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Abstract. 

Earthquake hazard analyses rely on the availability of seismogenic source models. These are designed in different fashions, 

such as point sources or area sources, but the most effective is the three-dimensional representation of geological faults. We 35 

here refer to such models as fault sources. This study presents the European Fault-Source Model 2020 (EFSM20), which 

formed the basis for one of the primary input datasets of the recently released European Seismic Hazard Model 2020. The 

EFSM20 compilation was entirely based on reusable data from existing active fault regional compilations that were first 

blended and harmonized and then augmented by a set of derived parameters. These additional parameters were devised to 

enable users to formulate earthquake rate forecasts based on a seismic-moment balancing approach. EFSM20 considers two 40 

main categories of seismogenic faults: crustal faults and subduction systems. The compiled dataset covers an area from the 

Mid-Atlantic Ridge to the Caucasus and from northern Africa to Iceland. It includes 1,248 crustal faults spanning a total 

length of ~95,100 km and four subduction systems, namely the Gibraltar, Calabrian, Hellenic, and Cyprus Arcs. The model 

focuses on an area encompassing a buffer of 300 km around all European countries (except for Overseas Countries and 

Territories, OTCs) and a maximum of 300 km depth for the subducting slabs. All the parameters required to develop a 45 

seismic source model for earthquake hazard analysis were determined for crustal faults and subduction systems. A statistical 

distribution of relevant seismotectonic parameters, such as faulting mechanisms, slip rates, moment rates, and prospective 

maximum magnitudes, is presented and discussed to address unsettled points in view of future updates and improvements. 

The dataset, identified by the DOI https://doi.org/10.13127/efsm20, is distributed as machine-readable files using open 

standards (Open Geospatial Consortium). 50 

1 Introduction 

Seismogenic fault-source models are mathematical representations of the characteristics and behavior of earthquake faults. 

They are used to simulate how earthquakes might occur in any given region and to estimate the expected ground shaking 

intensity. Fault-source models can also be used to simulate earthquake-triggered tsunamis, ground-surface displacement, and 

various secondary effects (e.g., landslides, liquefactions). Since seismic sources in earthquake hazard studies are modeled in 55 

different fashions, such as point or area sources, we here refer to a fault source to designate the geological fault capable of 

being reactivated and generating earthquakes. 

In this context, geological and paleo-seismological data provide a framework to estimate the average long-term recurrence 

time of possible fault reactivations. The resolution of geological analyses limits our ability to identify with sufficient 

reliability only faults that can generate the largest earthquakes. However, the largest earthquakes have the longest recurrence 60 

time, so geologic-fault information can effectively complement the recurrence statistics of earthquake catalogs where they 

lack more data. The combination of spatial and temporal scales makes the fault data progressively more important as the 

earthquake magnitude increases. 
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This work documents the European Fault-Source Model 2020, EFSM20 (Basili et al., 2022), a data product of the EU H2020 

Project SERA (WP25-JRA3), designed to fulfill the requirements related to active faulting of the 2020 update of the 65 

European Seismic Hazard Model, ESHM20 (Danciu et al., 2021, 2022), following the probabilistic framework established 

for the 2013 European Seismic Hazard Model, ESHM13 (Woessner et al., 2015). To this end, the model aimed to cover a 

target area for foreseen ground motion that encompasses a buffer of 300 km around all European countries except for 

Overseas Countries and Territories (OTCs). The 300 km value estimate comes from the distance at which the ground motion 

propagated from a given source becomes negligible at the target site, based on ESHM13 ground motion model selection and 70 

outcomes (Delavaud et al., 2012; Woessner et al., 2015). We extend this concept also to the depth direction for deep 

earthquakes. The model, however, extends beyond this area to gain insights from the good continuity of plate boundaries. 

We defined two fault-source categories: crustal faults and subduction systems. A crustal fault is a fracture or a system of 

fractures that separates different blocks of the Earth's crust. This category includes faults in various tectonic contexts, 

including onshore and offshore active plate margins and interiors. A subduction system is a combination of structures formed 75 

where one plate (the slab) moves under another (the upper plate) and sinks into the mantle beneath it. This process results in 

a convergent movement of the two involved plates, which is known to generate earthquake ruptures of different types 

(Satake and Tanioka, 1999). This category includes the detachment at the base of the accretionary wedge, the interface 

between the two plates at crustal depth, and the dipping slab at mantle depth. These three elements are all part of the lower 

plate. The possible splay faults, branching upward into the upper plate from the slab interface, are included in the crustal 80 

faults category. 

The EFSM20 compilation is entirely based on published reusable data. It started from the Pan-European compilation 

European Database of Seismogenic Faults 2013, EDSF13 (Basili et al., 2013) and continued by exploiting several regional 

models that were updated or entirely designed afterward. Details about these key datasets and how they were used are given 

in Sections 2 and 3. We then performed data curation and harmonization to provide the user with all the necessary elements 85 

to develop a seismic source model and, ultimately, build an earthquake rate forecast. Although EFSM20 was designed for 

developing earthquake hazard models, it can also assist post-earthquake analyses and tectonic or geodynamic modeling. 

The EFSM20 dataset includes 1,248 crustal faults spanning a total length of ~95,100 km – with an individual end-to-end 

length range of ~4-900 km - and four subduction systems, namely Gibraltar, Calabrian, Hellenic, and Cyprus Arcs (Figure 

1). The dataset distribution includes several layers providing different map feature realizations linked to relevant parameters. 90 

Such data layers are made available through the European Databases of Seismogenic Faults portal with a dedicated webpage 

(https://seismofaults.eu/efsm20) that directs the users to Open Geospatial Consortium (OGC) web services (WFS and 

WMS), downloadable GIS files in various formats (GeoJSON, ESRI shapefile, MapInfo tables). The dataset structure and 

description of all fault-source attributes in tabular form are shown in Appendix A. EFSM20 is part of the EPOS TCS 

Seismology EFEHR portfolio (Haslinger et al., 2022) and is already accessible through the EPOS Integrated Core Services 95 

data portal (https://www.ics-c.epos-eu.org/). The geographic distribution and comparison of the derived parameters most 
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related to the seismogenic process, such as fault type, slip rate, moment rate, and maximum magnitude, are discussed in 

Section 4. 

Although the continent scale of the collection prevented us from exploring each fault in great detail, and several fault 

parameters are affected by significant approximations, EFSM20 covers the major plate boundaries around the European 100 

plates and their interiors. The machine-readable fault attributes allow users to develop earthquake rate forecasts 

straightforwardly, promoting future updates to address unsettled points and meta-analyses and curiosity-driven studies to 

enhance our understanding of the seismogenic processes. 

 

Figure 1: Map of collated fault datasets for developing the European Fault-Source Model 2020 (EFSM20). The colors in the legend 105 
identify the various datasets (see Section 3 for their descriptions). From west to east, the subduction systems are Gibraltar Arc 

(GiA); Calabrian Arc (CaA); Hellenic Arc (HeA); and Cyprus Arc (CyA). The Inset map shows the European Database of 

Seismogenic Faults 2013 (EDSF13) for comparison. 

2 Methods 

The EFSM20 compilation was entirely based on reusable data. We started the initial collection from the Pan-European 110 

compilation EDSF13 (Basili et al., 2013) and progressively replaced it with up-to-date regional datasets. 
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We considered primarily the compilations that covered with a consistent approach significantly large regions, relying on the 

work of the authors of each compilation regarding the accuracy and recency of the information. We resorted to working on 

individual studies or original work only in case of undefined situations, e.g., area of overlap between two regional datasets or 

cases where a significant update was available or where the fault information was not covered by the initial pan-European 115 

dataset but deemed necessary. Regardless of size and coverage, all considered datasets must comply with a series of 

requirements. Each crustal fault must have been declared active under one of the many existing definitions by the dataset 

authors or contributors. On the one hand, reviewing the definition of active fault was beyond the scope of this work. On the 

other hand, we recall that the definition of active faults may even differ in different tectonic settings. Subduction systems, 

instead, are included in the compilation regardless of the activity definition. The minimum set of basic fault parameters 120 

required for constructing a seismogenic source model refers to geometry (location: latitude, longitude, depth; size: length, 

width; orientation: strike, dip) and behavior (rake and slip rate). These are indispensable elements for devising and applying 

a fault recurrence model to be expressed by a Frequency-Magnitude Distribution (FMD). Not all fault compilations fully 

provide this characterization, and strategies were devised to fill in the missing information and harmonize it. The next two 

subsections will describe these procedures separately for crustal faults and subduction systems. 125 

We assigned a unique identifier (ID) to each retained record in the collated dataset to avoid possible ambiguities in 

identifying the faults. The ID is a 7-character string, in which the first two positions are occupied by the letters "CF" for 

crustal faults and "SS" for subduction systems, followed by the standard ISO 3166 2-letter code, which identifies the country 

where most of the fault is located, followed by an alphanumeric 3-letter code (e.g., CFCH0B5 identifies the crustal fault 0B5 

which is in Switzerland). To track the provenance of each record, we assigned an identifier to the original dataset and stored 130 

the original fault identifier in that dataset. See Appendix A for a complete description of all fault parameters. 

2.1 Crustal faults 

The location and geometry of the mapped feature must be available through a set of coordinate pairs in a recognizable 

geographic coordinate system. The depth extent of the fault plane must have also been provided or derivable. The strike or 

dip direction, or any alternative strategy to provide data complying with the right-hand rule (e.g., ordered sequence of nodes 135 

forming the mapped feature), and the dip angle were also indispensable to completing the geometric reconstruction of the 

fault plane in three dimensions. Regarding the fault behavior, the required parameters were the rake angle (or at least the 

prevailing sense of movement) and the slip rate. 

The strategy outlined above also adopted a set of prioritization criteria. The highest priority for collating the different 

datasets was given to the pan-European dataset because it guaranteed maximum spatial coverage with minimum effort. Then, 140 

in replacing or extending this initial dataset, we incorporated new data with progressively lower priority given to data that 

was publicly available within the timeframe of the project, followed by voluntarily contributed datasets from the community 

encountered during a series of meetings, and ultimately by solicited local contributions where necessary. In handling the 

possible multiple contributions over the same areas, we prioritized newer data, national data when the dataset covered a 

https://doi.org/10.5194/nhess-2023-118
Preprint. Discussion started: 11 September 2023
c© Author(s) 2023. CC BY 4.0 License.

rollins
Highlight
smaller-scale

rollins
Cross-Out

rollins
Highlight
using

rollins
Cross-Out

rollins
Highlight
lastly

rollins
Highlight
>50%?



6 

 

specific country, level of accuracy and justification for the requirements listed above, and coherence with surrounding 145 

datasets. 

Thus, these criteria were applied to collate the datasets, fill gaps, harmonize overlaps, and remove inconsistencies. Once the 

collated dataset was obtained, the performed data processing aimed to extract relevant information from the different datasets 

and convert it into the EFSM20 format, identify the possible duplicates, and assign the ID to each retained record.  

The mapped features were resampled to obtain an evenly-spaced single-trace polyline with an average distance between 150 

consecutive nodes of ~5 km (Figure 2). Based on common fault scaling relationships (Wells and Coppersmith, 1994; 

Leonard, 2010, 2014; Allen and Hayes, 2017; Thingbaijam et al., 2017), this length enables us to capture with sufficient 

accuracy the smallest earthquake ruptures commonly modeled in most hazard analyses using fault sources. The even spacing 

also ensures that the fault-source total length is measured consistently, regardless of the subjective mapping strategy adopted 

in the original datasets. The fault trace nodes were sorted based on the average strike (or dip direction) to comply with the 155 

right-hand rule (Aki and Richards, 1980). The strike values are then recalculated to reflect the variability of the re-mapped 

fault. 

With this revised geometry, we determined the complexity index c, which is calculated as 

𝑐 = (1 − 𝐿′ 𝐿)⁄ cos 𝛿 (1) 

where L' is the end-to-end fault length, L is the fault trace length, and δ is the reported dip angle (Figure 2). This complexity 160 

index tends to be close to zero when the fault tends to be nearly straight or vertical. It can contribute to better evaluating 

whether to adopt the simple- or complex-fault models when using the OpenQuake software (Pagani et al., 2014) for 

modeling seismic hazards. 

We verified the depth datum (local ground surface or mean geoid/spheroid), then checked the possible intersections of the 

reported upper depth with the topo-bathymetry using the ETOPO1 Global Relief Model (Amante, 2009; NOAA National 165 

Geophysical Data Center, 2009), and the reported lower depth with the base of the crust using the European Moho (Grad et 

al., 2009). We also searched for possible down-dip intersections of different fault planes (e.g., two faults cross-cutting each 

other at depth). Occasionally, when the faults determined an unrealistic structural configuration, we removed or modified 

parts of the interested faults. 

A one-letter or two-letter code indicates the fault sense of movement: N for normal (-135° ≤ rake ≤ -45°), R for reverse 170 

faulting (45° ≤ rake ≤ 135°), RL for right-lateral transcurrent (135° < rake < -135°), LL for left-lateral transcurrent (45° > 

rake > -45°). These four classes were also reduced to two classes, using the two-letter code DS for dip-slip faulting (normal 

and reverse) and SS for strike-slip faulting (right- and left-lateral) to ease the application of the fault scaling relations. 

The tectonic characterization of crustal faults includes defining three types of tectonic settings: interplate region, stable 

continental region, and Mid-Atlantic Ridge, identified by the three-letter codes: INT, SCR, and MAR, respectively. For the 175 

geographic distribution of the SCR, we started from the mapping made by (Johnston, 1994) and refined the INT and MAR 

based on the plate tectonic model by (Kagan et al., 2010) and local geology where needed. 
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Figure 2: Cartoon showing the main geometric elements of crustal faults (top) and subduction systems (bottom). See the main text 180 
for a complete list of parameters and their descriptions. 

Since several records of the original datasets only reported a single value for the dip angle, we extrapolated the dip angle 

variability from all the other records in the fault collection. We thus calculated the dip angle variation ratio of reported 
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values and then applied it to extrapolate the dip uncertainty range around single-value dip angles, assuming the reported 

single value as the average dip. The dip variation ratio (∆𝛿) for each fault is calculated as 185 

∆𝛿 =
𝛿𝑚𝑎𝑥−𝛿𝑚𝑖𝑛

2
/𝛿𝑎𝑣𝑔 (2) 

where 𝛿 is the dip angle value of all faults with 𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛 > 0. We did this calculation separately for dip-slip and strike-

slip faults. 

Once the minimum and maximum depths and dip angles are determined, the fault width can be calculated using simple 

trigonometry. 190 

Also, in the case of the slip rate, several records of the original datasets only reported a single value, and thus we adopted the 

same approach. The slip-rate variation ratio (∆�̇�) for each fault is calculated as 

∆�̇� =
�̇�𝑚𝑎𝑥−�̇�𝑚𝑖𝑛

2
/�̇�𝑎𝑣𝑔 (3) 

where �̇� is the slip rate value of all faults with �̇�𝑚𝑎𝑥 − �̇�𝑚𝑖𝑛 > 0 and �̇�𝑚𝑖𝑛 > 1𝐸 − 4 mm/yr (the latter assumed as a lower 

threshold for considering the fault activity. We did this calculation separately for the four different combinations of slip type 195 

(DS and SS) and tectonic setting (INT and SCR). Then we calculated the weighted average based on the number of faults in 

the four groups. 

The maximum earthquake magnitude of the crustal faults is estimated as the magnitude value, in the moment magnitude 

scale, that corresponds to the largest possible rupture that a fault can host based on its dimensions and the magnitude scaling 

relations by (Leonard, 2010, 2014), which also incorporate the rupture aspect ratio. In the adopted scaling relations, the 200 

moment magnitude (𝑀𝑤) is determined by an equation in the form of 

𝑀𝑤 = 𝑎 + 𝑏 log(𝑆) (4) 

where S is the size of any of the following rupture dimensions: end-to-end length, width, area, or displacement, and the 

parameters "𝑎" and "𝑏" take different values depending on the S type, the sense of slip (DS and SS), the seismotectonic 

context (INT or MAR, and SCR). Estimating the maximum earthquake magnitude of fault sources takes three steps. In the 205 

first step, we retrieve the fault width (W) and preliminarily assume that this value can be the maximum rupture width. 

Bringing in the rupture aspect ratio, we obtain the rupture length (L) required by a rupture of the retrieved width using the 

scaling relations (Leonard, 2010, 2014). Then we calculate the maximum rupture area (A) based on the obtained length and 

width. These calculations are repeated for the minimum, average, and maximum fault dimensions and retain three magnitude 

values corresponding to the scaling expected value, plus and minus one standard deviation. In the second step, we calculate 210 

the distribution of magnitude deviations (∆𝑀𝑤
− = 𝑎𝑣𝑔𝑀𝑤 −𝑚𝑖𝑛𝑀𝑤) and (∆𝑀𝑤

+ = 𝑚𝑎𝑥𝑀𝑤 − 𝑎𝑣𝑔𝑀𝑤) from the average for 

all faults. After a preliminary inspection of the distributions, values in excess of a threshold (∆𝑀𝑤 > |0.5|) are considered to 

be outliers and removed. Then we obtained the distributions ranking. In the third step, we extract the 2nd and 5th percentiles 
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of the negative deviations and the 95th and 98th percentiles of the positive deviations and apply them to the average 

magnitude already calculated. 215 

Finally, the seismic moment rate (𝑀𝑠
̇ ) can be calculated based on the following classic formulation:  

𝑀𝑠
̇ = 𝜒𝑀𝑔

̇ = 𝜒𝜇𝐿𝑊�̇� (5) 

where 𝜒 is the seismic efficiency, or seismic coupling (Kagan and Jackson, 2013), Ṁ
g
 is the geologic moment rate, 𝜇 is the 

rigidity, L and W are the fault length and width, respectively, and Ḋ is the long-term slip rate. The applied rigidity is the 

global crustal average of 33 GPa (Dziewonski and Anderson, 1981), which is also coherent with the rigidity used for 220 

deriving the magnitude scaling relations (Leonard, 2010, 2014). We use the term seismic efficiency to indicate a coefficient 

between 0 and 1 that quantifies how much of the total moment rate is to be converted into a seismic moment rate and 

ultimately into an earthquake rate forecast. This coefficient is often called seismic coupling, but we avoid using it because it 

also has various meanings (Wang and Dixon, 2004). However, the seismic efficiency was not assigned to individual faults in 

this dataset. For the moment rate calculations, the seismic efficiency is conservatively assumed to be equal to 1, and it is thus 225 

left to the user to choose a value to apply in applications. 

2.2 Subduction systems 

Subduction systems form at convergent plate boundaries where one plate, the slab, sinks below the other. In these complex 

systems, different types of earthquake sources co-exist (Satake and Tanioka, 1999). 

In this compilation, we assume that the crustal fault sources deal with the earthquakes occurring in the upper plate of a 230 

subduction system. We thus designed the subduction system model to address both the slab interface and the intraslab 

seismicity. To this end, we first focused on reconstructing the three-dimensional geometry of the lower plate top surface and 

its crustal thickness. Then, we added a set of basic parameters required for addressing the tectonic behavior, such as the 

upper and lower depths of the seismic interface and the net convergence direction and rate. 

This type of reconstruction is typically performed using data from geology, exploration geophysics, seismicity distribution, 235 

and seismic tomography (Figure 2). The mapped feature must be available through a set of coordinate triplets, typically 

latitude, longitude, and depth, in a recognizable geographic coordinate system (e.g., scattered points, lattice, isolines, 

triangular meshes). 

The adopted 3D geometries were resampled at regular spacing and smoothed to ensure the same spatial resolution in the 

different models. Evenly-spaced isolines were then used to represent the slab top surface. The average distance between 240 

consecutive nodes of each isoline was set at 5 km. The isoline depth interval was set at 1 km above 40 km depth and 10 km 

below 40 km. The deepest slab isoline was fixed at 300 km depth. The slab geometry is completed by assessing the crustal 

thickness of the lower plate measured in the outermost part of the subduction zone, near the tip of the accretionary wedge, by 

taking the base of the crust as a reference from the European Moho (Grad et al., 2009) model for consistency with that used 

for the crustal faults. For the sake of simplicity, the crustal thickness so measured is assumed to be constant in the rest of the 245 
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subducted slab to derive the lower plate bottom surface. The volume between the lower plate top and bottom surfaces is then 

resampled by a lattice of evenly-spaced nodes at a 10 km distance in all directions. The uppermost depth of the lattice was 

fixed at 5 km to ensure a consistent sampling of the shallower and gentler part of the slab. 

To estimate the upper depth of the seismic interface, we considered data about the location of the 100-150°C isotherm, the 

position of the contact between the lower plate and the overlaying softer sediments, the position of splay-fault branching, and 250 

the seismicity cutoff depth. To estimate the lower depth of the seismic interface, we considered the location of the 

intersection of the lower plate with the Moho of the upper plate, the location of the 350-450°C isotherm, and the seismicity 

cutoff. When multiple estimates from different data types were available, we assigned a higher weight to the Moho 

intersection and a lower weight to thermal and other models. We then obtained a weighted average of the minimum, 

intermediate, and maximum values retrieved from various literature sources. 255 

The convergence direction and rate were estimated by geodetic measurements (velocity vectors) and/or by modeling the 

relative motion of the upper and lower plates across the subduction interface, as available in the literature. The values from 

different sources were weight-averaged based on the length of the subduction interface sector over which the values were 

measured or estimated. The goal was to agnostically capture the plate convergence possible variability range, or its order of 

magnitude, rather than finding the best estimates. 260 

The maximum earthquake magnitude of the seismic interface is estimated as the magnitude value, in the moment magnitude 

scale, that corresponds to the largest possible rupture that the seismic interface can host based on its area and magnitude 

scaling relations (Allen and Hayes, 2017). 

Similarly to crustal faults, the seismic moment rate is estimated using the classic formulation reported in Eq. (5). However, 

in the subduction case, Ḋ is the long-term convergence rate, and the rigidity (m) varies with depth within the upper and lower 265 

depth limits of the slab interface. The seismic efficiency was not assigned in this dataset; thus, it is left to the user to choose a 

value to apply. The distributed dataset thus reports the total moment rate. 

3 Results 

3.1 EFSM20 data collation 

The EFSM20 final compilation covers an area spanning from the Mid-Atlantic Ridge to the Caucasus and from northern 270 

Africa to Iceland, counting 1,248 crustal faults - for a total length of ~95,101 km. Thanks to the continuous work on active 

faults in many regions, and the continual update of regional databases, we were able to obtain a much richer fault-source 

model with respect to EDSF13, which counted 1,128 crustal faults - for a total length of ~63,775 km, so that only 178 crustal 

faults (13,042 km) remain from the starting dataset. Of the cumulative EFSM20 crustal-fault length, 55,401 km are onshore. 

Of the 39,699 km offshore, 22,846 km are in the Atlantic Ocean and 16,853 km in the Mediterranean Sea, the Black Sea, and 275 

the Caspian Sea. EFSM20 also includes four subduction systems – for a total length of the slab interface of ~2473 km. Three 

subduction systems in the eastern Mediterranean Sea were already present in the EDSF13 starting dataset, and a new one 
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was added in the Gibraltar Strait. Below we summarize the main adopted datasets (Figure 1) to retrieve the initial geometry 

and relevant parameters. Each record in EFSM20 reports its provenance to one of them. Additional data were then used to 

harmonize the collation and estimate the derived parameters. 280 

3.1.1 Crustal faults 

Dataset #01: This is the original database EDSF13, compiled in the framework of the SHARE project (Basili et al., 2013), 

which covered Europe and the Mediterranean region. This dataset was adopted as the starting point to build the new crustal 

fault-source model. The largest regions that remained unmodified are the Balkans and northern Africa. According to 

individual studies, most regions were entirely replaced by new datasets or partly revisited. Elements added in regions that 285 

EDSF13 did not cover are in Iceland, France, and the northern Mid-Atlantic plate boundary. The major regional updates are 

summarized below. 

Dataset #02: This dataset covers the Mid-Atlantic ridge and transforms. The initial geometry was derived from a global 

plate-boundary model (Bird, 2003), and the rest of the characterization was based on the oceanic crust age and spreading rate 

(Müller et al., 2008). For the transform faults, the slip rate was directly derived from the spreading rate, aided by more local 290 

data for the Gloria fault (Fadil et al., 2006; Koulali et al., 2011). For the normal faults, the slip rate was obtained by 

combining the spreading rate with local information about fault spacing and heave (MacDonald and Luyendyk, 1977; 

Escartín et al., 1999). 

Dataset #03: This dataset covers the French region and is derived from BDFA (Jomard et al., 2017). Due to the different 

strategies of fault mapping used in BDFA, we redrew the fault traces by interpolation and reassigned some parameters, 295 

particularly slip rates, based on recent regional works. 

Dataset #04: This dataset includes a few faults in the Gulf of Corinth. The initial geometry of the faults is based on GreDaSS 

(Caputo and Pavlides, 2013), and the slip rates were updated based on recent works not included in the GreDaSS 

compilation (Bell et al., 2009; Fernández-Blanco et al., 2019). 

Dataset #05: This dataset covers the offshore parts of the Gulf of Cadiz and the Alboran Sea. In this area, we updated the 300 

EDSF13 based on several recent works, providing updated geometries and/or slip rates (Koulali et al., 2011; Martínez-

Loriente et al., 2018; Martínez‐Loriente et al., 2013; Neres et al., 2016; Perea et al., 2018; Gómez de la Peña et al., 2018). 

Dataset #06: This dataset covers the Italian territory and some surrounding regions. It is mainly based on the most recent 

version of the DISS (Basili et al., 2008; DISS Working Group, 2021). 

Dataset #07: This dataset includes a few faults in the Eastern Betic region. Such faults represent modifications of QAFI (see 305 

Dataset #14) according to recent works with substantial updates of fault geometries and slip rates (Borque et al., 2019; 

Gómez-Novell et al., 2020a, b; Herrero‐Barbero et al., 2020). 

Dataset #08: This dataset covers the Aegean region. It is mainly based on the most recent version of GreDaSS (Caputo and 

Pavlides, 2013). 
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Dataset #09: In Iceland, we started from the same approach as the Mid-Atlantic ridge and transform faults (see Dataset #02) 310 

and added data and considerations based on local studies (Bergerat et al., 1990; Forslund and Gudmundsson, 1991; 

Rögnvaldsson et al., 1998; Garcia et al., 2002; LaFemina et al., 2005; Árnadóttir et al., 2008; Rust and Whitworth, 2019). 

Dataset #10: This dataset deals with the Lower Rhine Graben. In this area, we started from EDSF13, already based on a local 

fault model (Vanneste et al., 2013), and updated the slip rate of several faults based on more recent data (Gold et al., 2017). 

Dataset #11: This dataset covers the northwestern African region (Morocco, Algeria, and Tunisia). In this region, we mainly 315 

relied on EDSF13 with updates of a few faults in the Moroccan region based on the GEM Global Active Faults Database 

(Styron and Pagani, 2020) and various other works (Gomez et al., 1996; Akoglu et al., 2006; Rigby, 2008; van der Woerd et 

al., 2014; Pastor et al., 2015) for refining several fault parameters. 

Dataset #12: The NOAFAULTS database (Ganas, 2022) was used to integrate the dataset in the Aegean region for faults not 

already included in GreDaSS. This dataset was built gradually since 2013 (Ganas et al., 2013) following a fault-trace 320 

(polyline) approach with significant upgrades whenever compiled fault maps were available, including faults activated 

during seismic sequences in the Aegean (Ganas et al., 2018). 

Dataset #13: This dataset covering Portugal and offshore regions was updated based on recent works in the Lower Tagus 

Valley Fault Zone (LTVFZ) (Canora et al., 2015) and Algarve (Sanz de Galdeano et al., 2020). 

Dataset #14: This dataset covers most of the Iberian region, including the Pyrenees. In this region, we relied on the 325 

Quaternary Faults Database of Iberia (QAFI) database (García-Mayordomo et al., 2012, 2017; IGME, 2015). Due to the 

different strategies of fault mapping used in QAFI, we redrew the fault traces by interpolation. 

Dataset #15: This dataset deals with Slovenia and its surroundings. In this area, we relied on the recently published Database 

of Active Faults in Slovenia (Atanackov et al., 2021) and the seismogenic fault source model (Atanackov et al., 2022) 

prepared for the 2021 seismic hazard model for Slovenia (Šket Motnikar et al., 2022). This dataset provides the seismic 330 

component of the slip rates. 

Dataset #16: This dataset covers Anatolia and parts of the Middle East. In this region, we relied on recent data from the 

project EMME and data from the national update of the Turkish hazard model (Danciu et al., 2018; Demircioğlu et al., 2018; 

Emre et al., 2018). 

3.1.2 Subduction systems 335 

Dataset #01: This is the original database EDSF13, compiled in the framework of the SHARE project (Basili et al., 2013), 

which covered the subduction systems in the eastern Mediterranean region. This dataset was adopted as the starting point to 

build the new subduction system models for the Hellenic and Cyprus Arcs. The geometry of both slabs were recently 

revisited in the framework of a tsunami hazard project (Basili et al., 2021). These datasets have also been re-examined in 

light of the SLAB 2 model (Hayes et al., 2018) and several other slab geometry reconstructions (Ganas and Parsons, 2009; 340 

Halpaap et al., 2018, 2019; Sachpazi et al., 2016).  
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Dataset #02: This dataset corresponds to the most recent version of the DISS (DISS Working Group, 2021), which includes 

an updated reconstruction of the Calabrian Arc slab geometry based on a rich dataset of seismic reflection profiles for the 

shallower part (<20 km depth) and the seismicity distribution for the deeper part (Maesano et al., 2017). 

Dataset #03: This dataset is an original elaboration of the Gibraltar Arc based on published works. The geometry of the slab 345 

was reconstructed using different datasets at different depths. For the shallowest depths, we used data from bedrock markers 

based on interpreting multichannel seismic reflection profiles and wide-angle seismic surveys (Gutscher et al., 2009), 

assuming that the top of the slab coincides with the top of the basement. For the intermediate depths (12-40 km), we used a 

model of the Moho obtained from a set of diverse datasets using a probabilistic surface reconstruction algorithm (Arroucau 

et al., 2021) and considering typical values for the old Tethys oceanic crust in the range of 7-9 km (Sallarès et al., 2011). 350 

Then, we obtained the slab position between 40-70 km depth by interpolating seismicity clusters from the ISC earthquake 

catalog (ISC, 2019). Within the 140-200 km depth range, the slab was assumed to be vertical based on a tomographic model 

(Civiero et al., 2018), which shows a nearly vertical high-velocity p-wave anomaly down to 600 km deep. 

3.2 EFSM20 Harmonization and derived parameters 

This Section summarizes the results of filling in some missing information (e.g., the variability range of some parameters), 355 

harmonizing the various datasets, and adding relevant parameters to complete the list of attributes established when 

designing the dataset structure. 

The crustal fault complexity index returned 174 faults with a value equal to zero. This value is due to a dip equal to 90 

degrees for 62 cases and a rectilinear trace for the remaining 112. Only 6 faults have a complexity index larger than 0.1. The 

classification per tectonic setting and slip type is summarized in Table 1. 360 

Table 1 Crustal fault-sources classification. 

 DS No. DS km SS No. SS km All No. All km 

INT 709 45,578 341 23,565 1,050 69,143 

MAR 94 17,018 45 5,241 139 22,260 

SCR 52 2,921 7 778 59 3,699 

Total 855 65,517 393 29,584 1,248 95,102 

The dip harmonization procedure used 660 dip-slip faults to determine an average dip variation ratio of 0.21 and 236 strike-

slip faults to determine an average dip variation ratio of 0.12. These two values were then applied to incorporate the range of 

dip variability in the remaining 195 dip-slip faults and 157 strike-slip faults. The slip-rate harmonization procedure used 970 

faults out of the 1109 INT and SCR faults to determine a weighted average slip-rate variation ratio of 0.51 that was then 365 

applied to the remaining 139 faults, including the Gloria Fault (Dataset #02). The 138 MAR faults were excluded from the 

slip-rate harmonization because of their peculiar tectonic setting, which, differently from the rest of crustal faults, involves 

exclusively oceanic crust. The weighted average slip-rate variation ratio for these faults is 0.46. 
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Figure 3 shows the crustal faults' geographic distribution and frequency of relevant behavior parameters (faulting type, slip 

rate, moment rate, and maximum magnitude). Slip rates and moment rate maps provide an overview of the location of the 370 

most active faults, generally aligned with the major plate boundaries. Conversely, moving away from the plate boundary 

toward the plate interiors, one finds progressively less-active faults. The average maximum magnitude distribution is 

somehow left-skewed, indicating that the faults' largest potential is rare. Although most of the highest values are found on 

faults aligned with plate boundaries, several large values are also found in the plate interiors. This circumstance occurs 

because the adopted method reflects the size of the fault and not any other property. 375 

Figure 4 shows the 3D geometric reconstruction of the four slabs. The subduction interface parameterization includes the 

treatment of uncertainties based on a logic tree schema (Figure 5). The upper and lower depths of the seismic interface were 

estimated from data and modeling of the 150°C and 350-450°C isotherm, the seismicity distribution, and the slab 

intersection with the Moho of the upper plate (Di Stefano et al., 1999; Gutscher et al., 2006; Thiebot and Gutscher, 2006; 

Grad et al., 2009; Syracuse et al., 2010; Heuret et al., 2011; Davies, 2013). The minimum, intermediate, and maximum 380 

values from the various source types were averaged. Overall, the seismic interface is confined at depths between 6 and 39 

km. The 3D geometry and the upper and lower depths of the seismic interface were the main constraints for determining the 

size of the largest rupture and its associated moment magnitude based on the scaling relations. The obtained values vary 

from a minimum of 7.98 in the Calabrian Arc to a maximum of 9.17 in the Hellenic Arc. The uncertainties on the area and 

the scaling relations provide 27 combinations per subduction interface, implying an overall variability between 0.66-0.86 385 

magnitude units. 

The convergence rates and azimuths are derived from geodetic observations or modeling (Carafa et al., 2018; Devoti et al., 

2008; Hollenstein et al., 2008; Howell et al., 2017; Nocquet, 2012; Palano et al., 2015; Reilinger et al., 2006; Stich et al., 

2006; Wdowinski et al., 2006) across the subduction systems (Figure 6). We remark that these studies may either provide 

geodetic observations or modeled convergence vectors. Geodetic velocities were used as simple indicators of the possible 390 

order of magnitude of plate convergence without any further processing, assuming that the subduction interface cannot be 

faster than the plate motion and modeled convergence were not differentiated based on the modeling approach (e.g., block 

modeling vs. kinematic finite element modeling). Although some reported values concern different sectors of the subduction 

interface, EFSM20 reports a single value and associated uncertainty for the entire arc. The obtained average values vary 

from a minimum of ~1 mm/yr in the Gibraltar Arc to a maximum of ~24 mm/yr in the Hellenic Arc.  395 

The rigidity (shear modulus) depth-dependence from different datasets (Dziewonski and Anderson, 1981; Scala et al., 2020; 

Bilek and Lay, 1999; Sallarès and Ranero, 2019) are reported in Figure 7, showing the rigidity variation within the common 

depth interval of the subduction interface of the four subduction systems. Combining the variability associated with the 

calculation (rigidity, area, and convergence rate) leads to 81 alternatives for each subduction interface. The resulting moment 

rates vary from a minimum of 4.5E+17 Nm/yr in the Gibraltar Arc to a maximum of 1.9E+20 Nm/yr in the Hellenic Arc. 400 

Each subduction system's largest moment rate value is 3-5 times larger than the smallest value. 
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Figure 3: Maps (upper panels) and histograms (lower panels) of the EFSM20 crustal faults color-coded according to faulting type 

(upper left), average slip rate (upper right), maximum moment magnitude (lower left), and average moment rate (lower right). 405 
Color classes are the same as those distributed by OGC WMS web services. 
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Figure 4: Oblique views of the tri-dimensional geometry of the four slab models. The vertical extent of all boxes is 300 km. The 

colored part of the slab top surface represents the extent of the seismic interface, including the uncertainty represented by the 

upper and lower seismogenic depths (see Figure 2). 410 
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Figure 5: Logic tree to handle the parameter uncertainty in the different realizations of the subduction interfaces. This scheme 

implies nine geometric realizations with different areas spanning different depth ranges, implying 27 alternatives of maximum 

magnitude and rigidity. Considering the three alternative convergence rates yield 81 moment-rate alternatives. The logic-tree 

outcomes provide 243 moment-rate and maximum-magnitude combinations for exploring the earthquake rate forecasts based on 415 
seismic-moment balanced recurrence models. 
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Figure 6: Synoptic view of the velocity vectors in the four subduction systems. Arrow sizes are scaled according to the reported 

velocity (all in mm/yr). Number in parentheses represents different works: 1) Stich et al. (2006); 2) Palano et al. (2015); 3) Devoti 

et al. (2008); 4a,b) Carafa et al. (2018); 5) Hollenstein et al. (2008); 6) Nocquet (2012); 7) Reilinger et al. (2006); 8) Howell et al. 420 
(2017); 9) Wdowinsky et al. (2006). In the case of Carafa et al. (2018): a = if creeping, b = if temporarily locked. 

 

Figure 7: Depth-dependent rigidity in subduction zones from various authors. SC20, BL99, PREM, SR19. (Dziewonski and 

Anderson, 1981; Scala et al., 2020; Bilek and Lay, 1999; Sallarès and Ranero, 2019). 
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3.3 EFSM20 data-products sharing portfolio 425 

The outcomes of collation, harmonization, and derived-parameter characterization of all fault sources form a portfolio of 

datasets publicly shared for download (GeoJSON files, ESRI shapefiles, MapInfo tables) and via web services (WFS and 

WMS) adopting the OGC standards. 

Crustal fault sources also include the geometric extrusion of the fault plane within the minimum and maximum depths in the 

direction normal to the fault trace. Key elements of the fault plane are the vertical projection onto the ground surface of the 430 

top and bottom traces, the midline trace, the polygon enclosing the fault plane, and depth isolines. These geometric features 

are provided in different files, including all the key parameters illustrated in the previous section as tabulated attributes. The 

depth isolines have a 0.5 km spacing interval and include the nominal depth as an attribute. 

The subduction systems include the geometric representation of the slab top surface by depth isolines and the slab by a cubic 

lattice. The depth isolines are at 1 km spacing between 0-40 km depth and 10 km spacing between 40-300 km depth. The 435 

side of the cubic lattice is 10 km, and each lattice node also provides the slab strike, dip-direction, and dip. The subduction 

systems, in addition to the geometry of the top surface of the slabs, include datasets for the slab interface parameters, the 

discretization, and the various realizations considered using the logic tree shown in Figure 5. 

Table 2 summarizes the content of these datasets, including a link to the attribute definitions of each file as given in 

Appendix A (Tables A1, A2, A3, A4, A5, A6, A7). 440 

Table 2 Files distributed for download (GeoJSON files, ESRI shapefiles, MapInfo tables) and via OGC WFS. The rightmost 

column indicates the relevant Table number with the attribute descriptions provided in Appendix A. 

Category File name Description Parameters 

table link. 

Crustal 

Faults (CF) 

EFSM20_CF_TOP Trace of the fault plane upper edge. Polylines. A1 

EFSM20_CF_BOT Trace of the fault plane lower edge. Polylines. A1 

EFSM20_CF_MID Trace of the fault plane middle line. Polylines. A1 

EFSM20_CF_PLD Vertical projection of the inclined fault planes (in the local dip 

direction along strike) onto the ground surface. Polygons. 

A1 

EFSM20_CFDepths Depth isolines (contours) of the fault planes, including top e 

bottom. Polylines. 

A2 

Subduction 

Systems 

(SS) 

EFSM20_SlabDepths Depth isolines (contours) representing the geometry of the top 

surface of the slab. Polylines. 

A3 

EFSM20_SI_Parameters Subduction Interface (SI) parameters. Polygons encompassing 

the SI area in map view. 

A4 

EFSM20_SI_Discretization Subduction Interface (SI) discretized in areas spanning 1 km 

depth. Polygons encompassing each area in map view. 

A5 

EFSM20_SI_Realizations Subduction Interface (SI) model realizations considering 

uncertainties. Polygons encompassing each area of the 

different realizations in map view. 

A6 

EFSM20_IS_Lattice Intraslab (IS) model constituted by equally-spaced nodes 

sampling the crustal part of the slab volume. Points. 

A7 
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Table 3 summarizes the data made available only via OGC WMS. These are styled map layers ready-to-use to display color-

coded relevant parameters of the fault sources. The adopted styles are provided to the users in the Styled Layer Descriptor 

(SLD) format. These style files can be re-applied to the downloaded files or to the WFS layers to recreate the styled maps. 445 

The main access point to this dataset is the European Databases of Seismogenic Faults portal 

(https://seismofaults.eu/efsm20). Other access points for the dataset are the EFEHR portal (http://www.efehr.org/start/) and 

the EPOS ICS-C data portal (https://www.ics-c.epos-eu.org/). 

4 Discussion 

4.1 Lessons learned from the compilation and harmonization 450 

The compilation of EFSM20 represents a substantial update and advancement of EDSF13. EFSM20 improved along the 

boundary around the European plate and within the plate interiors, focusing on the region within a 300-km-wide buffer 

around European countries (except for Overseas Countries and Territories, OTCs). Within this buffer, the compilation was 

simplified in Iceland and certainly lacking in the Azores, mainly due to the complex volcano-tectonic processes and limited 

knowledge of active structures. Also lacking is the region of the Hellenic Arc and Cyprus Arc accretionary wedge, where 455 

seismic sources, such as splay thrust faults and back-thrusts, are known to exist, but their systematic mapping would require 

a dedicated effort due to the large extent of the region, its offshore location, and complex deformation that characterize 

accretionary wedges in general, and a very broad and fast-growing one in this case (>300 km at 10 mm/yr) due to the long 

duration (>35 Myr) of the subduction process (Kastens, 1991). 

Table 3 Files distributed via OGC WMS only. 460 

Category File name Description 

Crustal 

Faults (CF) 

EFSM20_CFDepths 

ColorScaleCFDepths.sld 

Color-coded depth isolines of the fault planes, including the top and 

bottom. The spacing interval is 0.5 km. 

EFSM20_CF_FaultTypes 

ColorScaleFaultTypes.sld 

Color-coded fault types: normal, reverse, right-lateral, left-lateral. 

EFSM20_CF_SlipRates 

ColorScaleSR.sld 

Color-coded slip rates. Log-linear separation scale. Four different layers 

for minimum, maximum, arithmetic mean (default), and geometric 

mean.  

EFSM20_CF_MaxMagnitude 

ColorScaleMw02.sld 

Color-coded maximum magnitude. Five different layers for the average 

(default), and the 2nd, 5th, 95th, and 98th percentiles. 

EFSM20_CF_MomentRates 

ColorScaleM0R.sld 

Color-coded moment rates. Log scale. Four different layers for 

minimum, maximum, arithmetic mean (default), and geometric mean. 

Subduction 

Systems (SS) 

EFSM20_SlabDepths 

ColorScaleSlabDepths.sld 

Color-coded depth isolines of the top surface of the slab. Spacing 

interval is 1 km between 0-40 km and 10 km between 40-300 km. 

Concerning crustal faults, we identified several regional datasets that vary in date of the latest release, geographical extent, 

level of fault characterization, and data formats. In addition to those listed in the final compilation, several other datasets 

were considered, such as, for example, those covering Romania and the northern Black Sea (Diaconescu et al., 2019a, b, 
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2021), Iceland (Bayat et al., 2022) or the Caucasus (Onur et al., 2019, 2020). Although these datasets represented a 

significant advancement relative to EDSF13, they could not be used because we could not work out the compliance with the 465 

requirements above recalled within the project timeframe. 

We are aware that the fault information in certain areas has already improved due to recent work not included in this release, 

such as, for example, the northern Adriatic region (Panara et al., 2021), which included a better-constrained version of the 

fault that released the Mw 5.5 earthquake (Maesano et al., 2023) on 9 November 2022 in the Northern Adriatic Sea. The 

depth extent of the Hellenic Arc slab interface and its relation with the maximum depth of the crustal faults in the Aegean 470 

region could be improved using rheological models (Maggini and Caputo, 2020, 2021). Likewise, newer geodetic data are 

now available to help to refine the convergence rate across the Hellenic Arc (Briole et al., 2021). Also, some known errors 

are present, such as the case of the Averroes fault in the Alboran Sea (IDFS: ESCF03E; IDDS: #4). This fault was 

introduced as reported in an earlier version of QAFI and escaped a recent update that, although confirming the fault trace, 

revised the dip, dip direction, and kinematics (Perea et al., 2018). These and possibly other cases should be taken into 475 

consideration for future updates. 

The total moment rate in EFSM20 of crustal faults and slab interfaces combined is in the order of 1.3E+21 Nm/yr (Figure 8). 

The crustal faults take up to about 8%, and the slab interfaces 92% of this amount. Among the former, the moment rate 

attributable to the SCR is 0.2%, and the rest is almost equally partitioned between the MAR and the rest of the INT. Among 

the latter, instead, more than 85% of the total slab interface moment rate is taken up by the Hellenic Arc. The contribution of 480 

intraslab tectonics is excluded from the total moment rate because intraslab faults were neither individually mapped nor was 

their slip rate determined. 

 

Figure 8: Box-and-whisker charts of the moment rate (left-hand panel) and maximum magnitudes (right-hand panel) for crustal 

faults, grouped in various classes, and subduction interfaces. Boxes indicate the variability between the median and the upper and 485 
lower quartiles; whiskers indicate the variability outside the quartiles. Legend: INT = interplate; MAR = Mid-Atlantic Ridge; 

SCR= stable continental region; N = normal, R = reverse; RL = right lateral; LL = left lateral; CF = crustal faults; GiA = 

Gibraltar Arc; CaA = Calabrian Arc; HeA = Hellenic Arc; CyA = Cyprus Arc (CyA); SI = subduction interfaces. 
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Simply stated, slip rate is the amount of slip as a function of geologic time; in other words, slip rate is obtained by dividing 

the amount of fault displacement, as determined from geodetic measurements, from offset man-made structures, or from 490 

offset geologic features, by time interval during which that offset has taken place (Morell et al., 2020). 

Generally, reported slip rates from geologic studies include the cumulative slip of individual seismic events and any aseismic 

slip on the fault (e.g., pre- and/or post-seismic slip and aseismic slip at the surface). These components are hardly 

distinguishable in the geologic record. In common practice, slip rate data come from a limited number of point observations 

that are accepted as representing some presumed average displacement along strike. Studies that report accurate slip rate 495 

variations along strike are relatively rare, and those that report the slip variations with depth or along dip are even much rarer 

(Finocchio et al., 2016). 

Therefore, moment rate estimates in EFSM20 generally refer to the tectonic component, and the actual seismic moment rate 

to be converted in an earthquake rate forecast could be somewhat smaller depending on the seismic efficiency in Eq. 5. This 

parameter is not explored here. Users are thus cautioned about the possibility that some crustal fault slip rates, as in the case 500 

of Dataset #15 or others derived from the literature, could have already been “cleaned” by a predetermined or modeled 

seismic efficiency. This occurrence may not have been evident when the information was adopted in bulk from a large 

dataset of a regional compilation. In this respect, it is worth recalling that seismic efficiency can dramatically influence 

earthquake productivity, especially for the subduction interfaces. For example, the seismic efficiency of the Hellenic Arc is 

generally considered weak (Shaw and Jackson, 2010; Heuret et al., 2011; Reilinger et al., 2010; Becker and Meier, 2010; 505 

Rontogianni, 2010), as moment rate based on seismicity accounts only for about 20% of the moment rate based on the 

convergence rate shown by geodetic data. However, complete seismic coupling was proposed for the northwestern 

termination of the subduction beneath the Ionian Islands (Laigle et al., 2002; Ganas et al., 2020; Briole et al., 2021), 

suggesting possible lateral variations of seismic coupling along the Hellenic Arc (Laigle et al., 2004), in contrast with 

proposals of full coupling characterizing the entire Hellenic Arc (Ganas and Parsons, 2009). The seismic efficiency of the 510 

Calabrian Arc is also very variable. Based on geodetic observations and geodynamic modeling, the Calabrian Arc was 

hypothesized to be either locked or partly locked (Carafa et al., 2018) or negligibly active (Nijholt et al., 2018). Also, 

different interpretations exist on the activity of the Gibraltar Arc subduction interface. For example, the QAFI dataset does 

not include the Gibraltar subduction system, and other studies on geodetic observations do not consider the subduction 

process active (Stich et al., 2006) or consider it at all (Palano et al., 2015). The convergence rates reported in EFSM20 are 515 

thus meant to provide reasonable values in the hypothesis that the subduction interface is active, although EFSM20 remains 

neutral in this respect. The slab geometric reconstruction can still be useful for separating crustal seismicity from intraslab 

seismicity since the intraslab tectonic rates were not estimated. 

The rigidity treatment is the main difference between crustal faults and slab interfaces in estimating the moment rate. For 

crustal faults, we considered a uniform rigidity of 33 GPa, according to global estimates and consistency with fault scaling 520 

relations (Dziewonski and Anderson, 1981; Leonard, 2010), whereas for the slab interfaces, we used the depth-dependent 

rigidity variation as observed in subduction zones from around the world (Bilek and Lay, 1999; Sallarès and Ranero, 2019) 

https://doi.org/10.5194/nhess-2023-118
Preprint. Discussion started: 11 September 2023
c© Author(s) 2023. CC BY 4.0 License.

rollins
Highlight
subduction interfaces



23 

 

and already used to model earthquake ruptures for tsunami simulations and hazards (Geist and Bilek, 2001; Scala et al., 

2020). We know that using a uniform rigidity value for crustal faults is not appropriate in certain cases. For instance, 

evidence shows that the basement offshore SW Iberia is mainly made of exhumed mantle rocks (Sallarès et al., 2013; 525 

Martínez-Loriente et al., 2014). However, we decided to use a homogeneous rigidity value due to the large volume of data 

and the need to homogenize its treatment. Noteworthily, depth-dependent rigidity in EFSM20 subduction systems implies a 

variation of up to ±30% on the moment rate estimates compared to the uniform rigidity approach. 

The slab interfaces have systematically higher maximum magnitude than crustal faults (Figure 8), reflecting the larger area 

of slab interfaces, which can host larger ruptures. The maximum magnitude informs us of the size of the largest possible 530 

rupture that each fault-source can individually host (i.e., excluding the possible interactions among multiple faults) but tells 

nothing about the likelihood of that magnitude earthquake being released. To that end, a recurrence model should be 

developed based on the provided characteristics. Notice that the scaling relations of interface earthquakes predict rupture 

areas about 1.7 times larger, and their average slip is about 0.5 times smaller than those of crustal earthquakes with the same 

seismic moment. This consideration applies to most scaling relations, not just those used here (Skarlatoudis et al., 2016), and 535 

has implications on how the moment rate is partitioned into earthquakes of different sizes and, ultimately, in their recurrence. 

This reasoning particularly affects the crustal faults in the SCR, where the very low moment rate implies that the occurrence 

of the largest earthquakes is extremely unlikely and possibly their recurrence of little to nil practical impact on seismic 

hazard estimates at standard average return periods (475 years). 

4.2 Outlook 540 

EFSM20 was designed to fulfill the specific needs of a hazard application at the scale of a continent and has thus been one of 

the main input datasets used for the 2020 update of the European Seismic Hazard Model (ESHM20) (Danciu et al., 2021, 

2022). Its predecessor EDSF13 (Basili et al., 2013) was used for the 2013 European Seismic Hazard Model (ESHM13) 

(Woessner et al., 2015), the first regional tsunami hazard model NEAMTHM18 (Basili et al., 2021), and several other hazard 

analyses at different scales, post-earthquake analyses, and tectonic modeling. Likewise, EFSM20 is aimed to serve the same 545 

scope. To this end, it is distributed as machine-readable files using open standards (OGC), which allow users to port the 

datasets on various platforms and use them programmatically. 

Being a continent-scale compilation, however, EFSM20 implied data selections and simplifications, which may hinder its 

application at a more local scale. We thus recommend that the users resort to the original datasets and pertinent literature 

when performing analysis at a local scale, such as site-specific hazard applications or near-field seismic scenarios. In these 550 

regards, one first-order aspect is fault geometry. The down-dip planar simplification is known to generate bias when 

reconstructing the earthquake ruptures (Dutta et al., 2021) or to underestimate the near-field ground motion (Passone and 

Mai, 2017). Similarly, tsunami modeling requires full knowledge of the 3D geometry of faults (Gómez de la Peña et al., 

2022; Serra et al., 2021; Tonini et al., 2020). 
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The compilation of EFSM20 relied on the efforts made by many scientists in collecting and systematizing data about active 555 

faults with a region-wide perspective. Scientists collect most data on potential fault sources country-by-country for practical 

and organizational reasons. This practice may hardly change, but multilateral collaborations at the country bounders may 

decrease the need for ex-post data harmonization. The regional element is key for earthquake hazard analyses which need 

fault-source characterization also in remote or less tectonically active areas. From inspecting the literature, we realized that 

most works concentrate on the most-active, most-evident geological structures. A more balanced approach seems instead 560 

necessary to complement our in-depth knowledge of the most obvious structures along major plate boundaries with a better 

understanding of the least obvious ones. For example, the plate interiors account for less than 4% of all global seismicity 

(Kagan et al., 2010), and this estimate from fault sources in EFSM20 is much lower, suggesting that we might still be 

missing important intraplate faults or misjudging their activity rate or recurrence (Calais et al., 2016). Mitigating earthquake 

risk in such areas is thus extremely challenging and important (England and Jackson, 2011).  565 

Active fault identification and characterization are challenging in many respects. In continental interiors, climatic processes, 

and human activities can easily obliterate the most recent active faulting due to the long earthquake recurrence intervals 

(Grützner et al., 2017). In moderately active regions along plate boundaries, sedimentation rates can overtake tectonic rates 

and conceal the fault activity under a thick sedimentary cover (Panara et al., 2021). 

Nonetheless, even very active plate boundaries are not easily accessible for in-depth analyses. Although EFSM20 includes a 570 

large proportion of offshore faults, there is no doubt that offshore fault-source identification and characterization have a large 

room for improvement (Perea et al., 2021), not only to improve the use of fault sources in tsunami hazard analyses but also 

to improve the modeling of tectonic systems and the tectonic deformation partition at the transition between onshore and 

offshore structural systems. 
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Appendix A 

Table A1 Definition of the crustal fault attributes. These attributes are the same for EFSM20_CF_TOP, EFSM20_CF_BOT, 1000 

EFSM20_CF_MID, and EFSM20_CF_PLD files, in any of the distributed format or WFS service. 

Field Variable Units Description 

IDFS Char(7) n.a. Identifier of the fault source within EFSM20.  

IDDS Char(3) n.a. Number of the dataset linked to the file "DescriptionOfDatasets".  

IDSource Char(24) n.a. Identifier given in the original source, if available.  

StrikeMin Float degrees 

The minimum value of the fault orientation, between 0-360° increasing clockwise from the 

north following the right-hand rule. Recalculated from the reshaped fault trace. Rounded to 

the nearest integer. 

StrikeAvg Float degrees 

The average value of the fault orientation, between 0-360° increasing clockwise from the 

north following the right-hand rule. Recalculated from the reshaped fault trace. Rounded to 

the nearest integer. 

StrikeMax Float degrees 

The maximum value of the fault orientation, between 0-360° increasing clockwise from the 

north following the right-hand rule. Recalculated from the reshaped fault trace. Rounded to 

the nearest integer. 

DipMin Float degrees 
Minimum value of the dip angle, between 0-90° increasing downward from the horizontal. 

Rounded to the nearest integer. 

DipAvg Float degrees 
Average value of the dip angle, between 0-90° increasing downward from the horizontal. 

Rounded to the nearest integer. 

DipMax Float degrees 
Maximum value of the dip angle, between 0-90° increasing downward from the horizontal. 

Rounded to the nearest integer. 

RakeMin Float degrees 
Minimum value of the hanging-wall sense of movement between -180-180° increasing 

counterclockwise from the horizontal. Rounded to the nearest integer. 

RakeAvg Float degrees 
Average value of the hanging-wall sense of movement between -180-180° increasing 

counterclockwise from the horizontal. Rounded to the nearest integer. 

RakeMax Float degrees 
Maximum value of the hanging-wall sense of movement between -180-180° increasing 

counterclockwise from the horizontal. Rounded to the nearest integer. 

MinDepth Float km 
Value of the minimum depth of the fault, or depth of the upper edge, positive downward 

from sea level. Rounded to the half kilometer. 

MaxDepth Float km 
Value of the maximum depth of the fault, or depth of the lower edge, positive downward 

from sea level. Rounded to the half kilometer. 

Length Float km Length of the fault measured along the trace of the upper edge. Rounded to the 1st decimal. 

E2ELength Float km 
End-to-end length of the fault, corresponding to the shortest distance between the farthest 

endpoints on the trace of the upper edge. Rounded to the 1st decimal. 

WidthMin Float km 
Minimum value of the fault width, measured along the dip direction, as calculated from 

depth and maximum dip. Rounded to the 1st decimal. 

WidthAvg Float km 
Average value of the fault width, measured along the dip direction, as calculated from 

depth and average dip. Rounded to the 1st decimal. 

WidthMax Float km 
Maximum value of the fault width, measured along the dip direction, as calculated from 

depth and minimum dip. Rounded to the 1st decimal. 
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AreaMin Float km^2 
Minimum value of the fault area obtained by multiplying total length by width. Rounded to 

the nearest integer. 

AreaAvg Float km^2 
Average value of the fault area obtained by multiplying total length by width. Rounded to 

the nearest integer. 

AreaMax Float km^2 
Maximum value of the fault area obtained by multiplying total length by width. Rounded to 

the nearest integer. 

SRMin Float mm/yr Minimum value of the slip rate in mm/yr. Rounded to the 3rd decimal. 

SRMax Float mm/yr Maximum value of the slip rate in mm/yr. Rounded to the 3rd decimal. 

SRAMean Float mm/yr Aritmetic mean value of the slip rate in mm/yr. Rounded to the 3rd decimal. 

SRGMean Float mm/yr Geometric mean value of the slip rate in mm/yr. Rounded to the 3rd decimal. 

Complex Float scalar 
Index between 0-1 that indicates the level of complexity of the fault geometry. Rounded to 

the 4th decimal. 

TopoAvg Float m 
Average topographic elevation above the fault trace, positive upward from sea level. 

Rounded to the nearest integer. 

MohoAvg Float km 
Value of the average Moho depth below the fault trace, positive downward from sea level. 

Rounded to the half kilometer. 

Mu Float GPa 
Average shear modulus or rigidity. Fixed for coherence with fault scaling relations used to 

estimate maximum magnitude. 

FaultType Char(2) n.a. 
One-letter or two-letter code: R = reverse, N = normal, RL = right-lateral transcurrent, LL = 

left-lateral transcurrent.  

FSLTecto Char(3) n.a. 
Three-letter code: MAR = Mid-Atlantic Ridge; INT = interplate region; SCR = stable 

continental region.  

FSLName Char(24) n.a. Leonard2014_Interplate or Leonard2014_SCR  

FSLSlip Char(2) n.a. Two-letter code: DS = dip slip; SS = strike slip. 

FSLDim Char(1) n.a. 
One-letter code indicating which rupture dimension is used to estimate the maximum 

magnitude: L = length, W = width, A = area, D = displacement.  

MwMaxP02 Float scalar 
Value of 2nd percentile of the maximum moment magnitude distribution. Rounded to the 

2nd decimal. 

MwMaxP05 Float scalar 
Value of 5th percentile of the maximum moment magnitude distribution. Rounded to the 

2nd decimal. 

MwMaxAvg Float scalar Mean value of the maximum moment magnitude distribution. Rounded to the 2nd decimal. 

MwMaxP95 Float scalar 
Value of 95th percentile of the maximum moment magnitude distribution. Rounded to the 

2nd decimal. 

MwMaxP98 Float scalar 
Value of 98th percentile of the maximum moment magnitude distribution. Rounded to the 

2nd decimal. 

M0RMin Float Nm 
Minimum value of the moment rate of the fault. Logarithmic, base 10, value rounded to the 

4th decimal. 

M0RMax Float Nm 
Maximum value of the moment rate of the fault. Logarithmic, base 10, value rounded to the 

4th decimal. 
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M0RAMean Float Nm 
Arithmetic mean of the moment rate of the fault. Logarithmic, base 10, value rounded to 

the 4th decimal. 

M0RGMean Float Nm 
Geometric mean of the moment rate of the fault. Logarithmic, base 10, value rounded to the 

4th decimal. 

 

Table A2 Definition of the crustal fault attributes for the EFSM20_CFDepths files. 

Field Variable Units Description 

IDFS Char(7) n.a. Identifier of the fault source within EFSM20 

IDDS Char(3) n.a. Number of the dataset linked to the file "DescriptionOfDatasets". 

IDSource Char(24) n.a. Identifier given in the original source, if available. 

IDContour Integer n.a. Ordinal that identifies the number of the depth isoline within each crustal fault source. 

Depth Float km 

Depth value of the isoline, positive downward from sea level. The isoline spacing is fixed at 0.5 

km depth. The top and bottom lines of the fault plane are included. 

 

Table A3 Attributes of the slab depths. 1005 

Field Variable Units Description 

IDFS Char(7) n.a. Identifier of the fault source within EFSM20 

SlabName Char(24) n.a. Long name of the subduction system (Gibraltar Arc, Calabrian Arc, Hellenic Arc, Cyprus Arc). 

ShortName Char(3) n.a. Short name of the subduction system (GiA, CaA, HeA, CyA). 

IDDS Char (3) n.a. Number of the dataset linked to the file "DescriptionOfDatasets". 

IDSource Char(24) n.a. Identifier given in the original source 

IDContour Char (5) n.a. 
Identifier of the individual depth isoline coded as follow: three-letter code of the model name, 

followed by an ordinal including leading zeroes. 

Depth Float km 
Depth value of the isoline, positive downward from sea level. The isoline spacing is fixed at 1 

km up to 40 km depth, and at 10 km below. The deepest slab isoline is fixed at 300 km depth. 

 

Table A4 Attributes of the subduction interface. Geometry and behavior parameters. 

Field Variable Units Description 

IDFS Char(7) n.a. Identifier of the fault source within EFSM20.  

SlabName Char(24) n.a. 
Long name of the subduction system (Gibraltar Arc, Calabrian Arc, Hellenic Arc, Cyprus 

Arc).  

ShortName Char(3) n.a. Short name of the subduction system (GiA, CaA, HeA, CyA).  
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IDDS Char(3) n.a. Number of the dataset linked to the file "DescriptionOfDatasets".  

IDSource Char(24) n.a. Identifier given in the original source  

USD1 Float km 
Value of the minimum upper seismogenic depth of the slab interface, positive downward 

from sea level. Rounded to the nearest integer. 

USD2 Float km 
Value of the intermediate upper seismogenic depth of the slab interface, positive downward 

from sea level. Rounded to the nearest integer. 

USD3 Float km 
Value of the maximum upper seismogenic depth of the slab interface, positive downward 

from sea level. Rounded to the nearest integer. 

LSD1 Float km 
Value of the minimum lower seismogenic depth of the slab interface, positive downward 

from sea level. Rounded to the nearest integer. 

LSD2 Float km 
Value of the intermediate lower seismogenic depth of the slab interface, positive downward 

from sea level. Rounded to the nearest integer. 

LSD3 Float km 
Value of the maximum lower seismogenic depth of the slab interface, positive downward 

from sea level. Rounded to the nearest integer. 

ConvRate1 Float mm/yr Value of the lowest estimate of the convergence rate. Rounded to the 2nd decimal. 

ConvRate2 Float mm/yr Value of the average estimate of the convergence rate. Rounded to the 2nd decimal. 

ConvRate3 Float mm/yr Value of the highest estimate of the convergence rate. Rounded to the 2nd decimal. 

ConvAz1 Float degrees 
Lowest azimuth value of the upper-plate and lower-plate convergence direction between 0-

180° increasing clockwise from the North. Rounded to the nearest integer. 

ConvAz2 Float degrees 
Average azimuth value of the upper-plate and lower-plate convergence direction between 0-

180° increasing clockwise from the North. Rounded to the nearest integer. 

ConvAz3 Float degrees 
Highest azimuth value of the upper-plate and lower-plate convergence direction between 0-

180° increasing clockwise from the North. Rounded to the nearest integer. 

TopoMin Float km 
Minimum topobathymetric elevation above the subduction interface area. Rounded to the 1st 

decimal. 

TopoAvg Float km 
Average topobathymetric elevation above the subduction interface area. Rounded to the 1st 

decimal. 

TopoMax Float km 
Maximum topobathymetric elevation above the subduction interface area. Rounded to the 1st 

decimal. 

MohoMin Float km 

Value of the minimum Moho depth below the slab interface, positive downward from sea 

level, as measured in the shallowest region of the slab interface. Rounded to the nearest 

integer. 

MohoAvg Float km 

Value of the average Moho depth below the slab interface, positive downward from sea 

level, as measured in the shallowest region of the slab interface. Rounded to the nearest 

integer. 

MohoMax Float km 

Value of the maximum Moho depth below the slab interface, positive downward from sea 

level, as measured in the shallowest region of the slab interface. Rounded to the nearest 

integer. 

LengthMin Float km Length of the shortest depth isoline within the slab interface. Rounded to the nearest integer. 

LengthAvg Float km Average length of all depth isolines within the slab interface. Rounded to the nearest integer. 
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LengthMax Float km Length of the longest depth isoline within the slab interface. Rounded to the nearest integer. 

AreaInMap Float sq km Total area occupied by the vertical projection onto the ground surface of the slab interface.  

AreaDD Float sq km 
Total area of the slab-interface dipping surface, comprised between the uppermost and 

lowermost depths. Rounded to the nearest integer. 

WidthAvg Float km 
Average width of the slab-interface surface measured along the dip-direction (orthogonal to 

strike). Rounded to the nearest integer. 

DipAvg Float degrees 
Average dip angle (slope) of the slab-interface surface measured along the dip-direction 

(orthogonal to strike). Rounded to the nearest integer. 

 

Table A5 Attributes of the subduction interface discretization. 

Field Variable Units Description 

IDFS Char(7) n.a. Identifier of the fault source within EFSM20.  

SlabName Char(24) n.a. 
Long name of the subduction system (Gibraltar Arc, Calabrian Arc, Hellenic Arc, Cyprus 

Arc).  

ShortName Char(3) n.a. Short name of the subduction system (GiA, CaA, HeA, CyA).  

IDDS Char(3) n.a. Number of the dataset linked to the file "DescriptionOfDatasets".  

IDSource Char(24) n.a. Identifier given in the original source  

IDInterval Char (5) n.a. 
Identifier of the individual depth interval coded as follow: three-letter code of the model 

name, followed by an ordinal including leading zeroes.  

DepthHi Float km 
Value of the upper seismogenic depth of the slab interface, positive downward from sea 

level. Rounded to the nearest integer. 

DepthLo Float km 
Value of the lower seismogenic depth of the slab interface, positive downward from sea 

level. Rounded to the nearest integer. 

LengthHi Float km Length of the upper isoline of the depth interval. Rounded to the nearest integer. 

LengthLo Float km Length of the lower isoline of the depth interval. Rounded to the nearest integer. 

LengthAvg Float km 
Average length of the upper and lower isolines of the depth interval. Rounded to the 

nearest integer. 

AreaInMap Float sq km Total area occupied by the vertical projection onto the ground surface of the slab interface.  

AreaDD Float sq km 
Total area of the slab-interface dipping surface, comprised between the uppermost and 

lowermost depths. Rounded to the nearest integer. 

WidthAvg Float km 
Average width of the slab-interface surface measured along the dip-direction (orthogonal 

to strike). Rounded to the nearest integer. 

DipAvg Float degrees 
Average dip angle (slope) of the slab-interface surface measured along the dip-direction 

(orthogonal to strike). Rounded to the nearest integer. 

TopoMin Float m 
Minimum topo-bathymetric elevation above the subduction interface area. Rounded to the 

1st decimal. 
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TopoAvg Float m 
Average topo-bathymetric elevation above the subduction interface area. Rounded to the 

1st decimal. 

TopoMax Float m 
Maximum topo-bathymetric elevation above the subduction interface area. Rounded to the 

1st decimal. 

MuPREM Float GPa 
Shear modulus (or rigidity) at the depth interval of the slab discretization, as derived from 

Dziewonski and Anderson (1981). Rounded to the nearest integer. 

MuSC19 Float GPa 
Shear modulus (or rigidity) at the depth interval of the slab discretization, as derived from 

Scala et al. (2019). Rounded to the nearest integer. 

MuBL99 Float GPa 
Shear modulus (or rigidity) at the depth interval of the slab discretization, as derived from 

Bilek and Lay (1999). Rounded to the nearest integer. 

MuSR19Min Float GPa 
Shear modulus (or rigidity), - 1 standard deviation, at the depth interval of the slab 

discretization, as derived from Sallarèr and Ranero (2019). Rounded to the nearest integer. 

MuSR19Avg Float GPa 
Shear modulus (or rigidity) at the depth interval of the slab discretization, as derived from 

Sallarèr and Ranero (2019). Rounded to the nearest integer. 

MuSR19Max Float GPa 
Shear modulus (or rigidity), + 1 standard deviation, at the depth interval of the slab 

discretization as derived from Sallarèr and Ranero (2019). Rounded to the nearest integer. 

 1010 

Table A6 Attributes of the subduction interface realizations. 

Field Variable Units Description 

IDFS Char(7) n.a. Identifier of the fault source within EFSM20.  

SlabName Char(24) n.a. 
Long name of the subduction system (Gibraltar Arc, Calabrian Arc, Hellenic Arc, Cyprus 

Arc).  

ShortName Char(3) n.a. Short name of the subduction system (GiA, CaA, HeA, CyA).  

ModelCode Char(5) n.a. 

Five-character code formed by the ShortName string followed by two numbers (1-2-3) 

representing the combination of the USD and LSD values. This code also identifies a 

different polygon in the map, corresponding to the slab interface area enclosed between the 

two different depth isolines.  

USD Float km 
Value of the upper seismogenic depth of the slab interface, positive downward from sea 

level. Rounded to the nearest integer. 

LSD Float km 
Value of the lower seismogenic depth of the slab interface, positive downward from sea 

level. Rounded to the nearest integer. 

TotalArea Float sq km Value of the slab interface area of the model realization. Rounded to the nearest integer. 

Mu1 Float GPa 
Shear modulus (or rigidity) based on the depth range of the slab interface realization 

(weighted average of the expected values -1 s.d.). Rounded to the nearest integer. 

Mu2 Float GPa 
Shear modulus (or rigidity) based on the depth range of the slab interface realization 

(weighted average of the expected values). Rounded to the nearest integer. 

Mu3 Float GPa 
Shear modulus (or rigidity) based on the depth range of the slab interface realization 

(weighted average of the expected values +1 s.d.). Rounded to the nearest integer. 

ConvRate1 Float mm/yr Value of the lowest estimate of the convergence rate. Rounded to the 2nd decimal. 
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ConvRate2 Float mm/yr Value of the average estimate of the convergence rate. Rounded to the 2nd decimal. 

ConvRate3 Float mm/yr Value of the highest estimate of the convergence rate. Rounded to the 2nd decimal. 

MwMax1 Float scalar 
Maximum moment magnitude based on the total area of the slab interface realization 

(expected value -1s). Rounded to the 2nd decimal. 

MwMax2 Float scalar 
Maximum moment magnitude based on the total area of the slab interface realization 

(expected value). Rounded to the 2nd decimal. 

MwMax3 Float scalar 
Maximum moment magnitude based on the total area of the slab interface realization 

(expected value +1s). Rounded to the 2nd decimal. 

TM0Rate11 Float Nm 
Moment rate of the slab interface realization obtained from the product of 

TotalArea*Mu1*ConvRate1. Logarithmic, base 10, value rounded to the 3rd decimal. 

TM0Rate12 Float Nm 
Moment rate of the slab interface realization obtained from the product of 

TotalArea*Mu1*ConvRate2. Logarithmic, base 10, value rounded to the 3rd decimal. 

TM0Rate13 Float Nm 
Moment rate of the slab interface realization obtained from the product of 

TotalArea*Mu1*ConvRate3. Logarithmic, base 10, value rounded to the 3rd decimal. 

TM0Rate21 Float Nm 
Moment rate of the slab interface realization obtained from the product of 

TotalArea*Mu2*ConvRate1. Logarithmic, base 10, value rounded to the 3rd decimal. 

TM0Rate22 Float Nm 
Moment rate of the slab interface realization obtained from the product of 

TotalArea*Mu2*ConvRate2. Logarithmic, base 10, value rounded to the 3rd decimal. 

TM0Rate23 Float Nm 
Moment rate of the slab interface realization obtained from the product of 

TotalArea*Mu2*ConvRate3. Logarithmic, base 10, value rounded to the 3rd decimal. 

TM0Rate31 Float Nm 
Moment rate of the slab interface realization obtained from the product of 

TotalArea*Mu3*ConvRate1. Logarithmic, base 10, value rounded to the 3rd decimal. 

TM0Rate32 Float Nm 
Moment rate of the slab interface realization obtained from the product of 

TotalArea*Mu3*ConvRate2. Logarithmic, base 10, value rounded to the 3rd decimal. 

TM0Rate33 Float Nm 
Moment rate of the slab interface realization obtained from the product of 

TotalArea*Mu3*ConvRate3. Logarithmic, base 10, value rounded to the 3rd decimal. 

 

Table A7 Attributes of the intraslab geometric parameters. 

Field Variable Units Description 

IDFS Char(7) n.a. Identifier of the fault source within EFSM20. 

SlabName Char(24) n.a. 
Long name of the subduction system (Gibraltar Arc, Calabrian Arc, Hellenic Arc, Cyprus 

Arc). 

ShortName Char(3) n.a. Short name of the subduction system (GiA, CaA, HeA, CyA). 

IDDS Char(3) n.a. Number of the dataset linked to the file "DescriptionOfDatasets". 

IDNode Char(8) n.a. 
Identifier of the individual nodes coded as follows: three-letter code of the model name, 

followed by an ordinal including leading zeroes. 

Lon Float degrees 
Longitude of the node in decimal degrees, positive eastward, datum WGS84 (EPSG 4326). 

The east-west spacing between nodes is fixed at 10 km. 
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Lat Float degrees 
Latitude of the node in decimal degrees, positive northward, datum WGS84 (EPSG 4326). 

The north-south spacing between nodes is fixed at 10 km. 

Depth Float km 
Depth of the node, positive downward from sea level. The node depth spacing is fixed at 10 

km, starting from 5 km. 

Strike Float degrees 

Value of the slab orientation, between 0-360° increasing clockwise from the north following 

the right-hand rule. Recalculated from the nearest point on the slab mid-surface. Rounded to 

the nearest integer. 

DipDir Float degrees 

Value of the slab dip direction (downward direction of maximum slope), between 0-360° 

increasing clockwise from the north. Calculated as strike + 90°. Rounded to the nearest 

integer. 

Dip Float degrees 
Value of the slab dip angle, between 0-90° increasing downward from the horizontal. 

Recalculated from the nearest point on the slab mid-surface. Rounded to the nearest integer. 

 

https://doi.org/10.5194/nhess-2023-118
Preprint. Discussion started: 11 September 2023
c© Author(s) 2023. CC BY 4.0 License.




