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Abstract.  High Mountain Asia (HMA) faces heightened vulnerability to natural disasters due to its extreme conditions and 

the escalating impacts of climate change. Understanding the long-term response of this landscape to hydroclimatic fluctuations 

is imperative, given the profound effects these changes have on millions of people annually. Heavy rains, and monsoon 

seasons, bring forth floods and debris flows, resulting in significant damage to crops, infrastructure, and communities, causing 

widespread human impacts. Despite efforts to estimate flood risk locally, traditional techniques often fall short due to the 15 

scarcity of high-quality, consistent data, especially in ungauged basins. To overcome this challenge, we propose a novel 

approach: a geomorphologically guided machine learning (ML) method for mapping flood effects across HMA. Central to our 

methodology is the Lifeyear Index (LYI), a systematic measure that quantifies both the financial and human losses incurred 

by disasters, specifically for this study fluvial and pluvial flooding. Our model was trained using a dataset comprising over 

6000 flood events spanning from 1980 to 2020, along with their corresponding five-year and ten-year LYI. Key predictors 20 

included: (1) five-year rainfall concentrations derived from ERA5 daily data, (2) a geomorphic classifier based on hydraulic 

scaling functions derived from high-resolution digital elevation models (DEM), and (3) population density. Results 

demonstrate the model's effectiveness in identifying flood susceptibility hotspots on a national scale and delineating their 

evolution from 1980 to 2020. Moreover, the study underscores the severity of hydroclimatic extremes across the entire HMA 

region. Importantly, the proposed framework is versatile and can be adapted to generate various pluvial and fluvial flood 25 

vulnerability and risk maps in ungaged regions. 

1 Introduction 

High Mountain Asia (HMA) presents complex terrain characterized by dynamic hydrological and geomorphological 

processes. Over recent years, the region has been significantly affected by climate change, notably witnessing accelerated 

glacial melts (Shrestha and Aryal, 2011; Byers et al., 2022) and shifts in precipitation patterns and intensity (Haag et al., 2019; 30 
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Kirschbaum et al., 2020). These environmental changes, compounded by anthropogenic influences such as landscape 

alterations, have escalated the region's susceptibility to flooding (Byers et al., 2022; Pervin et al., 2020; Shrestha et al., 2010; 

G. Zheng et al., 2021), with consequent increasing threats to lives, agriculture, and critical infrastructure (Fischer et al., 2022; 

Pervin et al., 2020; Rentschler et al., 2022; Sharma et al., 2019; Torti, 2012). The direct impacts caused by the flood are only 

part of the picture; the enduring socioeconomic repercussions further compound the crisis. These include loss of livelihoods, 35 

the urgent need for rehabilitation efforts, and the psychological toll exacted on affected communities. 

Flood disasters are generally associated with hydroclimatic extremes. The variability of precipitation patterns over 

time, space, and intensity is indeed crucial to their occurrence, but changes in catchment characteristics can also alter flood 

magnitude and frequency. The complex geomorphology and orographic characteristics in the HMA region cause significant 

spatiotemporal heterogeneity of precipitation patterns and extremes (Haag et al., 2019). Furthermore, the geomorphic structure 40 

of basins in HMA can influence the flood characteristics more than land cover does (Marston et al., 1996). Many floods in 

HMA carry huge amounts of sediment and water that adversely affect downstream areas where most population resides, and 

can remain in the landscape for years afterward (Kafle et al., 2017; Simonovic et al., 2022).  

Changes in river morphology and channel shifting resulting from sediment variability are recognized causes of flood 

risk (Blench, 1969; Criss & Shock, 2001; Lane et al., 2007; Neuhold et al., 2009; Pinter et al., 2008; Slater et al., 2015; Stover 45 

& Montgomery, 2001). Several researchers have highlighted how the morphometric characteristics of watersheds provide 

useful insights into their hydrologic response to rainfall (Borga et al., 2008) since their morphometric characteristics are a 

crucial influence on flash flood intensity. In HMA, however, these control mechanisms are difficult to model at a large scale.  

Accurate evaluation of the socioeconomic impacts of natural disasters is paramount to mitigate the sufferings of the 

affected people and rehabilitation (Cavallo & Noy, 2010; Meyer et al., 2013; Noy, 2015, 2016a). To date, available studies 50 

(Diehl et al., 2021; Mohanty & Simonovic, 2022; Pangali Sharma et al., 2019; Pervin et al., 2020; Piacentini et al., 2020; Yang 

& Tsai, 2000) have primarily concentrated on vulnerability mapping and risk analysis, employing case studies and descriptive 

event-based methodologies at a local level. Scaling up the analysis over the entire HMA region is indeed a difficult task, as it 

requires collecting data from several countries and multiple sources, and this poses challenges due scarcity of ground 

observations covering consistent timeframes homogeneously (Barandun et al., 2020; Dollan et al., 2024; Miles et al., 2021). 55 

Especially in the context of the impact of floods using socioeconomic data, the analysis involves examining the number of 

fatalities, injured and people otherwise affected, as well as the financial damage that natural disasters cause, and this 

information is generally collected at the local scale based on reported events. Significant disasters are documented in global 

databases like The International Disaster Database (EMDAT, www.emdat.be) or, as an example for HMA and this study, the 

Nepal Disaster Risk Reduction Portal (http://drrportal.gov.np/). However, these databases typically operate at a global or 60 

national level resolution, potentially overlooking minor disasters. For example, EMDAT only considers events with at least 

one of the following criteria: 1)10 fatalities; 2)100 affected people; 3) a declaration of state of emergency; 4) a call for 

international assistance. Additionally, those databases utilized to support insurance may prioritize countries with existing or 

potential insurance coverage (World Bank, 2012).  

http://www.emdat.be/
http://drrportal.gov.np/
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The integration of geomorphic properties, population data, and rainfall characteristics for assessing socioeconomic 65 

flood impact is seldom explored comprehensively on a large scale. For HMA. this is primarily due to the inherent challenges 

associated with conducting on-site surveys in rugged and often inaccessible terrain. However, leveraging remote sensing data 

has emerged as a valuable approach for delving deeper into these dynamics and effectively quantifying flood impacts. Modern 

global datasets, featuring improved resolution and coverage, further enhance the utility of remote sensing in this regard (Diehl 

et al., 2021; Jongejan & Maaskant, 2015; Mosavi et al., 2018; Bentivoglio et al., 2022; Mazzoleni et al., 2022; Hawker et al., 70 

2018; Kirschbaum et al., 2020; Mohanty and Simonovic, 2022; Pangali Sharma et al., 2019; Sanyal and Lu, 2004; Yang and 

Tsai, 2000; Zheng et al., 2018). 

Furthermore, machine learning (ML) techniques have emerged as increasingly popular tools in advanced prediction 

systems over the past two decades. They offer more cost-effective solutions with performance that can be aggregated, 

surpassing the complexity and time demands associated with simulating the complex development of flood processes. Recent 75 

research (Bentivoglio et al., 2022; Deroliya et al., 2022; Mosavi et al., 2018) has showcased encouraging advancements by 

integrating machine learning (ML) techniques with global datasets. This contemporary approach to mapping flood 

vulnerability notably streamlines the computational processes associated with data-intensive simulations, enhancing flood risk 

management strategies. However, ML systems rely on existing data for learning. Insufficient or incomplete data coverage can 

hinder effective learning, leading to suboptimal performance when deployed in real-world scenarios. Therefore, ensuring 80 

robust data enrichment, encompassing both quantity and quality, is imperative. 

In this study, we introduce a streamlined methodology for preliminary flood vulnerability assessment on a large scale, 

leveraging available global datasets. Specifically, we introduce a flood-risk assessment model designed to quantify spatially 

distributed socioeconomic susceptibility in flood-prone regions. We utilize this model to augment disaster understanding by 

integrating remotely sensed data, including climate variables and high-resolution terrain information. 85 

Finally, we apply this model in the High Mountain Asia (HMA) regions to analyze changes in socioeconomic flood impacts 

spanning from 1980 to 2020. 

2 Materials and Methods 

2.1 Study Area 

HMA, otherwise known as the Hindu Kush-Himalayan region, comprises Nepal, Pakistan, Bangladesh, Bhutan, India, 90 

Afghanistan, Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, Mongolia, China, and part of many other countries in Asia. 

HMA is home to some of the world’s highest mountain systems, including the Himalayas and the Hindu Kush. This rugged 

terrain has a highly variable climate ranging from tropical to subpolar, essentially controlled by altitude. Around 1.5 billion 

people (https://nsidc.org/data/highmountainasia) dwelling in the region are at risk of natural disasters (such as heavy rainfall, 

flooding (pluvial/ fluvial/ flash), earthquakes, avalanches, and landslides) due to the topographic characteristics, changing 95 

climate patterns, and high population density. Some of the world’s largest rivers and deltas, such as the Indus and the Ganges 

https://nsidc.org/data/highmountainasia
게스트
A recent study has been performed such as https://doi.org/10.1016/j.jenvman.2024.121764
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are located in this region. In the summertime (June to September), monsoon rains bring a vast amount of water (Kayastha & 

Kayastha, 2019) to the rivers and valleys in the southern part of HMA (Northern India, Nepal, Bangladesh, and Pakistan). 

Kirschbaum et al., 2020 have projected that the greatest increase in very high intensities of precipitation (>20 mm/day) will 

occur during the monsoon season with the enormous amount of rain causing all types of devastating floods (Talchabhadel et 100 

al., 2018). Referring to the data reported for example in EMDAT, among all other hydroclimatic disasters in HMA from 1980 

to 2020, floods affected the most people (53% among all other hydroclimatic disasters) and caused the highest total damage 

(56% among all other hydroclimatic disasters). Bangladesh, Nepal, Pakistan, and parts of India were hotspots with the highest 

casualties (source: EMDAT). 

This study considers approximately 6,000 watersheds across HMA as the main target area (Figure 1): the watersheds 105 

were selected to be consistent with the HMA domain and all the datasets produced throughout the different phases of the 

NASA-funded HiMAT project (https://himat.org/). The analysis initially centered on training and testing a machine-learning 

model specifically for Nepal. To achieve this, we collected fine-resolution topographic data along with district-scale 

socioeconomic information pertaining to population characteristics and documented flood impacts for this region. 

Subsequently, leveraging the insights gained from this initial phase, we extended the application of the trained model to predict 110 

socioeconomic impacts across all watersheds in HMA.  

 

Figure 1: Study area- watersheds across High Mountain Asia (HMA), with highlighted the training domain (Nepal) and the overall 

rainfall variability across the region. The watershed displayed in black represents the 6000 watersheds that were used in the study. 
The watershed were selected to be consistent with the HMA domain and all the datasets produced throughout the different phases 115 
of the NASA-funded HiMAT project (https://himat.org/) 
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2.2 Methods 

Figure 2 illustrates the conceptual framework guiding this study. We employed machine learning (ML) analysis, 

utilizing climatic and geomorphologic variables, to forecast the socioeconomic impact of extreme fluvial and pluvial flood 

events spanning from 1980 to 2020 across High Mountain Asia (HMA). To capture the link between flooding and climatic 120 

and geomorphologic processes, the model considers as predictors a climatic index derived from ERA5 rainfall, and a 

geomorphological index, the Flood Geomorphic Potential -FGP- that characterizes the flood-proneness of the landscape, 

together with population data. A notable advantage of the proposed approach lies in its reliance on automatic techniques 

leveraging globally available datasets, thereby facilitating its applicability across diverse geographical regions to forecast 

socioeconomic flood impacts. The framework also benefits from leveraging geomorphologically-driven information, to have 125 

an improved characterization of the different aspects of the underlying physical processes shaping the landscape and possibly 

impacting flood characteristics. By incorporating such domain knowledge into the ML model, the framework can better 

generalize across different regions and conditions, improving robustness and reliability for risk mapping in diverse 

environments and facilitating informed decision-making for flood management and mitigation strategies. 

 130 

To represent exposure and socioeconomic impacts, we introduced, respectively, a variable for population and 

“Lifeyears Index” (LYI) (Noy, 2014, 2016a, 2016b), a unit of measurement used to describe a disaster’s impact in terms of 

the total years of life lost (see section 2.3.1 for details). To predict the LYI, we applied XGBoosting (eXtreme Gradient 

Boosting) (Chen et al., 2018; Chen & Guestrin, 2016). The predictor and response variables of the ML framework are described 

in the subsections below. 135 
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Figure 2: Conceptual framework. Considered predictors are Flood Geomorphic Potential (FGP), Rainfall, and Population. The 

predicted value is the socioeconomic impact, characterized as the Lifeyears Index (LYI) (Noy, 2016a; Noy, 2015). Readers should 

refer to the following sections for an explanation of the predictors and predicted values. 

The analysis follows a multistep approach, beginning with data at both watershed and district scales. Initially, the 140 

focus was on the district scale, as socioeconomic data for Nepal, selected as the primary training ground, were readily available 

at this level through the Nepal Disaster Risk Reduction Portal (http://drrportal.gov.np/). For this region, furthermore, there is 

a comprehensive coverage of high-resolution (8-meter) Digital Elevation Models (DEMs) from prior High Mountain Asia 

(HMA) work (High Mountain Asia 8-meter DEMs Derived from Along-track Optical Imagery, 10.5067/0MCWJJH5ABYO). 

Subsequently, all the information is aggregated at the watershed scale, as phenomena such as fluvial and pluvial flooding occur 145 

at this level, necessitating a dataset tailored to this scale. 

To transfer the demographic information from the district to the watershed scale, we performed a weighted spatial 

join between the watersheds and districts. For each watershed, we attributed the statistical characteristics of the intersecting 

districts, with weights based on the overlapping areas. Generally, the districts in Nepal are smaller in extent compared to the 

various watersheds.  150 

 

2.3 Datasets 

2.3.1. Socioeconomic Flood Impacts            

The research focused on predicting the socioeconomic impact of floods. Measured economic loss and tangible 

damages were analyzed by considering the Lifeyears Index (LYI) (Noy, 2014, 2016a, 2016b). This index is presented by Noy, 155 

2016 as “Lifeyears lost” and it is a variation of the WHO Disability Adjusted Life Years (DALYs) lost due to diseases and 

injuries (WHO, 2014). We calculated LYI for Nepal by using damage statistics and demographic information collected from 

different data portals in Nepal.  

 

The Index is described by Equation 1 and the parameters used in the equation are described in Table 1: 160 

 

LYI = M(Aexp –  Amed) + e ∗ T ∗ N + (1 –  c)Y/PCGDP        (1) 

 

Table 1: Parameters used to calculate LYI  

Variable Description References 

M 

Mortality (number of deaths due to 

disaster 

Nepal Disaster Risk Reduction Portal 

(http://drrportal.gov.np/)  
 

 

Aexp 

Average life expectancy at birth (by 

year) WHO (https://data.who.int/countries/524) 

Amed Median age (by year) WHO (https://data.who.int/countries/524) 

https://data.who.int/countries/524
https://data.who.int/countries/524
게스트
"variant" may be a better word choice.

게스트
Please modify the figure such that input(FGP, Rainfall, and Population) and output (LYI) of the XGBoost model can be distinguished.
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e 

Welfare reduction weight associated 

with being exposed to a disaster  

set to e = 0.054 according to Noy, (2016a), based on 

Mathers et al., 2013 

T 

Time taken by the affected person to get 

back to normal  Noy, (2016a)  

N Number of affected people 

Nepal Disaster Risk Reduction Portal 

(http://drrportal.gov.np/) 

c 

Percent of time not used in work-related 

activities (.75) Noy, (2016a) 

Y 

Y = Financial damage (value of 

destroyed/damaged infrastructure)  

Nepal Disaster Risk Reduction Portal 

(http://drrportal.gov.np/) 

PCGDP Income per capita (by year) 

The World Bank 

(https://data.worldbank.org/country/Nepal) 

 165 

In this study, we classified Lifeyears Index (LYI) values into three distinct categories: Low for cases where log(LYI) 

< 2; Medium for values falling between 2 and 3; and High for log(LYI) > 3. This classification scheme indicates that a 

watershed or district is deemed to be at high risk if the average LYI exceeds 1000 years, while Medium risk spans LYI values 

ranging from 100 to 1000 years, and Low risk encompasses LYI values less than 100 years. For instance, if the calculated LYI 

is 100 years, it implies that the estimated impact of the given disaster equates to a potential loss of 100 years of life per 100,000 170 

people. 

The cumulative LYI for Nepal (Figure 3) can provide an idea of how the cumulated flood impact has been increasing 

in a country with time. It also highlights how the index itself captures major disasters, such as those occurring in 1981 

(ICIMOD, 2011; Kiran S et al., 2008), 1993 (Nepal - Floods and Landslides, 1993), in 1996 (Nepal - Floods Situation Report 

No. 1, 26 July 1996), and in the monsoon seasons in 2003 and 2014 (Nepal Annual Report, 2003.; Nepal: Landslides and 175 

Floods - Aug 2014). The most changes can be noticed in the LYI for the years 1981, 1993, and 2014, the cumulative step 

change for these years from the previous year are subsequently 9999, 82865, and 976238 years.      

게스트
I understand this concept and it is very interesting. It will be more interesting if the map of this categories (low, medium, high LYI) of the training dataset can be shown along with the map of the actual LYI.
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Figure 3: Cumulative lifeyears lost over the years in Nepal. Highlighted years represent jumps in the cumulative value, mostly 

related to well-known disasters): 1981 (ICIMOD, 2011; Kiran S et al., 2008), 1993 (Nepal - Floods and Landslides, 1993), 1996 (Nepal 180 
- Floods Situation Report No. 1, 26 July 1996), and in the monsoon seasons in 2003 and 2014 (Nepal Annual Report, 2003.; Nepal: 

Landslides and Floods - Aug 2014). 
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2.3.2. Floodplain Mapping  

The identification of areas with the potential to be inundated is fundamental to preserving and protecting human lives 

and property while safely supporting economic activities. Hence, we applied a large-scale floodplain delineation algorithm to 185 

identify such areas at the basin scale across the HMA. Many researchers (e.g., Dingle et al., 2020; Lindersson et al., 2021; 

Piacentini et al., 2020) have used DEM-derived geomorphic index as a high-resolution flood mapping tool. We opted for 

considering a variation of the  Samela et al., (2017) Geomorphic Flood Index (GFI), thereby described as Flood Geomorphic 

Potential (FGP). 

The index is calculated as the logarithm of the ratio between the bankfull elevations (estimated using a hydraulic 190 

scaling function, or HSF, based on contributing area) in the element of the river network closest to the point under examination 

and the elevation difference between these two points (Figure 4). The index was improved over a main aspect: the automatic 

identification of the HSF directly from terrain data, applying the technique of (Sofia, et al., 2017b; Sofia et al., 2015) to retrieve 

the bankfull location automatically through the landscape. This has the advantage of allowing for full automation of the 

mapping starting purely from terrain data. 195 

For this analysis, we trained the model considering FGP derived from the unique 8-meter Digital Elevation Models 

(DEMs) for Nepal that are available at the NASA National Snow and Ice Data Center Distributed Active Archive Center 

(NSIDC DAAC) (Shean, 2017c, 2017b, 2017a). While Nepal is entirely covered by the 8m DEM, extending the model to the 

whole HMA region is complicated by the gaps in the input satellite strip resulting from limited coverage, clouds, or failed 

stereo correlation. For this reason, we also considered the 30m DEM by Copernicus (European Space Agency, Sinergise. 200 

Copernicus Global Digital Elevation Model, 2021), a digital surface model (DSM) that represents the surface of the Earth, 

including buildings, infrastructure, and vegetation. Importantly, this DSM is derived from World DEM, an edited DSM in 

which the flattening of water bodies and the consistent flow of rivers have been included. Shore- and coastlines, special features 

such as airports, and implausible terrain structures have also been edited.  

We identified flood-prone areas by grouping them into six classes by their FGP index. For each watershed, we then 205 

considered the areas covered by the classes with FGP greater than 4, which, when compared to published data, proved to 

correspond realistically with areas subject to floods of about 100-year depth. Figure 4b compares the Flood Geomorphic 

Potential (FGP) automatic classes derived for select rivers in Nepal, with baseline inundation scenarios evaluated using 

standard inundation depths associated with critical flood events and their return periods provided in the work of Delalay et al. 

(2018). This visual comparison serves to highlight the efficacy of flood inundation mapping facilitated by the FGP. 210 

It's worth noting that the FGP methodology has been previously published and applied in various contexts (Samela 

et al., 2017). While testing the quality of the FGP lies beyond the scope of this work, its effectiveness for flood mapping has 

been well-established in previous studies (Manfreda et al., 2011, 2014; Manfreda & Samela, 2019; Samela et al., 2016, 2018), 

which have demonstrated the utility of the methodology, particularly in ungauged conditions, for preliminary identification of 
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flooded areas in regions where conducting expensive and time-consuming hydrologic-hydraulic simulations may not be 215 

feasible. 

 

Figure 4: a. Flood Geomorphic Potential (FGP) (modified from Samela et al. 2017); b. FGP automatic classes compared to baseline 

inundation depth scenarios (aerial imagery © Google Earth 2015). 

2.3.3. Rainfall Characteristic 220 

The climatology in HMA is highly variable (Dollan et al. 2024). Summer monsoons drive precipitation in the Ganges-

Brahmaputra basins and the Tibetan Plateau ( Bookhagen and Burbank, 2010; Shamsudduha and Panda, 2019); synoptic storms 

dominate winter precipitation impacting areas in the northwestern Karakorum mountains (Winiger et al., 2005; Barlow et al., 

2005). Overall, as well, variations in elevation gradients contribute to diverse microclimates, exemplified by Nepal's swift 

transition from high mountains to lowlands (Kansakar et al., 2004; Karki et al., 2016). Winter precipitation in the area is 225 
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primarily influenced by the westerly weather system, with western disturbances originating in the Mid-Atlantic or 

Mediterranean Sea and traversing through northwest India to western Nepal after passing over Afghanistan and Pakistan 

(Kansakar et al., 2004; Hamal et al., 2020). In Nepal, which was used as the training site for the model, regional climate 

variations exist,  mostly driven by changes in elevation, with an overall homogeneity in trends (aside from a few hotspots) and 

regional statistics of precipitation, in line with the variability of HMA, as highlighted by the recent study by (Khanal et al., 230 

2023).  

For this work, for the main rainfall driver of the model, we focused on daily climate concentration. As climate 

concentration values are mostly related to the temporal variability of the rainfall, not to the total amount or the average yearly 

and seasonal statistics, using this index allows to capture well various climates globally (Monjo and Martin-Vide, 2016a). The 

variability of climate concentration, furthermore, has been proven to be highly linked to pluvial/fluvial flooding impacts in 235 

various regions of the world, including for example Italy (both in mountainous landscapes and floodplains (Sofia et al., 2019), 

the US (Saki et al., 2023) [over a variety of physiographic regions], or China (Du et al., 2023).  Different authors have adopted 

different methods to determine the temporal concentration of precipitation, and the Concentration Index (CI) (Equation 2) is 

one of the most used parameters (Caloiero et al., 2019; Martin-Vide, 2004; Monjo, 2016; Sangüesa et al., 2018; Serrano-

Notivoli et al., 2018). 240 

This index was proposed by Martin-Vide (2004) originally to explore the contribution of the days with major rainfall 

to the total amount within a certain time range. The benefit of this index is that it can describe the temporal variability of 

rainfall at daily, annual, and seasonal scales using a single metric, as well as spatial variability at pixel or watershed scale. In 

the present study, we computed CI (Martin-Vide, 2004) using the ERA5 hourly rainfall data from 1980 to 2019. The source 

of rainfall data was selected as various works for HMA highlighted its effectiveness in capturing extreme events quite 245 

accurately compared to other products (Maggioni & Massari, 2018; Maina et al., 2023, Dollan et al. 2024). 

We identified storm events from this dataset primarily based on the criterion of rainfall of more than 0.5 mm, and we 

separated events when rainfall was below this threshold for more than 12 hours. Furthermore, we calculated CI using the 

cumulative amount of rainfall (y) and the cumulative frequency of the event duration (x) (Figure 5) for the selected events. 

The method (similar to Cortesi et al., 2012 and Monjo & Martin-Vide, 2016a) eventually aggregates the amount of precipitation 250 

that falls during each event into increasing categories and determines the relative contribution (as a percentage) of the 

progressively accumulated precipitation, y, as a function of the accumulated percentage of the durations of the events (x). The 

concentration index is then calculated as the ratio of the area between the line of equality (y=x) and the fitted curve (S), and 

the total area under the line of equality (A+S) (Figure 5, equation 2). The index is defined by the relationship between the 

accumulated percentage of time, and the accumulated rainfall. 255 

𝐶𝐼 =
𝑆

𝑆+𝐴
             (2) 

게스트
Again, a map showing this index over the study area will be very interesting.



12 

 

 

Figure 5: Example of line of equality, and empirical curve for the rainfall concentration calculation. The concentration index is equal 

to the area between the line of equality and the fitted curve (S) divided by the total area below the line of equality (S+A) 

2.3.4. Exposure (Population) 260 

As all the parameters of the LYI are not always readily available at the watershed scale (as highlighted by most 

published literature, that considered LYI at the country scale), we added population counts as one of the predictors to train the 

model. For Nepal, we selected the data from the country’s national census (https://censusnepal.cbs.gov.np/Home/Index/EN) 

and aggregated it at the watershed scale by using the previously mentioned weighted join. To extend the model to the whole 

HMA, we computed the population for each watershed across the region from the Gridded Population of the World (GPW), 265 

v4 | SEDAC, 2024). This dataset provides spatially explicit estimates of population density for the years 2000, 2005, 2010, 

2015, and 2020, based on counts consistent with national censuses and population registers, as raster data to facilitate data 

integration. We used a simple linear regression to retrieve data for the missing years.        

2.4. Machine Learning Model 

XGBoosting is primarily used to solve classification problems. To generate the results, the XGBoost algorithm uses 270 

an ensemble of boosted trees. An ensemble is a collection of predictors that together can give a final prediction while reducing 

errors significantly. In this case, the predictors were climatic variables, geomorphologic variables, and exposure. Boosted 

algorithms are those in which each successive model attempts to correct the errors of its predecessor (similar to adaptive 

https://censusnepal.cbs.gov.np/Home/Index/EN
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learning). The basic XGBoost algorithm can be understood as an ensemble of boosted trees. The idea behind such an ensemble 

is that multiple trees are built in sequence, each tree built on the previous one’s prediction. And each successive tree built 275 

considers the errors of the previous trees. This means that when we take an average of all the trees at the end, we get a final 

tree that is better than any individual tree within the model.  We applied the XGBoosting model to the geomorphologic, 

climatic, and exposure variables to predict classes of LYI in different basins in Nepal and HMA. 

2.4.1 Validation of the System at the HMA Scale 

We conducted thorough testing and validation of our model within Nepal, comparing the predicted value of LYI to 280 

the calculated Lifeyears Index (LYI) data from tabular values specific to the region. Upon extending the model's applicability 

to the entire High Mountain Asia (HMA) region, we rigorously assessed the quality of our results by comparing the predicted 

social impact with that reported in established flood databases covering the region. To verify our findings, we compared the 

predictions at the HMA level with flood events reported in the Dartmouth Flood Observatory’s (DFO) Global Active Archive 

of Large Flood Events, 1985–Present. This comprehensive database compiles information on major floods sourced from 285 

diverse channels such as news reports, governmental records, ground observations, and remote sensing data. Notably, the DFO 

dataset encompasses various flood types, including lowland floods and mountainous river floods characterized as fluvial and 

pluvial floods. 

The dataset provides point locations, representing the centroids of affected areas during floods. While acknowledging 

that flood centroids may oversimplify the complexities driving flood events, we utilized this dataset to showcase our model's 290 

capability to target high-risk locations historically impacted by floods within the specified timeframe. Identifying high-risk 

areas with recorded flood occurrences centered around these locations underscores the robustness of the model beyond the 

confines of its training and validation site in Nepal. 

Meteorological and climatological severity reported in the DFO cannot directly capture the social impact of the floods; 

furthermore, they refer to events that may span multiple watersheds. To overcome these limitations, we compared our predicted 295 

results to the DFO data by evaluating a proxy of the social severity reported for each flood—the numbers of “Deaths” and 

“Displaced” that resulted—rather than the flood’s meteorological characteristics. We then considered classes of DFO “social 

severity” of 10n. Here n is the severity level declared in the DFO database. Next, we calculated the marginal probability that 

events with different severity in the DFO happened in watersheds with different predicted LYIs. Finally, we calculated the 

conditional probability, as in the probability of an event of DFO severity of some kind occurring over watersheds where our 300 

LYI prediction was of a certain type. This conditional probability could provide us with information on how our system 

performed for different time frames—for example, the probability of a watershed’s being classified as high impact by our 

model might be only 10% of the total, but if most of DFO events with great severity (i.e., >1000 Deaths+displaced) did happen 

in those watersheds, then our system correctly identified the risk there. 

게스트
This is an interesting and crucial idea for your XGBoost model validation, but in my view, the method of dissecting  your study area into half, and use a half to develop your model and use the other half to validate it will be the best way. Then, you can develop a confusion matrix between the simulated LYI category against the observed LYI category. Based on this result, you can even perform the uncertainty analysis of your final result (e.g. what is the probability of the area classified as high FYI would actually have high FYI).
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3. Results Analysis 305 

3.1. Variability of the Predictors 

The topographical characteristics of an area can influence the local climate and population distribution. Figure 6 

shows an example of how climate concentration and population vary in HMA, as compared to watersheds that have areas of 

high FGP of greater or lesser extent. The figure reports the average for the time frame 1980–2020 for CI and population, while 

the FGP is a static value for the time frame (since it is based on a unique DEM dataset), and it represents the overall geomorphic 310 

characteristics of Nepal.  

From this analysis, we can see how the variability of CI is complex. If expectedly, the variability of the index is 

related to atmospheric characteristics (Sangüesa et al., 2018), the index varies also due to geographical factors influencing 

climate (Tuladhar et al., 2020). In their study based on Nepal, Karki et al., 2017 highlighted the difference in the spatial pattern 

of high-intensity storm events from that of annual and monsoon events. The rapid rate at which physical processes (e.g., 315 

convection) take place regulates the high temporal concentration of precipitation in the regions where the sea surface and 

ground are highly affected by warmer temperatures (Monjo & Martin-Vide, 2016b). On the other hand, the low temporal 

concentration of rainfall is characterized as a normal pattern caused by cyclical weather events (Monjo & Martin-Vide, 2016). 

Watersheds with lesser floodplain extents (that is, less areas with high FGP) are related to higher and steeper mountains, with 

complex orography. Research has shown that low areas in Nepal are susceptible to receiving high-intensity storm events even 320 

though they have fewer wet days (Karki et al., 2017). The authors of the same study also observed that the low-intensity events 

(annual and monsoonal precipitation) were mostly predominant over Nepal’s western middle mountains and central high 

mountains. In another study, however, Subba et al., 2019 stated that the frequency of extreme events had decreased 

significantly over the past two decades in the eastern part of Nepal. For our case, areas having the larger physical potential to 

flood (high FGP), appear to be areas showing the largest variation in CI, with values ranging from low (0.2) as well as very 325 

high (0.75), indicating a potential compound effect of highly torrential rains (CI=0.7) in locations where much of the landscape 

is potentially floodable (FGP high) and most population reside.  Readers should consider that higher FGP values do not imply 

locations having wider channels, but rather they indicate how the landscape is potentially more flood-prone th as highlighted 

by (Samela et al., 2017; Manfreda & Samela, 2019; Samela et al., 2016, 2018).  

Much of the population of Nepal tends to be concentrated in areas with higher FGP, as is typical for mountainous 330 

areas, where population and economic activities are mostly located in the river valleys. Globally, the floodplains of rivers are 

preferred living spaces for the population and provide favorable locations for economic development. These areas are 

commonly exposed to floods, however, an increasing population, together with the changes in storminess, mean that the risks 

from flooding are expected to be higher.   

게스트
Very interesting finding! You can write another nice paper that discusses this matter at a global scale.

게스트
Suggestion: A bit digressing from the main result of this paper. This section may be better suited for methodology or a separate discussion section.

게스트
An additional section that discusses the ranges of the predictor variables of the watersheds that are classified as high LYI will be interesting. This is because we cannot solely rely on the AI model of which inside is considered as black box.
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335 

 

Figure 6: Average variability of the CI (top) and population (bottom) compared to FGP from 1980-2020 

3.2. Variable Importance and Model Performance 

Based on the methodology described in section 2.4, in this section, we present a variable importance comparison 

(Figure 7) based on the F score. The initial variable importance indicated that population (Pop) was the most important variable, 340 

which was consistent with our expectation in the sense that the socioeconomic impact depends largely on the exposure. The 

climate variable (CI) happened to be the next important variable, showing the significance of the region’s climate on the 

socioeconomic impact of flood occurrences.   

The precision, recall, and F1 score are metrics used to evaluate the performance of a classification model. Precision 

is the fraction of true positives among the predicted positives. Recall is the fraction of true positives among the actual positives. 345 

The F1 score is the harmonic mean of precision and recall. 

The evaluation metrics reveal in Table 2 that the model performs best in the High class, with the highest precision, 

recall, and F1 score. The Medium class also demonstrates relatively high performance across these metrics. However, the Low 

class exhibits the lowest performance, suggesting that the model may face challenges in accurately distinguishing between the 

Low and Medium classes or may demonstrate a bias toward predicting the Medium and High classes. These findings provide 350 

valuable insights into the strengths and limitations of the classification model and can guide future efforts to improve its 
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performance. Overall, considering that the model aims to target substantial risk areas, a higher rate of predicting impacts is 

acceptable, compared to an underestimation of the risk. 

 

Figure 7: Feature Importance 355 

Table 2: Performance metrics of a classification model 

 precision recall f1-score 

Low 0.54 0.57 0.56 

Medium 0.64 0.63 0.64 

High 0.73 0.71 0.72 

 

3.3. Predicted versus Observed Flood Impact in Nepal 

Comparing predicted Lifeyears Index (LYI) flood impacts with observed data showed good correspondence between 

high-risk areas identified by the ML method and historical flood locations in Nepal. This suggests that the proposed approach 360 

effectively delineates flood risk on a national scale. Figure 8 illustrates this comparison, showcasing observed (empirically 

evaluated) and ML-predicted LYI values at both watershed (upper row) and district (lower row) levels. 

The 'observed' LYI values were empirically calculated from observational data (Table 1) and categorized into three 

groups: 'low', 'medium', or 'high', with basins/districts labeled as 'high' for LYI values exceeding 1000 years, 'medium' between 

100 and 1000 years, and 'low' below 10 years. The 'predicted' values represent the outputs from the machine learning model. 365 

In Nepal, we achieved an overall training accuracy of 97% and a test accuracy of 63%. Notably, training the model 

at the watershed level yielded higher accuracy compared to the district level. This is attributed to watersheds being hydrologic 

units that integrate geomorphological and climatic properties, thus providing a more accurate representation of flood dynamics 

compared to administrative district boundaries. 
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 370 

At the watershed level, nearly all year ranges exhibited a 100% match with observed impacts. In instances where the 

model's accuracy fell below 100% (e.g., 1985–90 and 1990–95), the LYI values in the affected watersheds were low, indicating 

that the predictors considered were more indicative of major flooding events. 

The superior accuracy achieved at the watershed level underscores the value of implementing the model at this scale 

when scaling up the system. 375 

 

Figure 8: Comparison of prediction with actual socioeconomic impact for watersheds and districts in Nepal.  Basin/districts are 

marked as “high” for LYI over 1000 years. Medium is between 100 and 1000, and low is less than 10. Numbers in parentheses 

represent accuracy. 

 380 

3.4. Prediction of Socioeconomic Impact of Heavy Rainfall over HMA  

 We applied the trained model for the watersheds in HMA to five-year intervals from 1980 to 2020. As an example, 

Figure 9(c, d) shows the predicted basin-averaged LYIs (Low-Med-High) for the watersheds in HMA for two different 

timelines. The yellow circles highlight the changes in flood impact over the decades. One must consider that most HMA has 

low population density (blue color in Fig. 9b), and as expected the proposed model predicts low flood socioeconomic impacts 385 

for these regions. Hotspots of high impacts (Red colors in Figures 9c and d) are present, where population exposure is higher. 
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Figure 9: a) Mean Monthly Rainfall (yellow contours) overlayed on Elevation; b) Population density 2020; c,d) Example of predicted 

basin-averaged flood impact for HMA (left, 1985–90; right, 2015–20). Yellow circles denote the changes in flood impact between the 

two timelines. 390 

Summarizing the results presented in Table 3, we can say that, for the years shown, we predicted almost 57% of 

watersheds (marginal) having LYIs between 1 and 100 years (Low), 35.9% for LYIs between 100 and 1000 years (Med), and 

only 6% for LYIs greater than 1000 years (High). For the entire period, most of the time we predicted LYIs of 1 to 100 years, 

for which we captured events of DFO severity around 2 (102 Deaths+displaced) (conditional = 28.6%). This suggests that most 

“Low” class DFO events did happen in the watersheds within the lowest predicted LYI range. Readers must consider that 395 

“Low” in this case means the flood impact can range from 1 to 100 years lost, and a DFO value of 2 means total deaths and 

displaced is on the order of 102 people. The events with a DFO value of 4 happened mostly in watersheds with predicted LYIs 

ranging both between 1 and 100 years and between 100 and 1000 years. The events with DFO 6 and 8 happened mostly in 

ranges greater than 1000 years and between 100 and 1000 years.  

Table 3: LYI compared to DFO flood damage.  400 

DFO LYI NO Prop Marginal Probability Conditional Probability  

게스트
the letters "(b)" in the figure legend is overlapped on the other letters.

게스트
Very interesting result, but I wil  try to find a better way to visualize it using figure.
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2 1–100yr 54 16.6 58.2 28.6 

2 100–1000yr 26 8.0 35.7 22.4 

2 >1000year 5 1.5 6.2 25.0 

4 1–100yr 92 28.3 58.2 48.7 

4 100–1000yr 45 13.8 35.7 38.8 

4 >1000year 5 1.5 6.2 25.0 

6 1–100yr 42 12.9 58.2 22.2 

6 100–1000yr 44 13.5 35.7 37.9 

6 >1000year 8 2.5 6.2 40.0 

8 1–100yr 1 0.3 58.2 0.5 

8 100–1000yr 1 0.3 35.7 0.9 

8 >1000year 2 0.6 6.2 10.0 

 

We further investigated how our predicted LYI behaved when it was related to the total population (Table 4), 

evaluating, as suggested by (Noy, 2014), the LYI per capita (that is, the number of lifeyears lost per 100k people). As Table 4 

shows, we correctly predicted over the years almost 64% of watersheds (marginal) have LYI/100k people less than 1 year 

(10^0), 24.3% at 10year/100k people (10^1), 11% at 100year/100k people, and 0.6% at 1000years/100k people. We noticed 405 

that LYI/100k people reached, at most, 6000 for Nepal (at the country scale) and the study by Noy. 2016a also reported similar 

values for Nepal in 1987. (Noy, 2016a) reported actual LYI data in the range of LYI > 1000/100k people in South Asia and 

stated that the higher number of damages in East and South Asia is likely due to wide-scale flooding. This gave assurance of 

the consistency of our prediction with the actual data available. When looking at LYI/100k people, we found that, for the 

whole timeframe, most of the floods that registered in the DFO with low severity (DFO = 10^2 Deaths+displaced) happened 410 

in watersheds for which the predicted LYIs were between 1 and 100 years (conditional = 29.8%). This confirmed once again 

that, in most cases, “low”-risk events did happen in the watersheds having the lowest predicted range (similar to the findings 

presented in Table 3). As before, while the probability of a watershed’s being labeled as high risk (LYI>1000year/1000k 

people) by our system was only 6%, the probability of these watersheds having experienced events recorded by the DFO as 

having a great impact (DFO severity > 6, meaning over 1 million people) rose to 40% and 10%.  415 

Table 4: LYI/100k compared to DFO flood damage.  

DFO LYI NO Prop 
Marginal 

Probability 
Conditional Probability 

0 0 13 3.8 65.0 5.9 

0 1 1 0.3 23.5 1.3 

0 2 1 0.3 10.9 2.7 

게스트
Same as above. Try to display this information using figure.
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2 0 62 18.2 65.0 28.1 

2 1 13 3.8 23.5 16.3 

2 2 9 2.6 10.9 24.3 

2 3 1 0.3 0.6 50.0 

4 0 97 28.5 65.0 43.9 

4 1 34 10.0 23.5 42.5 

4 2 10 2.9 10.9 27.0 

4 3 1 0.3 0.6 50.0 

6 0 47 13.8 65.0 21.3 

6 1 32 9.4 23.5 40.0 

6 2 15 4.4 10.9 40.5 

8 0 2 0.6 65.0 0.9 

8 2 2 0.6 10.9 5.4 

 

Figure 10 shows the LYI per 100k people (LYI/100k) evaluated for different time frames for all the locations reported 

in the DFO database to compare the DFO severity with our predictions. Overall, the DFO and predicted results were quite 

consistent instead of some minor variability for some scattered areas. When we compared the changes over time, we noticed 420 

an increase in vulnerability. As the plot makes evident, the largest changes took place in 1990–95 and 2010–15; the two 

concentrated areas were Nepal and China. As Figure 3 shows, two big jumps occurred during these timelines for Nepal because 

of extreme storm-induced flood events. In Figure 3 we have discussed the predominant events that occurred in these timelines.  

Regarding China, as of June 2010, more than 29 million people had been affected by flooding, with up to 2.37 million 

evacuated and 195,000 homes destroyed (China: Floods Information Bulletin N° 1 GLIDE N°, 2010). 425 
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Figure 10: Comparison of DFO and LYI/ 100K people for all the timelines 

3.6. Change in Socioeconomic Impact over Time 

Figure 11a presents our maps of the watersheds where flood impacts increased over time. Furthermore, Figure 11b 

shows our evaluation of the percentage changes in the number of watersheds between timelines, focusing on three different 430 

changes: low to medium (LtoM); medium to high (MtoH); and low to high (LtoH). Some watersheds have not changed, and 

some have decreased impact. For the sake of highlighting potential increases in flood impacts, we focused on those locations 

where risk increased over time, from low to medium, or medium to high. The largest changes were from LtoM for all the 

timelines, which represented a notable change in vulnerability. Several watersheds showed higher flood impacts (from low to 

medium, medium to high, and low to high) in recent years as compared to 1985–90. Again, we observed the largest changes 435 

for 1990–95 and 2010–15, which was consistent with Figure 10. The exposure changed significantly, along with the intensity 

of the events; hence, the risk of flooding was heightened in these areas.  

Impact changes from Low to High were next, according to the number of watersheds changed for all the timelines. It 

was obvious that more changes would happen overall, but the comparison of the 1990–95 and 1995–2000 timelines 

demonstrated that heightened flood impact occurred in a considerable number of watersheds within a brief period. For many 440 

watersheds, the risk was heightened by a population boom during the overall period.  

게스트
While this figure is very interesting, its resolution is unacceptable. Please provide high resoluation image.

게스트
This is too much generalization. The primary reason of this result may be that the long term CI values is less varaible that short term CI values. In addition, you are applying the model that is developed based on 35 years of rainfall data to the data based on 5 years of rainfall. Please discuss or briefly state about the limitation of this result.
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Figure 11: Flood impact change in HMA over time  

게스트
please enhance resolution of figure here too.
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4. Conclusions 

High Mountain Asia (HMA) presents a multifaceted landscape characterized by rugged terrain, diverse climates, rich 445 

vegetation, and substantial population exposure to natural disasters. Given its susceptibility to natural disasters, effective 

management is imperative for the region's long-term sustainability. Addressing the considerable threat posed by flooding 

demands a comprehensive strategy involving disaster risk reduction, sustainable land use practices, and climate change 

mitigation. 

In this study, we introduced a simplified approach to identify vulnerability hotspots within the HMA region, focusing 450 

on intense rainfall events. To map the socioeconomic flood vulnerability, we employed a remotely sensed data-driven model 

integrating geomorphological and climate variability factors. This adaptable framework can be tailored to various regions, 

provided that similar terrain and climate datasets are available, accommodating adjustments to flood drivers such as climate 

and geomorphology, as well as population dynamics. The resulting predictions offer valuable insights into vulnerabilities 

across HMA watersheds, facilitating proactive flood management planning. 455 

The novelty of our study lies in the efficiency and versatility of the proposed predictive model. Requiring only a small 

number of variables, our model accurately forecasts the socioeconomic impact of pluvial and fluvial flooding events. In densely 

populated, possibly ungaged regions with rapidly changing climates, such a model serves as a valuable decision-making tool 

for stakeholders. The efficacy of the framework, as demonstrated in Nepal, underscores its potential applicability across 

regions with similar climatic and morphological characteristics. 460 

With advancing technology, we can now predict the drivers of impending extreme events, enabling proactive 

measures to mitigate their impact. Stakeholders could leverage our model to forecast vulnerability to future flood events with 

precision, enhancing hazard assessment, decision-making, planning, and mitigation efforts. 

However, while this study demonstrates the promise of accurate flood impact prediction, the use of static Flood 

Geomorphic Potential (FGP) maps presents limitations. Flooding alters channel morphology and downstream topography, 465 

impacting future flood dynamics. Therefore, dynamic flood topographies are essential for robust hazard assessment. Although 

high-resolution topographical data post-extreme events can enhance prediction accuracy, the availability of such data is 

constrained by acquisition frequency. Hence, efforts to improve data availability post-disaster are crucial for enhancing the 

reliability of predictive models. 

 470 
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