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Abstract 20 

Despite applications of machine learning (ML) models for predicting floods, their transferability 21 

for out-of-sample data has not been explored. This paper developed an ML-based model for 22 

hindcasting maximum floodriver water depths during major events in coastal watersheds and 23 

evaluated its transferability across other events (out-of-sample). The model considered spatial 24 

distribution of influential factors, which explain the underlying physical processes, to hindcast 25 

maximum river floodwater depths. Our model evaluationevaluations in a six-digit hydrologic unity 26 

code (HUC6) watershed in Northeastern US showed that the model satisfactorily hindcasted 27 

maximum floodwater depths at 116 stream gauges during a major flood event, Hurricane Ida (R2 28 

of 0.9294). The pre-trained, validated model was successfully transferred to three other major 29 

flood events, Hurricanes Isaias, Sandy, and Irene (R2 > 0.7170). Our results showed that ML-based 30 

models can be transferable for hindcasting maximum river floodwater depths across events when 31 

informed by the spatial distribution of pertinent features, their interactions and underlying physical 32 

processes in coastal watersheds. 33 

Keywords 34 

Flood hindcastingmodeling; Hindcasting; Machine learning algorithms; Maximum flood depth; 35 

Model transferability; Coastal watersheds. 36 

1. Introduction 37 

Floods can damage civil infrastructure, business disruptions, and environmental degradation. 38 

Nonstationary factors, including land use changes, population growth, and global warming, can 39 

exacerbate the risk of flood events (Davenport, Burke, and Diffenbaugh 2021; National Academies 40 

of Sciences, Engineering, and Medicine 2019; Galloway et al. 2018). For instance, (Galloway et 41 

al. 2018) projected that changes in climate cause a 26.4% increase in the United States flood risks 42 
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by 2050. This increase in flood risk is expected to disproportionately affect poor communities, 43 

leading to job losses and displacement of residents (Hino and Nance 2021).  Therefore, effective 44 

adaptation and mitigation strategies are urgently needed to maintain resilience against extreme 45 

future floods (Hemmati et al. 2020; Qi et al. 2021; Wing et al. 2022). 46 

Mitigation strategies are planned and implemented to mitigate these damages. To propose 47 

effective protection strategies, predictive models are used to evaluate watershed responses under 48 

various plausible flood scenarios (Fernández-Pato et al. 2016; Kundzewicz et al. 2019; Viglione 49 

et al. 2014). These models are essential tools to inform decision makers about suitable risk 50 

management strategies and actions. Flood models can be broadly categorized as physically-based, 51 

morphologic-based and data-driven. 52 

 Physically-based models, widely used for predicting hydrologic events, are considered 53 

reliable tools for assessing different flood scenarios (Fernández-Pato et al. 2016). These models 54 

solve the shallow water equations to derive flood characteristics. Developing physically-based 55 

models requirerequires certain meteorologic, hydrologic, and geomorphologic data. If these data 56 

are not available at the desired scale, such models cannot be developed. For instance, global 57 

inundation models are available to model flooding across the globeworld, but they may not be 58 

efficient for small scale applications. In such instances, data-driven models can be a flexible 59 

alternative as they can adapt to varying levels of data availability by focusing on the features with 60 

sufficient data. This flexibility remains one of the advantages of data-driven models over strictly 61 

data-dependent physically-based models. Physically-based models also need significant 62 

computational resources, especially in the case of high-resolution, multidimensional (2D and 3D) 63 

or stochastic models that necessitate numerous simulations. To enhance the speed of flood 64 

simulations, techniques such as parallel computing, graphics processing units (GPUs), and 65 
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simplified models have been utilized (Costabile, Costanzo, and Macchione 2017; Kalyanapu et al. 66 

2011; Ming et al. 2020; Sridhar, Ali, and Sample 2021; Zahura et al. 2020). However, resources 67 

for utilizing these approaches are not always available (Zhang et al. 2014). 68 

Morphologic-based models, which approximate flat-water surfaces over small spatial scales, 69 

are also used for flood predictions (Bates 2022). Bathtub (Anderson et al. 2018; Kulp & Strauss 70 

2019) and height above nearest drainage (HAND; Rennó et al. 2008) are two widely used models 71 

in this modeling category. Jafarzadegan and Merwade (2019) used a probabilistic function based 72 

on HAND, computed from a digital elevation model (DEM), and optimized it for accuracy, to 73 

delineate 100-year floodplains. (Zheng et al. 2018) developed a synthetic rating curve using the 74 

HAND method, which accurately represents the river shape and water level measurements, like 75 

hydraulic models or stream gauge readings. While these models are computationally efficient, they 76 

can overestimate flooded area and are limited to the number of features they use; these models rely 77 

on topographic data Zheng et al. (2018) developed a synthetic rating curve using the HAND 78 

method, which represents river water depth measurements, similar to hydraulic models or stream 79 

gauge readings. While these models are computationally efficient, they can overestimate flooded 80 

area and are limited to the number of features they use; these models rely on topographic data 81 

(Bates 2022; Bates et al. 2005) and tend only to work well only in confined valleys. The sole use 82 

of topographic data makes HAND-based models impractical for low-lying areas, especially coastal 83 

watersheds that experience a combination of hydrologic and oceanic processes (e.g., tidal 84 

influences, storm surges and wave action); other flood influencing factors, which represent such 85 

overlooked underlying physical processes, are needed along forefor predictions in such 86 

watersheds. Coastal regions also experience a combination of oceanic and hydrologicalhydrologic 87 

processes, which might not be fully represented by HAND. Additionally, bothBoth HAND-based 88 
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and bathtub models are limited in representing such terrains as they might not fully capture the 89 

intricate interactions between oceanic and hydrologic factors in coastal areas. Consequently, in 90 

coastal watersheds, where unconfined floodplains and complex interactions are prevalent, 91 

alternative modeling approaches that consider a broader range of factors are crucial for producing 92 

reliable flood predictions. Incorporating these overlooked underlying physical processes becomes 93 

essential in providing comprehensive flood predictions in these intricate environments. 94 

Machine learning (ML) and, in particular, deep learning (DL) models, offer an alternative 95 

approach that can rapidly capture complex relationships between various influencing factors and 96 

flood characteristics. ML models have the potential to provide satisfactory flood predictions, 97 

making them a valuable tool for improving flood prediction accuracy (Mishra et al. 2022). Such 98 

data-driven models have gained popularity in overcoming the limitations of physically-based and 99 

morphologic-based models in flood analysesmodeling (Khosravi et al. 2018). These models 100 

mathematically represent the nonlinearity of flood dynamics usingwith pertinent features and 101 

observed flood data, and through their intricate using complex nonlinear structures and algorithms. 102 

Data-driven models have been found as promising tools due to their quick development time and 103 

minimal input requirements (Guo et al. 2021; Löwe et al. 2021; Zahura et al. 2020); therefore, they 104 

are effective for short-term forecasts and nowcasts (Mosavi, Ozturk, and Chau 2018). ML and DL 105 

models can discover and leverage hidden patterns within the data, leading to improved 106 

performance as the amount of available data increases. By recognizing and utilizing these 107 

underlying patterns inherent in the data, ML and DL models can make satisfactory predictions (in 108 

terms of minimum error in estimating flood characteristics like depth) and generate valuable 109 

insights. Example data-driven models for flood prediction include multi-criteria decision-making 110 

techniques, multiple linear regression, artificial neural networks (ANNs), random forest, 111 
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convolutional neural networks, support vector machine, support vector regression, frequency ratio 112 

models, and weights-of-evidence models (Adamowski et al. 2011; Kim et al. 2016; Rafiei-Sardooi 113 

et al. 2021; Rahmati et al. 2016; Rezaie et al. 2022; Wang et al. 2015; Youssef et al. 2022). 114 

. Example data-driven models for flood predictions include multiple linear regression, artificial 115 

neural networks (ANNs), random forest, support vector machine, and support vector regression 116 

models (Adamowski et al. 2011; Kim et al. 2016; Rafiei-Sardooi et al. 2021; Rahmati et al. 2016; 117 

Rezaie et al. 2022; Wang et al. 2015; Youssef et al. 2022). While there are several issues with 118 

these models, including interpretability, techniques such as SHapley Additive exPlanations 119 

(SHAP) can enhance understanding of these models' decision-making processes (Lundberg and 120 

Lee 2017; Abdollahi and Pradhan 2021). These models enable the identification of key features 121 

that drive flood characteristics.  122 

Previous research has shown that various ML algorithms are effective in predicting flood 123 

extents and generating susceptibility maps, with a focus on classification ML models (Khosravi et 124 

al. 2018; Rahmati et al. 2016; Rezaie et al. 2022; Youssef et al. 2022). However, these studies may 125 

have limitations in terms of their experimental design and scope. For instance, some of these 126 

studies created simplified datasets of flooded and unflooded points using remote sensing. The 127 

datasets were often split into training and validation data, and different ML models were examined 128 

on the same dataset.two subsets, and ML models were examined trained on a portion of the dataset 129 

(training set) and then tested for the remainder of the dataset (validation or test set). This approach 130 

helps in identifying the most effective models for flood predictions based on performance metrics, 131 

such as recall or the area under the Receiver Operating Characteristic (ROC) curve. Another 132 

limitation of these ML studies is the reliance on a single event for training and validation. As such, 133 

it is unclear whether a trained and validated model can satisfactorily predict other flood events. 134 
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These limitations call for studies that evaluate more complex methodologies and a broader range 135 

of scenarios on the effectiveness of ML algorithms for predicting flood characteristics. These 136 

limitations call for studies that evaluate more complex methodologies and a broader range of 137 

scenarios on the effectiveness of ML algorithms for predicting flood characteristics. 138 

Another application of ML models for flood inundation prediction has been 139 

incorporatingcoupling them with physically-based models for improving their performance. Such 140 

applications are based on the hybrid use of ML and physically-based modeling categories. For 141 

instance, Chang et al. (2022) suggested an approach that incorporated principal component 142 

analysis,(PCA), self-organizing maps, and nonlinear autoregressive models with exogenous inputs 143 

to mine spatiotemporal data and forecast regional flood inundation. TheyThe authors recognized 144 

the value of using ML algorithms in conjunctiontogether with a 2D hydraulic model to simulate 145 

urban flood inundation while takingconsidering different rainfall occurrences into accountevents. 146 

Elkhrachy (2022) developed a hybrid approach to predict flash flood depths combining 2D 147 

hydraulic modeling with ML algorithms; water depths simulated by the Hydrologic Engineering 148 

Center's River Analysis System (HEC-RAS; Brunner 2016) model served as inputs totraining and 149 

test datasets for ML algorithms. Löwe et al. (2021) trained an ANN model to identify patterns in 150 

rainfall hyetographs and topographic data to enable fast predictions of flood depths for new 151 

rainother rainfall events and locations (out of training sample data) complemented by 2D 152 

hydrodynamic simulations. Guo et al. (2021) used a convolutional neural network (CNN) model 153 

trained on flood simulation patch data from the CADDIES cellular-automata model to perform 154 

image-to-image translation for rapid urban flood prediction and risk assessment. To effectively 155 

simulate maximum flood extent and depth, Hosseiny et al. (2020) created a system that combines 156 

a hydraulic model with ML algorithms. Zahura et al. (2020) used simulations from high-resolution 157 
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1D/2D physically-based models as training and test data for a random forest model that included 158 

topographic and environmental characteristics to estimate hourly water depths. In these 159 

applications, flood depth, which is important for risk assessments and damage estimates (Merz et 160 

al. 2010), has been predicted by coupling physically-based and ML models. These coupled 161 

modeling studies demonstrated the complimentary benefits of physically-based models along with 162 

ML algorithms in producing flood modeling outputs, but the computational expense is still an 163 

application barrier. Another significant challenge inherent in these studies lies in their dependence 164 

on 2Dhydraulic models for training purposes. Furthermore, there appears to beis a gap in 165 

demonstrating the ability of these studies to successfully predict outcomesflood characteristics 166 

beyond their training samples. For instance, we are unaware ofno studies that convincingly 167 

exhibithave explored the capability of ML models to predict events of greater magnitudeother than 168 

those utilized in their original training datasets. (out-of-sample). 169 

Despite previous efforts, the development of computationally efficient and user-friendly flood 170 

prediction models remains a challenge. ML-based models, although promising and 171 

computationally efficient, have not gained widespread acceptance among practitioners due to 172 

concerns about their reliance on predicting flood characteristics for other events (out-of-sample). 173 

While some studies have demonstrated promising results in generating flood hazard maps by 174 

applying models to new geographical areas not used for training (Bentivoglio et al. 2022; Kratzert 175 

et al. 2019; Zhao et al. 2021), few studies have examined the transferability of coupled ML and 176 

physically-based models for predicting flood depths by applying them to unseen data not used in 177 

training (Guo et al. 2021; Löwe et al. 2021). It, therefore, remains unclear whether an ML-based 178 

model, which is trained, validated, and tested against a historical event, performs satisfactorily in 179 

predicting flood characteristics of other events in the same watershed. Floods originate from 180 
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various sources, especially in coastal areas, where flooding heavily relies on the unique 181 

characteristics of storm events. High wind events tend to generate storm surges that move 182 

upstream, while intense rainfall over upstream watersheds leads to fluvial flooding that moves 183 

downstream towards the coast. Conversely, slow-moving storm systems can cause intense local 184 

rainfall, resulting in overland runoff entering rivers along their paths rather than a concentrated 185 

upstream inflow flood wave. Hence, it is crucial to avoid overfitting an ML model to a single 186 

historical flood event, as it can lead to significant underperformance in handling other events. 187 

A further limitation of past research is the sole focus on predicting greatest flood extents using 188 

classification-based algorithms, while the performance of regression-based ML models for 189 

predicting other important characteristics like flood depths has not been investigated. Additionally, 190 

the importance of spatial distribution of input features has been overlooked in past ML-based flood 191 

modeling. To hindcast a flood characteristic at a given location, the features have been 192 

incorporated at that location, but flooding is generated through contributions by several other 193 

factors that are relevant across the upstream contributing watershed (in inland systems) and/or 194 

from the downstream coastline (in coastal systems). The investigation of these research gaps 195 

highlighted above is crucial to improve our capability in reliably hindcasting maximum flood 196 

depths using computationally efficient and easy-to-use modeling frameworks. 197 

Despite previous efforts, the development of computationally efficient and user-friendly flood 198 

prediction models remains a challenge. ML-based models, although promising and 199 

computationally efficient, have not gained widespread acceptance among practitioners due to 200 

concerns about their reliance on predicting flood characteristics for other events (out-of-sample). 201 

Transferability is particularly crucial given the growing reliance on ML modeling methods, like 202 

ANNs, as suggested by Wenger and Olden (2012). The term “transferability" refers to the model's 203 
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ability to predict different flood events beyond the scope of its training data, validating its 204 

applicability to unseen scenarios, potentially with their unique characteristics (Jiang et al. 2024; 205 

Wagenaar et al. 2018). Furthermore, there has yet to be research investigating the extent to which 206 

flood depths prediction models can be transferred and applied successfully to different events 207 

beyond the initial training settings. It, therefore, remains unclear whether an ML-based model, 208 

which is trained, validated, and tested against a historical event, performs satisfactorily in 209 

predicting flood characteristics of other events in the same watershed. Floods originate from 210 

various sources and the flood characteristics depend on the unique characteristics of storm events. 211 

High wind events tend to generate storm surges that move upstream, while intense rainfall over 212 

upstream watersheds leads to fluvial flooding that moves downstream towards the coast. 213 

Conversely, slow-moving storm systems can cause intense local rainfall, resulting in overland 214 

runoff entering rivers along their paths rather than a concentrated upstream inflow flood wave. 215 

Hence, it is crucial to avoid overfitting an ML model to a single historical flood event, as it can 216 

lead to significant underperformance in handling other events. 217 

A further limitation of past research is the sole focus on predicting greatest flood extents using 218 

classification-based algorithms, while the performance of regression-based ML models for 219 

predicting other important characteristics like flood depths has not been investigated. Additionally, 220 

the importance of spatial distribution of input features has been overlooked in past ML-based flood 221 

modeling. To hindcast a flood characteristic at a given location, the features have been 222 

incorporated at that location, but flooding is generated through contributions by several other 223 

factors that are relevant across the upstream contributing watershed (in inland systems) and/or 224 

from the downstream coastline (in coastal systems). 225 
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This paper aimed to fill thesethe abovementioned research gaps by examining the performance 226 

and transferability of ML models in hindcasting maximum floodwater depths across various events 227 

in a coastal watershed. Our objective was to develop a transferable, computationally efficient 228 

model to hindcast maximum water depths. We aim to evaluate the performance of ML models, 229 

which are trained and tested based on an event, and shed insights on the application of the model 230 

for predicting maximum river flood depths. To achieve this, the for other events as well. Our study 231 

developed a modeling framework based on an ML algorithm. The developed ML-based model 232 

combined the , Multi-Layer Perceptron (MLP) architecture for our ANN model. This algorithm 233 

was coupled with feature selection methods and geospatial data. We evaluated the performance of 234 

this model against one extreme flood event, Hurricane Ida, across a coastal watershed (six-digit 235 

hydrologic unity code [HUC6)—])—Lower Hudson—in Northeastern US. Next, we assessed the 236 

transferability of our developed model across three other extreme events—Hurricanes Isaias, 237 

Sandy, and Irene—in the same watershed. These events encompass varied rainfall intensities, wind 238 

speeds and storm track directions. Unlike past ML-based modeling studies, which focused solely 239 

on predicting flood status (flooded or unflooded), our regression-based model estimates maximum 240 

floodwater depths. This model was also examined against multiple events, more than one single 241 

event that has been the focus of past research (Bafitlhile and Li 2019; Dawson et al. 2006; Hosseini 242 

et al. 2020). The model also considered the spatial dimension for predicting flood. The model also 243 

considered the spatial dimension for predicting maximum water depths at a given location, in 244 

which the features were represented either at that location or across the contributing watershed. 245 

This ML model is generic and can be applied to hindcast floodmaximum water depths at non-246 

gauge river sites to get a denser reconstruction of an event along the river network and hindcast 247 
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water levelsdepths in watersheds with similar drainage area (HUC6 or larger) and flood type 248 

(fluvial and coastal). 249 

 250 

2. Methodology 251 

We developed an ML-based model that hindcasthindcasts maximum floodwater depths at 252 

stream gauges across a coastal watershed during ana flood event (Figure 1). A coastal watershed 253 

receives flood contributions from the inland and coastal systems (i.e.g., fluvial, and tidal). The 254 

model uses geospatial analyses and ML algorithms to hindcast maximum floodwater depths during 255 

an event at river cross-sections of a given watershed. This model is informed by the underlying 256 

physical flood processes represented by a wide array of features (topographic, meteorologic, 257 

hydrologic, land surface, soil and hydrodynamic). 258 

Geospatial operations were conducted to compute the features at stream gauges and/or over their 259 

contributing watersheds (the upstream area that drains water to the gauge) with a careful 260 

consideration ofconsidering the underlying physical processes. We used feature selection 261 

techniques to determine the most key features and used those infor our ML model. Applying 262 

observed data from stream gauges during a flood event, the model was trained, cross-validated, 263 

and tested. We then evaluated the model transferability by examining its performance in three 264 

other extreme flood events. 265 
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 266 

 267 

Figure 1:1. Schematic view of the machine learning (ML)-based model for hindcasting 268 

maximum floodwater depths in coastal watersheds. ANN: Artificial neural network; PCA: 269 

Principal component analysis; SHAP: Shapley additive explanations; MAE: Mean absolute error; 270 
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NRMSE: Normalized root mean squareMDAE: Median absolute error; FQ: ratioRatio of 271 

estimated over observed maximum flood depth. 272 

2.1. Selection and calculation of key features 273 

When developing an ML model, the features play a pivotal role in determining its performance 274 

and estimation capability. By selecting the most relevant and representative features, we empower 275 

the model to discern the underlying patterns and relationships within the data more accurately. The 276 

ultimate objective is to enable the model to comprehend the complexities associated with flooding, 277 

a phenomenon influenced by a myriad of interrelated factors. For an ML estimation accuracy to 278 

be transferableTo develop a transferable ML model for complex physical phenomena of flooding, 279 

the selection process should extend beyond merely choosing features based on their individual 280 

statistical significance. Instead, it should focus on identifying features that collectively contribute 281 

to a holistic representation of the phenomenon. This approach ensures that the ML model can 282 

generalize well to unseen data and handle various real-world scenarios effectively. By 283 

incorporating this comprehensive set of features, the ML model can capture the nuanced 284 

interactions between these features; this enhances the model estimation performance. 285 

We selected key features for our ML-based flood model according to the existingpast research 286 

and the underlying physical processes. Our model considers these features from five broad 287 

categories of geographic location, hydrologic, topographic, land surface, soil, and hydrodynamic 288 

(Table 1). Here, we provide information on how to derive the features to hindcast floodmaximum 289 

water depths during a flood event in a coastal watershed. Aside from the soil category that 290 

represents pre-flood conditions (antecedent soil moisture), all other features represent conditions 291 

during a flood event. 292 

  293 
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 294 

Table 1.1. Machine learning model features and the assignment approaches for stream gauges. 295 

Category Feature Point-
specificbased 

Spatial average 
across the 

contributing 
watershed 

Spatial 
maximum 
across the 

contributing 
watershed 

Geographic 
location 

Distance to rivers   *   
Distance from storm track *     

Distance from the coastline *     

Hydrologic 

Height above nearest drainage (HAND)   *   
Drainage area *     

Flow accumulation *     
Topographic wetness index (TWI) * *   
AntecedentInitial water leveldepth *   

Meteorologic 
Rainfall depth * * * 
Wind speed * * * 

Topographic Elevation *     
 Ground slope * *   
 Slope aspect * *   
 Slope aspect invariability (ASPVAR)  *  
 Curvature * *   
Land surface Imperviousness   *   

Soil Antecedent soil moisture   * *   
Hydrodynamic Storm surge * *   

 296 

By integrating all these factors into our methodology, we developed a flood hindcast model 297 

that accounts forconsiders key processes in a coastal watershedwatersheds. We used a two-step 298 

process to assign feature values to a point located on a stream gauge. Depending on the feature, 299 

we assigned specified values to the gauge itself or its contributing watershed to consider the spatial 300 

dimension in flood generation processes. For the contributing watershed, spatial mean, and 301 

maximum across the contributing watershed of a given stream gauge was computed. This method 302 

ensures that the feature values indicate the overall pertinent physical processes occurring at the 303 

streams and upstream watersheds. Table 1 specifies how each feature was used in our model. 304 
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For features under the geographic location category, we incorporated distance to rivers—a 305 

critical factor in determining flood risk in numerous studiesrisks (Cao et al. 2020; Rafiei-Sardooi 306 

et al. 2021), storm track—specific to the flood event from (National Hurricane Center 2022)—and 307 

distance to the nearest coastline. The proximity of a location to waterbodies, such as rivers or 308 

coastlines, directly influences its vulnerability to flooding. Coastal regions are susceptible to storm 309 

surges, which occur during tropical storms or hurricanes. Storm surges are massive walls of 310 

seawater that get pushed ashore by intense winds. As a result, coastal areas can experience severe 311 

flooding. Storm tracks, however, are pathways in the atmosphere along which storms, such as (e.g., 312 

hurricanes, tropical cyclones, or extratropical storms,) tend to move. These storms often carry 313 

heavy rainfall, intense winds, and storm surges, which can lead to severe flooding in areas they 314 

pass over or affect. The distance to storm track and coastline is both considered “Point-315 

specificbased” as they are specific to individual locations. However, distance to rivers is identical 316 

(zero) at these stream gauges, but different in the contributing watersheds, so; we calculated the 317 

spatial average distance of the contributing watersheds to the rivers. 318 

Under the hydrologic category, we employed four variables of HAND, drainage area, flow 319 

accumulation, topographic wetness index (TWI), and antecedentinitial water leveldepth. HAND 320 

represents the elevation of a location relative to the nearest stream. This feature is widely used in 321 

flood modeling due to its ability to hindcast flood-prone areas by considering topography and 322 

water flow characteristics (Hu and Demir 2021). As its value at the stream gauges is zero, its spatial 323 

average across the contributing watershed was considered. The drainage area provides information 324 

about potential runoff, while flow accumulation feature helps predict water flow paths during flood 325 

events that is previously used by Löwe et al. (2021) and Pham et al. (2021). Both drainage area 326 

and flow accumulation values at point of stream gauge (Point-specific) were captured. TWI was 327 
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calculated using Equation (1) based on the ground slope and drainage area of the contributing 328 

watershed (Beven and Kirkby, 1979), andbased) were captured. TWI was used by (Gudiyangada 329 

Nachappa et al. 2020; Löwe et al. 2021; Pham et al. 2021; Zahura et al. 2020; Zhao et al. 330 

2020)(Gudiyangada Nachappa et al. 2020; Löwe et al. 2021; Pham et al. 2021; Zahura et al. 2020; 331 

Zhao et al. 2020) and calculated using Equation (1) (Beven and Kirkby, 1979). 332 

           𝑇𝑇𝑇𝑇𝑇𝑇  = ln � 𝛼𝛼
tan(𝛽𝛽)�                              (1) 333 

where, α is the upslopeslope of the contributing areawatershed per unit contour length (as known 334 

as the specific catchment area), and β is the local slope gradient in radians. ItsThe TWI value was 335 

considered for both “Point-specific”point-based and "spatial average across the contributing 336 

watershed" to represent the specific location and the overall characteristics of the contributing 337 

watershed. The last feature in this category is antecedentwas initial water leveldepth, which refers 338 

to the stream gauge height one day before the event as; this feature was considered “Point-specific” 339 

for stream gaugespoint-based and explains initial conditions in the study rivers. 340 

The meteorologic category features were precipitation (Rafiei-Sardooi et al. 2021) and wind 341 

speed. Rainfall is the main driving force for floods (Mishra et al. 2022). Storms can bring intense 342 

and prolonged rainfallprecipitation to certain areas. If a storm passes over or near a location, it can 343 

result in excessive precipitation, overwhelming local drainage systems and causing flooding in 344 

low-lying or poorly drained areas. Wind speed is another key feature that can influence the severity 345 

and extent of flooding, especially in the context ofduring hurricanes. Intense winds during storms 346 

and hurricanes generate large and powerful waves in the ocean. These waves can exacerbate the 347 

impact of storm surges, causing even more coastal flooding as they crash onto the shore and flood 348 

areas even farther inland. We obtained daily precipitation and wind speed data for the entire period 349 
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of flood event from weather stations of the National Oceanic and Atmospheric Administration 350 

National Centers for Environmental Information (NOAA’s NCEI 2022). Their maximum values 351 

over a flood event were computed at each stationstream gauge. Using point-based precipitation 352 

and wind speed data, we then created a spatially distributed rainfall and wind speed dataset by 353 

interpolating the maximum values using the Inverse Distance Weighting (IDW) method (Hosseini 354 

et al. 2020). Rainfall depth and wind speed are considered for " Point-specific," "point-based, 355 

spatial average across the contributing watershed,", and "spatial maximum across the contributing 356 

watershed.". These values capture the intensity of the meteorologicalmeteorologic conditions at 357 

individual points and the overall average and maximum values across the upstream watershed. 358 

Elevation, ground slope, slope aspect, aspect invariability (ASPVAR), and curvature were 359 

features under the topographic category (Cao et al. 2020; Chen et al. 2023; Huang et al. 2022; 360 

Khosravi et al. 2018; Rafiei-Sardooi et al. 2021; Sun et al. 2020).(Cao et al. 2020; Chen et al. 2023; 361 

Huang et al. 2022; Khosravi et al. 2018; Rafiei-Sardooi et al. 2021; Sun et al. 2020; Fereshtehpour 362 

et al. 2024). DEM with a resolution of 1/3 arc-second (~10 m) was acquired from the United States 363 

Geological Survey (USGS 2022)., National Elevation Dataset (NED). To remove any fakespurious 364 

depressions, the DEM sinks were filled. Before beginning any hydrological study with DEM data, 365 

this is a suggested step to account for artificial depressions that is frequently employedcan impede 366 

the realistic simulation of water flow, ensuring that the derived water pathways and other 367 

hydrologic computations reflect true surface conditions (Khosravi et al. 2018; D. Zhu et al. 368 

2013)(Khosravi et al. 2018; Zhu et al. 2013). Elevation, ground slope, slope aspect, invariability 369 

of slope directions (ASPVAR), and curvature all were all derived from the DEM. Elevation allows 370 

us to identify low-lying regions prone to floods and hindcast the flood maximum water depths. 371 

Ground slope is one of the mosta key factorsfactor in driving water movement. The ground slope 372 

Formatted: Norwegian (Bokmål)



 

19 

 

of the land, also known as the topography or gradient, plays a crucial role in determining the 373 

direction and velocity at which water flows across the landscape. On sloped terrainterrains, water 374 

flows along the path of least resistance, which is typically downhill.. The slope angle of the slope 375 

determines the speed and volume of surface runoff, influencing the potential for flooding. Slope 376 

aspect provides insights into surface runoff distribution and flow concentrationaccumulation by 377 

indicating the direction that eachof the ground slope facesthat affects hydrologic processes 378 

(Gudiyangada Nachappa et al. 2020; Rafiei-Sardooi et al. 2021). Similar to (Gudiyangada 379 

Nachappa et al. 2020), we dividedGudiyangada Nachappa et al. (2020), we divided the slope aspect 380 

into 10 categories: north (0°-22.5°; 337.5°-360°), northeast (22.5°-67.5°), east (67.5°-112.5°), 381 

southeast (112.5°-157.5°), south (157.5°-202.5°), southwest (202.5°-247.5°), west (247.5°-382 

292.5°), northwest (292.5°-337.5°), and flat (0°). ASPVAR values near zero indicate diverse 383 

catchmentwatershed slope aspects, while values approaching 1.0 imply a dominant direction (Wan 384 

Jaafar and Han, 2012). This feature provided information about surface runoff distribution and 385 

flow concentration by specifying the direction that water would flow across the terrain (Dawson 386 

et al. 2006). Additionally, analyzing the curvature helped us understand how it impacts flood 387 

events, as the topographic curvature plays a role in determining the flow of runoff (Khosravi et al. 388 

2018; Pradhan 2009). Elevation iswas considered "Point-specific",point-based, while ground 389 

slope, and curvature arewere considered for both "Point-specific"point-based and "spatial average” 390 

across the contributing watershed," indicating how these topographic features vary throughout the 391 

entire watershed.. ASPVAR conceptually represents the "spatial average across the contributing 392 

watershed," capturing the overall characteristics of watersheds. 393 

The land surface category was represented by only one variable, imperviousness. On 394 

impervious surfaces, that reduceThe greater the ability of soil to absorb rainfall via infiltration, 395 
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imperviousness, the larger volumesthe volume of surface runoff are produced and propagated 396 

downstream. In fact, impervious. Impervious surfaces increase both the quantityvolume and 397 

velocity of runoff, and this is due to their higherhigh surface smoothness and lowerlow friction to 398 

resist water movement. This rapid flow of water can overwhelm natural waterways, increasing the 399 

risk of flooding. We used the spatial average of imperviousness across the contributing watershed 400 

in theour model. 401 

Soil category included antecedent soil moisture, which reflects the pre-storm saturation extent, 402 

essential for runoff estimates and high moisture flux production from rain-bearing systems 403 

(Ahmadisharaf et al. 2016; Jafarzadegan et al. 2023; Mishra et al. 2022). It is calculated over one 404 

day before the storm and considered for both “Point-specific” and "spatial average across the 405 

contributing watershed." These values indicate the stream gauge surrounding content and its 406 

average value over the entire watershed. 407 

Soil category included antecedent soil moisture, which reflects the pre-storm saturation extent, 408 

essential for runoff estimates and high moisture flux production from rain-bearing systems 409 

(Jafarzadegan et al. 2023; Mishra et al. 2022; Karamouz et al. 2022; Ahmadisharaf et al. 2018). 410 

Soil moisture was calculated one day before the storm and considered both point-based (local soil 411 

moisture adjacent to the stream gauge) and spatial average across the contributing watershed. This 412 

feature explains initial conditions in the study watershed. 413 

In the hydrodynamic category, we used storm surge from tidal gauges on the coast. NOAA 414 

(2023). Storm surge was estimated as the difference between the maximum water leveldepth and 415 

the astronomical tide during a flood event that was downloaded from NOAA (“NOAA Tides & 416 

Currents” 2023).. This feature is crucial in hindcasting the impact of coastal contributions to flood 417 

events. If the flood event does not receive any coastal contributions, this category can be removed 418 
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from the list of model features. It is considered for both “Point-specific”point-based and "spatial 419 

average across the contributing watershed" presenting the stream gauge and its entire watershed 420 

tidal condition. 421 

 422 

2.1.1 Feature selection method 423 

We employed commonmultiple feature selection methods, such as Pearson's correlation 424 

coefficients (Cao et al., 2020; Chen et al., 2023; Lee et al., 2020) and principal component analysis 425 

(PCA) – —a widely used technique in many ML modeling studies (Abdrabo et al., 2023; Chang 426 

et al., 2022; Reckien, 2018) to identify most important features for hindcasting flood depths of a 427 

given event in a watershed. The PCA components were evaluated based on their absolute values, 428 

allowing us to quantify the contribution of each feature to the overall variance. By summing the 429 

absolute values across all features, we obtained importance scores for each feature, which enabled 430 

us to rank them in descending order. While the Pearson’s correlation coefficients are tailored for 431 

assessing linear relationships, the PCA captures both linear and non-linear relationships. The 432 

strength and direction of linear relationships between the features and flood depth were evaluated 433 

using Pearson's correlation coefficient. Through PCA, we determined which principal components 434 

in the feature set captured the most variation. These analyses enabled us to narrow down the initial 435 

list of the features—and forward feature selection that accounts for interactions among the model 436 

features. We applied a step-by-step approach to utilize these three techniques. 437 

First, the Pearson’s correlation coefficients were used to assessing the linear relationships 438 

among the features and target variable. The strength and direction of linear relationships were 439 

evaluated using Pearson's correlation coefficients. These analyses enabled us to narrow down the 440 

initial list of the features. 441 
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Next, PCA was applied to the features retained after the Pearson’s correlation analysis. In the 442 

PCA method, the contribution of each feature to the overall variance is quantified by examining 443 

the eigenvalues associated with each principal component (Abdrabo et al. 2023). Compared to the 444 

Pearson’s linear correlation, the PCA can reveal underlying patterns or structures in the data that 445 

are not immediately apparent.  PCA allows us to understand how much variance each principal 446 

component considers in the dataset, providing a clear measure of feature significance in terms of 447 

explaining the data variance. By aggregating the absolute values across all features, we obtained 448 

the importance for each feature, which enabled us to rank them in a descending order and omit 449 

least important features. 450 

Last, the forward selection method was applied on the features retained. This method then 451 

incrementally added variables, weighing both their individual impact and interactions, enhancing 452 

the model predictive performance by focusing on features with substantial influence on flood 453 

depths (Macedo et al. 2019; Horel and Giesecke 2019; Macedo et al. 2019). This method adds 454 

variables to a model based on their predictive power. This iterative process starts with no variables 455 

and includes the most predictive one at each step, considering both its individual impact and its 456 

interactions with already included variables. This selection continues until adding more features 457 

does not significantly enhance the model performance metric in terms of Akaike Information 458 

Criterion.  459 

 460 

2.2. Machine learning (ML) models 461 

2.2.1. Artificial neural networks (ANNs) 462 

To hindcast the flood depth, the target variable, we employed ANN. This algorithm was trained 463 

via observed flood depths from stream gauges using the key features selected through our feature 464 
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selection (Section 2.1). The choice of ANN was based on previous successful applications in 465 

complex environmental modeling problems (e.g., Adedeji et al., 2022), including flood depth 466 

estimations (e.g., Dawson et al., 2006) (Abrahart, Kneale, and See 2004; Bafitlhile and Li 2019; 467 

Berkhahn, Fuchs, and Neuweiler 2019; Dawson et al. 2006; Rumelhart, McClelland, and Group 468 

1986; J.-J. Zhu, Yang, and Ren 2023). One of the key advantages of using ANN is its capacity for 469 

generalization, as highlighted by Maier et al. (2023), allowing the model to perform well on unseen 470 

data, making it robust and reliable for real-world flood estimations. Additionally, ANN has been 471 

used in flood estimations due to its ability to determine the relationship between rainfall and runoff 472 

without relying on specific physical processes, thus addressing the complexities and limitations 473 

encountered in hydrologic models (Bafitlhile and Li, 2019). ANNs are computing systems inspired 474 

by the biological neural networks that constitute animal brains (Dawson et al., 2006, p. 200; 475 

McCulloch and Pitts, 1943). They are designed to simulate the behavior of biological systems 476 

composed of "neurons". ANNs are composed of nodes, or "artificial neurons", connected and 477 

operate in parallel. Each connection is assigned a weight that represents its relative importance. 478 

During the learning phase, the network learns by adjusting these weights based on the input data 479 

it is processing (McCulloch and Pitts, 1943). ANNs have also been widely utilized in flood 480 

estimations due to their ability to model complex relationships and their tolerance for noisy data. 481 

Considering the robustness, accuracy, and proven success of ANN in flood estimation tasks, it was 482 

deemed suitable for our flood depth estimations. Here, ANN was implemented using python’s 483 

Keras library with TensorFlow backend. 484 

 485 
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2.2.2. Machine learning (ML) model pre-processing and implementation 486 

The observed flood data and features were split into training and testing sets, with 70% to 90% 487 

of the data used for training and 10% to 30% for testing (Joseph 2022; Nguyen et al. 2021). The 488 

numerical features in the data were standardized using the StandardScaler function from the Scikit-489 

learn library of python. Hyperparameter optimization is a step in improving the performance of 490 

ML models. This process involves identifying the optimal hyper-parameter values for ML 491 

classifiers. We used the Random Search cross-validation approach (Boulouard et al. 2022; Hashmi 492 

2020) to perform hyper-parameter optimization. This approach performs a randomized search on 493 

hyperparameters using cross-validation. The hyperparameters we optimized here included the 494 

number of layers, units, activation functions, optimizer, regularization rate, batch size, and epochs. 495 

The best hyperparameters were selected based on the negative mean squared error. The ANN 496 

model was trained using the training data and the best hyperparameters obtained from the 497 

optimization process. To prevent overfitting, we used early stopping and model checkpointing 498 

during the model training. Early stopping was implemented to stop training when the validation 499 

loss stopped improving, and model checkpointing was used to save the model with the lowest 500 

validation loss. Cross-validation was performed using a 5-fold cross-validation strategy during the 501 

hyperparameter optimization process. This strategy involved splitting the training data into five 502 

subsets and training the model five times, each time using a different subset as the validation set. 503 

We allocated 90% of the data for training and 10% for testing. While the portion for test is small, 504 

the utilization of cross-validation, randomized hyperparameter search, early stopping, and model 505 

checkpointing collectively works to construct a model less susceptible to overfitting on a particular 506 

test set. This allocation of 10% for testing, combined with these methodologies, is designed to 507 

enhance the model's ability to generalize across diverse scenarios. 508 
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 509 

To hindcast flood depth, our target variable, we employed ANN with MLP architecture. This 510 

algorithm was trained via observed maximum water depths from stream gauges using the key 511 

features selected through our feature selection (Section 2.1). The choice of ANN was based on 512 

previous successful applications in flood depth modeling (e.g., Dawson et al., 2006; Abrahart, 513 

Kneale, and See 2004; Bafitlhile and Li 2019; Berkhahn, Fuchs, and Neuweiler 2019; Dawson et 514 

al. 2006; Rumelhart, McClelland, and Group 1986; Zhu, Yang, and Ren 2023). One of the 515 

strengths of using ANNs in modeling tasks like flood predictions is their notable flexibility and 516 

capability to approximate complex, non-linear relationships, potentially enhancing their 517 

performance for unseen data. It is essential, however, to acknowledge that the capacity to 518 

generalize depends on selecting relevant features that explain the underlying physical processes 519 

and the spatiotemporal variability, model selection, parameterization, and training the model. 520 

ANNs are designed to simulate the behavior of biological systems composed of "neurons". These 521 

algorithms composed of nodes, or "artificial neurons", connected and operate in parallel. Each 522 

connection is assigned a weight that represents its relative importance. During the learning phase, 523 

the network learns by adjusting these weights based on the input data it is processing (McCulloch 524 

and Pitts, 1943). Here, ANN was implemented using python’s Keras library with TensorFlow 525 

backend. 526 

 527 

2.2.2. Machine learning (ML) model pre-processing and implementation 528 

The observed water depths and features were split into training and testing sets, with 70% to 529 

90% of the data used for training and 10% to 30% for testing as suggested by Joseph (2022) and 530 

Nguyen et al. (2021). After exploring various splits within the 70% to 90% range for training data, 531 
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the 90% allocation for training (104 out of 116 stream gauges) was determined to be optimal for 532 

our specific dataset and model based on preliminary testing, the model complexity, and the desire 533 

to maximize the amount of data used for training while still retaining satisfactory results for the 534 

test phase (12 out of 116 stream gauges). While the train percent (90%) seems high and suggests 535 

potential for model overfitting, this same model was most successful in the transferability across 536 

other three flood events (out-of-sample). The allocation of 10% of the data for testing serves to 537 

provide an unbiased appraisal of the model generalization performance after training and 538 

hyperparameter optimization. This evaluation process, complemented by methodologies such as 539 

cross-validation and hyperparameter optimization, is structured to identify a model configuration 540 

that is likely to perform well across unseen data. This approach aims to ensure that the final model, 541 

selected based on its performance on the validation set during hyperparameter optimization, is 542 

tested on entirely unseen data to confirm its generalization ability. In preparing our dataset for the 543 

neural network model, numerical features were standardized to have a mean value of zero and a 544 

standard deviation of one. This scaling process ensured that each feature contributes 545 

proportionately to the model predictions, mitigating the potential bias towards variables with larger 546 

scales. 547 

Hyperparameter optimization is a step in improving the performance of ML models. This 548 

process involves identifying the optimal hyper-parameter values. We used Bayesian Search to 549 

perform hyperparameter optimization. Cross-validation, particularly through methodologies like 550 

the Prediction Sum of Squares criterion for predictor selection and for parameter estimation and 551 

predictive error assessment, has been foundational in improving predictive models. This approach 552 

distinguishes between model selection and assessment (Allen 1974; Geisser 1975; Stone 1974). 553 

Cross-validation was performed using a 5-fold cross-validation strategy during the hyperparameter 554 
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optimization process. Opting for 5-fold cross-validation over hold-out validation in our 555 

hyperparameter optimization process reflects a balance between comprehensive model evaluation 556 

and computational efficiency. The hyperparameters we optimized here included the number of 557 

layers, units, activation functions, optimizer, regularization rate, batch size, and epochs. Bayesian 558 

search offered a targeted search based on probabilistic modeling, iteratively refining the search 559 

area based on past evaluations to efficiently select the most promising hyperparameter sets. The 560 

selection of the optimal hyperparameters was guided by minimizing the cross-validation MSE, 561 

ensuring the chosen configuration significantly improved the model predictive performance for 562 

maximum water depths. The ANN-MLP model was trained using the training data and the best 563 

hyperparameters obtained from the optimization process. 564 

To prevent overfitting, we used early stopping and model checkpointing during the model 565 

training. Early stopping was implemented to stop training when the validation loss stopped 566 

improving, and model checkpointing was used to save the model with the lowest validation loss. 567 

The strategy involved splitting the training data into five subsets and training the model five times, 568 

each time using a different subset as the validation set. This evaluation process, complemented by 569 

methodologies such as cross-validation and hyperparameter optimization, is structured to identify 570 

a model configuration that is most likely to perform well across unseen data. 571 

2.2.3. Model performance evaluation 572 

The performance of the ANN-MLP  model was evaluated using coefficient of determination (R2), 573 

Mean Absolute Errormean absolute error (MAE), Normalized Root Mean Square Errornormalized 574 

root mean square error (NRMSE), median absolute error (MDAE), and the ratio of estimated over 575 

the observed maximum flood depth (FQ; Schubert and Sanders 2012). The R2 metric measures the 576 

proportion of variance in the dependent variable predictable from the independent variables. The 577 
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MAE measures the average magnitude of the errors in a set of estimations without considering 578 

their direction (i.e., overestimation or underestimation). The NRMSE is a metric that quantifies 579 

the normalized average magnitude of the prediction error. It assesses the relative size of the root 580 

mean square error (RMSE) by considering the RMSE in relation to the average value of the 581 

observationobservations. It is commonly used in regression analysisanalyses and a smaller 582 

NRMSE value indicates a higher level of agreement between the estimated values and the actual 583 

observations (Stow et al. 2003; Ahmadisharaf Ebrahim et al. 2019). These metrics were calculated 584 

for both training and testing datasets to assess the model performance.The MDAE is a metric that 585 

measures the median of the absolute differences between predicted values and actual (observed) 586 

values. Unlike the MAE, which averages these differences out, the MDAE focuses on the midpoint 587 

of these differences, making it less sensitive to the outliers. This characteristic can make the 588 

median error a more robust metric in the regional water depth estimation where the data contains 589 

significant outliers. It is a common metric used in ML models such as Sheridan et al. (2019); Dixit 590 

et al. (2022); Park, Ju, and Kim (2020). These metrics were calculated for both training and testing 591 

datasets to assess the model performance. 592 

 593 

2.2.4. Model interpretationexplainability 594 

To interpret the model and understandexplore the contribution of each feature to the estimation, 595 

we used SHapley Additive exPlanations (SHAP) that is a game theoretic approach to explain the 596 

output of an ML model (Lundberg and Lee, 2017). It connects optimal credit allocation with local 597 

explanations using the classic Shapley values from game theory and their related extensions. The 598 

SHAP values interpret the impact of having a certain value for a given feature in comparison with 599 

the estimations we would make if that feature took some baseline value (Abdollahi and Pradhan, 600 
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2021). In other words, SHAP estimates how much each feature contributes to the predictive model 601 

prediction output for a particular instance. The SHAP results on the feature importance and their 602 

impacts on the model estimationprediction can be presented using a plot to visually show the 603 

distribution of impacts of each feature on the model output. A positive SHAP value indicates that 604 

the feature's presence increases the model output, while a negative SHAP value indicates that it 605 

decreases the model output. Further, we visually evaluated the performance of our model in terms 606 

of bias (overestimation and underestimation) using scatter plots. 607 

 608 

2.3.  Model transferability across flood events 609 

The ML-based model, which was initially developed, trained, and validated based on one flood 610 

event, was subsequently examined as is (with no additional parameter tuning) against other events 611 

in terms of the performance and generalizability in hindcasting maximum floodwater depths. By 612 

examining our model against different flood events, we aimed to evaluate its effectiveness in 613 

hindcasting floodmaximum water depths across diverse events. This evaluation allowed us to 614 

assess the ML model'smodel ability to handle varying flood conditions and its potential for 615 

application in different events in the same watershed. 616 

 617 

3. Study area 618 

The study area is a HUC6 watershed, the Lower Hudson Watershed a six-digit hydrologic unit 619 

code (HUC 020301) according to the USGS classification.). The 10,068 km2 watershed is in the 620 

Northeastern United States (Figure 2) spanning parts of three states, Connecticut, New Jersey, and 621 

New York. This watershed has a humid subtropical climate with hot summers and mild winters. 622 

The highest elevation is ~450 m above mean sea level. Residential, agriculture, and forest are the 623 
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dominant land uses in the watershed according to the 20222021 National Land Cover Dataset 624 

(NLCD) (USGS 2022). Large metropolitan areas like New York are in the study watershed. The 625 

population density was estimated at 344 persons per square km in 2020 (USCB, 2020), with higher 626 

concentrations in urban areas like New York and lower densities in rural parts. Several major rivers 627 

drain into the watershed, including the Hudson River, which flows for 496 km (about the length 628 

of New York State). The ground slope varies from 87.5% in the mountainous parts to 0%near zero 629 

in the coastal regionparts. 630 

We studied four major flood events in the study area. The primary event for model 631 

development was Hurricane Ida in 2021, while three other hurricanes—Isaias (2020), Sandy 632 

(2012) and Irene (2011)—were used to assess the model transferability. Hurricane Ida, a 633 

devastating Atlantic Category 4 hurricane that made landfall in September 2021, hit Louisiana, 634 

and progressed toward the Northeastern United States. The hurricane caused considerable floods 635 

and significantly impacted both the west-south-central region, including New Orleans, and the 636 

northeastern region, with severe damages reported in New York City and Philadelphia (Beven II, 637 

Hagen, and Berg 2022; J. Wang et al. 2022)(Beven II, Hagen, and Berg 2022; Wang et al. 2022). 638 

The storm remnants sent record-breaking rainfall to the New York region as they headed northeast, 639 

resulting in flash flooding (Beven II, Hagen, and Berg 2022). The extensive flooding and severe 640 

property destruction caused by Hurricane Ida's record-breaking rains highlighted the importance 641 

of comprehending the hurricane effects on affected areas. Furthermore, strengthening regional 642 

resilience to catastrophic flooding episodes requires the development of effective mitigation 643 

strategies. The three other events, which were used to evaluate the model transferability, were also 644 

most recent major hurricanes after 2000, with available stream gaugestreamflow data and differing 645 

track and intensity. In 2020, Hurricane Isaias, a Category 1 hurricane, made a quick trip along the 646 
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East Coast, bringing with it severe rain and floods, especially in the Mid-Atlantic and Northeast. 647 

The storm's rapid passage caused several deaths and extensive power losses (Latto, Hagen, and 648 

Berg 2021). In 2012, superstorm Sandy, commonly known as Hurricane Sandy, struck the 649 

Northeast and caused severe damage. It produced significant flooding due to the intense storm 650 

surge and torrential rains, especially in New York and New Jersey, where the storm surge reached 651 

record heights (Blake et al. 2013). In 2011, a huge and catastrophic storm named Hurricane Irene 652 

affected a major portion of the Eastern Seaboard. Heavy rains from the storm caused significant 653 

flooding, especially in Vermont, where it was the worst flooding in over a century for that state 654 

(Lixion A. and Cangialosi 2013). 655 

 656 

Figure 2.2. Lower Hudson River Watershed. 657 
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 658 

3.1. Data collection 659 

Table 2 lists the data used for the study area alongside their source and spatial and 660 

temporalspatiotemporal resolutions. We acquired instantaneous stream gauge height data from the 661 

USGS’s National Water Information System to analyze water levelsdepths during the four flood 662 

events. While the features’ data had different spatial resolutions, we did not make them consistent 663 

because only at-point (stream gauges) or aggregated spatial statistics of contributing watersheds 664 

were used in the ML model; no combinations of the features were needed. 665 

Table 2. Model features and data sources and resolutions in the study area. NHDPlus: National 666 

Hydrography Dataset Plus; NED: National Elevation Dataset; NWIS:  National Water 667 

Information System. 668 

Category Feature Source Spatial 
resolution 

Temporal 
resolution 

Geographic 
location 

Distance to rivers 

NHDPlus 

 — —  

Distance from storm track  —  — 

Distance from the coastline  —  — 

Hydrologic 

Height above nearest drainage (HAND) NED 10 m  — 

Drainage area   —   — 

Flow accumulation    —  — 

Topographic wetness index (TWI)    —  — 

Initial water depth NWIS     

Meteorologic 
Rainfall depth 

NCEI  — Daily 
Wind speed 

Topographic 

Elevation 

NLCD 10 m 

— 

Ground slope  — 

Invariability of slope directions (ASPVAR) — 

Curvature  — 

Land surface Imperviousness NLCD 30 m —  

Soil Antecedent soil moisture   ERA5  — Daily 

Hydrodynamic Storm surge NOAA Tides and Currents  — Sub-hourly 

 669 
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The study watershed embraces 116 stream gauges, seven weather stations and two tidal gauges 670 

(Figure 3). These gauges and stations recorded the data for all the four events (Hurricanes Ida, 671 

Isaias, Sandy, and Irene). The drainage area of the contributing watersheds of the stream gauges 672 

varies from 5.5 to 2,104 km2. The range of maximum recorded flood maximum water depths, 673 

rainfall, and antecedent soil moisture atnear the stream gauges during the four hurricanes are 674 

presented in Table 23. It shows that Hurricane Ida had a narrower range of water levels, even 675 

though it generated lower cumulative Hurricanes Ida and Irene associated with much higher 676 

rainfall depths. In contrast, Hurricane Irene had the broadest range in river water levels, likely 677 

dueThese increased precipitation levels contribute directly to the significant amount of rainfall it 678 

encountered during the event. Also,flood severity, as they can overwhelm drainage systems and 679 

lead to runoff exceeding riverbank capacities. The percent soil moisture before the storms ranged 680 

from fairly dry conditions (9%) to nearly half saturated (43%). Ida and Irene had similar antecedent 681 

soil moisture conditions, which could have influenced their respective river water levelsdepths. 682 

Hurricane Sandy had a higher antecedent soil moisture percentage range of 17% to 38% compared 683 

to both Ida and Isaias, indicating a potentially higher level of saturation before the storm'sstorm 684 

arrival. This may havelikely contributed to Sandy's significant storm surge, which ranged from 685 

1.97 to 2.85 m, compared to Ida and Isaias with storm surge ranges of 0.25 to 0.67 m and 0.20 to 686 

0.76 m, respectively. Maximum wind speeds during these events were quite high, especially for 687 

Hurricanes Isaias, Sandy, and Irene. The proximity to the central path of the storm influences the 688 

intensity of the rainfall, wind speed, and storm surge experienced. Shorter distances to the storm 689 

track, particularly in Ida and Irene, correlated with more severe weather conditions and, 690 

consequently, greater flood depths. 691 

 692 
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Table 23. The range of river water leveldepth, cumulative rainfall depth and antecedent soil 693 

moisture in the flood events. 694 

Hurri
caneE
vent 

Year  

River 
water 

leveldepth 
(m) 

 Cumulative 
rainfall depth 

(mm) 

Antecedent 
soil 

moisture 
(%) 

Storm 
Surge 
(m) 

Wind 
Max 
speed 
(m/s) 

Distance 
to storm 

track 
(m) 

Ida 2021 0.85-36.66 
0.01-

45.43121.92-
201.81 

21-43% 0.25-0.67 27.64-35.49 0.09-1.1 

Isaias 2020 0.22-35.35 17.37-62.22 9-39% 0.20-0.76 48.29-65.33 0.23-1.14 
Sandy 2012 0.24-35.98 19.83-56.53 17-38% 1.97-2.85 63.43-76.97 0.77-2.16 
Irene 2011 1.03-37.33 147.29-217.74 19-43% 1.05-1.37 51.05-60.68 0.00-0.93 

 695 
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 697 

Figure 3.3. Stream and tidal gauges and weather stations in the study watershed. 698 

 699 

Table 3: Model features and data sources and resolutions in the study area. NHDPlus - National 700 

Hydrography Dataset Plus; NED - National Elevation Dataset; USGS NWIS - United States 701 

Geological Survey National Water Information System; NCEI - National Centers for 702 

Environmental Information; NLCD - National Land Cover Database; ERA5 - Fifth Generation of 703 

the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis; NOAA - 704 

National Oceanic and Atmospheric Administration. 705 

Category Feature Source Spatial 
resolution 

Tempor
al 
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resolutio
n 

Geographic 
location 

Distance to rivers 

NHDPlus 

 — —  

Distance from storm track  —  — 

Distance from the coastline  —  — 

Hydrologic 

Height above nearest drainage 
(HAND) NED 10 m  — 

Drainage area   —   — 

Flow accumulation    —  — 
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 706 

Figure 4 displays the variations inspatial variability in maximum water levelsdepths and storm 707 

tracks for all hurricanes. The total slope aspect iswas south, which resultsresulted in shallower 708 

depths at the upper point of the river upstream. As we movemoved southward along the river'sriver 709 

mainstream, water depths became deeper water levels are observed. 710 
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Figure 4. Water levels712 

 713 

Figure 4. Maximum water depths across the study area during studied the four study hurricanes. 714 

 715 

4. Results and discussion 716 

4.1. Feature selection 717 

4.1.1. Pearson’s correlation matrix 718 
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As a result ofUsing Pearson's correlation analyses, we eliminated five features with absolute 719 

correlation coefficients greater than >0.70, the cutoff threshold suggested in previous studies (Cao 720 

et al. 2020; Chen et al. 2023; Lee et al. 2020). TheAccording to Figure 5, the strong correlation 721 

coefficient of 0.99 between "Drainagedrainage area" and "Flowflow accumulation", indicated that 722 

both variablesfeatures capture similar information about water flow and storage in the watershed. 723 

To avoid collinearity issues, "Flowflow accumulation" was excluded from further analyses. 724 

Similarly, the high due to its weaker correlation coefficient of 0.97 between "Rain-MAX" and 725 

"Rain-Mean" suggestedwith flood depth. Similarly, features that they offer similar information 726 

about maximum and average rainfall values across the watershed. Consequently, "Rain-Mean" 727 

wasdemonstrated weaker correlations with flood depth or were highly correlated with multiple 728 

features, were excluded from consideration. Additionally, a correlation coefficient of 0.94 between 729 

"Tide-Mean" and "Tide-Point" indicated that the average tide level within the watershed closely 730 

resembled tide levels measured at stream gauge points. As a result, "Tide-Point" was excluded 731 

from the analysis. By considering the correlation coefficients and the potential redundancy among 732 

features, we. These analyses ensured that independent variables, which are essential for modeling 733 

flood maximum water depths, are selectedretained in our modeling. 734 
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4.1.2. Principal Component Analysis (PCA) 735 

We736 

 737 

Figure 5. Heatmap of Pearson correlation matrix for the initial model features. 738 
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Next, we conducted PCA to assess the importance of variousthe features retained by Pearson’s 739 

correlation analyses in hindcasting floodmaximum water depths. The results of the PCA analysis 740 

unveiled the key features analyses showed that significantly influence the flood depth. 741 

Interestingly, we identified the "Slope-Point", river slope at the stream gauges, “Slope-742 

Aspect,”gauge, slope aspect, slope invariability, curvature at the stream gauge, and distance from 743 

average curvature across the coastline ascontributing watershed were the least keyimportant 744 

features for capturing the overall variability of maximum flood depth. Consequently, we excluded 745 

itthese features from furtherour analyses. The lesser importance of “Slope-Point”slope at the 746 

stream gauge and “Slope-Aspect”slope aspect may be since river slope is related to bathymetry, 747 

which is typically not represented well by DEMs (Bhuyian and Kalyanapu 2020). 748 

The forward feature selection method showed that initial water depth, elevation, TWI, 749 

antecedent soil moisture, rainfall, and distance from storm surge at the stream gauge (all point-750 

based), as well as average storm surge and maximum wind speed across the contributing 751 

watershed, along with their interactions were selected for the final ML model. Considering the 752 

interactions among the features improved the model performance. This was expected because a 753 

combination of some of the features better explain the underlying physical processes. For instance, 754 

using the combination of storm surge and TWI as one unified feature can be an indication of the 755 

physical propagation of storm surge that occur primarily in waterways. 756 

 757 

4.2. Machine learning (ML) model development 758 

4.2.1. Model development and performance evaluation 759 

We conducted a thorough hyperparameter optimization process to fine-tune the neural network 760 

model for estimating the flood depth of Hurricane Ida. The optimization process involved 500 fits, 761 
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with each fit considering 100 candidates for each of the five folds in the cross-validation. This 762 

helps to ensure that the model's performance is robust and not dependent on a specific 763 

training/testing split. As a result, the model became more effective in making estimations on 764 

unseen data, as indicated by the enhanced testing performance. Furthermore, the optimization 765 

process allowed us to find the best combination of hyperparameters that optimized the model's 766 

performance. The best hyperparameters were identified as follows: 50 units, a regularization rate 767 

of approximately 0.104, the sgd optimizer, one layer, 600 epochs, a batch size of 8, and the elu 768 

activation function. These optimized hyperparameters were then used to train the ANN model and 769 

evaluate its performance. This meticulous hyperparameter optimization approach ensured that the 770 

model was fine-tuned to achieve the best possible performance for estimating flood depths. 771 

In the development of our ANN-MLP model for hindcasting maximum water depths during 772 

Hurricane Ida, we used Bayesian search with a cross-validation strategy for hyperparameter 773 

optimization. Details of the optimization can be found in Supplementary Material. 774 

The model demonstrated an excellent performance on the training dataset, with an  (R2 of 0.93, 775 

indicating that the model can explain 93% of the variance in the training data. The= 0.94, MAE 776 

for the training data was= 0.64 m, MDAE = 0.44 m, and NRMSE was 28%, suggesting that the 777 

model estimations were satisfactory.= 24%). On the test dataset, the model achieved an R2 of 778 

0.87,91, the MAE of 0.8777 m, MDAE was 0.42 m, and the NRMSE was 33%. These values also 779 

show that28%, further suggesting the model's performance was satisfactory duringperformance by 780 

the test phase but slightly poorer than the train phasemodel. The training history plot showed that 781 

the model performance improved with each epoch during training, indicating that the model was 782 

learning from the data. The model training process stopped at epoch 7587 due to early stopping. 783 

 784 
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4.2.2. Model interpretationexplainability 785 

Figure 5 provides an overview of the influence of distinctive features on the model estimation 786 

on flood depths. The SHAP values measure the contribution of a feature to the estimation for each 787 

sample in comparison to the estimation made by a model trained without that feature. 788 

 789 

Figure 5. Shapely additive explanations (SHAP) summary plot of the flood model. 790 

 791 

The most influential features in estimating flood depths are antecedent water level, indicating that 792 

streams with higher water levels before an event are subject to greater flood depths. When 793 

combined with additional rainfall or water input during a flood, they lead to increased flood depths. 794 
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Similarly, spatial maximum wind speed across the contributing watershed, antecedent soil 795 

moisture at point, and elevation are other significant factors affecting flood depth estimations, with 796 

greater values associated with higher estimated flood depths. Intense winds during a hurricane 797 

accelerate the movement of floodwaters, leading to greater depths in certain areas, while saturated 798 

soil has limited capacity to absorb additional water, resulting in more surface runoff and higher 799 

flood depths.Figure 6 shows the performance of the ML model in hindcasting maximum water 800 

depths at stream gauges, comparing estimated values against observed values for both training and 801 

testing datasets. In the training phase (Figure 6a), points are clustered along the identity line, but 802 

tend to underestimate large water depths. This pattern suggested that the model learned the training 803 

data well, especially for smaller water depths, but did not fully capture the behavior that leads to 804 

the larger water depths. The underestimation of high values is expected due to the lower number 805 
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of observations. The test data (Figure 6b) revealed a similar pattern of underestimation towards 806 

higher values; this can be since the number of observed high water depths is small. 807 

  808 

Figure 6. Scatter plots of estimated vs observed maximum water depths for: (a) train and (b) test 809 

data. The identity line represents a perfect match between the estimated and observed values. 810 

Figure 7 provides an overview of the influence of distinctive features on the model estimation 811 

on maximum water depths. Features like the antecedent soil moisture and maximum wind speed 812 

across the contributing watershed were found to substantially influence the water depth 813 

estimations. The inclusion of elevation as an important feature in our study closely aligns with the 814 

findings of Hosseini et al. (2020) and Chen et al. (2023) in their flash flood susceptibility and 815 

hazard assessment oneassessments on a small non-coastal watershedtidal and the other on a large 816 

coastal watershed. Elevation has been consistently recognized as a crucial factor influencing flood 817 

occurrences, as it directly affects the water flow and drainage patterns within a watershed (Rafiei-818 

Sardooi et al. 2021).  819 
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On the other hand, features such as the spatial average of distance to rivers across the 820 

contributing watershed, the spatial average of HAND across the contributing watershed, and 821 

rainfall both at point and the spatial maximum of it across the watershed were identified as the 822 

least key features in estimating flood depths. This can be attributed to the fact that our target is 823 

hindcasting flood depths at stream gauges, while these input features are more associated with 824 

flood depths occurring away from the stream network. Consequently, these features exhibit a 825 

limited impact on the model predictive performance when compared to other factors. The spatial 826 

average of distance to rivers and HAND have limited variability within our watershed and might 827 

not fully capture relevant information about geography, topography, and drainage patterns, leading 828 

to reduced discriminatory importance in flood depth estimation models.  829 

The finding about the less importance of rainfall in flood estimation concurs with the results 830 

reported in the study by Salvati et al. (2023) in pinpointing vulnerable regions within a non-coastal 831 

medium-sized watershed. The study suggests that rainfall may have a lower impact on flood 832 

occurrences or flood depth estimations compared to other influential factors. This highlights the 833 

significance of considering a comprehensive set of variables in flood modeling to accurately 834 

capture the underlying relationships and improve estimation performance. The model ability to 835 

capture these complex relationships demonstrated its potential utility in flood estimation and 836 

management. 837 

 838 
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 839 
Figure 7. Aggregated Shapely additive explanations (SHAP) feature importance radar plot of the 840 

ML model for hindcasting maximum water depths. 841 

On the other hand, features such as the interaction of initial water depth and rainfall and local 842 

rainfall were identified as the least key features in estimating maximum water depths. In a coastal 843 

context, where the landscape reaction to oceanic events often overshadows rainfall affect, this 844 

outcome is noticeable. The finding about the less importance of rainfall in flood estimation concurs 845 

with the results by Salvati et al. (2023) in pinpointing vulnerable regions within a non-coastal 846 

medium-sized watershed. The study suggested that rainfall may have a lower impact on flood 847 

occurrences or flood depth estimations compared to other influential factors. The consideration of 848 
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the interactions between rainfall and other features may also obscure the direct influence of rainfall 849 

on the model’s predictions, especially in complex flood modeling. 850 

It is important to note that the least important features are not necessarily uninformative; they 851 

simply contribute less to the model's output relative to the most important features. This can be 852 

due to the nature of the data, the modeling approach, or the specific context of the problem being 853 

addressed. 854 

4.3. Examining the machine learning (ML) model transferability across flood events 855 

The transferability of the trained and tested model (against Hurricane Ida) was examined by 856 

applying it to three other events within the same watershed. Table 4 summarizes the evaluation 857 

metrics for the three hurricanes. 858 

 859 

Table 4.2. Model performance across in historical flood events. MAE -: mean absolute error; 860 

MDAE: Median Absolute Error; RMSE -: root mean square error,; FQ -: ratio of estimated over 861 

observed maximum flood depth. 862 

Flood event R2 
MAE MDAE NRMSE FQ 

(meters) (%)(meters) (%) (%) 

Original Modelmodel 

Hurricane Ida 0.9294 0.6664 290.45 24.1 138.1 

Transferability 

Hurricane Isaias 0.7773 1.4454 800.85 32286.3 325.6 
Hurricane Sandy 0.70 01.71 1.6978 109.2 366370.2 
Hurricane Irene 0.885 1.1912 430.85 11336.7 112.6 

     
 863 

These results demonstrated the model ability to generalizetransfer across different hurricanes 864 

within the same watershed (R2>0.7170). With aan MAE less than 1.6971 m in all hurricanes, our 865 
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model'smodel performance is consistent with the CNN model of Guo et al. (2021), demonstrating 866 

its capability for reasonablesatisfactory flood depth estimates under hurricane conditions.. 867 

However, when compared to the original model performance on Hurricane Ida, the R2 values and 868 

other metrics show weaker model performance for the transferability to other hurricanes, 869 

suggesting reduced estimative accuracy, but not to the extent that the model performance becomes 870 

unsatisfactory.  871 

Figure 6 presents the flood estimations for all four events. In both Hurricanes Ida and Irene, 872 

the model exhibited patterns of overestimation and underestimation across the study watershed. 873 

For Hurricanes Isaias and Sandy, we primarily observed overestimations, which may be attributed 874 

to their storm track locations. Furthermore, based on Figure 4, we mostly observe overestimation 875 

in shallower locations and underestimation for deeper water levels at the stream gauges. This 876 

pattern aligns with the southward total slope aspect, where the upper point of the river tends to 877 

have shallower depths and the mainstream exhibits deeper water levels. 878 

The model achieved an R2Figure 8 shows the relationship between observed and estimated 879 

maximum water depths for the four storm events. Most observed water depths for the hurricanes 880 

were low. For all four events, the data points suggested that the model tends to underestimate the 881 

high water depths and overestimate the low water depths (Figure 8). The plots for Hurricanes 882 

Sandy and Irene show a more dispersed set of points, suggesting a wider variance in the model 883 

estimates compared to the observations. This implied that the model is less accurate in capturing 884 
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the flood dynamics of these events or that these events have unique characteristics that are not 885 

fully learned by the ML model. 886 

 887 

Figure 8. Scatter plots of 0.80 for estimated vs observed flood depth for the four hurricanes. 888 

For Hurricane Ida, our original model, 32% of the stream gauges had an FQ between 90% to 889 

110%, implying satisfactory estimates at these gauges (Gallegos, Schubert, and Sanders 2012; 890 
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Schubert and Sanders 2012). Hurricanes Irene, scoring 0.77 for Isaias and 0.71 for Sandy and 891 

Isaias had fewer gauges with moderate FQ values of 16%, 14% and 3.5% out of all stream gauges 892 

respectively, suggesting that the model estimations were less satisfactory for these events 893 

compared to Ida in terms of bias. However, the transferability was still more successful for Irene 894 

than the other two hurricanes, similar to what we found based on the other metrics (Table 4). 895 

We attributed the model transferability performance to four main factors: water depth, 896 

antecedent soil moisture, storm track and the primary driver of flooding. Based on tableTable 2, 897 

Hurricanes Ida and Irene exhibited significant similarities in river water levels and antecedent soil 898 

moisture. Given that river water level is the target variabledepths and antecedent soil moisture is 899 

a crucial feature,, which influenced their respective river water depths. These two hurricanes had 900 

similar antecedent soil moisture conditions, while Hurricane Sandy had a higher antecedent soil 901 

moisture percentage range of 17% to 38% compared to both Ida and Isaias, indicating a potentially 902 

higher level of saturation before the storm arrival. These partly explain the better model 903 

transferability for Hurricane Irene compared to Hurricanes Isaias and Sandy areis expected.  904 

The spatial relationship betweenoriginal storm trackstrack of Hurricane Ida was located to the 905 

watershed southeast, moving northeast, and remained fully outside the watershed locations also 906 

plays a part in the model performance. Both Hurricanes Ida and Irene followed similar storm 907 

tracks, located on the watershed's eastern side within a comparable distance range. In contrast, 908 

Irene tracked were on the west side of (Figure 4). Hurricane Irene's path, which was somewhat 909 

similar to Ida's, stretched from the southeast to the northeast, resulting in the best model 910 

transferability. The key difference is that Irene's storm path lays inside the watershed, and 911 

Hurricane Sandy was further south along its eastern border. Consequently, the model, assuming a 912 

track similar to Ida's (the event that the model was trained for), underestimated maximum water 913 
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depths during Hurricane Irene. For Hurricanes Isaias and Sandy, which the storm track was farther 914 

from the watershed. The model input feature "distance to storm track" played a and dissimilar from 915 

Ida's path, the model overestimated the water depths. Isaias' storm track moved from the southwest 916 

to the northwest of the watershed, while Sandy's unique path propagated from the southeast to the 917 

southwest, leading to the lowest satisfactory in terms of the model transferability among the events. 918 

The other reason why the model transferability was most successful for Hurricane Irene was 919 

that the event mainly driven by significant role, contributing torainfall, similar to Hurricane Ida 920 

(the event that the model was trained for). In contrast, the model performed worse for Hurricanes 921 

Sandy and Isaias because these events were mainly driven by storm surge. The original model, 922 

considered lower importance for storm surge, was not effective in predicting the water depths in 923 

Sandy and Isaias. In fact, here we see another significant advantage of strategically using 924 

physically meaningful features rather than the more commonly used black box approach. By 925 

considering the physical phenomena in our model development, we can better transferability to 926 

Hurricane Irene due tounderstand its similarity with hurricane Ida. Howeverstrengths and 927 

weaknesses and more effectively evaluate its performance. 928 

Despite these distinct characteristics of the storm events, the ML model still demonstrated 929 

satisfactory performance on HurricaneHurricanes Sandy and Isaias, suggesting some level of 930 

transferability, mainly because we incorporated a wide array of pertinent flood influencing 931 

features. This sensitivity underscores the importance of training ML models on diverse hurricane 932 

trajectories and proximity to improve the model transferability. and the spatial dimension 933 

(contributing watershed). While the model performs well, the inconsistency of the success level of 934 

transferability across flood events presents opportunities to incorporate additional features or 935 

training approaches, enhancing the model robustness to different storm tracks relative to the 936 
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watershed. and weighing the model features based on the main flood driver (e.g., rainfall or storm 937 

surge). 938 

The MAE values were higher for Hurricanes Sandy and Isaias, particularly when they were 939 

farther away from the storm track. For instance, Hurricane Sandy had the highest MAE (1.69 m) 940 

among the transferability cases, indicating larger estimation errors compared to the other 941 

hurricanes. The model overestimated flood depths of Hurricanes Sandy and Isaias, while it 942 

underestimated those during Hurricane Ida and Irene, likely due to their distance to the storm track. 943 

Additionally, hurricanes Sandy and Isaias tend to yield higher FQ values. For example, Hurricane 944 

Sandy had the highest FQ (366%), indicating larger discrepancies between the estimations and the 945 

observed flood depths compared to Hurricanes Irene and Isaias. 946 

These findings highlight the challenges of accurately hindcasting flood depths during more 947 

severe hurricanes and underscore the importance of further refining the model to enhance its 948 

performance in extreme events. Further investigations into the underlying features contributing to 949 

these variations are crucial for improving flood hindcast models in the future. Insights gained from 950 

this study can help develop transferable ML-based models that are computationally efficient for 951 

flood hindcast. 952 
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 953 

Figure 6: The ratio of estimated over observed flood depth (FQ) for the four hurricanes. 954 

4.4. Limitations and future research 955 

While this study showed promising results about ML-based flood modeling, it is important to 956 

acknowledge its limitations to identify areas for future research. One significant limitation is the 957 

presence of inherent uncertainties in the model that can impact the accuracy of the estimations. 958 

These uncertainties can stem from various sources, including the quality and accuracy of the input 959 
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data (features). For instance, relying solely on spatially aggregated values of features (mean and 960 

maximum used in this study) may not adequately capture the complex characteristics of the upper 961 

watershed. Future research should prioritize addressing these uncertainties by exploring alternative 962 

data sources and methodologies. The ANN model was tuned using observed flood data and a 963 

hyperparameter set was used as the optimal parameterization scenario. This deterministic approach 964 

does not incorporate the uncertainty from model parameterization. Probabilistic models are needed 965 

to address this uncertainty.  966 

The study underscored the complexity of efficiently predicting water depths for major 967 

hurricanes and emphasizes the necessity of refining models for better performance during such 968 

extreme events. It highlighted the importance of deeper analyses into features causing prediction 969 

discrepancies and suggested that addressing different flood types (fluvial vs. storm surge) 970 

separately can enhance the model performance. This approach, alongside adjustments for specific 971 

flood characteristics like storm tracks and similar influential factors that are distinct for each event, 972 

can improve the performance of hindcast models, aiding in the development of more transferable 973 

ML-based models. 974 

 975 

4.4. Limitations and future research 976 

While this study showed promising results about ML-based flood modeling, it is important to 977 

acknowledge its limitations to identify areas for future research. One limitation is the presence of 978 

inherent uncertainties in the model that can impact the accuracy of the estimations. These 979 

uncertainties can stem from various sources, including the quality and accuracy of the observed 980 

data (Merwade et al. 2008; Bales and Wagner 2009; Gallegos, Schubert, and Sanders 2012; Teng 981 

et al. 2017) and input data (features). For instance, relying solely on spatially aggregated values of 982 
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features (mean and maximum used in this study) may not adequately capture the spatial 983 

heterogeneity of pertinent variables across the upper watershed. Future research should prioritize 984 

addressing these uncertainties by exploring alternative data sources and methodologies. The ANN-985 

MLP model was tuned using observed flood data and an optimal hyperparameter set was used 986 

based on the hyperparameter optimization methods. This deterministic approach does not 987 

incorporate the uncertainty from model parameterization. Probabilistic models are needed to 988 

address this uncertainty. Parameterization uncertainty acknowledges that the exact values of model 989 

parameters (e.g., weights in an ANN-MLP) determined through training may not perfectly capture 990 

the true underlying processes, leading to variability in our predictions. Probabilistic models 991 

address this uncertainty by incorporating it directly into the modeling process, offering a range of 992 

possible outcomes with associated probabilities (posterior probability distributions) rather than a 993 

single deterministic output. This is achieved through techniques like Bayesian inference, where 994 

prior knowledge about parameters is updated with observed data to produce a posterior distribution 995 

of parameters. This approach provides a more nuanced understanding of uncertainty, allowing 996 

predictions to reflect both the variability observed in the data and the confidence in the model's 997 

parameter estimates. To address the limitations of deterministic models, like the ANN-MLP used 998 

in this study, future research should explore integrating probabilistic modeling techniques such as 999 

Bayesian inference. Exploring alternative data sources and methodologies, such as incorporating 1000 

spatially detailed features or dynamic time series data, could also help in capturing the 1001 

complexities of watershed characteristics more accurately. 1002 

Furthermore, we did not have sub-daily data available for all our model features. Incorporating 1003 

sub-daily data can highly likely improve the model accuracy in capturing intra-daily variability 1004 

and flood dynamics, but it was not explored due to data constraints. Future research should 1005 
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incorporate sub-daily data into flood depth hindcast models. A further limitation of this study 1006 

related to the time dimension is that wind events, storm surges, rainfall, and overland flow 1007 

processes have different time signatures. Pluvial and storm surge flooding can be closely 1008 

coincident with the storm event, but river floodwavesflood waves may take much longer to arrive 1009 

at a particular location. The time lag between these processes was not considered in our ML model, 1010 

which was not dynamic in time and only hindcasted maximum river floodmaximum water depths. 1011 

Incorporating time-variability of the features can better represent the time-varying nature of flood 1012 

dynamics. 1013 

Another limitation of this study is the issue of bathymetry and the need for further analyses to 1014 

incorporate better data in coastal watersheds. However, using DEMs without added bathymetry is 1015 

not entirely inaccurate, as they can already include bathymetry information in regions where 1016 

LiDAR can penetrate beneath clear water surfaces, particularly in rivers with low suspended 1017 

sediment and turbidity. On the other hand, coastal floods confined within riverbanks may heavily 1018 

depend on the main channel slope, while extreme events leading to flooding outside the channel 1019 

banks follow the general slope of floodplains and this is easily represented by DEMs without 1020 

considering underwater bathymetry. 1021 

Another limitation of this study is the issue of bathymetry that is typically not represented well 1022 

by DEMs like USGS’ NED. Refining the DEMs with bathymetry data such as NOAA’s 1023 

Continuously Updated DEM (CUDEM) dataset and channel cross-sections is recommended to 1024 

better represent the terrain on channels and floodplains in the model.  1025 

Additionally, we modeled floodmaximum water depths across a large watershed (HUC6), 1026 

whereby many details may not be important. For small watersheds and specially urbanized ones, 1027 

we emphasize the importance of considering local factors such as sewer and drainage systems in 1028 
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flood depth hindcast, where pluvial floods may be prevalent. However, obtaining comprehensive 1029 

and accurate data on sewer and drainage systems can be challenging due to availability, lack of 1030 

quality and confidentiality of the data, particularly at the desired spatial and temporal resolutions. 1031 

Future research should strive to improve the availability and accessibility of such data to enhance 1032 

the accuracy and reliability of flood depth hindcasting, especially in urban areas. In small urban 1033 

watersheds, other details such as land management practices and other local features can also be 1034 

important for flood depth hindcasting and should be incorporated in the ML-based model. 1035 

This study primarily focused on hindcasting maximum floodwater depths  and did not consider 1036 

other important flood characteristics, such as flood duration, frequency, and extent, all of which 1037 

are important for loss estimates, decision making and risk management (Ahmadisharaf and 1038 

Kalyanapu 2019; Kreibich et al. 2009; Merz et al. 2010; H. Qi and Altinakar 2011b; 2011a; 1039 

2012).(Ahmadisharaf and Kalyanapu 2019; Kreibich et al. 2009; Merz et al. 2010; Qi and 1040 

Altinakar 2011b; 2011a; 2012; Ebrahimian, Gulliver, and Wilson 2016; Ebrahimian et al. 2015). 1041 

To gain a fuller picture of flood hazards, future research should aim to develop ML models that 1042 

can hindcast these additional flood characteristics. We also focused on river floodmaximum water 1043 

depths and did not hindcast inundation on floodplains. (out-of-channel). Developing ML-based 1044 

models that can satisfactorily hindcast out-of-channel floodmaximum water depths should be a 1045 

focus of future research; the transferability of ML-based models for such estimations should be 1046 

also evaluated. High water marks (HWMs) can be used to train the model for such hindcasting. 1047 

However, HWMs are subject to large uncertainties (Schubert et al. 2022). Therefore, one challenge 1048 

in developing models that hindcast floodmaximum water depths over floodplains is the availability 1049 

of reliable observations. Satellite-based observations are also often limited to flood status data; 1050 

floodmaximum water depths cannot be estimated using these types of datasets. Newly launched 1051 
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satellites, such as the Surface Water and Ocean Topography (SWOT) mission, can provide 1052 

additional data for such estimations. 1053 

As part of future work, it is also essential to consider the sensitivity of stream gauges to changes 1054 

in flow once water exceeds bankfull levels. This is significant as water height changes at a slower 1055 

rate beyond bankfull due to the compound channel shape. Wide floodplains can lead to similar 1056 

stage elevations for quite different flow conditions. This sensitivity assessment can offer insights 1057 

about whether water levelsdepths can be estimated once flood conditions are established, which 1058 

has implications for the model transferability across events. 1059 

We recommend that future work compares the performance of our ML-based model to 1060 

traditional physically-based and morphologic-based models using the same datasets. By evaluating 1061 

the performance, generalizability, and computational efficiency of our ML-based model versus 1062 

these traditional modeling approaches, we will be able to better validate the strengths of our data-1063 

driven methodology. Detailed error analyses between the approaches can also reveal insights into 1064 

where additional physics knowledge needs to be incorporated into the ML-based model structure 1065 

and training to improve performance. 1066 

Thus, although we found ML-based models are transferable across flood events when informed 1067 

by relevant physical features at meaningful locations, there are still several areas that require 1068 

further investigations. By addressing these limitations, future research can corroborate our findings 1069 

about the performance and transferability of ML-based models in estimating maximum floodwater 1070 

depths as computationally-efficient modeling frameworks. 1071 

5. Summary and conclusions 1072 

This paper developed an ML-based model for hindcast maximum floodwater depths to address 1073 

two major limitations of past research in applying ML models for flood estimations: solely 1074 
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predicting flood status (classification-based models) and debate on the transferability of these 1075 

models across events. We used ANN-MLP to hindcast maximum floodwater depths over an event 1076 

on a coastal watershed, which is affected by fluvial and tidal floods. The model was informed by 1077 

underlying physical flood processes, and initial conditions (in the watershed and rivers), 1078 

represented through a set of features (geographic location, topographic, climatic, land surface, 1079 

hydrologic, hydrodynamic and soil). Unlike previous applications of ML algorithms, our model 1080 

estimated floodmaximum water depths by accounting for the spatial distribution of the processes 1081 

through considering both local contributions (at a given location) and those from the upstream 1082 

watersheds. We demonstrated the model on a HUC6 watershed, Lower Hudson Watershed, in the 1083 

Northeastern United States and evaluated its transferability across major flood events—Hurricanes 1084 

Ida, Sandy, Irene and Isaias. Feature selection techniques were used to identify the most influential 1085 

features for flood hindcast. Hyperparameter optimization was performed to fine-tune the ML 1086 

model, and its performance was evaluated using various metrics. The results showed that the model 1087 

performed satisfactorily in estimating maximum floodwater depths for the original event, 1088 

Hurricane Ida (R2= 0.9294, MAE= 0.6664 meters, MDAE= 0.45 meters, NRMSE= 2924%, and 1089 

FQ= 139138%). The model transferability (i.e., applying the validated model as is without any 1090 

additional parameter tuning) within the same watershed against three other events showed that the 1091 

developed model was promising in the estimations (R2> 0.717, MAE< 1.6971 meters, MDAE< 1092 

1.78 meters, NRMSE < 109%, and FQ< 366370%). This showed the model ability to capture 1093 

complex relationships between the maximum flood depth and pertinent features beyond what it 1094 

was originally trained for. Future research is needed to further evaluate the transferability of ML 1095 

models across events and watersheds with different drainage areas for flood depth estimations. 1096 
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