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Abstract.  High Mountain Asia (HMA) faces heightened vulnerability to natural disasters due to its extreme conditions and 11 

the escalating impacts of climate change. Understanding the long-term response of this landscape to hydroclimatic 12 

fluctuations is imperative, given the profound effects these changes have on millions of people annually. Heavy rains, and 13 

monsoon seasons, bring forth floods and debris flows, resulting in significant damage to crops, infrastructure, and 14 

communities, causing widespread human impacts. Despite efforts to estimate flood risk locally, traditional techniques often 15 

fall short due to the scarcity of high-quality, consistent data, especially in ungauged basins. To overcome this challenge, we 16 

propose a novel approach: a geomorphologically guided machine learning (ML) method for mapping flood effects across 17 

HMA. Central to our methodology is the Lifeyear Index (LYI), a systematic measure that quantifies both the financial and 18 

human losses incurred by disasters, specifically for this study fluvial and pluvial flooding. Our model was trained using a 19 

dataset comprising over 6000 flood events spanning from 1980 to 2020, along with their corresponding five-year and ten-20 

year LYI. Key predictors included: (1) five-year rainfall concentrations derived from ERA5 daily data, (2) a geomorphic 21 

classifier based on hydraulic scaling functions derived from high-resolution digital elevation models (DEM), and (3) 22 

population density. Results demonstrate the model's effectiveness in identifying flood susceptibility hotspots on a national 23 

scale and delineating their evolution from 1980 to 2020. Moreover, the study underscores the severity of hydroclimatic 24 

extremes across the entire HMA region. Importantly, the proposed framework is versatile and can be adapted to generate 25 

various pluvial and fluvial flood vulnerability and risk maps in ungaged regions. 26 
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1 Introduction 27 

High Mountain Asia (HMA) presents complex terrain characterized by dynamic hydrological and 28 

geomorphological processes. Over recent years, the region has been significantly affected by climate change, notably 29 

witnessing accelerated glacial melts (Shrestha and Aryal, 2011; Byers et al., 2022) and shifts in precipitation patterns and 30 

intensity (Haag et al., 2019; Kirschbaum et al., 2020). These environmental changes, compounded by anthropogenic 31 

influences such as landscape alterations, have escalated the region's susceptibility to flooding (Byers et al., 2022; Pervin et 32 

al., 2020; Shrestha et al., 2010; G. Zheng et al., 2021), with consequent increasing threats to lives, agriculture, and critical 33 

infrastructure (Fischer et al., 2022; Pervin et al., 2020; Rentschler et al., 2022; Sharma et al., 2019; Torti, 2012). The direct 34 

impacts caused by the flood are only part of the picture; the enduring socioeconomic repercussions further compound the 35 

crisis. These include loss of livelihoods, the urgent need for rehabilitation efforts, and the psychological toll exacted on 36 

affected communities. 37 

Flood disasters are generally associated with hydroclimatic extremes. The variability of precipitation patterns over 38 

time, space, and intensity is indeed crucial to their occurrence, but changes in catchment characteristics can also alter flood 39 

magnitude and frequency. The complex geomorphology and orographic characteristics in the HMA region cause significant 40 

spatiotemporal heterogeneity of precipitation patterns and extremes (Haag et al., 2019). Furthermore, the geomorphic 41 

structure of basins in HMA can influence the flood characteristics more than land cover does (Marston et al., 1996). Many 42 

floods in HMA carry huge amounts of sediment and water that adversely affect downstream areas where most population 43 

resides and can remain in the landscape for years afterward (Kafle et al., 2017; Simonovic et al., 2022).  44 

Changes in river morphology and channel shifting resulting from sediment variability are recognized causes of 45 

flood risk (Blench, 1969; Criss & Shock, 2001; Lane et al., 2007; Neuhold et al., 2009; Pinter et al., 2008; Slater et al., 2015; 46 

Stover & Montgomery, 2001). Several researchers have highlighted how the morphometric characteristics of watersheds 47 

provide useful insights into their hydrologic response to rainfall (Borga et al., 2008) since their morphometric characteristics 48 

are a crucial influence on flash flood intensity. In HMA, however, these control mechanisms are difficult to model at a large 49 

scale.  50 

Accurate evaluation of the socioeconomic impacts of natural disasters is paramount to mitigate the sufferings of the 51 

affected people and rehabilitation (Cavallo & Noy, 2010; Meyer et al., 2013; Noy, 2015, 2016a). To date, available studies 52 

(Diehl et al., 2021; Mohanty & Simonovic, 2022; Pangali Sharma et al., 2019; Pervin et al., 2020; Piacentini et al., 2020; 53 

Yang & Tsai, 2000) have primarily concentrated on vulnerability mapping and risk analysis, employing case studies and 54 

descriptive event-based methodologies at a local level. Scaling up the analysis over the entire HMA region is indeed a 55 

difficult task, as it requires collecting data from several countries and multiple sources, and this poses challenges due scarcity 56 

of ground observations covering consistent timeframes homogeneously (Barandun et al., 2020; Dollan et al., 2024; Miles et 57 

al., 2021). Especially in the context of the impact of floods using socioeconomic data, the analysis involves examining the 58 

number of fatalities, injured and people otherwise affected, as well as the financial damage that natural disasters cause, and 59 
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this information is generally collected at the local scale based on reported events. Significant disasters are documented in 60 

global databases like The International Disaster Database (EMDAT, www.emdat.be) or, as an example for HMA and this 61 

study, the Nepal Disaster Risk Reduction Portal (http://drrportal.gov.np/). However, these databases typically operate at a 62 

global or national level resolution, potentially overlooking minor disasters. For example, EMDAT only considers events with 63 

at least one of the following criteria: 1) 10 fatalities; 2) 100 affected people; 3) a declaration of state of emergency; 4) a call 64 

for international assistance. Additionally, those databases utilized to support insurance may prioritize countries with existing 65 

or potential insurance coverage (World Bank, 2012).  66 

The integration of geomorphic properties, population data, and rainfall characteristics for assessing socioeconomic 67 

flood impact is only recently being explored comprehensively on a large scale (e.g., Janizadeh et al., 2024). For HMA. this is 68 

primarily due to the inherent challenges associated with conducting on-site surveys in rugged and often inaccessible terrain. 69 

However, leveraging remote sensing data has emerged as a valuable approach for delving deeper into these dynamics and 70 

effectively quantifying flood impacts. Modern global datasets, featuring improved resolution and coverage, further enhance 71 

the utility of remote sensing in this regard (Diehl et al., 2021; Jongejan & Maaskant, 2015; Mosavi et al., 2018; Bentivoglio 72 

et al., 2022; Mazzoleni et al., 2022; Hawker et al., 2018; Kirschbaum et al., 2020; Mohanty and Simonovic, 2022; Pangali 73 

Sharma et al., 2019; Sanyal and Lu, 2004; Yang and Tsai, 2000; Zheng et al., 2018). 74 

Furthermore, machine learning (ML) techniques have emerged as increasingly popular tools in advanced prediction 75 

systems over the past two decades. They offer more cost-effective solutions with performance that can be aggregated, 76 

surpassing the complexity and time demands associated with simulating the complex development of flood processes. 77 

Recent research (Bentivoglio et al., 2022; Deroliya et al., 2022; Mosavi et al., 2018) has showcased encouraging 78 

advancements by integrating machine learning (ML) techniques with global datasets. This contemporary approach to 79 

mapping flood vulnerability notably streamlines the computational processes associated with data-intensive simulations, 80 

enhancing flood risk management strategies. However, ML systems rely on existing data for learning. Insufficient or 81 

incomplete data coverage can hinder effective learning, leading to suboptimal performance when deployed in real-world 82 

scenarios. Therefore, ensuring robust data enrichment, encompassing both quantity and quality, is imperative. 83 

In this study, we introduce a streamlined methodology for preliminary flood vulnerability assessment on a large 84 

scale, leveraging available global datasets. Specifically, we introduce a flood-risk assessment model designed to quantify 85 

spatially distributed socioeconomic susceptibility in flood-prone regions. We utilize this model to augment disaster 86 

understanding by integrating remotely sensed data, including climate variables and high-resolution terrain information. 87 

Finally, we apply this model in the High Mountain Asia (HMA) regions to analyze changes in socioeconomic flood impacts 88 

spanning from 1980 to 2020.  89 

http://www.emdat.be/
http://drrportal.gov.np/
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2 Materials and Methods 90 

2.1 Study Area 91 

HMA, otherwise known as the Hindu Kush-Himalayan region, comprises Nepal, Pakistan, Bangladesh, Bhutan, 92 

India, Afghanistan, Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, Mongolia, China, and part of many other countries in 93 

Asia. HMA is home to some of the world’s highest mountain systems, including the Himalayas and the Hindu Kush. This 94 

rugged terrain has a highly variable climate ranging from tropical to subpolar, essentially controlled by altitude. Around 1.5 95 

billion people (https://nsidc.org/data/highmountainasia) dwelling in the region are at risk of natural disasters (such as heavy 96 

rainfall, flooding (pluvial/ fluvial/ flash), earthquakes, avalanches, and landslides) due to the topographic characteristics, 97 

changing climate patterns, and high population density. Some of the world’s largest rivers and deltas, such as the Indus and 98 

the Ganges are located in this region. In the summertime (June to September), monsoon rains bring a vast amount of water 99 

(Kayastha & Kayastha, 2019) to the rivers and valleys in the southern part of HMA (Northern India, Nepal, Bangladesh, and 100 

Pakistan). Kirschbaum et al., 2020 have projected that the greatest increase in very high intensities of precipitation (>20 101 

mm/day) will occur during the monsoon season with the enormous amount of rain causing all types of devastating floods 102 

(Talchabhadel et al., 2018). Referring to the data reported for example in EMDAT, among all other hydroclimatic disasters 103 

in HMA from 1980 to 2020, floods affected the most people (53% among all other hydroclimatic disasters) and caused the 104 

highest total damage (56% among all other hydroclimatic disasters). Bangladesh, Nepal, Pakistan, and parts of India were 105 

hotspots with the highest casualties (source: EMDAT). 106 

This study considers approximately 6,000 watersheds across HMA as the main target area (Figure 1): the 107 

watersheds were selected to be consistent with the HMA domain and all the datasets produced throughout the different 108 

phases of the NASA-funded HiMAT project (https://himat.org/). The analysis initially centred on training and testing a 109 

machine-learning model specifically for Nepal. To achieve this, we collected fine-resolution topographic data along with 110 

district-scale socioeconomic information pertaining to population characteristics and documented flood impacts for this 111 

region. Subsequently, leveraging the insights gained from this initial phase, we extended the application of the trained model 112 

to predict socioeconomic impacts across all watersheds in HMA.  113 

https://nsidc.org/data/highmountainasia
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 114 

Figure 1: Study area- watersheds across High Mountain Asia (HMA), with highlighted the training domain (Nepal) and the overall 115 
rainfall variability across the region. The watershed displayed in black represents the 6000 watersheds that were used in the study. 116 
The watersheds were selected to be consistent with the HMA domain and all the datasets produced throughout the different 117 
phases of the NASA-funded HiMAT project (https://himat.org/) 118 

2.2 Methods 119 

Figure 2 illustrates the conceptual framework guiding this study. We employed machine learning (ML) analysis, 120 

utilizing climatic and geomorphologic variables, to forecast the socioeconomic impact of extreme fluvial and pluvial flood 121 

events spanning from 1980 to 2020 across High Mountain Asia (HMA). To capture the link between flooding and climatic 122 

and geomorphologic processes, the model considers as predictors a climatic index derived from ERA5 rainfall, and a 123 

geomorphological index, the Flood Geomorphic Potential -FGP- that characterizes the flood-proneness of the landscape, 124 

together with population data. A notable advantage of the proposed approach lies in its reliance on automatic techniques 125 

leveraging globally available datasets, thereby facilitating its applicability across diverse geographical regions to forecast 126 

socioeconomic flood impacts. The framework also benefits from leveraging geomorphologically driven information, to have 127 

an improved characterization of the different aspects of the underlying physical processes shaping the landscape and possibly 128 

impacting flood characteristics. By incorporating such domain knowledge into the ML model, the framework can better 129 

generalize across different regions and conditions, improving robustness and reliability for risk mapping in diverse 130 

environments and facilitating informed decision-making for flood management and mitigation strategies. 131 

 132 

To represent exposure and socioeconomic impacts, we introduced, respectively, a variable for population and 133 

“Lifeyears Index” (LYI) (Noy, 2014, 2016a, 2016b), a unit of measurement used to describe a disaster’s impact in terms of 134 
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the total years of life lost (see section 2.3.1 for details). To predict the LYI, we applied XGBoosting (eXtreme Gradient 135 

Boosting) (Chen et al., 2018; Chen & Guestrin, 2016). The predictor and response variables of the ML framework are 136 

described in the subsections below. 137 

  138 

Figure 2: Conceptual framework. Considered predictors are Flood Geomorphic Potential (FGP), Rainfall, and Population. The 139 
predicted value is the socioeconomic impact, characterized as the Lifeyears Index (LYI) (Noy, 2016a; Noy, 2015). Readers should 140 
refer to the following sections for an explanation of the predictors and predicted values. 141 

The analysis follows a multistep approach, beginning with data at both watershed and district scales. Initially, the 142 

focus was on the district scale, as socioeconomic data for Nepal, selected as the primary training ground, were readily 143 

available at this level through the Nepal Disaster Risk Reduction Portal (http://drrportal.gov.np/). For this region, 144 

furthermore, there is a comprehensive coverage of high-resolution (8-meter) Digital Elevation Models (DEMs) from prior 145 

High Mountain Asia (HMA) work (High Mountain Asia 8-meter DEMs Derived from Along-track Optical Imagery, 146 

10.5067/0MCWJJH5ABYO). Subsequently, all the information is aggregated at the watershed scale, as phenomena such as 147 

fluvial and pluvial flooding occur at this level, necessitating a dataset tailored to this scale. 148 

To transfer the demographic information from the district to the watershed scale, we performed a weighted spatial 149 

join between the watersheds and districts. For each watershed, we attributed the statistical characteristics of the intersecting 150 

districts, with weights based on the overlapping areas. The aggregation from district to watershed is done by a weighted 151 

average, considering the extent of district area within the watershed as a weight. Generally, the districts in Nepal are smaller 152 

in extent compared to the various watersheds.  153 

 154 

2.3 Datasets 155 

2.3.1. Socioeconomic Flood Impacts            156 

The research focused on predicting the socioeconomic impact of floods. Measured economic loss and tangible 157 

damages were analyzed by considering the Lifeyears Index (LYI) (Noy, 2014, 2016a, 2016b). This index is presented by 158 
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Noy, 2016 as “Lifeyears lost” and it is a variant of the WHO Disability Adjusted Life Years (DALYs) lost due to diseases 159 

and injuries (WHO, 2014). We calculated LYI for Nepal by using damage statistics and demographic information collected 160 

from different data portals in Nepal.  161 

 162 

The Index is described by Equation 1 and the parameters used in the equation are described in Table 1: 163 

 164 

        (1) 165 

 166 

Table 1: Parameters used to calculate LYI  167 

Variable Description References 

M 

Mortality (number of deaths due to 

disaster 

Nepal Disaster Risk Reduction Portal 

(http://drrportal.gov.np/)  

 

 

Aexp 

Average life expectancy at birth (by 

year) WHO (https://data.who.int/countries/524) 

Amed Median age (by year) WHO (https://data.who.int/countries/524) 

e 

Welfare reduction weight associated 

with being exposed to a disaster  

set to e = 0.054 according to Noy, (2016a), based on 

Mathers et al., 2013 

T 

Time taken by the affected person to get 

back to normal  Noy, (2016a)  

N Number of affected people 

Nepal Disaster Risk Reduction Portal 

(http://drrportal.gov.np/) 

c 

Percent of time not used in work-related 

activities (.75) Noy, (2016a) 

Y 

Financial damage (value of 

destroyed/damaged infrastructure)  

Nepal Disaster Risk Reduction Portal 

(http://drrportal.gov.np/) 

PCGDP Income per capita (by year) 

The World Bank 

(https://data.worldbank.org/country/Nepal) 

 168 

In this study, we classified Lifeyears Index (LYI) values into three distinct categories: Low for cases where 169 

log(LYI) < 2; Medium for values falling between 2 and 3; and High for log(LYI) > 3. This classification scheme indicates 170 

that a watershed or district is deemed to be at high risk if the average LYI exceeds 1000 years, while medium risk spans LYI 171 

values ranging from 100 to 1000 years, and Low risk encompasses LYI values less than 100 years. For instance, if the 172 

https://data.who.int/countries/524
https://data.who.int/countries/524
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calculated LYI is 100 years, it implies that the estimated impact of the given disaster equates to a potential loss of 100 years 173 

of life per 100,000 people. 174 

The cumulative LYI for Nepal (Figure 3) can provide an idea of how the cumulated flood impact has been 175 

increasing in a country with time. It also highlights how the index itself captures major disasters, such as those occurring in 176 

1981 (ICIMOD, 2011; Kiran S et al., 2008), 1993 (Nepal - Floods and Landslides, 1993), in 1996 (Nepal - Floods Situation 177 

Report No. 1, 26 July 1996), and in the monsoon seasons in 2003 and 2014 (Nepal Annual Report, 2003.; Nepal: Landslides 178 

and Floods - Aug 2014). The most changes can be noticed in the LYI for the years 1981, 1993, and 2014, the cumulative 179 

step change for these years from the previous year are subsequently 9999, 82865, and 976238 years.      180 

                        181 

Figure 3: Cumulative lifeyears lost over the years in Nepal. Highlighted years represent jumps in the cumulative value, mostly 182 
related to well-known disasters): 1981 (ICIMOD, 2011; Kiran S et al., 2008), 1993 (Nepal - Floods and Landslides, 1993), 1996 183 
(Nepal - Floods Situation Report No. 1, 26 July 1996), and in the monsoon seasons in 2003 and 2014 (Nepal Annual Report, 2003.; 184 
Nepal: Landslides and Floods - Aug 2014). 185 

2.3.2. Floodplain Mapping  186 

The identification of areas with the potential to be inundated is fundamental to preserving and protecting human 187 

lives and property while safely supporting economic activities. Hence, we applied a large-scale floodplain delineation 188 

algorithm to identify such areas at the basin scale across the HMA. Many researchers (e.g., Dingle et al., 2020; Lindersson et 189 

al., 2021; Piacentini et al., 2020) have used DEM-derived geomorphic index as a high-resolution flood mapping tool. We 190 
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opted for considering a variation of the Samela et al., (2017) which is a modified Geomorphic Flood Index (GFI) by Sofia, et 191 

al., 2017b & Sofia et al., 2015, thereby described as Flood Geomorphic Potential (FGP). 192 

        FGP = ln (hr/ H)                                                             (2) 193 

The index is calculated as the logarithm function of the bankfull elevations, H (estimated using a hydraulic scaling 194 

function, or HSF (w=αAβ), based on bankfull width (w) and contributing area (A)) in the element of the river network closest 195 

to the point under examination and the elevation difference between these two points, hr (Figure 4, Equation 2). The index 196 

was improved over a main aspect: the automatic identification of the HSF directly from terrain data, applying the technique 197 

of (Sofia, et al., 2017b; Sofia et al., 2015) to retrieve the bankfull location automatically through the landscape. This has the 198 

advantage of allowing for full automation of the mapping starting purely from terrain data. 199 

For this analysis, we trained the model considering FGP derived from the unique 8-meter Digital Elevation Models 200 

(DEMs) for Nepal that are available at the NASA National Snow and Ice Data Center Distributed Active Archive Center 201 

(NSIDC DAAC) (Shean, 2017c, 2017b, 2017a). While Nepal is entirely covered by the 8m DEM, extending the model to the 202 

whole HMA region is complicated by the gaps in the input satellite strip resulting from limited coverage, clouds, or failed 203 

stereo correlation. For this reason, we also considered the 30m DEM by Copernicus (European Space Agency, Sinergise. 204 

Copernicus Global Digital Elevation Model, 2021), a digital surface model (DSM) that represents the surface of the Earth, 205 

including buildings, infrastructure, and vegetation. Importantly, this DSM is derived from World DEM, an edited DSM in 206 

which the flattening of water bodies and the consistent flow of rivers have been included. Shore- and coastlines, special 207 

features such as airports, and implausible terrain structures have also been edited.  208 

We identified flood-prone areas by grouping them into six classes by their FGP index. For each watershed, we then 209 

considered the areas covered by the classes with FGP greater than 4, which, when compared to published data, proved to 210 

correspond realistically with areas subject to floods of about 100-year depth. Figure 4b compares the Flood Geomorphic 211 

Potential (FGP) automatic classes derived for select rivers in Nepal, with baseline inundation scenarios evaluated using 212 

standard inundation depths associated with critical flood events and their return periods provided in the work of Delalay et 213 

al. (2018). This visual comparison serves to highlight the efficacy of flood inundation mapping facilitated by the FGP. The 214 

HAND (Height Above Nearest Drainage) in Delalay et al. (2018) is a widely used approach for estimating flood inundation 215 

extents and water depths. It operates on the principle of deriving relative elevations from a DEM, similar to our approach, 216 

which also relies on DEM-based analysis. While having assumptions may introduce some limitations in accurately capturing 217 

complex flood dynamics, HAND remains a useful and practical method for large-scale flood assessment due to its 218 

computational efficiency and compatibility with readily available topographic data. Given these similarities, we find it 219 

reasonable to include HAND as a comparative reference in our study while acknowledging its limitations. 220 

It's worth noting that the DEM-derived geomorphic index has been previously published and applied in various 221 

contexts (Samela et al., 2017). While testing the quality of the DEM-derived geomorphic index lies beyond the scope of this 222 

work, its effectiveness for flood mapping has been well-established in previous studies (Manfreda et al., 2011, 2014; 223 

Manfreda & Samela, 2019; Samela et al., 2016, 2018), which have demonstrated the utility of the methodology, particularly 224 
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in ungauged conditions, for preliminary identification of flooded areas in regions where conducting expensive and time-225 

consuming hydrologic-hydraulic simulations may not be feasible. 226 

  227 

Figure 4: a. Flood Geomorphic Potential (FGP) (modified from Samela et al. 2017); b. FGP automatic classes compared to baseline 228 
inundation depth (HAND) scenarios and Orthophotos of selected areas (aerial imagery © Google Earth 2015). 229 

2.3.3. Rainfall Characteristic 230 

The climatology in HMA is highly variable (Dollan et al. 2024). Summer monsoons drive precipitation in the 231 

Ganges-Brahmaputra basins and the Tibetan Plateau (Bookhagen and Burbank, 2010; Shamsudduha and Panda, 2019); 232 

synoptic storms dominate winter precipitation impacting areas in the northwestern Karakorum mountains (Winiger et al., 233 

2005; Barlow et al., 2005). Overall, as well, variations in elevation gradients contribute to diverse microclimates, 234 

exemplified by Nepal's swift transition from high mountains to lowlands (Kansakar et al., 2004; Karki et al., 2016). Winter 235 

precipitation in the area is primarily influenced by the westerly weather system, with western disturbances originating in the 236 

Mid-Atlantic or Mediterranean Sea and traversing through northwest India to western Nepal after passing over Afghanistan 237 
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and Pakistan (Kansakar et al., 2004; Hamal et al., 2020). In Nepal, which was used as the training site for the model, regional 238 

climate variations exist, mostly driven by changes in elevation, with an overall homogeneity in trends (aside from a few 239 

hotspots) and regional statistics of precipitation, in line with the variability of HMA, as highlighted by the recent study by 240 

(Khanal et al., 2023).  241 

For this work, for the main rainfall driver of the model, we focused on daily climate concentration. As climate 242 

concentration values are mostly related to the temporal variability of the rainfall, not to the total amount or the average 243 

yearly and seasonal statistics, using this index allows to capture various climates globally (Monjo and Martin-Vide, 2016a). 244 

The variability of climate concentration, furthermore, has been proven to be highly linked to pluvial/fluvial flooding impacts 245 

in various regions of the world, including for example Italy (both in mountainous landscapes and floodplains (Sofia et al., 246 

2019), the US (Saki et al., 2023) [over a variety of physiographic regions], or China (Du et al., 2023).  Different authors have 247 

adopted different methods to determine the temporal concentration of precipitation, and the Concentration Index (CI) 248 

(Equation 2) is one of the most used parameters (Caloiero et al., 2019; Martin-Vide, 2004; Monjo, 2016; Sangüesa et al., 249 

2018; Serrano-Notivoli et al., 2018). 250 

             (2) 251 

This index was proposed by Martin-Vide (2004) originally to explore the contribution of the days with major 252 

rainfall to the total amount within a certain time range. The benefit of this index is that it can describe the temporal 253 

variability of rainfall at daily, annual, and seasonal scales using a single metric, as well as spatial variability at pixel or 254 

watershed scale. In the present study, we computed CI (Martin-Vide, 2004) using the ERA5 hourly rainfall data from 1980 255 

to 2019. The source of rainfall data was selected as various works for HMA highlighted its effectiveness in capturing 256 

extreme events quite accurately compared to other products (Maggioni & Massari, 2018; Maina et al., 2023, Dollan et al. 257 

2024). The CI was calculated considering a 5-year window. The choice of this length was done to have sufficient data to 258 

calculate the index, as well as to be able to capture a variability over the 49 years of this analysis. 259 

We identified storm events from this dataset primarily based on the criterion of rainfall of more than 0.5 mm, and 260 

we separated events when rainfall was below this threshold for more than 12 hours. Furthermore, we calculated CI using the 261 

cumulative amount of rainfall and the cumulative frequency of the event duration (Figure 5) for the selected events. The 262 

method (similar to Cortesi et al., 2012 and Monjo & Martin-Vide, 2016a) eventually aggregates the amount of precipitation 263 

that falls during each event into increasing categories and determines the relative contribution (as a percentage) of the 264 

progressively accumulated precipitation, as a function of the accumulated percentage of the durations of the events. The 265 

concentration index is then calculated as the ratio of the area between the line of equality (y=x) and the fitted curve (S), and 266 

the total area under the line of equality (A+S) (Figure 5, equation 2). The index is defined by the relationship between the 267 

accumulated percentage of time, and the accumulated rainfall. 268 
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 269 

Figure 5: Example of line of equality, and empirical curve for the rainfall concentration calculation. The concentration index is 270 
equal to the area between the line of equality and the fitted curve (S) divided by the total area below the line of equality (S+A) 271 

2.3.4. Exposure (Population) 272 

As all the parameters of the LYI are not always readily available at the watershed scale (as highlighted by most 273 

published literature, that considered LYI at the country scale), we added population counts as one of the predictors to train 274 

the model. For Nepal, we selected the data from the country’s national census 275 

(https://censusnepal.cbs.gov.np/Home/Index/EN) and aggregated it at the watershed scale by using the previously mentioned 276 

weighted join. To extend the model to the whole HMA, we computed the population for each watershed across the region 277 

from the Gridded Population of the World (GPW), v4 | SEDAC, 2024). This dataset provides spatially explicit estimates of 278 

population density for the years 2000, 2005, 2010, 2015, and 2020, based on counts consistent with national censuses and 279 

population registers, as raster data to facilitate data integration. We used a simple linear regression to retrieve data for the 280 

missing years.        281 

2.4. Machine Learning Model 282 

XGBoosting is primarily used to solve classification problems. To generate the results, the XGBoost algorithm uses 283 

an ensemble of boosted trees. An ensemble is a collection of predictors that together can give a final prediction while 284 

https://censusnepal.cbs.gov.np/Home/Index/EN
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reducing errors significantly. In this case, the predictors were climatic variables, geomorphologic variables, and exposure. 285 

Boosted algorithms are those in which each successive model attempts to correct the errors of its predecessor (similar to 286 

adaptive learning). The basic XGBoost algorithm can be understood as an ensemble of boosted trees. The idea behind such 287 

an ensemble is that multiple trees are built in sequence, each tree built on the previous one’s prediction. And each successive 288 

tree built considers the errors of the previous trees. This means that when we take an average of all the trees at the end, we 289 

get a final tree that is better than any individual tree within the model. We applied the XGBoosting model to the 290 

geomorphologic, climatic, and exposure variables to predict classes of LYI in different basins in Nepal and HMA. 291 

2.4.1 Validation of the System at the HMA Scale 292 

We conducted thorough testing and validation of our model for Nepal, comparing the predicted value of LYI to the 293 

calculated Lifeyears Index (LYI) data from tabular values specific to the region. We trained the model and validated it only 294 

using the data for Nepal, at the district scale and then at the watershed scale. Overall, we opted for a 90-10 approach, for 295 

which 90% of the Nepal data were used for training and 10% for validation. Upon extending the model's applicability to the 296 

entire High Mountain Asia (HMA) region, we rigorously assessed the quality of our results by comparing the predicted 297 

social impact with that reported in established flood databases covering the region. We performed a hyperparameter tuning 298 

using weighted accuracy (1-3-9 weighting scheme) for subsequently (low, med and high classes), prioritizing category 299 

“high”. Initially, when XGBoost was trained, it achieved a 63% test accuracy, but its confusion matrix revealed that it 300 

struggled to correctly classify the most destructive category (category 3). Since this category was of primary interest, the 301 

model was refined using weighted accuracy, emphasizing its importance. A 5-fold cross-validation with 1000 iterations was 302 

conducted, and for each cross-validation, oversampling was applied to balance the dataset.  303 

To verify our findings, we compared the predictions at the HMA level with flood events reported in the Dartmouth 304 

Flood Observatory’s (DFO) Global Active Archive of Large Flood Events, 1985–Present. This comprehensive database 305 

compiles information on major floods sourced from diverse channels such as news reports, governmental records, ground 306 

observations, and remote sensing data. Notably, the DFO dataset encompasses various flood types, including lowland floods 307 

and mountainous river floods characterized as fluvial and pluvial floods. The dataset provides point locations, representing 308 

the centroids of affected areas during floods. While acknowledging that flood centroids may oversimplify the complexities 309 

driving flood events, we utilized this dataset to showcase our model's capability to target high-risk locations historically 310 

impacted by floods within the specified timeframe. Identifying high-risk areas with recorded flood occurrences centered 311 

around these locations underscores the robustness of the model beyond the confines of its training and validation site in 312 

Nepal.  313 

Meteorological and climatological severity reported in the DFO database does not directly reflect the social impact 314 

of floods, and the events listed often span multiple watersheds. To address these limitations, we compared our model’s 315 

predictions to the DFO data using a proxy for social severity—specifically, the reported number of people affected, 316 

including “Deaths” and “Displaced.” Instead of relying on meteorological classifications, we grouped the DFO events by 317 
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social severity classes defined as 10ⁿ, where n corresponds to the severity level indicated in the DFO database. We then 318 

evaluated the marginal probability that events with varying DFO severity occurred in watersheds with different predicted 319 

LYI (Local Yield Impact) levels. Additionally, we computed the conditional probability—that is, the likelihood of a DFO-320 

classified event occurring within watersheds predicted by our model to have a certain LYI classification. This conditional 321 

probability helps assess how well our system identifies high-impact regions across different time frames. For example, if 322 

only 10% of watersheds are classified as high impact by our model, but most of the DFO’s most severe events (e.g., those 323 

with >1000 people affected) occurred within these watersheds, this would indicate that our model effectively captures 324 

regions of elevated social risk. A more detailed discussion of model performance and validation is provided in Section 3.3. 325 

Results Analysis 326 

3.1. Variability of the Predictors 327 

The topographical characteristics of an area can influence the local climate and population distribution. Figure 6 328 

shows an example of how climate concentration and population vary in Nepal, as compared to watersheds that have areas of 329 

high FGP of greater or lesser extent. The figure reports the average for the time frame 1980–2020 for CI and population, 330 

while the FGP is a static value for the time frame (since it is based on a unique DEM dataset), and it represents the overall 331 

geomorphic characteristics of Nepal.  332 

From this analysis, we can see how the variability of CI is complex. If expectedly, the variability of the index is 333 

related to atmospheric characteristics (Sangüesa et al., 2018), the index varies also due to geographical factors influencing 334 

climate (Tuladhar et al., 2020). In their study based on Nepal, Karki et al., 2017 highlighted the difference in the spatial 335 

pattern of high-intensity storm events from that of annual and monsoon events. The rapid rate at which physical processes 336 

(e.g., convection) take place regulates the high temporal concentration of precipitation in the regions where the sea surface 337 

and ground are highly affected by warmer temperatures (Monjo & Martin-Vide, 2016b). On the other hand, the low temporal 338 

concentration of rainfall is characterized as a normal pattern caused by cyclical weather events (Monjo & Martin-Vide, 339 

2016). Watersheds with lesser floodplain extents (that is, less areas with high FGP) are related to higher and steeper 340 

mountains, with complex orography. Research has shown that low areas in Nepal are susceptible to receiving high-intensity 341 

storm events even though they have fewer wet days (Karki et al., 2017). The authors of the same study also observed that the 342 

low-intensity events (annual and monsoonal precipitation) were mostly predominant over Nepal’s western middle mountains 343 

and central high mountains. In another study, however, Subba et al., 2019 stated that the frequency of extreme events had 344 

decreased significantly over the past two decades in the eastern part of Nepal. For our case, areas having the larger physical 345 

potential to flood (high FGP), appear to be areas showing the largest variation in CI, with values ranging from low (0.2) as 346 

well as very high (0.75), indicating a potential compound effect of highly torrential rains (CI=0.7) in locations where much 347 

of the landscape is potentially floodable (FGP high) and most population reside.  Readers should consider that higher FGP 348 
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values do not imply locations having wider channels, but rather they indicate how the landscape is potentially more flood 349 

prone as highlighted by (Samela et al., 2017; Manfreda & Samela, 2019; Samela et al., 2016, 2018).  350 

 351 

 352 

Figure 6: Average variability of the CI (top) and population (bottom) compared to FGP from 1980-2020 353 

Much of the population of Nepal tends to be concentrated in areas with higher FGP, as is typical for mountainous 354 

areas, where population and economic activities are mostly located in the river valleys. Globally, the floodplains of rivers are 355 

preferred living spaces for the population and provide favourable locations for economic development. These areas are 356 

commonly exposed to floods, however, an increasing population, together with the changes in storminess, mean that the 357 

risks from flooding are expected to be higher. On average, the population increased significantly in watersheds that 358 

transitioned from low to medium (LtoM), medium to high (MtoH), or low to high (LtoH) flood risk categories (Figure 7: 359 

example variability from 1985 to 2020). This suggests that growing population density in certain watersheds may be 360 

contributing to increasing flood susceptibility. The CI (climate concentration index) slightly decreased over this period for 361 
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some watersheds. However, watersheds experiencing population growth were more likely influencing the transition to a 362 

higher flood risk category. Although CI has not significantly increased, the interaction between land-use change, urban 363 

expansion, and demographic shifts may be playing a role in driving these transitions. Transitioning watersheds have a higher 364 

average FGP compared to the overall average FGP and tend to have a larger average watershed area compared to all 365 

watersheds. This indicates that larger watersheds are more prone to experiencing shifts FGP and in flood risk categories, 366 

possibly due to their ability to accumulate and distribute larger volumes of runoff and sediment. This supports the idea that 367 

intrinsic watershed characteristics (such as geomorphology and size) play a role in flood susceptibility alongside external 368 

factors like population growth and rainfall concentration index (CI). Area successfully predicted as at high risk (high LYI) in 369 

the most recent years, are areas showing high social vulnerability in terms of favorable Social Conditions (lack of 370 

communication, access to electricity and infrastructures, lower education, small children under 5); high percentage of 371 

migrating community and high risk of poverty and poor infrastructures (Aksha et al., 2019).  372 

 373 

 374 

Figure 7: Average variability of the rainfall CI (a), population change (b) compared to FGP (c) and LYI Trend (d) from 1980-2020 375 

 376 
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3.2. Variable Importance and Model Performance 377 

In this section, we present a variable importance comparison (Figure 8) based on the Feature Importance Score (F-378 

score) in XGBoost. XGBoost provides F-score based on how frequently a feature is used in splitting the data across all 379 

decision trees. This is the number of times a feature appears in a split across all trees in the model. A higher value indicates 380 

that the feature was used more frequently in decision-making, suggesting it has a stronger influence on model predictions. 381 

The F-score indicated that population (Pop) was the most important variable, which was consistent with our expectation in 382 

the sense that the socioeconomic impact depends largely on the exposure. The climate variable (CI) happened to be the next 383 

important variable, showing the significance of the region’s climate on the socioeconomic impact of flood occurrences.   384 

The precision, recall, and F1 score are metrics used to evaluate the performance of a classification model. Precision 385 

is the fraction of true positives among the predicted positives. Recall is the fraction of true positives among the actual 386 

positives. The F1 score is the harmonic mean of precision and recall. 387 

The evaluation metrics reveal in Table 2 that the model performs best in the High class, with the highest precision, 388 

recall, and F1 score. The final tuned models achieved weighted accuracies between 52% and 58%, but significantly 389 

improved recall (71%), precision (73%), and F1-score (72%) for category “high”. This means that out of 34 actual instances 390 

of the highest category, 24 were correctly predicted, and out of 33 predicted cases, 24 were accurate, confirming that the 391 

model effectively focused on the most critical category. This suggests that while the overall accuracy slightly decreased due 392 

to the re-weighting, the model's performance in identifying the most critical cases significantly improved. The Medium class 393 

also demonstrates relatively high performance across these metrics. However, the Low class exhibits the lowest 394 

performance, suggesting that the model may face challenges in accurately distinguishing between the Low and Medium 395 

classes or may demonstrate a bias toward predicting the Medium and High classes. These findings provide valuable insights 396 

into the strengths and limitations of the classification model and can guide future efforts to improve its performance. Overall, 397 

considering that the model aims to target substantial risk areas, a higher rate of predicting impacts is acceptable, compared to 398 

an underestimation of the risk. 399 

 400 

Figure 8: Feature importance score (F- score) 401 
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Table 2: Performance metrics of the model on test dataset 402 

 precision recall f1-score 

Low 0.54 0.57 0.56 

Medium 0.64 0.63 0.64 

High 0.73 0.71 0.72 

 403 

3.3. Predicted versus Observed Flood Impact in Nepal 404 

Comparing predicted Lifeyears Index (LYI) flood impacts with observed data showed good correspondence 405 

between high-risk areas identified by the ML method and historical flood locations in Nepal. This suggests that the proposed 406 

approach effectively delineates flood risk on a national scale. Figure 9 illustrates this comparison, showcasing observed 407 

(empirically evaluated) and ML-predicted LYI values at both watershed (upper row) and district (lower row) levels. 408 

The 'observed' LYI values were empirically calculated from observational data (Table 1) and categorized into three 409 

groups: 'low', 'medium', or 'high', with basins/districts labelled as 'high' for LYI values exceeding 1000 years, 'medium' 410 

between 100 and 1000 years, and 'low' below 10 years. The 'predicted' values represent the outputs from the machine 411 

learning model. 412 

In Nepal, we achieved an overall training accuracy of 97% and a test accuracy of 63%. Notably, training the model 413 

at the watershed level yielded higher accuracy compared to the district level. This is attributed to watersheds being 414 

hydrologic units that integrate geomorphological and climatic properties, thus providing a more accurate representation of 415 

flood dynamics compared to administrative district boundaries. 416 

At the watershed level, nearly all year ranges exhibited a 100% match with observed impacts. In instances where 417 

the model's accuracy fell below 100% (e.g., 1985–90 and 1990–95), the LYI values in the affected watersheds were low, 418 

indicating that the predictors considered were more indicative of major flooding events. The superior accuracy achieved at 419 

the watershed level underscores the value of implementing the model at this scale when scaling up the system. 420 



19 

 

 421 

Figure 9: Comparison of prediction with actual socioeconomic impact for watersheds and districts in Nepal.  Basin/districts are 422 
marked as “high” for LYI over 1000 years. Medium is between 100 and 1000, and low is less than 10. Numbers in parentheses 423 
represent accuracy. 424 

3.4. Prediction of Socioeconomic Impact of Heavy Rainfall over HMA  425 

 We applied the trained model for the watersheds in HMA to five-year intervals from 1980 to 2020. As an example, 426 

Figure 10(c, d) shows the predicted basin-averaged LYIs (Low-Med-High) for the watersheds in HMA for two different 427 

timelines. The yellow circles highlight the changes in flood impact over the decades. One must consider that most HMA has 428 

low population density (blue color in Fig. 10b), and as expected the proposed model predicts low flood socioeconomic 429 

impacts for these regions. Hotspots of high impacts (Red colors in Figures 10c and d) are present, where population exposure 430 

is higher. 431 
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 432 

Figure 10: a) Mean Monthly Rainfall overlayed on Elevation (contours); b) Population density 2020; c,d) Example of predicted 433 
basin-averaged flood impact for HMA (left, 1985–90; right, 2015–20). Yellow circles denote the changes in flood impact between 434 
the two timelines. 435 

Summarizing the results presented in Table 3, we can say that, for the years shown, we predicted almost 57% of 436 

watersheds (marginal) having LYIs between 1 and 100 years (Low), 35.9% for LYIs between 100 and 1000 years (Med), 437 

and only 6% for LYIs greater than 1000 years (High). For the entire period, most of the time we predicted LYIs of 1 to 100 438 

years, for which we captured events of DFO severity around 2 (102 Deaths+displaced) (conditional = 28.6%). This suggests 439 

that most “Low” class DFO events did happen in the watersheds within the lowest predicted LYI range. Readers must 440 

consider that “Low” in this case means the flood impact can range from 1 to 100 years lost, and a DFO value of 2 means 441 

total deaths and displaced is on the order of 102 people. The events with a DFO value of 4 happened mostly in watersheds 442 

with predicted LYIs ranging both between 1 and 100 years and between 100 and 1000 years. The events with DFO 6 and 8 443 

happened mostly in ranges greater than 1000 years and between 100 and 1000 years.  444 

Table 3: LYI compared to DFO flood damage.  445 
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DFO LYI NO Prop Marginal Probability Conditional Probability  

2 1–100yr 54 16.6 58.2 28.6 

2 100–1000yr 26 8.0 35.7 22.4 

2 >1000year 5 1.5 6.2 25.0 

4 1–100yr 92 28.3 58.2 48.7 

4 100–1000yr 45 13.8 35.7 38.8 

4 >1000year 5 1.5 6.2 25.0 

6 1–100yr 42 12.9 58.2 22.2 

6 100–1000yr 44 13.5 35.7 37.9 

6 >1000year 8 2.5 6.2 40.0 

8 1–100yr 1 0.3 58.2 0.5 

8 100–1000yr 1 0.3 35.7 0.9 

8 >1000year 2 0.6 6.2 10.0 

 446 

We further investigated how our predicted LYI behaved when it was related to the total population (Table 4), 447 

evaluating, as suggested by (Noy, 2014), the LYI per capita (that is, the number of lifeyears lost per 100k people). As Table 448 

4 shows, we correctly predicted over the years almost 64% of watersheds (marginal) have LYI/100k people less than 1 year 449 

(10^0), 24.3% at 10year/100k people (10^1), 11% at 100year/100k people, and 0.6% at 1000years/100k people. We noticed 450 

that LYI/100k people reached, at most, 6000 for Nepal (at the country scale) and the study by Noy. 2016a also reported 451 

similar values for Nepal in 1987. (Noy, 2016a) reported actual LYI data in the range of LYI > 1000/100k people in South 452 

Asia and stated that the higher number of damages in East and South Asia is likely due to wide-scale flooding. This gave 453 

assurance of the consistency of our prediction with the actual data available. When looking at LYI/100k people, we found 454 

that, for the whole timeframe, most of the floods that registered in the DFO with low severity (DFO = 10^2 455 

Deaths+displaced) happened in watersheds for which the predicted LYIs were between 1 and 100 years (conditional = 456 

29.8%). This confirmed once again that, in most cases, “low”-risk events did happen in the watersheds having the lowest 457 

predicted range (similar to the findings presented in Table 3). As before, while the probability of a watershed’s being labeled 458 

as high risk (LYI>1000year/1000k people) by our system was only 6%, the probability of these watersheds having 459 

experienced events recorded by the DFO as having a great impact (DFO severity > 6, meaning over 1 million people) rose to 460 

40% and 10%.  461 

 462 

 463 

 464 
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Table 4: LYI/100k compared to DFO flood damage.  465 

DFO LYI NO Prop 
Marginal 

Probability 

Conditional 

Probability 

0 0 13 3.8 65.0 5.9 

0 1 1 0.3 23.5 1.3 

0 2 1 0.3 10.9 2.7 

2 0 62 18.2 65.0 28.1 

2 1 13 3.8 23.5 16.3 

2 2 9 2.6 10.9 24.3 

2 3 1 0.3 0.6 50.0 

4 0 97 28.5 65.0 43.9 

4 1 34 10.0 23.5 42.5 

4 2 10 2.9 10.9 27.0 

4 3 1 0.3 0.6 50.0 

6 0 47 13.8 65.0 21.3 

6 1 32 9.4 23.5 40.0 

6 2 15 4.4 10.9 40.5 

8 0 2 0.6 65.0 0.9 

8 2 2 0.6 10.9 5.4 

 466 

Figure 11 shows the LYI per 100k people (LYI/100k) evaluated for different time frames for all the locations 467 

reported in the DFO database to compare the DFO severity with our predictions. Overall, the DFO and predicted results were 468 

quite consistent instead of some minor variability for some scattered areas. When we compared the changes over time, we 469 

noticed an increase in vulnerability. As the plot makes evident, the largest changes took place in 1990–95 and 2010–15; the 470 

two concentrated areas were Nepal and China. As Figure 3 shows, two big jumps occurred during these timelines for Nepal 471 

because of extreme storm-induced flood events. In Figure 3 we have discussed the predominant events that occurred in these 472 

timelines.  Regarding China, as of June 2010, more than 29 million people had been affected by flooding, with up to 2.37 473 

million evacuated and 195,000 homes destroyed (China: Floods Information Bulletin N° 1 GLIDE N°, 2010). 474 
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 475 

Figure 11: Comparison of DFO and LYI/ 100K people for all the timelines 476 

3.6. Change in Socioeconomic Impact over Time 477 

Figure 12a presents our maps of the watersheds where flood impacts increased over time. Furthermore, Figure 12b 478 

shows our evaluation of the percentage changes in the number of watersheds between timelines, focusing on three different 479 

changes: low to medium (LtoM); medium to high (MtoH); and low to high (LtoH). Some watersheds have not changed, and 480 

some have decreased impact. For the sake of highlighting potential increases in flood impacts, we focused on those locations 481 

where risk increased over time, from low to medium, or medium to high. The largest changes were from LtoM for all the 482 

timelines, which represented a notable change in vulnerability. Several watersheds showed higher flood impacts (from low to 483 

medium, medium to high, and low to high) in recent years as compared to 1985–90. Again, we observed the largest changes 484 

for 1990–95 and 2010–15, which was consistent with Figure 12. The exposure changed significantly, along with the intensity 485 

of the events; hence, the risk of flooding was heightened in these areas.  486 

Impact changes from Low to High were next, according to the number of watersheds changed for all the timelines. 487 

It was obvious that more changes would happen overall, but the comparison of the 1990–95 and 1995–2000 timelines 488 

demonstrated that heightened flood impact occurred in a considerable number of watersheds within a brief period. For many 489 

watersheds, the risk was heightened by a population boom during the overall period.  490 
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 491 

Figure 12: Flood impact change in HMA over time  492 
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3.7. Model constraints and limits 493 

While this study demonstrates the promise of accurate flood impact prediction, the use of static Flood Geomorphic Potential 494 

(FGP) maps presents limitations. Flooding alters channel morphology and downstream topography, impacting future flood dynamics 495 

(Khanam et al., 2024). Therefore, dynamic flood topographies are essential for robust hazard assessment. Although high-resolution data 496 

post-extreme events can enhance prediction accuracy, the availability of such data is constrained by acquisition frequency. Hence, efforts 497 

to improve data availability post-disaster are crucial for enhancing the reliability of predictive models. Researchers could also derive FGPs 498 

from enhanced high-resolution terrain data, such as those derived from LiDAR sources if available. In such cases, however, it is advisable 499 

to retrain the model and reassess the significance of this parameter in the updated model, as terrain resolution and survey techniques might 500 

determine a variability of the data, especially when dealing with hydrologic parameters (Sofia, 2020). 501 

The climate index considered in this study might vary depending on the input dataset (Reanalysis VS measurements), as well as 502 

on the timescale of the analysis. When comparing results to this study, researchers should make careful consideration of the length of the 503 

time window used for this evaluation (5 years). If daily data are considered over shorter time windows (e.g., 1 year), the index itself might 504 

result in higher values, capturing only short-term variability due to specific isolated storms. Seasonal analyses, on the other hand, would 505 

capture more the concentration due to monsoon periods, or dry vs. wet months. The proposed multi-year analysis is in line with literature 506 

studies, pertaining climate change studies and studies on the effect of floodings (Sofia et al., 2019; Saki et al., 2023; Du et al., 2023).  507 

Population data for this work relies on standard available datasets. When considering the method to predict future changes, 508 

outside the time range covered by the proposed model, headcounts alone cannot offer a full picture. It is crucial also to consider additional 509 

elements that could determine population shifts over time. 510 

4. Conclusions 511 

High Mountain Asia (HMA) presents a multifaceted landscape characterized by rugged terrain, diverse climates, 512 

rich vegetation, and substantial population exposure to natural disasters. Given its susceptibility to natural disasters, effective 513 

management is imperative for the region's long-term sustainability. Addressing the considerable threat posed by flooding 514 

demands a comprehensive strategy involving disaster risk reduction, sustainable land use practices, and climate change 515 

mitigation. 516 

In this study, we introduced a simplified approach to identify vulnerability hotspots within the HMA region, 517 

focusing on intense rainfall events. To map the socioeconomic flood vulnerability, we employed a remotely sensed data-518 

driven model integrating geomorphological and climate variability factors. This adaptable framework can be tailored to 519 

various regions, provided that similar terrain and climate datasets are available, accommodating adjustments to flood drivers 520 

such as climate and geomorphology, as well as population dynamics. The resulting predictions offer valuable insights into 521 

vulnerabilities across HMA watersheds, facilitating proactive flood management planning. 522 

The novelty of our study lies in the efficiency and versatility of the proposed predictive model. Requiring only a 523 

small number of variables, our model accurately forecasts the socioeconomic impact of pluvial and fluvial flooding events. 524 

In densely populated, possibly ungaged regions with rapidly changing climates, such a model serves as a valuable decision-525 



26 

 

making tool for stakeholders. The efficacy of the framework as demonstrated in Nepal underscores its potential applicability 526 

across regions with similar climatic and morphological characteristics. Our goal is to provide a reasonable assessment of 527 

vulnerability through life years lost, rather than to definitively classify flood-prone areas by societal factors. Despite certain 528 

limitations, our findings offer valuable insights into regional flood risk and its key drivers. 529 

With advancing technology, we can now predict the drivers of impending extreme events, enabling proactive 530 

measures to mitigate their impact. Stakeholders could leverage our model to forecast vulnerability to future flood events with 531 

precision, enhancing hazard assessment, decision-making, planning, and mitigation efforts. 532 
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