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Abstract. The exposure of High Mountain Asia (HMA) to disaster risks is faces heightened by vulnerability to natural disasters 

due to its extreme weather conditions and the escalating impacts of climate change. Obtaining knowledge aboutUnderstanding 

the long-term response of thethis landscape to hydroclimatic variations in HMA is paramount, as fluctuations is imperative, 

given the profound effects these changes have on millions of people are affected by these changes every year. During 

monsoons, substantial human sufferingannually. Heavy rains, and monsoon seasons, bring forth floods and debris flows, 15 

resulting in significant damage to crops and, infrastructure in populated , and communities result from the flooding and debris 

flow caused by the increase in precipitation extremes each year. Although a few initiatives have undertaken the estimation of, 

causing widespread human impacts. Despite efforts to estimate flood risk locally, the use of traditional techniques often fall 

short due to the scarcity of high-quality, consistent data, especially in ungauged basins is, unfortunately, not always possible 

because of the lack of extensive data required.. To address this problem, we present inovercome this study challenge, we 20 

propose a novel approach: a geomorphologically guided machine learning (ML) approachmethod for mapping flood 

impactseffects across HMA. We defined socioeconomic flood impact using the LifeyearsCentral to our methodology is the 

Lifeyear Index (LYI), a systematic indexmeasure that measures the economic cost and loss of life caused by flooding. This 

index quantifies the importance of the destruction to infrastructure, capital, and housing in an overall assessment. Weboth the 

financial and human losses incurred by disasters, specifically for this study fluvial and pluvial flooding. Our model was trained 25 

the proposed model with using a dataset comprising over 6000 flood events, spanning from 1980 to 2020, andalong with their 

computedcorresponding five-year and ten-year LYIs. We used asLYI. Key predictors, included: (1) the five-year rainfall 

concentrations (which correlate the magnitude of precipitation events with the time of occurrence) of events retrieved from 

derived from ERA5 daily data;, (2) a geomorphic classifier (flood geomorphic potential) based on hydraulic scaling functions 

automatically derived from an 8 and 30-meterhigh-resolution digital elevation modelmodels (DEM) for the region), and (3) 30 

population. This model proved capable of  density. Results demonstrate the model's effectiveness in identifying the hotspots 

of flood susceptibility hotspots on a national scale and showing its variabilitydelineating their evolution from 1980 to 2022. 
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The 2020. Moreover, the study also highlightsunderscores the severity of the impacts of hydroclimatic extremes inacross the 

entire HMA region. The Importantly, the proposed framework is genericversatile and can be usedadapted to derive a wide 

variety ofgenerate various pluvial and fluvial flood vulnerability and subsequent risk maps in data-scarceungaged regions. 35 

1 Introduction 

High Mountain Asia (HMA) has a highlypresents complex terrain with active hydrologiccharacterized by dynamic 

hydrological and geomorphologicgeomorphological processes. The Over recent years, the region has experienced the effects 

of been significantly affected by climate change, including expeditednotably witnessing accelerated glacial melts (Shrestha 

and Aryal, 2011; melt (Byers et al., 2022; Shrestha & Aryal, 2011)) and alteredshifts in precipitation patterns and intensity 40 

(Haag et al., 2019; Kirschbaum et al., 2020).). These environmental changes, combined with othercompounded by 

anthropogenic and environmental factors (influences such as population growth and landscape modifications),alterations, have 

increasedescalated the likelihood of region's susceptibility to flooding (Byers et al., 2022; Pervin et al., 2020; Shrestha et al., 

2010; G. Zheng et al., 2021), which is now a grave threat), with consequent increasing threats to lifelives, agriculture, and 

critical infrastructure in the region(Fischer et al., n.d.;2022; Pervin et al., 2020; Rentschler et al., 2022; Sharma et al., 2019; 45 

Torti, 2012).). The direct impacts caused by the flood waters are further exacerbated by only part of the picture; the significant 

long-lastingenduring socioeconomic consequences of floods, including losses of livelihood,repercussions further compound 

the crisis. These include loss of livelihoods, the urgent need for rehabilitation efforts, and the psychological harmtoll exacted 

on affected communities. 

Flood disasters are generally associated with hydroclimatic extremes. The variability of precipitation patterns over 50 

time, space, and intensity is indeed crucial to their occurrence, but changes in catchment characteristics can also alter flood 

magnitude and frequency. The complex geomorphology and orographic characteristics in the HMA region cause significant 

spatiotemporal heterogeneity of precipitation patterns and extremes (Haag et al., 2019).). Furthermore, the geomorphic 

structure of basins in HMA can influence the flood characteristics more than landcoverland cover does (Marston et al., 1996).). 

Many floods in HMA carry huge amounts of sediment and water that adversely affect downstream areas with large human 55 

populationswhere most population resides, and can remain in the landscape for years afterward (Kafle et al., 2017; Simonovic 

et al., 2022).).  

Changes in river morphology and channel shifting resulting from sediment variability are recognized causes of flood 

risk (Blench, 1969; Criss & Shock, 2001; Lane et al., 2007; Neuhold et al., 2009; Pinter et al., 2008; Slater et al., 2015; Stover 

& Montgomery, 2001).). Several researchers have highlighted how the morphometric characteristics of watersheds 60 

providesprovide useful insights into their hydrologic response to rainfall (Borga et al., 2008) since their morphometric 

characteristics are a crucial influence on flash flood intensity. In HMA, however, these control mechanisms are difficult to 

model at thea large scale.  
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To date, available studies (Diehl et al., 2021; Mohanty & Simonovic, 2022; Pangali Sharma et al., 2019; Pervin et al., 

2020; Piacentini et al., 2020; Yang & Tsai, 2000) have focused on vulnerability mapping and risk analysis carried out through 65 

case studies and descriptive methods on a local scale. Flood vulnerability studies conventionally use hydrologic or 

hydrodynamic simulations, which require large amounts of time and data. Although improved rainfall-runoff simulations can 

make flood mapping more accurate, HMA does not have enough hydrological stations for region-wide flood monitoring. 

Moreover, the available meteorological datasets may not be sufficiently trustworthy. Accurate flood modeling is challenged 

by the inadequate spatial coverage of hydrological observations, which introduces uncertainty in forecasting, and flood risk 70 

management, and reduces the ability to mitigate disaster impacts through planning and management. Besides traditional flood 

hazard mapping, accurate evaluation of socioeconomic impacts of natural disasters (Cavallo & Noy, 2010; Meyer et al., 2013; 

Noy, 2015, 2016a) is foremost to mitigate the sufferings of the affected people and rehabilitation(Cavallo & Noy, 2010; Meyer 

et al., 2013; Noy, 2015, 2016a).  

GeomorphicAccurate evaluation of the socioeconomic impacts of natural disasters is paramount to mitigate the 75 

sufferings of the affected people and rehabilitation (Cavallo & Noy, 2010; Meyer et al., 2013; Noy, 2015, 2016a). To date, 

available studies (Diehl et al., 2021; Mohanty & Simonovic, 2022; Pangali Sharma et al., 2019; Pervin et al., 2020; Piacentini 

et al., 2020; Yang & Tsai, 2000) have primarily concentrated on vulnerability mapping and risk analysis, employing case 

studies and descriptive event-based methodologies at a local level. Scaling up the analysis over the entire HMA region is 

indeed a difficult task, as it requires collecting data from several countries and multiple sources, and this poses challenges due 80 

scarcity of ground observations covering consistent timeframes homogeneously (Barandun et al., 2020; Dollan et al., 2024; 

Miles et al., 2021). Especially in the context of the impact of floods using socioeconomic data, the analysis involves examining 

the number of fatalities, injured and people otherwise affected, as well as the financial damage that natural disasters cause, and 

this information is generally collected at the local scale based on reported events. Significant disasters are documented in 

global databases like The International Disaster Database (EMDAT, www.emdat.be) or, as an example for HMA and this 85 

study, the Nepal Disaster Risk Reduction Portal (http://drrportal.gov.np/). However, these databases typically operate at a 

global or national level resolution, potentially overlooking minor disasters. For example, EMDAT only considers events with 

at least one of the following criteria: 1)10 fatalities; 2)100 affected people; 3) a declaration of state of emergency; 4) a call for 

international assistance. Additionally, those databases utilized to support insurance may prioritize countries with existing or 

potential insurance coverage (World Bank, 2012).  90 

The integration of geomorphic properties, population data, and rainfall characteristics for assessing socioeconomic 

flood impact is seldom explored comprehensively on a large scale. For HMA. this is primarily due to the inherent challenges 

associated with conducting on-site surveys in rugged and often inaccessible terrain. However, leveraging remote sensing data 

has emerged as a valuable approach for delving deeper into these dynamics and effectively quantifying flood impacts. Modern 

global datasets, featuring improved resolution and coverage, further enhance the utility of remote sensing in this regard (Diehl 95 

et al., are rarely investigated together on a large scale as a means of measuring socioeconomic flood impact. The use of remote 

sensing technology for disaster studies in HMA is comparatively new and can benefit from modern, improved-resolution 

http://www.emdat.be/
http://drrportal.gov.np/
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datasets. During the past few decades, empirical studies (Diehl et al., 2021; Jongejan & Maaskant, 2015; Mosavi et al., 2018);  

on flood vulnerability mapping have proliferated drastically, facilitated by the increased availability of high-resolution global 

datasets (Bentivoglio et al., n.d.; Diehl et al., 2021; Dottori2022; Mazzoleni et al., 2022; Hawker et al., 2018; Kirschbaum et 100 

al., 2020; Mohanty &and Simonovic, 2022; Pangali Sharma et al., 2019; Sanyal &and Lu, 2004; Yang &and Tsai, 2000; X. 

Zheng et al., 2018). Additionally). 

Furthermore, machine learning (ML) techniques have gained popularityemerged as increasingly popular tools in 

advanced prediction systems over the past two decades, offering. They offer more affordablecost-effective solutions with 

aggregable performance thanthat can be aggregated, surpassing the complexity and time demands associated with simulating 105 

the intricate time-demanding mathematical expressions of the physical complex development of flood processes.  of floods. 

Recent studiesresearch (Bentivoglio et al., n.d.;2022; Deroliya et al., 2022; Mosavi et al., 2018) have presented 

promising results in combining ML has showcased encouraging advancements by integrating machine learning (ML) 

techniques with global datasets. This moderncontemporary approach to mapping flood vulnerability significantly 

reducesnotably streamlines the computational timesprocesses associated with data-demandingintensive simulations. 110 

Furthermore, in data-scarce and vulnerable regions, results produced so rapidly and efficiently are very helpful for, enhancing 

flood risk management. In strategies. However, ML, however, the system learns based  systems rely on existing data. The 

learning is inadequate if the data is insufficient or does not cover all possible variations of the task and, as a result, cannot 

perform well  for learning. Insufficient or incomplete data coverage can hinder effective learning, leading to suboptimal 

performance when put to work. Consequently, rigorousdeployed in real-world scenarios. Therefore, ensuring robust data 115 

enrichment in terms of , encompassing both data quantity and quality, is essential. imperative. 

In this study, we present a simplified procedureintroduce a streamlined methodology for preliminary flood 

vulnerability characterizationassessment on a large scale, based onleveraging available global datasets. Specifically, we 

demonstrateintroduce a flood-risk assessment model that quantifiesdesigned to quantify spatially distributed socioeconomic 

susceptibility in flood-prone areas and use the regions. We utilize this model to improveaugment disaster understanding using 120 

by integrating remotely sensed data, such asincluding climate variables and high-resolution terrain. Lastly information. 

Finally, we apply this model in the data-scarceHigh Mountain Asia (HMA) regions of HMA to understand theanalyze changes 

in socioeconomic flood impacts spanning from 1980 to 2020. 

2 Materials and Methods 

2.1 Study Area 125 

HMA, otherwise known as the Hindu Kush-Himalayan region, comprises Nepal, Pakistan, Bangladesh, Bhutan, India, 

Afghanistan, Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, Mongolia, and China.China, and part of many other countries 

in Asia. HMA is home to some of the world’s highest mountain systems, including the Himalayas and the Hindu Kush. This 

rugged terrain has a highly variable climate ranging from tropical to subpolar, essentially controlled by altitude. Around 210 
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million peopleAround 1.5 billion people (https://nsidc.org/data/highmountainasia) dwelling in the region are at risk of natural 130 

disasters (such as heavy rainfall, flooding (pluvial/ fluvial/ flash), earthquakes, avalanches, and landslides) due to the 

topographic characteristics, changing climate patterns, and high population density. Some of the world’s largest rivers and 

deltas, such as the Indus and the Ganges resideare located in this region. In the summertime (June to September), monsoon 

rains bring a vast amount of water (Kayastha & Kayastha, 2019) to the rivers and valleys in the southern part of HMA (Northern 

India, Nepal, Bangladesh, and Pakistan). Kirschbaum et al., 2020 have projected that the greatest increase in very high 135 

intensities of precipitation (>20 mm/day) will occur during the monsoon season with the enormous amount of rain causing all 

types of devastating floods (Talchabhadel et al., 2018). Among). Referring to the data reported for example in EMDAT, among 

all other hydroclimatic disasters in HMA from 1980 to 2020 (EMDAT, www.emdat.be),, floods affected the most people (53% 

among all other hydroclimatic disasters) and caused the mosthighest total damage. (56% among all other hydroclimatic 

disasters). Bangladesh, Nepal, Pakistan, and parts of India were hotspots with the highest casualties.  (source: EMDAT). 140 

In thisThis study, we have taken considers approximately 60006,000 watersheds across HMAT into accountHMA as 

ourthe main target area (Figure 1).): the watersheds were selected to be consistent with the HMA domain and all the datasets 

produced throughout the different phases of the NASA-funded HiMAT project (https://himat.org/). The analysis initially 

focusedcentered on training and testing the a machine-learning model specifically for Nepal, for which. To achieve this, we 

gatheredcollected fine-resolution topographic information anddata along with district-scale socioeconomic data 145 

relatedinformation pertaining to population characteristics and reporteddocumented flood impacts. Later, we used  for this 

region. Subsequently, leveraging the insights gained from this initial phase, we extended the application of the trained model 

to predict the socioeconomic impacts foracross all the watersheds acrossin HMA.  
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Figure 1: Study area- watersheds across High Mountain Asia (HMA) 150 

 

Figure 1: Study area- watersheds across High Mountain Asia (HMA), with highlighted the training domain (Nepal) and the overall 

rainfall variability across the region. The watershed displayed in black represents the 6000 watersheds that were used in the study. 
The watershed were selected to be consistent with the HMA domain and all the datasets produced throughout the different phases 

of the NASA-funded HiMAT project (https://himat.org/) 155 

2.2 Methods 

Figure 2 shows the conceptual framework for the study. We have implemented ML analysis leveraging climatic and 

geomorphologic variables. Figure 2 illustrates the conceptual framework guiding this study. We employed machine learning 

(ML) analysis, utilizing climatic and geomorphologic variables, to forecast the socioeconomic impact of extreme fluvial and 

pluvial flood events spanning from 1980 to 2020 across High Mountain Asia (HMA). To capture the link between flooding 160 

and climatic and geomorphologic processes, the model considers as predictors a climatic index derived from ERA5 rainfall, 

and a geomorphological index, the Flood Geomorphic Potential -FGP- that characterizes the flood-proneness of the landscape, 

together with population data. A notable advantage of the proposed approach lies in its reliance on automatic techniques 

leveraging globally available datasets, thereby facilitating its applicability across diverse geographical regions to forecast 

socioeconomic flood impacts. The framework also benefits from leveraging geomorphologically-driven information, to have 165 

an improved characterization of the different aspects of the underlying physical processes shaping the landscape and possibly 

impacting flood characteristics. By incorporating such domain knowledge into the ML model, the framework can better 

generalize across different regions and conditions, improving robustness and reliability for risk mapping in diverse 

environments and facilitating informed decision-making for flood management and mitigation strategies. 

 170 

To represent exposure and socioeconomic impacts, we introduced, respectively, a variable for population and 

“Lifeyears Index” (LYI) (Noy, 2014, 2016a, 2016b),), a unit of measurement used to describe a disaster'sdisaster’s impact in 

terms of the total years of life lost (see section 2.23.1 for details). As indicated above, the framework overall encompassed two 

scales. First, we built and trained the model using detailed flood damage reports from Nepal. Then we applied the trained 

model to the whole HMA to predict the socioeconomic impact of the extreme flood events from 1980 to 2020. To predict the 175 

LYI, we applied XGBoosting (eXtreme Gradient Boosting) (Chen et al., 2018; Chen & Guestrin, 2016). The predictor and 

response variables of the ML framework are described in the subsections below. 
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Figure 2: Conceptual framework. Considered predictors are Flood Geomorphic Potential (FGP), Rainfall, and Population. The 

predicted value is the socioeconomic impact, characterized as the Lifeyears Index (LYI) (Noy, 2016a; Noy, 2015). Readers should 180 
refer to section 2.2.1, 222 ….the following sections for an explanation of the predictors and predicted values. 

The analysis follows a multistep approach, beginning with data at both watershed and district scales. Initially, the 

focus was on the district scale, as socioeconomic data for Nepal, selected as the primary training ground, were readily available 

at this level through the Nepal Disaster Risk Reduction Portal (http://drrportal.gov.np/). For this region, furthermore, there is 

a comprehensive coverage of high-resolution (8-meter) Digital Elevation Models (DEMs) from prior High Mountain Asia 185 

(HMA) work (High Mountain Asia 8-meter DEMs Derived from Along-track Optical Imagery, 10.5067/0MCWJJH5ABYO). 

Subsequently, all the information is aggregated at the watershed scale, as phenomena such as fluvial and pluvial flooding occur 

at this level, necessitating a dataset tailored to this scale. 

To transfer the demographic information from the district to the watershed scale, we performed a weighted spatial 

join between the watersheds and districts. For each watershed, we attributed the statistical characteristics of the intersect ing 190 

districts, with weights based on the overlapping areas. Generally, the districts in Nepal are smaller in extent compared to the 

various watersheds.  

 

2.3 Datasets 

2.3.1. Socioeconomic Flood Impacts            195 

The research focused on predicting the socioeconomic impact of floods. Measured economic loss and tangible 

damages were analyzed by considering the Lifeyears Index (LYI) (Noy, 2014, 2016a, 2016b).). This index is presented by 

Noy, 2016 as “Lifeyears lost” modified fromand it is a variation of the WHO Disability Adjusted Life Years (DALYs) lost 
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due to diseases and injuries (WHO, 2014) to use for demonstrating disaster.). We calculated LYI for Nepal by using damage 

statistics and demographic information collected from different data portals in Nepal. The index is described by equation 1:  200 

 

The Index is described by Equation 1 and the parameters used in the equation are described in Table 1: 

 

LYI = M(Aexp –  Amed) + e ∗ T ∗ N + (1 –  c)Y/PCGDP        (1) 

 205 

where M = Mortality (number of deaths due to disaster, source: https://data.worldbank.org/country/Nepal, 

https://knoema.com/atlas/Nepal/topics/Demographics/Age/Life-expectancy-at-birth (life expectancy 2020)); Aexp = Average 

life expectancy at birth (by year) (sources: https://knoema.com/atlas/Nepal/topics/Demographics/Age/Median-age-of-

population); Amed = Median age (by year); e = Welfare reduction weight associated with being exposed to a disaster (set to e 

= 0.054 according to Noy, 2016a, based on Mathers et al., 2013; T = Time taken by the affected person to get back to normal 210 

(following the suggestions of Noy, (2016a) we set this to T = 3yrs, which after being multiplied by “e” amounts to about 59 

days/person); N = Number of affected people(source: http://drrportal.gov.np/);  c = Percent of time not used in work-related 

activities (.75); Y = Financial damage (value of destroyed/damaged infrastructure) (source: http://drrportal.gov.np/); and 

PCGDP = Income per capita (by year). We used PCGDP as an indicator of the cost of human effort but discounted this measure 

by 75 percent (c) in our benchmark calculations to account for the observation that people spend much of their time engaged 215 

in activities unrelated to work (Noy, 2016a). 

ForTable 1: Parameters used to calculate LYI  

Variable Description References 

M 

Mortality (number of deaths due to 

disaster 

Nepal Disaster Risk Reduction Portal 

(http://drrportal.gov.np/)  
 

 

Aexp 

Average life expectancy at birth (by 

year) WHO (https://data.who.int/countries/524) 

Amed Median age (by year) WHO (https://data.who.int/countries/524) 

e 

Welfare reduction weight associated 

with being exposed to a disaster  

set to e = 0.054 according to Noy, (2016a), based on 

Mathers et al., 2013 

T 

Time taken by the affected person to get 

back to normal  Noy, (2016a)  

N Number of affected people 

Nepal Disaster Risk Reduction Portal 

(http://drrportal.gov.np/) 

c 

Percent of time not used in work-related 

activities (.75) Noy, (2016a) 
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Y 

Y = Financial damage (value of 

destroyed/damaged infrastructure)  

Nepal Disaster Risk Reduction Portal 

(http://drrportal.gov.np/) 

PCGDP Income per capita (by year) 

The World Bank 

(https://data.worldbank.org/country/Nepal) 

 

In this study, we categorized the classified Lifeyears Index (LYI) values into three classesdistinct categories: Low 

when for cases where log(LYI) < 2; Med when log(LYI) isMedium for values falling between 2 and 3; and High whenfor 220 

log(LYI) > 3.  This classification impliedscheme indicates that a watershed or district is considereddeemed to be at high risk 

if the average LYI for the basin or district is overexceeds 1000 years., while Medium is betweenrisk spans LYI values ranging 

from 100 andto 1000 years, and low isLow risk encompasses LYI values less than 100 years. For exampleinstance, if the 

calculated LYI is 100 years, it implies that means for the given disaster the estimated impact is comparedof the given disaster 

equates to be as a loss of potential loss of 100 years of life per 100000 people. It is demonstrated by taking into consideration 225 

the temporal, financial, physical, and mental effects it has on100,000 people. 

The cumulative LYI for Nepal (Figure 3) can provide an idea of how the cumulated flood impact has been increasing 

in thata country with time. It also highlights how the index itself captures major disasters, such as those occurring in 1981 

(ICIMOD, 2011; Kiran S et al., 2008), 1993 (Nepal - Floods and Landslides, 1993),), in 1996 (Nepal - Floods Situation Report 

No. 1, 26 July 1996),), and in the monsoon seasons in 2003 and 2014 (Nepal Annual Report, 2003.; Nepal: Landslides and 230 

Floods - Aug 2014). The most changes can be noticed in the LYI for the years 1981, 1993, and 2014, the cumulative step 

change for these years from the previous year are subsequently 9999, 82865, and 976238 years.      

Formatted: Indent: First line:  0.5"

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font: 10 pt



 

10 

 

                             

Figure 3: Cumulative lifeyears lost over the years in Nepal. Highlighted years represent jumps in the cumulative value, mostly 

related to well-known disasters): 1981 (ICIMOD, 2011; Kiran S et al., 2008), 1993 (Nepal - Floods and Landslides, 1993), 1996 (Nepal 235 
- Floods Situation Report No. 1, 26 July 1996), and in the monsoon seasons in 2003 and 2014 (Nepal Annual Report, 2003.; Nepal: 

Landslides and Floods - Aug 2014). 
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2.23.2. Floodplain Mapping  

The identification of areas with the potential to be inundated is fundamental to preserving and protecting human lives 

and property while safely supporting economic activities. Hence, we applied a large-scale floodplain delineation algorithm to 240 

identify such areas at the basin scale across the HMA. Many researchers (e.g., Dingle et al., 2020; Lindersson et al., 2021; 

Piacentini et al., 2020) have used DEM-derived geomorphic index as a high-resolution flood mapping tool. We defined ourWe 

opted for considering a variation of the  Samela et al., (2017) Geomorphic Flood Index (GFI), thereby described as Flood 

Geomorphic Potential (FGP)). 

The index is calculated as the logarithm of the ratio between the bankfull elevations (estimated using a hydraulic 245 

scaling function, or HSF, based on contributing area) in the element of the river network closest to the point under examination 

and the elevation difference between these two points (Figure 4). ThisThe index was originally defined by Samela et al., 2017, 

as the Geomorphic Flood Index (GFI), but we improved upon it in one over a main aspect: for the definitionautomatic 

identification of the HSF, we focused the FGP on the analysis directly from terrain data, applying the technique of (Sofia, et 

al., 2017b; Sofia et al., river widths rather than river depths because, unlike with river depth or velocity, the measurement of 250 

river width through remote sensing is straightforward (Sofia et al., 2015; Sofia, et al., 2017a; Sofia & Nikolopoulos, 2020). To 

this end, we implemented a way) to retrieve the bankfull widthlocation automatically through the landscape. This has the  

(Sofia, et al., 2017b; Sofia et al., 2015). The advantage of its implementation is that FGP is automated and does not require 

any additional information other than terrain data. allowing for full automation of the mapping starting purely from terrain 

data. 255 

For this analysis, we trained the model considering FGP derived from the unique 8-meter Digital Elevation Models 

(DEMs) for Nepal that are available at the NASA National Snow and Ice Data Center Distributed Active Archive Center 

(NSIDC DAAC) (Shean, 2017c, 2017b, 2017a).). While Nepal is entirely covered by the 8m DEM, extending the model to the 

whole HMA region is complicated by the gaps in the input satellite strip resulting from limited coverage, clouds, or failed 

stereo correlation. For this reason, we also considered the 30m DEM by Copernicus (European Space Agency, Sinergise. 260 

Copernicus Global Digital Elevation Model, 2021),), a digital surface model (DSM) that represents the surface of the Earth, 

including buildings, infrastructure, and vegetation. Importantly, this DSM is derived from World DEM, an edited DSM in 

which the flattening of water bodies and the consistent flow of rivers have been included. Shore- and coastlines, special features 

such as airports, and implausible terrain structures have also been edited.  

We identified flood-prone areas by grouping them into six classes by their FGP index. For each watershed, we then 265 

considered the areas covered by the classes with FGP greater than 4, which, when compared to published data, proved to 

correspond realistically with areas subject to floods of about 100-year depth. Figure 4b shows an example of compares the 

Flood Geomorphic Potential (FGP) automatic classes derived for someselect rivers in Nepal, compared towith baseline 

inundation scenarios evaluated using standard inundation depths associated with critical flood events and their return periods 

provided in the work of from Delalay et al., . (2018 of inundation extent based on water depth. The). This visual comparison 270 
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confirmed that the modified topographic index was a useful and rapid tool for delineating flood-prone areas in ungauged basins 

and in areas where expensive and time-consuming hydrologic-hydraulic simulations were not possibleserves to highlight the 

efficacy of flood inundation mapping facilitated by the FGP. 

It's worth noting that the FGP methodology has been previously published and applied in various contexts (Samela 

et al., 2017). While testing the quality of the FGP lies beyond the scope of this work, its effectiveness for flood mapping has 275 

been well-established in previous studies (Manfreda et al., 2011, 2014; Manfreda & Samela, 2019; Samela et al., 2016, 2018), 

which have demonstrated the utility of the methodology, particularly in ungauged conditions, for preliminary identification of 

flooded areas in regions where conducting expensive and time-consuming hydrologic-hydraulic simulations may not be 

feasible. 

 280 

Figure 4: a. Flood Geomorphic Potential (FGP); b.) (modified from Samela et al. 2017); b. FGP automatic classes compared to 

baseline inundation depth scenarios. (aerial imagery © Google Earth 2015). 
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2.2.3.3. Rainfall Characteristic 

As rainfall is the main driver of fluvial flooding, we decided to focus on a specific aspect of precipitation: its daily 

concentration. Sofia et al., (2017) have highlighted how this parameter can capture the dynamics of flood impacts in time.The 285 

climatology in HMA is highly variable (Dollan et al. 2024). Summer monsoons drive precipitation in the Ganges-Brahmaputra 

basins and the Tibetan Plateau ( Bookhagen and Burbank, 2010; Shamsudduha and Panda, 2019); synoptic storms dominate 

winter precipitation impacting areas in the northwestern Karakorum mountains (Winiger et al., 2005; Barlow et al., 2005). 

Overall, as well, variations in elevation gradients contribute to diverse microclimates, exemplified by Nepal's swift transit ion 

from high mountains to lowlands (Kansakar et al., 2004; Karki et al., 2016). Winter precipitation in the area is primarily 290 

influenced by the westerly weather system, with western disturbances originating in the Mid-Atlantic or Mediterranean Sea 

and traversing through northwest India to western Nepal after passing over Afghanistan and Pakistan (Kansakar et al., 2004; 

Hamal et al., 2020). In Nepal, which was used as the training site for the model, regional climate variations exist,  mostly 

driven by changes in elevation, with an overall homogeneity in trends (aside from a few hotspots) and regional statistics of 

precipitation, in line with the variability of HMA, as highlighted by the recent study by (Khanal et al., 2023).  295 

For this work, for the main rainfall driver of the model, we focused on daily climate concentration. As climate 

concentration values are mostly related to the temporal variability of the rainfall, not to the total amount or the average yearly 

and seasonal statistics, using this index allows to capture well various climates globally (Monjo and Martin-Vide, 2016a). The 

variability of climate concentration, furthermore, has been proven to be highly linked to pluvial/fluvial flooding impacts in 

various regions of the world, including for example Italy (both in mountainous landscapes and floodplains (Sofia et al., 2019), 300 

the US (Saki et al., 2023) [over a variety of physiographic regions], or China (Du et al., 2023).  Different authors have adopted 

different methods to determine the temporal concentration of precipitation, and the Concentration Index (CI) (Equation 2) is 

one of the most used parameters (Caloiero et al., 2019; Martin-Vide, 2004; Monjo, 2016; Sangüesa et al., 2018; Serrano-

Notivoli et al., 2018). ). 

This index was proposed by Martin-Vide (2004) originally to explore the contribution of the days with major rainfall 305 

to the total amount within a certain time range. The benefit of this index is that it can describe the temporal variability o f 

rainfall at daily, annual, and seasonal scales using a single metric, as well as spatial variability at pixel or watershed scale; 

which is an advantage for data-scarce regions.. In the present study, we computed CI (Martin-Vide, 2004) using the ERA5 

hourly rainfall data from 1980 to 2019. The source of rainfall data was selected as various works for HMA highlighted its 

effectiveness in capturing extreme events quite accurately compared to other products (Maggioni & Massari, 2018; Maina et 310 

al., 2023, Dollan et al. 2024). 

In the present study, we computed CI (modified from Martin-Vide, 2004) using the ERA5 hourly rainfall data from 

1980 to 2019. We identified storm events from this dataset primarily based on the criterion of rainfall of more than 0.5 mm, 

and we separated events when rainfall was below this threshold for lessmore than 12 hours. Furthermore, we calculated CI 
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using the cumulative amount of rainfall (y) and the cumulative frequency of the event duration (x) (Figure 5) for the selecte d 315 

events. The method (similar to Cortesi et al., 2012 and Monjo & Martin-Vide, 2016a) eventually aggregates the amount of 

precipitation that falls during each event into increasing categories and determines the relative contribution (as a percentage) 

of the progressively accumulated precipitation, y, as a function of the accumulated percentage of the durations of the events 

(x). The concentration index is then calculated as the ratio of the area between the line of equality (y=x) and the fitted cu rve 

(S), and the total area under the line of equality (A+S) (Figure 5, equation 2). The index is defined by the relationship between 320 

the accumulated percentage of time, and the accumulated rainfall. 

𝐶𝐼 =
𝑆

𝑆+𝐴
             (2) 

 

 

Figure 5: Example of line of equality, and empirical curve for the rainfall concentration calculation. The concentration index is equal 325 
to the area between the line of equality and the fitted curve (S) divided by the total area below the line of equality (S+A) 

 

2.23.4. Exposure (Population) 

As all the parameters of the LYI are not always readily available, at the watershed scale (as highlighted by most 

published literature, that considered LYI at the country scale), we added population counts as one of the predictors to train the 330 
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model. For Nepal, we selected the data from the country’s national census (https://censusnepal.cbs.gov.np/Home/Index/EN).) 

and aggregated it at the watershed scale by using the previously mentioned weighted join. To extend the model to the whole 

HMA, we computed the population for each watershed across the region from the GHSL: Global Human Settlement Layers, 

Population Grid 1975-1990-2000-2015. This dataset depicts the distribution and density of the population, expressed as the 

number of people per cell, for reference epochs.Gridded Population of the World (GPW), v4 | SEDAC, 2024). This dataset 335 

provides spatially explicit estimates of population density for the years 2000, 2005, 2010, 2015, and 2020, based on counts 

consistent with national censuses and population registers, as raster data to facilitate data integration. We used a simple linear 

regression to retrieve data for the missing years.        

2.34. Machine Learning Model 

While XGBoosting is primarily used to solve classification problems. To generate the results, the XGBoost algorithm 340 

uses an ensemble of boosted trees. An ensemble is a collection of predictors that together can give a final prediction while 

reducing errors significantly. In this case, the predictors were climatic variables, geomorphologic variables, and exposure. 

Boosted algorithms are those in which each successive model attempts to correct the errors of its predecessor (similar to 

adaptive learning). The basic XGBoost algorithm can be understood as an ensemble of boosted trees. The idea behind such an 

ensemble is that multiple trees are built in sequence, each tree built on the previous one’s prediction. And each successive tree 345 

built considers the errors of the previous trees. This means that when we take an average of all the trees at the end, we get a 

final tree that is better than any individual tree within the model.  We applied the XGBoosting model to the geomorphologic, 

climatic, and exposure variables to predict classes of LYI in different basins in Nepal and HMA. 

2.34.1. Variable Importance and Model Performance 

Based on the methodology described in section 2.3, in this section, we present a variable importance comparison 350 

(Figure 6) based on the F score. The initial variable importance indicated that population (Pop) was the most important variable, 

which was consistent with our expectation in the sense that the socioeconomic impact depends entirely on the exposure. The 

climate variable (CI) happened to be the next important variable, showing the significance of the region’s climate on the 

socioeconomic impact of flood occurrences.   

The precision, recall, and F1 score are metrics used to evaluate the performance of a classification model. Precision 355 

is the fraction of true positives among the predicted positives. Recall is the fraction of true positives among the actual positives. 

F1 score is the harmonic mean of precision and recall. 

The evaluation metrics reveal in Table 1 that the model performs best in the High class, with the highest precision, 

recall, and F1 score. The Medium class also demonstrates relatively high performance across these metrics. However, the Low 

class exhibits the lowest performance, suggesting that the model may face challenges in accurately distinguishing between the 360 

Low and Medium classes or may demonstrate a bias toward predicting the Medium and High classes. These findings provide 
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valuable insights into the strengths and limitations of the classification model and can guide future efforts to improve its 

performance. 

 

Figure 6: Feature Importance 365 

Table 1: Performance metrics of a classification model 

 precision recall f1-score 

Low 0.54 0.57 0.56 

Medium 0.64 0.63 0.64 

High 0.73 0.71 0.72 

 

2.3.2 Validation of the System at the HMA Scale 

We testedconducted thorough testing and validated thevalidation of our model overwithin Nepal, usingcomparing the 

predicted value of LYI to the calculated Lifeyears Index (LYI) data forfrom tabular values specific to the region. WhenUpon 370 

extending itsthe model's applicability to the whole entire High Mountain Asia (HMA) region, we evaluatedrigorously assessed 

the quality of our resultresults by comparing the predicted social impact with that of existing floods overreported in established 

flood databases covering the region. To ascertain the latterverify our findings, we compared the results of our mapping 

topredictions at the HMA level with flood events reported in the Dartmouth Flood Observatory’s (DFO) Global Active Archive 

of Large Flood Events, 1985–Present (Brakenridge, n.d.), which contains. This comprehensive database compiles information 375 

on major floods derivedsourced from diverse channels such as news reports, governmental, instrumental records, ground 

observations, and remote sensing sources. Thedata. Notably, the DFO dataset reports multiple pieces of information for each 

floodencompasses various flood types, including its meteorological and climatological severity. lowland floods and 

mountainous river floods characterized as fluvial and pluvial floods. 
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The dataset provides point locations, representing the centroids of affected areas during floods. While acknowledging 380 

that flood centroids may oversimplify the complexities driving flood events, we utilized this dataset to showcase our model's  

capability to target high-risk locations historically impacted by floods within the specified timeframe. Identifying high-risk 

areas with recorded flood occurrences centered around these locations underscores the robustness of the model beyond the 

confines of its training and validation site in Nepal. 

Meteorological and climatological severity reported in the DFO cannot directly capture the social impact of the floods; 385 

furthermore, it refersthey refer to an event, whichevents that may span multiple watersheds. To overcome these limitations, 

we compared our predicted results to the DFO data by evaluating a proxy of the social severity reported for each flood—the 

numbers of “Deaths” and “Displaced” that resulted—rather than the flood’s meteorological characteristics. We then considered 

classes of DFO “social severity” of 10n. Here n is the severity level declared in the DFO database. Next, we calculated the 

marginal probability that events with different severity in the DFO happened in watersheds with different predicted LYIs. 390 

Finally, we calculated the conditional probability, as in the probability of an event of DFO severity of some kind occurring 

over watersheds where our LYI prediction was of a certain type. This conditional probability could provide us with information 

on how our system performed for different time frames—for example, the probability of a watershed’s being classified as high 

impact by our model might be only 10% of the total, but if most of DFO events with great severity (i.e., >1000 

Deaths+displaced) did happen in those watersheds, then our system correctly identified the risk there. 395 

3. Results Analysis 

3.1. Variability of the Predictors 

The topographical characteristics of an area can influence the local climate and population distribution. Figure 76 

shows an example of how climate concentration and population vary in HMA, as compared to watersheds that have areas of 

high FGP of greater or lesser extent. The figure reports the average for the time frame 1980–2020 for CI and population, while 400 

the FGP is a static value for the time frame (since it is based on a unique DEM dataset), and it represents the overall geomorphic 

characteristics of Nepal.  

From this analysis, we can see how the variability of CI is complex and. If expectedly, the variability of the index is 

related to atmospheric characteristics (Sangüesa et al., 2018) as well as), the index varies also due to geographical factors 

influencing climate (Tuladhar et al., 2020)). , as represented by the classes of FGP. In their study based on Nepal, Karki et al., 405 

2017 highlighted the difference in the spatial pattern of high-intensity storm events from that of annual and monsoon events. 

The rapid rate at which physical processes (e.g., convection) take place regulates the high temporal concentration of 

precipitation in the regions where the sea surface and ground are highly affected by warmer temperatures (Monjo & Martin-

Vide, 2016b).). On the other hand, the low temporal concentration of rainfall is characterized as a normal pattern caused by 

cyclical weather events (Monjo & Martin-Vide, 2016). Watersheds with lesser floodplain extents (that is, less areas with high 410 

Formatted: Heading 1

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto



 

18 

 

FGP) are related to higher and steeper mountains, with complex orography. Research has shown that low areas in Nepal are 

susceptible to receiving high-intensity storm events even though they have fewer wet days (Karki et al., 2017).). The authors 

of the same study also observed that the low-intensity events (annual and monsoonal precipitation) were mostly predominant 

over Nepal’s western middle mountains and central high mountains. In another study, however, Subba et al., 2019 stated that 

the frequency of extreme events had decreased significantly over the past two decades in the eastern part of Nepal. This shows 415 

how the climate concentration is influenced by the landscape of HMA and further confirms the overall variability we captured 

and present in Figure 7.For our case, areas having the larger physical potential to flood (high FGP), appear to be areas showing 

the largest variation in CI, with values ranging from low (0.2) as well as very high (0.75), indicating a potential compound 

effect of highly torrential rains (CI=0.7) in locations where much of the landscape is potentially floodable (FGP high) and 

most population reside.  Readers should consider that higher FGP values do not imply locations having wider channels, but 420 

rather they indicate how the landscape is potentially more flood-prone th as highlighted by (Samela et al., 2017; Manfreda & 

Samela, 2019; Samela et al., 2016, 2018).  

Much of the population of Nepal tends to be concentrated in areas with higher FGP, as is typical for mountainous 

areas, where population and economic activities are mostly located in the river valleys. Globally, the floodplains of rivers are 

preferred living spaces for the population and provide favorable locations for economic development. These areas are 425 

commonly exposed to floods, however, an increasing population, together with the changes in storminess, mean that the risks 

from flooding are expected to rise.be higher.   
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 430 

Figure 76: Average variability of the CI (top) and population (bottom) compared to FGP from 1980-2020 

3.2. Variable Importance and Model Performance 

Based on the methodology described in section 2.4, in this section, we present a variable importance comparison 

(Figure 7) based on the F score. The initial variable importance indicated that population (Pop) was the most important variable, 

which was consistent with our expectation in the sense that the socioeconomic impact depends largely on the exposure. The 435 

climate variable (CI) happened to be the next important variable, showing the significance of the region’s climate on the 

socioeconomic impact of flood occurrences.   

The precision, recall, and F1 score are metrics used to evaluate the performance of a classification model. Precision 

is the fraction of true positives among the predicted positives. Recall is the fraction of true positives among the actual positives. 

The F1 score is the harmonic mean of precision and recall. 440 

The evaluation metrics reveal in Table 2 that the model performs best in the High class, with the highest precision, 

recall, and F1 score. The Medium class also demonstrates relatively high performance across these metrics. However, the Low 

class exhibits the lowest performance, suggesting that the model may face challenges in accurately distinguishing between the 

Low and Medium classes or may demonstrate a bias toward predicting the Medium and High classes. These findings provide 

valuable insights into the strengths and limitations of the classification model and can guide future efforts to improve its 445 
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performance. Overall, considering that the model aims to target substantial risk areas, a higher rate of predicting impacts is 

acceptable, compared to an underestimation of the risk. 

 

Figure 7: Feature Importance 

Table 2: Performance metrics of a classification model 450 

 precision recall f1-score 

Low 0.54 0.57 0.56 

Medium 0.64 0.63 0.64 

High 0.73 0.71 0.72 

 

3.3. Predicted versus Observed Flood Impact in Nepal 

In our comparison of the Comparing predicted Lifeyears Index (LYI) flood impactimpacts with the observed dataset, 

we found the areas withdata showed good correspondence between high-risk levels in Nepal matched well with the locations 

ofareas identified by the ML method and historical floods there, suggestingflood locations in Nepal. This suggests that the 455 

proposed method can zone the approach effectively delineates flood risk on a national scale. Since, for our training site, we 

had district-level information on the LYI, while geomorphological and hydrological processes happen at the watershed scale, 

we evaluated the quality of the ML approach at both scales. 

Figure 8 demonstrates theillustrates this comparison between , showcasing observed (empirically evaluated) and ML-

predicted and actual impactsLYI values at theboth watershed (upper row of the figure) and district (lower row) levels. For 460 

The 'observed' LYI values were empirically calculated from observational data (Table 1) and categorized into three 

groups: 'low', 'medium', or 'high', with basins/districts labeled as 'high' for LYI values exceeding 1000 years, 'medium' between 

100 and 1000 years, and 'low' below 10 years. The 'predicted' values represent the outputs from the machine learning model. 
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In Nepal, we found theachieved an overall training accuracy to beof 97% and thea test accuracy of 63%. The results 

fromNotably, training the model at the watershed level were more accurate than those atyielded higher accuracy compared to 465 

the district level. This is likely becauseattributed to watersheds arebeing hydrologic units carrying thethat integrate 

geomorphological and climatic properties of geomorphology and climate and, thus are better connected to the flood than any 

demographic providing a more accurate representation of flood dynamics compared to administrative district boundaries—in 

this case, districts). For. 

 470 

At the results by watershed, almost level, nearly all of the year ranges wereexhibited a 100% match for the actual 

damage.with observed impacts. In the year rangesinstances where the model performed with less than 100% model's accuracy 

(i.fell below 100% (e.g., 1985–90 and 1990–95), the LYI values in the missed watershed wasaffected watersheds were low, 

possibly suggestingindicating that the predictors considered predictors were more representativeindicative of major flooding.  

events. 475 

The superior accuracy achieved at the watershed level underscores the value of implementing the model at this scale 

when scaling up the system. 

 

Figure 8: Comparison of prediction with actual socioeconomic impact for watershed on watersheds and districts in Nepal.  

Basin/districts are marked as “high” for LYI over 1000 years. Medium is between 100 and 1000, and low is less than 10. Numbers 480 
in parentheses represent accuracy. 

 

3.4. Prediction of Socioeconomic Impact of Heavy Rainfall over HMA  

 We applied the trained model for the watersheds in HMA to five-year intervals from 1980 to 2020. As an example, 

Figure 9(c, d) shows the predicted basin-averaged LYIs (Low-Med-High) for the watersheds in HMA for two different 485 
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timelines. The yellow circles highlight the changes in flood impact over the decades. One must consider that most HMA has 

low population density (blue color in Fig. 9b), and as expected the proposed model predicts low flood socioeconomic impacts 

for these regions. Hotspots of high impacts (Red colors in Figures 9c and d) are present, where population exposure is higher. 
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490 

Figure 9:
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Figure 9: a) Mean Monthly Rainfall (yellow contours) overlayed on Elevation; b) Population density 2020; c,d) Example of predicted 

basin-averaged flood impact for HMA (left, 1985–90; right, 2015–20). Yellow circles denote the changes in flood impact between the 

two timelines. 495 

Summarizing the results presented in Table 23, we can say that, for the years shown, we predicted almost 57% of 

watersheds (marginal) having LYIs between 1 and 100 years (Low), 35.9% for LYIs between 100 and 1000 years (Med), and 

only 6% for LYIs greater than 1000 years (High). For the entire time frameperiod, most of the time we predicted LYIs of 1 to 

100 years, for which we captured events of DFO severity around 2 (102 Deaths+displaced) (conditional = 28.6%). This suggests 

that most “Low” class DFO events did happen in the watersheds within the lowest predicted LYI range. Readers must consider 500 

that “Low” in this case means the flood impact can range from 1 to 100 years lost, and a DFO value of 2 means total 

Deaths+deaths and displaced is on the order of 102 people. The events with a DFO value of 4 happened mostly in watersheds 

with predicted LYIs ranging both between 1 and 100 years and between 100 and 1000 years. The events with DFO 6 and 8 

happened mostly in ranges greater than 1000 years and between 100 and 1000 years.  

Table 23: LYI compared to DFO flood damage.  505 

DFO LYI NO Prop Marginal Probability Conditional Probability  
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2 1–100yr 54 16.6 58.2 28.6 

2 100–1000yr 26 8.0 35.7 22.4 

2 >1000year 5 1.5 6.2 25.0 

4 1–100yr 92 28.3 58.2 48.7 

4 100–1000yr 45 13.8 35.7 38.8 

4 >1000year 5 1.5 6.2 25.0 

6 1–100yr 42 12.9 58.2 22.2 

6 100–1000yr 44 13.5 35.7 37.9 

6 >1000year 8 2.5 6.2 40.0 

8 1–100yr 1 0.3 58.2 0.5 

8 100–1000yr 1 0.3 35.7 0.9 

8 >1000year 2 0.6 6.2 10.0 

 

We further investigated how our predicted LYI behaved when it was related to the total population (Table 34), 

evaluating, as suggested by (Noy, 2014),), the LYI per capita (that is, the number of lifeyears lost per 100k people). As Table 

34 shows, we correctly predicted over the years almost 64% of watersheds (marginal) have LYI/100k people less than 1 year 

(10^0), 24.3% at 10year/100k people (10^1), 11% at 100year/100k people, and 0.6% at 1000years/100k people. We noticed 510 

that LYI/100k people reached, at most, 6000 for Nepal (at the country scale) and the study by Noy. 2016a also reported similar 

values for Nepal forin 1987. (Noy, 2016a) reported actual LYI data in the range of LYI > 1000/100k people in South Asia and 

stated that the higher number of damages in East and South Asia is likely due to wide-scale flooding. This gave assurance of 

the consistency of our prediction with the actual data available. When looking at LYI/100k people, we found that, for the 

whole timeframe, most of the floods that registered in the DFO with low severity (DFO = 10^2 Deaths+displaced) happened 515 

in watersheds for which the predicted LYIs were between 1 and 100 years (conditional = 29.8%). This confirmed once again 

that, in most cases, the “low”-risk events did happen in the watersheds having the lowest predicted range (similar to the findings 

presented in Table 23). As before, while the probability of a watershed’s being labeled as high risk (LYI>1000year/1000k 

people) by our system was only 6%, the probability of these watersheds having experienced events recorded by the DFO as 

having a great impact (DFO severity > 6, meaning over 1 million people) rose to 40% and 10%.  520 

Table 34: LYI/100k compared to DFO flood damage.  

DFO LYI NO Prop 
Marginal 

Probability 
Conditional Probability 

0 0 13 3.8 65.0 5.9 

0 1 1 0.3 23.5 1.3 

0 2 1 0.3 10.9 2.7 
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2 0 62 18.2 65.0 28.1 

2 1 13 3.8 23.5 16.3 

2 2 9 2.6 10.9 24.3 

2 3 1 0.3 0.6 50.0 

4 0 97 28.5 65.0 43.9 

4 1 34 10.0 23.5 42.5 

4 2 10 2.9 10.9 27.0 

4 3 1 0.3 0.6 50.0 

6 0 47 13.8 65.0 21.3 

6 1 32 9.4 23.5 40.0 

6 2 15 4.4 10.9 40.5 

8 0 2 0.6 65.0 0.9 

8 2 2 0.6 10.9 5.4 

 

Figure 10 shows the LYI per 100k people (LYI/100k) evaluated for different time frames for all the locations reported 

in the DFO database to compare the DFO severity with our predictions. Overall, the DFO and predicted results were quite 

consistent instead of some minor variability for some scattered areas. When we compared the changes over time, we noticed 525 

an increase in vulnerability. As the plot makes evident, the largest changes took place in 1990–95 and 2010–15; the two 

concentrated areas were Nepal and China. As Figure 2 showed3 shows, two big jumps occurred during these timelines for 

Nepal because of extreme storm-induced flood events. In Figure 3 we have discussed the predominant events that occurred in 

these timelines.  Regarding China, as of June 2010, more than 29 million people had been affected by flooding, with up to 2.37 

million evacuated and 195,000 homes destroyed (China: Floods Information Bulletin N° 1 GLIDE N°, 2010).). 530 Formatted: Font: Not Italic
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Figure 10: Comparison of DFO and LYI/ 100K people for all the timelines 

3.56. Change in Socioeconomic Impact over Time 

Figure 11a presents our maps of the watersheds where flood impacts increased over time. Furthermore, Figure 11b 

shows our evaluation of the percentage changes in the number of watersheds between timelines, focusing on three different 535 

changes: low to medium (LtoM); medium to high (MtoH); and low to high (LtoH). The mostSome watersheds have not 

changed, and some have decreased impact. For the sake of highlighting potential increases in flood impacts, we focused on 

those locations where risk increased over time, from low to medium, or medium to high. The largest changes were from LtoM 

for all the timelines, which represented a notable change in vulnerability. Several watersheds showed higher flood impacts 

(from low to medium, medium to high, and low to high) in recent years than inas compared to 1985–90. Again, we observed 540 

the mostlargest changes for 1990–95 and 2010–15, which was consistent with Figure 10. The exposure changed significantly, 

along with the intensity of the events; hence, the risk of flooding was heightened in these areas.  

Impact changes from Low to High were next, according to the number of watersheds changed for all the timelines. It 

was obvious that more changes would happen in the long runoverall, but the comparison of the 1990–95 and 1995–2000 

timelines demonstrated that heightened flood impact occurred in a considerable number of watersheds within a shortbrief 545 

period. For many watersheds, the risk was heightened by a population boom during the overall period.  
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Figure 11: Flood impact change in HMA over time  
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4. Conclusions 

High Mountain Asia is a complex and diverse region, (HMA) presents a multifaceted landscape characterized by its 550 

rugged terrain, diverse climate andclimates, rich vegetation, and largesubstantial population. Disaster management is vital in 

a data-scarce region like HMA, which is highly vulnerable exposure to natural disasters, and addressing these risks will be 

vital to ensuring . Given its susceptibility to natural disasters, effective management is imperative for the region's long-term 

sustainability of. Addressing the region and its people. Reducing the significantconsiderable threat posed by flooding to the 

population and development of High Mountain Asia requires a multifaceted approachdemands a comprehensive strategy 555 

involving investments in disaster risk reduction, sustainable land use practices, and climate change mitigation. 

In this study, we demonstratedintroduced a simplified approach in which hotspots of to identify vulnerability 

inhotspots within the HMA region are identified by , focusing on intense rainfall events. To map the socioeconomic flood 

vulnerability of the HMA region, we evaluatedemployed a remotely sensed data-driven model that includes both 

geomorphologyintegrating geomorphological and climate variability. factors. This adaptable framework can be tailored to 560 

various regions, provided that similar terrain and climate datasets are available, accommodating adjustments to flood drivers 

such as climate and geomorphology, as well as population dynamics. The framework can be adapted to different data-scarce 

regions and allows for integrating possible modifications to flood drivers, including climate variables, geomorphologic 

variables, and population. The predicted results provide information on resulting predictions offer valuable insights into 

vulnerabilities for the different across HMA watersheds in HMA, which will enable, facilitating proactive flood management 565 

authorities to plan for a probabilistic mapped area. planning. 

The novelty of thisour study lies in the uniquenessefficiency and capabilityversatility of the model. Theproposed 

predictive model developed in this study demands very few variables to project. Requiring only a small number of variables, 

our model accurately forecasts the socioeconomic impact of futurepluvial and fluvial flooding events. In a data-scarce densely 

populated region and fast-, possibly ungaged regions with rapidly changing climateclimates, such a model can beserves as a 570 

greatvaluable decision-making tool for the end users. The training result for stakeholders. The efficacy of the framework, as 

demonstrated in Nepal highlighted the efficiency of the model, and the comparison of results with actual reported flood impacts 

highlighted how the system can be extended to a larger domain, having comparable , underscores its potential applicability 

across regions with similar climatic and morphological and climatic settings, given that we have the availability of terrain data 

and rainfall information. characteristics. 575 

Now we have the technology to predict the forcings of an extreme upcoming event, and with this information, we can 

apply our model to predict the plausible future impact of floods and their severity. In 2022, many provinces of Pakistan were  

devastated by a series of floods. With close to 2000 deaths, a million homes damaged or destroyed, and a great loss of livestock, 

this was the most destructive flood event in Pakistan in decades. Our results predicted high vulnerability for certain watersheds 

in Pakistan for the most recent timeline (2015–20), which was verified in the unseen 2022 event. Stakeholders can utilize our 580 
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model to predict vulnerability to such future flood events with great accuracy—a development that can provide a better 

perspective on flood hazards and support decision-making, planning, and investment in mitigation measures. 

While the novelty of the With advancing technology, we can now predict the drivers of impending extreme events, 

enabling proactive measures to mitigate their impact. Stakeholders could leverage our model to forecast vulnerability to future 

flood events with precision, enhancing hazard assessment, decision-making, planning, and mitigation efforts. 585 

However, while this study demonstrates the scope forpromise of accurate prediction of flood impact in a data-scarce 

regionprediction, the use of static Flood Geomorphic Potential (FGP) maps has somepresents limitations. Flooding brings a 

heavy load of sediment to the downstream and floodplains, which alters the channel morphology and affects the prospect of 

future flooding (Dingle et al., 2020a; Lane et al., 2007; Slater et al., 2015b, 2019; Stover & Montgomery, 2001).downstream 

topography, impacting future flood dynamics. Therefore, flood hazards can be underestimated if we omit the “dynamic flood 590 

topographies” (Dingle et al., 2020b). Dingle et al., 2020 showed in their study that the inundation extent increases by 9.5% for 

a moderate flood discharge (20 years) if two DEMS captured 10 years apart are analyzed separately.essential for robust hazard 

assessment. Although we are aware of this meaningful change in geomorphology, the frequency at which global or local DEMs 

are acquired is somewhat constrained. Prediction by our model can be more robust if high-resolution topographical data are 

available after extreme eventspost-extreme events can enhance prediction accuracy, the availability of such data is constrained 595 

by acquisition frequency. Hence, efforts to improve data availability post-disaster are crucial for enhancing the reliability of 

predictive models. 
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