satisfactorily in estimating maximum water depths for the original event, Hurricane Ida (R2= 0.94, 798 

MAE= 0.64 meters, MDAE= 0.45 meters, NRMSE= 24%, and FQ= 138%). The model 799 

transferability (i.e., applying the validated model as is without any additional parameter tuning) 800 

within the same watershed against three other events showed that the developed model was 801 

promising in the estimations (R2> 0.7, MAE< 1.71 meters, MDAE< 1.78 meters, NRMSE < 109%, 802 

and FQ< 370%). This showed the model ability to capture complex relationships between the 803 

maximum flood depth and pertinent features beyond what it was originally trained for. Future 804 
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research is needed to further evaluate the transferability of ML models across events and 805 

watersheds with different drainage areas for flood depth estimations. 806 
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