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Abstract. Heat waves are one of the most dangerous climatic hazards for human and ecosystem health worldwide. Accurate

forecasts of these dramatic events are useful for policy makers and climate services to anticipate risks and develop appropriate

responses. Sub-seasonal to seasonal forecasts are of great importance for actions to mitigate the human and health consequences

of extreme heat. In this perspective, the present study addresses the predictability of heat waves at sub-seasonal to seasonal time

scale in West African cities over the period 2001-2020. Two types of heat waves were analyzed : dry and wet heat waves using5

2-meter temperature (T2m) and wet bulb temperature (Tw) respectively. Two models that are part of the S2S forecasting project,

namely the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office models, were evaluated

using two state-of-the-art reanalysis products, namely the fifth generation ECMWF reanalysis (ERA5) and the Modern-Era

Retrospective analysis for Research and Application. The skill of the models to detect hot extreme events is evaluated using

the Brier score. The models show significant skills in detecting hot days both for short- and long-term forecasts (2- and 5-week10

lead times, respectively). The predictability of heat waves in the forecast models is assessed by calculating categorical metrics

such as the hit-rate, the Gilbert score and the false alarm ratio (FAR). The forecast models show significant skills in predicting

heat wave days compared to a baseline climatology, mainly for short-term forecasts (two weeks lead time) in three climatic

regions in West Africa, but the hit-rate values remain below 50% on average. We find that nighttime heat waves are more

predictable than daytime heat waves. On average, the False Alarm Ratio (FAR) is excessively high and tends to increase with15

the lead time. Only approximately 15% to 30% of the predicted heat wave days are actually observed for Week 5 and Week 2,

respectively. This suggests that the models overestimate the duration of the heat waves with respect to ERA5. The skill of the

models in forecasting dry and hot heat waves are very close. Although the models demonstrate skills on heat wave detection

compared to a baseline climatology, they fail in predicting the intensity of heat waves.

1 Introduction20

The impact of heat waves on different sectors, in particular the economy and health, makes them one of the most dangerous

climate hazards globally (Perkins, 2015). Heat waves pose a significant threat to human health, as they cause discomfort and

stress to body temperature regulation. Increased atmospheric humidity can exacerbate heat stress and lead to deaths, particularly
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among vulnerable populations such as children and the elderly. Climatic projections show an increase in the frequency, intensity

and duration of extreme temperatures over the next century and beyond [e.g. Kharin et al. (2007); Fischer and Schär (2010);25

Perkins et al. (2012)]. Under these warming conditions, the frequency of extreme events such as heat waves will increase. In

the latest Intergovernmental Panel on Climate Change report (IPCC report 2023), the authors show that equatorial regions will

be more affected by climate change than mid- and high- latitudes. In some equatorial regions such as sub-Saharan Africa, the

predictability of heat waves remains poorly documented.

Heat waves are often associated with extreme daytime and/or night-time temperatures. Most often, heat waves are defined30

as a period of at least three consecutive days with daily temperatures above a threshold [e.g. Perkins and Alexander (2013);

Déqué et al. (2017); Barbier et al. (2018); Batté et al. (2018); Ngoungue Langue et al. (2023)]. Many factors can affect the

definition of a heat wave, including the end-user sectors (human health, infrastructures, transport, agriculture) and also the

climatic conditions of the regions (Perkins and Alexander, 2013). Therefore, there is no standard definition of a heat wave

[e.g. Perkins (2015); Oueslati et al. (2017); Shafiei Shiva et al. (2019)]. Different thresholds, duration and indicators contribute35

to the divergence in the definition of heat waves (Smith et al., 2013). Heat waves can be defined from daily meteorological

variables such as daily raw temperature [e.g. Fontaine et al. (2013); Beniston et al. (2017); Ceccherini et al. (2017); Déqué et al.

(2017); Batté et al. (2018); Barbier et al. (2018); Lavaysse et al. (2018); Engdaw et al. (2022); Ngoungue Langue et al. (2023)],

min, min or max daily wet bulb temperature [e.g. Yu et al. (2021); Ngoungue Langue et al. (2023)] or heat stress indices [e.g.

Robinson (2001); Fischer and Schär (2010); Perkins et al. (2012); Guigma et al. (2020); Ngoungue Langue et al. (2023)] using40

relative or absolute thresholds. Some other authors use the daily anomalies of temperature to define heat waves [e.g. Stefanon

et al. (2012); Barbier et al. (2018)].

The impact of heat waves on human activities and health increases the need for skillful and reliable climate forecasts on sub-

seasonal to seasonal time scales in order to anticipate risks and develop appropriate responses (Lowe et al., 2016). Therefore,

early warning systems are of crucial importance to provide information on the occurrence of such events. This is usually done45

using seasonal weather forecast models. Those forecasts can provide early indications of the frequency and duration of severe

heat waves, but some studies on the use of climate forecasts by service providers suggest that the sub-seasonal range is also

highly relevant for actions aimed at mitigating the human and health consequences of extreme heat (White et al., 2017). Sub-

seasonal to seasonal forecasts (S2S) are of great importance for humanitarian services in order to build up a "Ready-Set-Go"

early warning concept that allows early action to be taken before a potential disaster.50

Vitart and Robertson (2018), as part of the Subseasonal-to-Seasonal Prediction Project (S2Sproject,https://www.ecmwf.int/

en/research/projects/s2s), analyzed the predictability of extreme events across the globe, with a particular focus on the Russian

heat wave of 2010. They show that S2S forecasts have the potential to predict the onset, evolution and decay of some large-scale

extreme events several weeks in advance. The time that elapses between the initialization of the forecast and the occurrence

of the target event is called the lead time. To assess the predictability of the 2010 Russian heat wave, their approach was55

based on the predictability of 2-meter temperature (T2m) anomalies a few weeks before the onset of the event. They found

that the S2S models were able to predict extreme T2m anomalies over Russia up to three weeks lead time. Katsafados et al.

(2014) also assessed the predictability of the 2010 Russian heat wave at seasonal time scale using the National Center for
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Atmospheric Research Community Atmosphere Model version 3 (NCAR CAM3) and the latest ECMWF operational forecasts

for validation. Their forecasting approach is based on the predictability of atmospheric blocking using temperature at 850 hPa60

and the geopotential height at 500 hPa. They found that only a few members reproduced the main features of the blocking

system three months in advance. Most of the members predicted the blocking system in the wrong location and underestimated

its duration. In West Africa, few studies have been conducted on heat wave predictability. Batté et al. (2018) evaluated heat wave

forecasting at sub-seasonal and seasonal time scales using the Météo-France model in the S2S project and the Météo-France

seasonal forecasting System 5 (MF5) respectively. To assess the skills of the models at seasonal time scale, they defined two65

indices from the Expert Team on Climate Change Detection and Indices (ETCCDI) database,namely, the heat wave duration

index (HWDI) and the number of heat waves per season (HWPP) using the apparent temperature and 2-meter temperature. At

the sub-seasonal time scale, they used the apparent temperature and T2m anomalies instead of the HWDI and HWPP. They

found that at the seasonal time scale, the skills of MF5 to reproduce inter-annual anomalies of heat wave duration is limited

at the grid point level because of the high spatial variability in the region, but it is significant when taking the average over70

the Sahel region [10°N-20°N, 10°W-20°E]. At sub-seasonal time, the skills of the model decrease beyond one week. Guigma

et al. (2020) assessed the predictability of Sahelian heat waves at sub-seasonal time scale using the ECMWF extended long-

range forecast system (ENS-ext), ERA5 and BEST gridded data for the evaluation. Their approach is based on forecasting the

probability of occurrence of heat waves. They show that ENS-ext is able to forecast Sahelian heat waves with significant skill

up to 2 weeks ahead; and with increasing lead time, nighttime heat waves are more predictable than daytime events.75

Most previous studies assess heat wave predictability using T2m anomalies and large-scale predictors such as temperature at

850 hPa and geopotential height at 500 hPa [e.g. Vitart and Robertson (2018); Katsafados et al. (2014)]. While this approach is

adequate for obtaining information about the weather situation for the future days, it cannot provide useful information about

the onset and duration of heat waves. In this study, we will adapt the method proposed by Lavaysse et al. (2019) when assessing

the predictability of heat waves over Europe. This method is more robust and takes into account the occurrence and duration80

of events.

The present study assesses the predictability of heat wave frequency and characteristics in West African cities over the period

1993 to 2020 using two sub-seasonal to seasonal (S2S) models namely, ECMWF and UKMO. To the author’s knowledge, this

work is the first of its kind in the region and represents a first assessment of heat wave predictability at subseasonal to seasonal

time scale in West Africa. To carry out this study, we first analyze the representation of T2m and wet bulb temperature (Tw) in85

the forecast models with respect to the reanalysis data used as references (see Section 2). Secondly, we evaluate the models on

the representation of extreme heat events. Finally, the predictive skill of the models in forecasting heat waves is assessed.

The remainder of this article is organized as follows: in section2, we present the region of study and the data used for

this work; the description of the methodology is also provided. Section3 contains the main results of this study following the

methodology presented in section 2.90
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2 Region, Data and Methods

2.1 Region of interest

This work is carried out in West Africa, covering an area between 5-20°N and 15°W-10°E, extending from the Atlantic coast

to Chad and from the Gulf of Guinea to the southern fringes of the Sahara desert [Fig.1]. The climate of West Africa is mainly

influenced by the West African monsoon, which regulates the rainy season and therefore affects agriculture. The West African95

climate is characterized by a short wet season followed by a long dry season. West Africa exhibits high climate variability at

regional- and local- scale. The present study focuses on major cities in the coastal and continental parts of West Africa. The

cities were grouped in three regions based on their location, climate variability and the evolution of heat waves characteristics

in each region Moron et al. (2016); Ngoungue Langue et al. (2023). The regions are structured as follows :

– Continental region (CO hereafter) englobes the cities of Bamako, Ouagadougou and Niger [Fig.1];100

– Coastal atlantic region (AT hereafter) englobes the cities of Dakar, Nouakchott, Monrovia and Conakry [Fig.1];

– Coastal Guinean region (GU hereafter) englobes the cities of Yamoussoukro, Abidjan, Lomé, Abuja, Lagos, Accra,

Cotonou and Douala [Fig.1].

2.2 Reanalysis products

African cities suffer from a critical lack of weather observation stations; and the few available are not well distributed in105

the regions. Therefore, reanalysis data appear as good candidates to overcome this issue. Reanalyses provide a numerical

description of the recent climate by combining models with observations and are invaluable to numerous users around the

world (Hersbach, 2016). In this work, we use two state-of-the art reanalysis products namely the fifth-generation European

Center for Medium-Range Weather Forecasts reanalysis (ERA5, (Hersbach et al., 2020)) and the Modern-Era Retrospective

analysis for Research and Applications, version 2 (MERRA-2, (Gelaro et al., 2017)) from the National Oceanic Atmospheric110

Administration (NOAA); (in the following, we will use "MERRA" to refer to MERRA-2) as our references for the evaluation

of the forecast models. ERA5 and MERRA are part of the most reliable reanalyses used in Africa regions especially on the

monitoring of heat waves [e.g. Barbier et al. (2018); Ngoungue Langue et al. (2021); Engdaw et al. (2022)]. Since ERA5 is

used to initialize the atmospheric component of the ECMWF model which is one of the forecast models used here, one could

argue that the evaluation of the skills of the forecast models using only ERA5 as reference is circular. Therefore, we also115

included MERRA as a second reference. It also allows for estimating the uncertainties of the reanalyses.

2.2.1 ERA5

The ERA5 reanalysis provides hourly estimates of various climate variables for the entire globe using 137 hybrid sigma levels

up to 80 km above the surface (Hersbach et al., 2020). The original spatial resolution is 0.28125 degrees, interpolated to a

regular 0.25°x 0.25° grid. ERA5 outputs are generated by the CY41r2 model cycle of the Integrated Forecast system (IFS) of120
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ECMWF, which uses a ten-member ensemble of 4D variational data assimilation. The set of atmospheric variables used within

the ERA5 database are the hourly 2-meter temperature (T2m) and hourly 2-meter dew point temperature (d2m) covering the

period from 1 January 2001 to 9 February 2021. From these variables, daily T2m (max, min, mean) and wet bulb temperature

(Tw) are derived. The dataset is accessed through the Climserv database of the Institut Pierre Simon Laplace (IPSL) server or

the Copernicus Climate Data Store (CDS). The land-sea mask used in this study is obtained from the ERA5 reanalysis and is125

available on the CDS.

2.2.2 MERRA

MERRA, unlike ERA5, has a spatial resolution of 0.625°x0.5° and provides data on 42 standard pressure levels. It uses

an upgraded version of the Goddard Earth Observing System Model, Version 5 (GEOS-5) data assimilation system and the

Global Statistical Interpolation (GSI) analysis scheme of Wu et al. (2002). To ensure consistency in our analysis, we converted130

the MERRA data to a spatial resolution of 0.25°x0.25°, similar to ERA5 using a conservative first-order interpolation. In the

MERRA database, we use the hourly T2m, hourly 2-meter specific humidity and the pressure field at the surface from 1 January

2001 to 9 February 2021 to calculate daily T2m(max,min,mean) and Tw. The MERRA dataset was also accessed through the

Climserv database on the Institut Pierre Simon Laplace (IPSL) server.

The assessment of dry and wet heat waves is done using T2m and Tw respectively. The computation of Tw is given by the135

following formula:

Tw = T ∗atan
[
A(Rh+B)

1
2

]
+atan

[
T+Rh

]
−atan

[
Rh−C

]
+D ∗ (Rh)

3
2 ∗

[
atan(E ∗Rh)

]
−F (1)

(Stull, 2011), (Rh is used in percentage, for example 40 for Rh=40%).

The computation of relative humidity (RH) varies depending on the available variables in the products. The first formula is

applied for ERA5, and the second for MERRA.140

Rh = 100 ∗
exp

( a ∗Td

b+Td

)

exp
( a ∗T
b+T

) (2)

(August, 1828; Magnus, 1844; Alduchov and Eskridge, 1996)

Rh = 0.263 ∗p ∗q ∗
[
exp

(17.67 ∗ (T−T0)
T−29.65

)]−1

(3)

https://earthscience.stackexchange.com/questions/2360/how-do-i-convert-specific-humidity-to-relative-humidity

a = 17.625,b = 243.04,A = 0.151977,B = 8.313659,C = 1.676331,D = 0.00391838,E = 0.023101,F = 4.686035,T0 =145

273.16K
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Where T(°C), Td(°C), T0(K), p(hPa) and q are respectively the ambient temperature, dew-point temperature, reference

temperature, pressure and specific humidity.

2.3 Forecasts products

To bridge the gap between medium range weather forecasts and seasonal forecasts, in 2013 the World Weather Research150

program (WWRP) and the World Climate Research program (WCRP) jointly launched a 5-year research initiative called the

Subseasonal to Seasonal (S2S) project (Vitart et al., 2017) which aims to improve forecast skill and understanding on the

sub-seasonal to seasonal timescale with special emphasis on high-impact weather events. The S2S project focuses on the

risk of extreme weather conditions, including tropical cyclones, droughts, floods, heat waves and monsoonal rainfall (see

http://www.s2sprediction.net/). In order to obtain more robust statistical results, we conducted our study over a 20-year period,155

specifically using hindcast data from 2001 to 2020. Among the twelve models involved in the S2S project, we evaluated the

ECMWF and UKMO (United Kingdom Met Office) models because they are both available throughout the study period.

2.3.1 ECMWF forecasts

The extended ECMWF ENS model runs on the Integrated Forecast System (IFS) cycle CY41r2. The native spatial resolution

of the ECMWF model is Tco639 (about 16 km) up to day 15 and Tco319 (about 32 km) after day 15, but the downloaded160

data are interpolated to a regular 0.25°x 0.25° latitude/longitude grid. It contains 91 sigma levels from the surface to 80 km.

ECMWF provides two types of outputs for the S2S program: real-time forecasts and reforecasts called "hindcasts". Real-

time forecasts are forecasts for the coming days, while hindcasts refer to forecasts over historical periods that are used to

calibrate a new version of a forecast model. ECMWF real-time forecasts are run with 51 ensemble members (50 perturbed

and 1 unperturbed), while hindcasts are run with 11 members. In this study, we focus on hindcasts only. ECMWF ENS165

hindcasts are produced twice a week, on Monday and Thursday at 00Z. We only analyzed the hindcasts for Thursday, as a

first investigation revealed that some models had been initialized on the same date, but we realized after that those models

were not available for the whole period. This means that each week a new set of hindcasts is produced to calibrate the real-

time ensemble forecasts for Monday and Thursday of the following week using the latest version of the IFS. The 11-member

ensemble hindcasts start on the same day and month as the real-time forecast (Monday and Thursday), but covering the last170

20 years. In our case, the forecast year is 2021 and we focus on the previous 20 years from that date, and the hindcasts

run for 6 weeks. The variables of interest in the ECMWF S2S are T2m(max,min) over the last 6 hours, daily average T2m

and d2m from which the daily average Tw was derived. The data are open access and available on the S2S project website

(https://apps.ecmwf.int/datasets/data/s2s-realtime-instantaneous-accum-ecmf/levtype=sfc/type=cf/).

2.3.2 UKMO forecasts175

The UKMO model runs on the HadGEM3 GC2.0 model which simulates the uncertainties of the initial conditions using a

lagged initialisation and the uncertainties of the model using a stochastic scheme. The native spatial resolution of the UKMO
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model is N216: 0.83°x0.56° (about 60 km at mid-latitudes). It contains 85 vertical levels from the surface to 85 km and 4 soil

levels: level 1 (0 - 0.1 m), level 2 (0.1 - 0.35 m), level 3 (0.35 - 1 m) and level 4 (1- 3 m). Similar to ECMWF, UKMO provides

to the S2S program real-time forecasts and hindcasts. The UKMO real-time forecast consists of a set of 4 members run daily180

for a period of 60 days (3 perturbed members and 1 control member). The UKMO hindcasts are produced 4 times per month,

on the 1st, 9th, 17th and 25th, and cover a 24-year period from 1993 to 2016. We are aware that these init dates are not the

same as those of ECMWF, but we are interested in this work on the predictability of heat waves in a global perspective, not on

specific events. The ensemble hindcasts are composed of 7 members per cycle (from the 25 March 2017 hindcasts, prior to that

3 members per cycle). Our target period is going from January 2001 to February 2021, and as mentioned earlier, the UKMO185

hindcasts are not available after the year 2016. To solve this problem and get more robust statistical results, we recompose

the products to obtain a new composite that covers the whole target period. The process applied is described in the following

expression:

UKMO2001−2021 = Concatenation

[
UKMOhindcast2001−2016,UKMOrealtimeforecast2017−2021

]
(4)

The concatenation operator is applied to the time dimension. The real time forecasts were extracted for the same days as190

the hindcasts initialization. The number of ensemble members in the hindcasts is set to 4 (1-control member and 3-perturbed

members) to be consistent with the number of ensemble members in the real time forecasts. We selected the three first perturbed

members in the hindcasts over the 7 available. The UKMO forecasts analyzed in this work are launched for a 6-week duration.

The variables extracted from the UKMO database are the same as those in ECMWF.

2.4 Metrics195

2.4.1 Estimation of temperatures at the city scale

Weather forecasts provide the evolution of atmospheric variables on a global scale, which implies the need to have data from

local stations to access information on a local scale. This is a major problem in areas where there is a lack of weather stations

to collect data, as is the case in African cities. To address this issue, downscaling methods can be employed. However, in this

study, we study phenomena at the city scale, and the spatial resolution of the reanalyses (ERA5, MERRA) is too coarse for this200

purpose. Although the reanalysis scale is more representative of the spatial variability of a heat wave occurring in a city than an

isolated local station, a validation analysis is needed on test stations in order to determine the best interpolation technique for

estimating local temperature from reanalyses. Following the same approach as developed in Ngoungue Langue et al. (2023),

local temperatures over the cities were derived from the reanalysis using the reanalysis grid point closest to the station that

satisfies a land-sea mask (lsm) of at least 0.5 ([Table1]shows the lsm values of all cities considered in this study). The same205

technique was used for the forecasts.
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2.4.2 Heat wave detection

The detection of heat waves is carried out using 2-meter daily minimum temperature (T2m_min), 2-meter daily maximum tem-

perature (T2m_max) and the average wet bulb temperature (Tw) as indicators. T2m_min and T2m_max are used to investigate

the evolution of nighttime and daytime heat waves respectively. The most lethal heat waves are due not only to high tempera-210

tures but also to the effect of humidity (Steadman, 1979a, b). We therefore used Tw to assess the evolution of wet heat waves.

This restriction to T2m_min, T2m_max and Tw is related to the atmospheric variables available on S2S outputs preventing us

from computing more elaborated indices as in Ngoungue Langue et al. (2023). We defined a heat wave as a consecutive period

of at least 3 days during which the daily temperatures exceeds the calendar 90th percentile threshold computed over the entire

period for T2m_min, T2m_max or Tw respectively [Fig.2]. The 90th percentile is calculated for each calendar day of the year.215

The choice of a relative threshold is more appropriate as it is easily replicable in other regions. When two heat wave events are

separated by one day with an indicator value below the daily 90th percentile, they are pooled together to form a single event

[Fig.2].

2.4.3 Heat wave characteristics

After the detection of a heat wave, some important characteristics are deduced, namely the duration and the intensity. They are220

useful to investigate the severity of an event. The predictability of heat waves is assessed for occurrence, duration and intensity.

To determine the occurrence and duration of heat waves, we create boolean files from T2m_min, T2m_max and Tw time series

at each grid point following the steps below :

– proceed to heat wave detection at each grid point;

– for each grid point, we define a zero vector with the length of T2m_min or T2m_max time series containing only zeros;225

– for days in T2m_min, T2m_max or Tw time series, if days are hot days, we replace in our zero vector the values

corresponding to those days by 1. Hot days are days with T2m_min, T2m_max or Tw above the 90th percentile daily

thresholds. In order to assess the characteristics of heat waves, only hot days belonging to heat wave sequences are kept.

This is applied for all grid points and we obtain boolean files containing 0 or 1 (Ngoungue et al. 2023). These boolean

files will be processed both for the reanalyses and the forecasts to assess the representation of heat waves occurrence and230

duration.

The intensity of heat waves was defined as the cumulative sum of the daily exceedances of daily values of indicators to the

climatological daily threshold in a sequence of hot days (see Ngoungue Langue et al. (2023) for more details). This study is

in the framework of the project Agence National de la Recherche STEWARd (STatistical Early WArning systems of weather-

related Risks from probabilistic forecasts, over cities in West Africa) project which focuses on the human impacts of climate235

extremes. Therefore, the climatological daily threshold is chosen to be constant over the whole period; and it is defined as the

minimum of the daily climatology thresholds over the study period. This approach allows us to properly assess the severity of

a heat wave and its potential human impacts.
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2.4.4 From probabilistic to deterministic forecast

Ensemble forecasting is a tool used for making probabilistic weather forecasts. It is both an alternative and an indispensable240

complement to deterministic weather forecasts. Ensemble forecasting is of major interest because it provides different scenarios

of the evolution of the state of the atmosphere. The particularity of ensemble forecasting is that, unlike deterministic forecasting,

many trajectories are simulated in order to take into account uncertainties in the physical component of the model. Although

ensemble forecasting has many advantages over deterministic forecasting, the evaluation of the performance of an ensemble

forecasting model remains quite complex due to the amount of information available. Statistical analyses can be performed by245

considering only the mean of the members, the median member, the warmest and coldest members, the 1st and 3rd quartiles.

In order to extract deterministic information from a probabilistic system for the calculation of prediction scores, we defined an

approach based on member thresholds inspired by Lavaysse et al. (2019). Three threshold values were tested (see [Table2]) to

optimize the ensemble forecast system based on results found in Lavaysse et al. (2019).

2.4.5 Skill scores250

The skill of the probabilistic models in forecasting the evolution of T2m, Tw and extreme events are assessed using several

adapted scores. The forecast of T2m and Tw in the models is done using the Continuous Rank Probability Score (CRPS). The

CRPS is a quadratic measure of the difference between the forecast and reanalysis cumulative distribution functions (CDFs);

it quantifies the relative error between forecasts and observations. The values of the CRPS range from [0 to 1], the closer it is

from 0, the better the forecast. The CRPS is calculated using the following formula:255

CRPS =

+∞∫

−∞

(
Pf (x)−Po

)2

dx (5)

Pf ,Po represent the forecast and reanalysis CDFs respectively.

The representation of hot days in the forecasts is addressed using the Brier score. The Brier Score (BS) is similar to the CRPS

with the only difference that it focuses on specific events. It measures the difference between the probability of a forecast and

the outcomes; it is a good metric to quantify the accuracy of a forecast system. The BS is given by :260

BS =
1
N

N∑

i=1

(
Pi−Oi

)2

(6)

Pi,Oi are respectively the forecast probability and observed outcome (1 if the event occurs and 0 if not). N is the length of

the forecasts or observations time series.

The predictability of heat waves in the forecast models is evaluated using dichotomous scores based on the coherence

between reanalysis and forecasts such as hits, false alarms, misses and correct rejections. Let consider a 2x2 contingency table265

[Table3] from which 3 metrics have been computed : hit-rate, FAR ratio and GSS. The hit-rate indicates the percentage of
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observed heat waves that have been correctly forecasted. The False Alarm Ratio (FAR) gives the percentage of forecasted

events that did not occur. The Gilbert Skill Score (GSS) measures the fraction of observed events that are correctly predicted,

adjusted for hits associated with random chance (close to the climatology). Chance hits (CH) are given as the event frequency

multiplied by the number of event forecasts. The GSS takes in account the hits, misses, false alarms and neglects the correct270

rejections that would artificially improve the score. The values of the GSS range from [-
1
3

to 1]; a GSS=0 indicates no skill

while a GSS=1 perfect skill. The GSS is calculated using the following formula:

GSS =
hits−CH

hits+ false_alarms+misses−CH
(7)

Where CH is given by:

CH =
(hits+ false_alarms)(hits+misses)

hits+ false_alarms+misses+ correct_rejections
(8)275

2.4.6 Heat waves forecast strategy

The assessment of heat wave predictability in the forecast models is a very difficult task. To address this concern, previous

studies [e.g. Vitart and Robertson (2018); Batté et al. (2018)] have used T2m anomalies and large-scale atmospheric variables

such as the geopotential at 500hPa for example, to predict their occurrence a few days in advance. In this study, we adapted the280

methodology developed by Lavaysse et al. (2019) to evaluate the predictability of heat waves in the forecasts. This assessment

is done in two steps:

– The first approach is to determine the predictability of heat wave days in the forecasts with respect to the reanalyses.

To do this, dichotomous scores (hits, false alarms, misses and correct rejection) have been calculated for each day at

different lead times from which the hit-rate, FAR and GSS have been derived. The scores are calculated independently285

for each week and each city. This type of information is useful for early warning systems such as the STEWARd project.

– The second approach focuses on the predictability of the whole heat wave rather than hot days in the heat wave. There-

fore, a heat wave occurring in the reanalyses is considered as predicted by the forecast models if at least one hot day of

the event is correctly predicted. To facilitate the evaluation, dichotomous scores are now calculated for each week, and

the hit-rate, FAR, GSS are derived. For example, if a heat wave is detected in the reanalysis during the first week, and a290

hot day within this heat wave is correctly predicted by the forecast model, then the heat wave is considered as predicted

and the hit=1 and miss=0. We repeat the process over all weeks and calculate the hit-rate.
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3 Results

3.1 Climatology evolution of some atmospheric variables (T2m and Tw) in the forecasts and reanalyses

The first assessment focuses on the representation of the climatological evolution of two key variables for this study, T2m295

and Tw in the forecasts compared to the reanalyses. To do so, the seasonal climatological bias between the forecasts and

the reanalyses is computed over the 20-year period. The bias is computed for each couple of models (ECMWF/UKMO) and

reanalysis (ERA5/MERRA) using T2m(min,max) and Tw values [Fig.3] and [Fig.4] respectively). First, we analysed the bias

between the forecast models and the ERA5 reanalysis using T2m_min values. Both models show a cold bias over the Sahel

region which is more pronounced with UKMO [Fig.3_a]. We observed in UKMO, a progressive shift of this strong cold bias300

over the northern Sahel during the season from winter to summer [Fig.3_a (e-g)]. UKMO exhibits a hot bias with respect to

ERA5 over the Atlantic Ocean that decreases considerably in summer. The cold bias found in ECMWF over the Sahel region is

consistent with previous global studies [e.g. Johnson et al. (2019); Haiden et al. (2021)]. The results obtained with T2m_max

values are similar to those found with the T2m_min for both models. We notice especially a strong hot bias over the Atlantic

coast during the winter and spring [Fig.3_b (a-b),(e-f)]. The evaluation of the representation of Tw in the forecasts shows305

strong cold bias with respect to the reanalyses over the whole Sahel region [Fig.4]. Compared to the results found with T2m,

this strong cold bias can be related mainly to the underestimation of humidity in the models in this region. The assessment

of the bias between the forecast models and MERRA on the evolution of T2m highlights significant discrepancies with the

results obtained using ERA5 as a reference. Using T2m_min, we observed a warm bias in ECMWF with respect to MERRA

over the Sahel and Guinea region during winter and autumn which tends to decrease during spring and summer. These results310

highlight the uncertainties between the two reanalyses already discussed in Ngoungue Langue et al. (2023). It can be deduced

from these results using T2m_min that ERA5 has a warmer trend than MERRA over the Sahel region, while being cooler than

MERRA over the Atlantic Ocean (see [Fig.S1] in supplement material). The spatial distribution of T2m in the forecast models

shows significant biases with respect to the reanalyses. In order to determine whether these biases change over time, we analyze

the spatio-temporal evolution of T2m and Tw. To do this, we calculate the daily climatological biases between forecasts and315

reanalyses over the CO, AT and GU regions at different lead times from week1 to week6. We observed a high spatial variability

of the biases in the three regions. The models show smaller biases in the AT region in spring, of the order of +/- 0.25 K and

larger biases, of the order of +/- 2 K are found in the CO region with T2m_min [Fig.S2]. These significant biases observed in

the CO region are considerably reduced in summer. The results obtained with T2m_max are quite similar to those obtained

with T2m_min (not shown). As observed in the previous results with Tw [Fig.4], the models show lower cold biases in the CO320

region in winter ([Fig.S3] in supplement). The range of biases associated with Tw spans from -14 K to 0 K. We do not observe

any systematic increase in these biases from Week1 to Week6 ([Fig.S2 and [Fig.S3] in supplement). This first assessment of

the evolution of T2m and Tw in the models compared to the reanalyses reveals significant biases in the models which may lead

to poor predictive skills.
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3.2 Assessment of the predictive skills of T2m and Tw forecasts325

In this section, we carry out a global assessment of the predictive skills of the models on the representation of T2m and Tw at

different time scales. To do this, we analyzed the interannual variability of the CRPS calculated between forecasts and reanaly-

ses over the 3 regions for T2m_min, T2m_max and Tw. The forecasts used in this work are launched for a 6-week duration; for

each week, the median CRPS was calculated from 2001-2020 using ERA5 and MERRA. The CRPS results are similar for the

first two weeks (Week1,Week2), the two intermediate weeks (Week3,Week4) and the last two weeks (Week5,Week6). Accord-330

ing to these findings, we have chosen to organize our results into medium-range forecasts (Week2) and long-range forecasts

(Week5). Week 5 was chosen for the long-term forecasts instead of week 6 because from week 5 onwards, the models generally

reach the predictability horizon and are closer to the climatology. This organization of the results applies to the rest of the study.

Firstly, the results of the CRPS obtained using ERA5 as reference [Fig.5] are analyzed.We have noticed that the skill of the

models does not improve necessarily with decreasing lead time. This could be related to systematic biases (the representation335

of atmospheric circulation, local scale processes) in the forecast models. The CRPS score shows a high spatial variability in the

3 regions, indicating a high dependance of the skill of the models with the region. The forecast models show better predictive

skills in the AT region during all the seasons and lead times with T2m_min except for UKMO during summer. The CRPS

associated with T2m_max indicates that ECMWF is more skillful in the GU region (it is also the case with UKMO except

during Autumn when the AT region seems to be more predictable). In general, the models present more skills for T2m_min340

than T2m_max over the AT region. ECMWF generally shows more skill than UKMO. The evolution of the CRPS calculated

using MERRA as a reference is similar to that found using ERA5 (not shown). As we previously observed a significant cold

bias in the Sahel region with Tw, we expect high values of CRPS in the different regions. This is indeed the case, with CRPS

values ranging from 4 to 13, i.e. 6 times higher than those obtained with T2_min or T2m_max. The CRPS values are drastically

reduced in the CO region in winter, which is consistent with the previous results in section 3.1 (see [Fig.S4] in supplement).345

The models show more predictive skill on the representation of T2m than Tw. This is not surprising, given that Tw combines

T2m and humidity, which is very difficult to predict.

3.3 Extreme temperature values and heat waves in the models and reanalyses

3.3.1 Extreme temperatures

After the evaluation of the forecast models on the representation of T2m and Tw, we focus now on the extreme heat events350

referred here as hot days (see section 2.4.3). This is done through the calculation of the Brier score between the forecasts and

reanalyses (ERA5, MERRA). In order to compute the Brier score, the raw forecasts and reanalyses are converted to boolean

data, where a value of 1 represents a hot day and a value of 0 indicates no hot days. This approach based on a relative threshold

(see section 2.4.3) will contribute to partially correct the biases previously found in the models. We firstly evaluated the Brier

score between the forecasts and ERA5 for T2m and Tw. The range of values for the Brier score is between 0.05 to 0.175,355

indicating that the models are able to detect hot days in agreement with the reanalyses over the three regions for short and long

term forecasts (Week2,Week5) ([Fig.6] and [Fig.S5] in supplement material). We found with T2m that in spring the models are
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more skillful and present less spatial variability compared to other seasons. In winter and autumn, for the short term lead time

(Week2), the forecast models perform better for T2m_max than T2m_min. Over all lead times, regions and seasons, ECMWF

performs better than UKMO on the detection of hot days except for Tw in the GU region in summer. Using MERRA reanalysis360

as reference, we also found that ECMWF has more skills than UKMO, except over the CO region during winter (see [Fig.S6]

in supplement material) and the Brier score is in the same range of values as the Brier score computed using ERA5 for T2m

and Tw. The results show a good performance of the models in predicting hot days for short and long term forecasts.

3.3.2 Spatial variability of heat wave characteristics

After assessing the skill of the models in predicting hot days, we study the spatial variability of heat waves in the forecast365

models versus the reanalyses. Heat waves are defined as a period of at least three consecutive hots days. The frequency and

characteristics of heat waves were calculated using T2m and Tw. The mean duration (resp. mean intensity) of heat waves was

calculated for each grid point as the sum of heat wave duration (resp. intensity) divided by the number of years affected by a

heat wave during the period from 2001 to 2020. A first assessment of the representation of heat waves in the forecast models

is made by calculating the bias between the models and the reanalyses for heat wave frequency, duration and intensity. The370

spatial distribution of the heat wave frequency bias between the forecast models (ECMWF, UKMO) and ERA5 reanalysis

shows similar evolution for T2m_min and T2m_max [Fig.7]. The models overestimate the frequency of heat waves in spring

and summer over the Sahel for ECMWF, and from the Sahel to the Guinean region for UKMO. This overestimation in heat

wave frequency is well marked in UKMO, indicating the inaccurate representation of the daily variability of T2m in the model.

The Sahel and Guinean regions exhibit a strong convective activity during spring and summer which is very complex to take375

into account in the models. Some discrepancies are observed in the spatial evolution of heat waves frequency when using Tw

over the Guinea coast [Fig.8]; we noticed an underestimation in heat waves frequency over the Sahel and Guinea region in

autumn. In a second step, we assess the evolution of the number of heat wave days in the models versus ERA5 reanalysis.

We observed a north-south gradient well established over West Africa and an overestimation of the number of heat wave

days over the Guinea region for both T2m_min and T2m_max [Fig.9]. The north-south gradient is well marked in UKMO.380

This north-south gradient observed in UKMO with T2m is also found in Tw and tends to strengthen from spring to autumn

([Fig.S7] in supplement material). The main differences between T2m and Tw on the representaion of heat wave days are

found with ECMWF. In a third step, the spatial evolution of heat waves intensity is evaluated. ECMWF generally tends to

underestimate the intensity of heat waves over the Sahel region, while UKMO overestimates the intensity of events from the

Sahel to the Guinean coast for T2m_min (see [Fig.S8] in supplement). This overestimation of heat wave intensity in UKMO385

with T2m_min is considerably reduced when using T2m_max. The evolution of heat wave intensity with Tw is similar to that

observed with T2m_min, except in summer for the ECMWF (see [Fig.S9] in supplement). We found very similar patterns when

calculating the bias of intensity using MERRA reanalysis as reference for T2m_min, T2m_max and Tw (not shown). The bias

of heat wave duration using MERRA as reference shows some differences with the results obtained with ERA5 reanalysis for

T2m_min and T2m_max. ECMWF shows mostly an underestimation of heat wave days from the Sahel to the Guinean region390

in spring and summer for T2m_min and T2m_max (see [Fig.S10] in supplemental material). In summer, UKMO shows a large
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negative bias over Senegal, Guinea, Mali and Cameroon which tends to extend over the east of Sahel in autumn for T2m_min

(see [Fig.S10_a)] in supplement). We do not find significant differences when using MERRA as reference for the evaluation of

heat waves duration with Tw (not shown).

3.4 Predictability of the heat waves in extended forecasts395

In the previous section, we analyzed the spatial variability of heat wave characteristics in the forecast models versus the

reanalyses. We are now assessing the skills of the models to detect heat waves in the three regions. This is done by calculating

the following probabilistic scores described in Section 2: the hit-rate, GSS and FAR ratio (see Section 2). The scores are

calculated for T2m_min, T2m_max and Tw at daily and weekly time scales using the optimized forecasts (see Section 2) and

ERA5 reanalysis chosen as reference. The evaluation of the forecast models at daily and weekly time scales provides useful400

insights for policy makers and climate services. Daily information is relevant for the accurate prediction of heat waves and

early warning alert systems. The calculated metrics are then compared to a baseline climatology defined as the probability of

having a heat wave in the ERA5 reanalysis over the period 2001-2020. The results presented below are obtained using a 20%

threshold value to optimize the ensemble forecast system (see Section methods) [Fig.10]. The hit-rate and GSS values of the

optimized forecasts using 40% and 60% percentile threshold values are lower than those obtained with the 20% threshold. The405

hit-rate values show a weak spatial variability in the 3 regions, which indicates that the skills of the models are not too sensitive

to the geographical and climatic characteristics of the three regions. We also noticed a gradual loss of predictability in the

models from winter to autumn, with high hit-rate values in winter. The forecast models show skills above the reference both

for short- and long- term forecasts (Week2, Week5) but the hit-rate values are below 0.5 indicating misses in the forecasts. The

hit-rate values are slightly better for short-term forecasts. ECMWF presents more skills than UKMO for short-term forecasts410

in winter. UKMO, for instance, is better for long-range forecasts, mainly for T2m_min [Fig.10(a-d)]. We also noticed that the

predictability of heat waves is slightly better for heat waves associated with T2m_min than for T2m_max. We can infer from

this result that nighttime heat waves are more predictable than daytime heat waves. The models show more skills in the AT

and CO regions in winter and spring for T2m_min values for short-term forecasts. The analysis of the inter-day variability of

T2m is assessed by calculating the standard deviation (std) for each region using ERA5 reanalysis. We found small std values415

in the AT and GU regions, indicating low variability of daily T2m in these regions [Table4]. Conversely, high variability of

daily T2m is observed in the CO region. The low inter-day variability of T2m in the AT region indicates a more stable signal

which will lead to favorable conditions for heat wave detection in the models based on a statistical perspective. The skills of

the models previously highlighted in the AT region could be partly explained by this low variability of daily T2m. The hit-rate

values obtained with Tw are very close to those associated with T2m in the different regions and seasons; but we also noticed420

with Tw, that UKMO is more skillful than ECMWF for short- and long-range forecasts ( see [Fig.S11(a-d)] in supplement

material).

The second metric calculated for the evaluation of the models is the GSS. The GSS follows the same evolution as the

hit-rate with much lower values between 0 and 0.2 both for T2m_min, T2m_max and Tw ([Fig.10(i-l)] and [Fig.S11(i-l)] in

supplement). This suggests that the skills of the models to predict heat waves are considerably reduced when random hits425
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(chance hits) are removed from the total hits. We found that the GSS values are significantly decreasing with lead time and

season; the highest values are observed in winter. In winter, the atmospheric circulation in West Africa regions is mainly

governed by the harmattan flow which results in low convective activity in the regions and therefore an improvement of the

predictive skills of the models compared to summer. The GSS values are greater than 0, indicating that the forecast models

perform better than a random forecast mainly for short-term forecasts (Week2) [Fig.10(i-l)]. Similar results of the GSS are430

found with Tw ( see [Fig.S11(i-l)] in supplement). An important aspect of the evaluation of a forecasting system is to assess its

ability to predict events that do not occur in the observations: the so-called "false alarms". This is done by the calculation of

the FAR ratio between the forecast models and ERA5 reanalysis for T2m_min [Fig.10(e-h)], Tw [Fig.S11(e-h)] and T2m_max

(not shown). The FAR values are too high on average, about 0.7 and 0.85 for the short and long term forecasts, respectively

for all the three indicators. This suggests that the models tend to overestimate the number of heat days with respect to ERA5.435

The FAR ratio increases with the lead time; ECMWF makes fewer false alarms than UKMO for short-term forecasts. The FAR

ratio is considerably reduced when we increase the threshold values used to optimize the ensemble forecasting systems (see

[Fig.S12] in supplement for T2m_min). This is highlighted more clearly in ECMWF than UKMO over all seasons and regions.

This result is consistent with the fact that the prediction of an event will be more robust as a large number of model members

have predicted the event. However, we found that this is not the case for the hit-rate and GSS for which high values are obtained440

with lowest threshold (20%)(see [Fig.S13 and Fig.S14] in supplemental material). Thus, according to the context of the study,

a compromise must be found in order to obtain a good balance between hit-rate and false alarms. The skill of the models in

detecting heat waves is also assessed on a weekly time scale. As expected, we found an overall increase in the values of hit-rate

and GSS for T2m_min, T2m_max and Tw (see [Fig.S15] for T2m_min in supplement). The forecast models show skills at

weekly time scale compared to the baseline climatology. To be consistent with the previous analyses, the predictability of heat445

wave intensity in the models is also assessed for short- and long-range forecasts (Week2 and Week5) using ERA5 reanalysis.

We found a large spatial variability in heat wave intensity across regions. The strongest heat waves are found in the CO region

(as shown in Ngoungue Langue et al. (2023)) and low intensity heat waves in the GU region except for Tw in summer for all the

three indicators. Although the models demonstrate consistency in forecasting the spatial distribution of heatwave intensity, they

fail in accurately predicting the specific intensity values. The models underestimate the intensity of heat waves (see [Fig.11]450

for T2m_min, the results are very similar for T2m_max and Tw (not shown)). The forecast of heat wave intensity in the models

remains a difficult task, even though the models show skills in heat wave detection.

4 Discussion

The behavior of the forecast models varies across different climatic regions. The question that arises is : Why do these differ-

ences exist?455

In order to tackle this question, we analyze some key factors in the models such as the physical parameterizations, the data

assimilation technique and the spatial resolution of the atmospheric component. First of all, the physical parameterizations

used to simulate atmospheric processes such as convection, turbulence, interactions surface-ocean, surface-radiation and cloud
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microphysics are different for the two models. For example, for the representation of the convective activity, ECMWF is using

the Tiedtke scheme (Tiedtke, 1989) and UKMO, the Met Office convective scheme (Hagelin et al., 2017). The models used460

the same data assimilation methods (4D-Var) for control analyses but the data and initial conditions are completely different.

These differences may influence the representation of surface-ocean interactions in the models. The differences observed in

the representation of T2m_min over the Atlantic ocean [Fig.3] can result from these types configurations. Another important

factor is the spatial resolution of the atmospheric component of the two models : ECMWF has a higher spatial resolution than

UKMO (0.16°x0.16° Vs 0.83°x0.56°), which means that it can capture local-scale variability or atmospheric processes and465

provide more accurate forecasts for specific regions. This may explain why the ECMWF performs better than the UKMO in

certain regions, for example in the case of extreme temperatures over AT and GU [Fig.6]. A more detailed analysis of these

differences between the models is beyond the scope of this study.

5 Conclusions

This study is a first assessment of the predictability of heat waves in West African cities on a sub-seasonal to seasonal time scale.470

Two models that are part of the S2S prediction project, namely: ECMWF and UKMO, were evaluated using two state-of-the-art

reanalysis data : ERA5 and MERRA over the period 2001-2020. To carry out this study, we first analyzed the representation

of T2m and Tw in the forecast models with respect to the reanalyses. We found that the models are cooler than ERA5 in the

Sahel region, and hotter than MERRA in the Sahel and Guinea region. These uncertainties between the 2 reanalyses have also

been highlighted in Ngoungue Langue et al. (2023). Secondly, we investigate the representation of hot days and heat wave475

characteristics in the models with respect to the reanalyses. The Brier score exhibits small values for T2m and Tw, indicating

that the models are able to detect extreme heat events up to 5 weeks lead time. Over all lead times, seasons and regions,

ECMWF performs better than UKMO in detecting hot days when compared to both ERA5 and MERRA. The models face

some issues in reproducing properly the spatial evolution of heat wave characteristics. We found an overestimation of the

frequency of heat waves in spring and summer over the Sahel for ECMWF, and from the Sahel to the Guinean region for480

UKMO when using T2m. With Tw, we noticed an underestimation of heat waves frequency over the Sahel and Guinea region

in autumn. Thirdly,we assessed predictive skills of the models using the hit-rate, GSS and FAR. The models perform well

against a baseline climatology, but the hit-rate values remain below 50%, indicating missed events in the forecasts. The hit-rate

values are slightly better for short-term forecasts (up to two weeks lead time). We found that nighttime heat waves are more

predictable than daytime heat waves. This result is consistent with Guigma et al. (2021). On average, the False Alarm Ratio485

(FAR) is excessively high and tends to increase with the lead time. Only approximately 15% to 30% of the predicted heat wave

days are actually observed for Week 5 and Week 2, respectively. This suggests that the models overestimate the duration of the

heat waves with respect to ERA5. ECMWF issues fewer false alarms than UKMO for short-term forecasts. The prediction of

dry heat waves is slightly better with ECMWF for short-term forecasts, while it is better with UKMO for long-term forecasts.

For wet heat waves, UKMO outperforms ECMWF for both short- and long-term forecasts. Although the models demonstrate490
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skills on heat wave detection compared to a baseline climatology, they fail in predicting the intensity of heat waves; the accurate

forecast of heat waves intensity remains a challenging task for the models.

In future work, we will investigate in more detail the origins of the differences observed in the two forecast models over

the different regions. It has been shown recently in some studies that machine learning techniques can be useful to extend the495

predictability range of weather forecasts [e.g. Salcedo-Sanz et al. (2016); Anjali et al. (2019); Azari et al. (2022); van Straaten

et al. (2023)]. Based on these findings, it would be interesting to investigate the potential of machine learning algorithms on

heat waves forecasting.
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Tables

Table 1. Land sea mask (lsm) of west African towns used in this study

Towns latitude longitude lsm

DAKAR 14.75 -17.25 0.6

ABIDJAN 5.25 -3.75 0.5

NOUAKCHOTT 18 -16 continent

CONAKRY 9.5 -13.5 0.5

MONROVIA 6.25 -10.75 0.6

BAMAKO 12.5 -8 continent

YAMOUSSOUKRO 6.75 -5.25 continent

OUAGADOUGOU 12.25 -1.5 continent

ACCRA 5.5 -0.5 0.8

LOMÉ 6 1 0.5

NIAMEY 13.5 2 continent

COTONOU 6.5 2.5 0.7

LAGOS 6.5 3.5 0.5

ABUJA 9 7.5 continent

DOUALA 4 9.75 0.9

Table 2. Description of the threshold values.

Threshold values Description

20% 20% of the ensemble members are associated to a hot day

40% 40% of the ensemble members are associated to a hot day

60% 60% of the ensemble members are associated to a hot day

Table 3. Contingency table.

2X2 Contingency table
Event Observed

YES N0

Event forecast
YES hits false alarms

NO misses correct rejections
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Table 4. Inter-daily variability of 2-meter temperature over the period 2001-2020 using ERA5 reanalysis during the seasons for T2m_min

and T2m_max.

AT GU CO

Win Spri Sum Aut Win Spri Sum Aut Win Spri Sum Aut

T2m_min 0.5 0.5 0.43 0.77 0.57 0.36 0.44 0.44 1.64 1.74 1.08 1.69

T2m_max 0.38 0.35 0.43 0.58 0.39 0.69 0.76 1 1.71 0.81 2.04 1.66
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Figures

Figure 1. Topographic map of West Africa using ERA5 elevation data. The circles on the map represent the different climatic zones: AT

(Coastal atlantic zone), CO (Continental zone) and GU (Coastal Guinean zone). The y and x axes represent the latitude and longitude

respectively. The color bar shows the elevation in meters over the region.
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Figure 2. Detection process of heat wave: HW1/HW2 represent events associated respectively to maxima/minima temperature. The red/blue

lines with circles are max/min daily temperatures. Red/blue solid lines are respectively max/min thresholds. X- and Y- axis represent the time

in days and the temperature in degrees celsius. ‘With pool’ refers to the pooling of two (or more) events separated by a day characterized by

the value of a given indicator below the daily XXth percentile. This figure is a ’theoretical/schematic’ illustration of the different types of

heat waves investigated in this work.
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a)

b)

Figure 3. Spatial variability of the climatological bias between the forecast models ensemble mean and ERA5 reanalysis over the period

2001-2020 for : (a) T2m_min and (b) T2m_max, during the seasons : (a,e) winter; (b,f) spring; (c,g) summer and (d,h) autumn. The bias is

computed as the difference between the forecast models and ERA5. The color indicates the bias values in degrees Celsius. The X and Y axes

represent the longitude and latitude respectively.
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Figure 4. Spatial variability of the climatological bias between the forecast models ensemble mean and ERA5 reanalysis over the period

2001-2020 for Tw during the seasons : (a,e) winter; (b,f) spring; (c,g) summer and (d,h) autumn. The bias is computed as the difference

between the forecast models and ERA5. The color indicates the bias values in degrees Celsius. The X and Y axes represent the longitude and

latitude respectively.

Figure 5. Evolution of the CRPS score between the forecast models and ERA5 reanalysis over the period 2001-2020 during the seasons : (a)

winter, (b) spring, (c) summer and (d) autumn. The blue and red colors represent the CRPS score calculated using T2m_min and T2m_max

respectively. The dot and cross symbols indicate the CRPS score obtained with ECMWF and UKMO respectively. The Y and X axes show

the CRPS values and the lead times ( W2: week2 and W5: week5) respectively.
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Figure 6. Evolution of the Brier score between the models and ERA5 reanalysis over the period 2001-2020 during the seasons : (a) winter,

(b) spring, (c) summer and (d) autumn. The blue and red colors represent the Brier score calculated using T2m_min and T2m_max values

respectively. The dot and cross symbols indicate the Brier score obtained with ECMWF and UKMO respectively. The Y and X axes show

the CRPS values and the lead times ( W2: week2 and W5: week5) respectively.
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a)

b)

Figure 7. Spatial variability of heat wave frequency bias between forecast models and ERA5 over West Africa from 2001 to 2020 for:(a)

T2m_min values and (b) T2m_max values, during: (a,e) winter; (b,f) spring; (c,g) summer and (d,h) autumn. The bias is calculated as the

difference in heat wave frequency between the forecast models and ERA5. This analysis is performed using the unperturbed member of the

models. The color bar indicates the bias values without units. The X and Y axes represent longitude and latitude respectively. The solid blue

lines indicate the borders between countries; the black dots represent the cities of interest for this study (this applies to the rest of the paper).
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Figure 8. Spatial variability of heat wave frequency bias between forecast models and ERA5 over West Africa from 2001 to 2020 using Tw

during: (a,e) winter; (b,f) spring; (c,g) summer and (d,h) autumn. The bias is calculated as the difference in heat wave frequency between the

forecast models and ERA5. This analysis is performed using the unperturbed member of the models. The color bar indicates the bias values

without units. The X and Y axes represent longitude and latitude respectively.
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a)

b)

Figure 9. Spatial variability of heat wave duration bias between the forecast models and ERA5 over West Africa from 2001 to 2020 for: (a)

T2m_min values and (b), during: (a,e) winter; (b,f) spring; (c,g) summer and (d,h) autumn. The bias is calculated as the difference in heat

wave duration between the forecast models and ERA5. This analysis is performed using the unperturbed member of the models over years

where heat waves were detected. The color bar indicates the bias values without units. The X and Y axes represent longitude and latitude

respectively.
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Figure 10. Evaluation of heat waves detection in the forecast models with respect to ERA5 at daily time scale over the period 2001-2020

using T2m_min values for : (a-d) hit-rate, (e-h) FAR ratio and (i-l) GSS. The metrics were computed using the optimized forecasts (see

section Methods for the optimisation of the ensemble forecasts). The metrics were calculated during the seasons : (a,e,i) winter; (b,f,j)

spring; (c,g,k) summer and (d,h,l) autumn. The cyan and black borders of bar plots indicate the metrics obtained when using ECMWF and

UKMO respectively. The Y and X axes show the metrics values and the lead times (W2: week2 and W5: week5) respectively. The horizontal

red line represents the baseline climatology.
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Figure 11. Evaluation of the intensity of heat waves in the forecast models and ERA5 over the period 2001-2020 during the seasons : (a,e)

winter; (b,f) spring; (c,g) summer; (d,h) autumn using T2m_min values. Yellow, green, blue colors represent the values of intensity in the

AT, GU, CO regions respectively. The dot and cross symbols represent the intensity of heat waves during week 2 (W2) and week5 (W5)

respectively. The Y and X axes represent the forecasted and observed intensities in ERA5 reanalysis respectively.
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